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Abstract

A hallmark of the immune system is the interplay among specialized cell types transitioning 

between resting and stimulated states. The gene regulatory landscape of this dynamic system has 

not been fully characterized in human cells. Here, we collected ATAC-seq and RNA-seq data 

under resting and stimulated conditions for up to 32 immune cell populations. Stimulation caused 

widespread chromatin remodeling, including response elements shared between stimulated B and 

T cells. Furthermore, several autoimmune traits showed significant heritability in stimulation-

responsive elements from distinct cell types, highlighting the importance of these cell states in 

autoimmunity. Use of allele-specific read-mapping identified variants that alter chromatin 

accessibility in particular conditions, allowing us to observe evidence of function for a candidate 

causal variant that is undetected by existing large-scale studies in resting cells. Our results provide 

a resource of chromatin dynamics and highlight the need for characterization of effects of genetic 

variation in stimulated cells.

Editorial summary:

Analysis of gene expression and open chromatin regions in up to 32 immune cell populations 

under resting and stimulated conditions identifies widespread chromatin remodeling and shared 

response elements between stimulated B and T cells.

Introduction

Immune cells respond to stimuli with stereotyped transcriptional programs that enable 

specialized functions during an immune response. These programs, essential for immune 

homeostasis, are coordinated by precise interactions of transcription factors (TFs) that bind 

genomic sites to influence chromatin landscape and ultimately gene expression. Tight 

regulation of these programs is required for an appropriate immune response against cancer 

and infections, and the avoidance of autoimmunity. Genetic variation in regulatory regions 

that tune transcriptional programs can contribute to the risk of human autoimmune diseases.

Genome-wide association studies (GWAS) have identified hundreds of genetic variants that 

contribute to the risk of autoimmunity. Roughly 90% of these signals lie in non-coding 

regions, and thus presumably act by altering gene regulation, however most of these remain 
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difficult to interpret1. Several studies have reported enrichment of variants linked to risk of 

immune-mediated disorders at key enhancers and cell-specific expression quantitative trait 

loci (eQTLs), suggesting potential mechanisms by which non-coding variants contribute to 

disease pathology1–7. Nonetheless, only a minority, perhaps 25%, of GWAS signals can 

currently be explained through known eQTLs8.

Several groups have shown that additional GWAS-eQTL overlap can remain hidden within 

stimulation-specific functional regions of immune cells1,9–13. Probing these response-

specific functional regions can reveal previously undetected disease-associated mechanisms, 

emphasizing the unique role of stimulation to autoimmunity. For example, our group 

discovered a stimulation-response regulatory element which, when perturbed, resulted in a 

dysregulated immune response by delaying IL2RA expression in vivo14. This region harbors 

a fine-mapped GWAS variant linked to inflammatory bowel disease and type 1 

diabetes15–17, thus connecting immune response to autoimmunity. However, these studies 

have been performed on few stimulated cell types. Thus, we lack a comprehensive view of 

the effects of stimulation on the chromatin landscape of diverse immune cell types, and the 

role of SNPs in these regions on autoimmune disease.

To address this gap, we developed a resource of chromatin accessibility and gene expression 

from 25 primary human immune cell types isolated from four human blood donors, in both 

resting and activated states. Additionally, to further understand chromatin structure in cells 

important for T cell development we included six thymocyte subsets and thymic epithelial 

cells (TECs) collected from fetal thymus samples.

Overall, we observed features of the chromatin landscape that depend upon cell lineage and 

response to stimulation. Notably, B and T cell subsets shared a significant proportion of 

these stimulation-responsive chromatin regions. Integrating these data with autoimmune 

disease GWAS, we found that stimulation-responsive chromatin regions explained 

significant trait heritability in multiple immune cell types, indicating distinct lineage 

contributions to autoimmunity. Finally, we leveraged stimulation-responsive chromatin 

elements and allele-specific imbalance of chromatin accessibility as a functional readout of 

variants from individual donors to identify new autoimmunity-related mechanisms. As 

proof-of-concept for the power of this approach, we found evidence of function for a 

candidate causal SNP that is associated with both rheumatoid arthritis and ulcerative colitis 

(rs6927172 - NC_00006.10:g. 138002175C>G), which putatively regulates the expression of 

TNFAIP3.

Results

An atlas of immune cells in resting and stimulated states

To identify regulatory elements underlying differentiation and stimulation responses in the 

human immune system, we generated a map of chromatin accessibility and gene expression 

in resting and stimulated immune cells (Fig. 1a). We isolated 25 specialized immune cell 

types by flow cytometry from peripheral blood of up to four healthy donors including 

different subsets of B cells, CD4+ T cells, CD8+ T cells, ³´ T cells, monocytes, dendritic 

cells (DCs) and natural killer cells (NK) (Supplementary Fig. 1, Supplementary Table 1). 
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Additionally, we collected fetal thymus samples from three donors and isolated a number of 

thymocyte subsets, including double positive (DP), double negative (DN), pre-T double 

negative (pre-T DN), immature single positive CD4+ (CD4+ iSP) and single positive mature 

CD4+ and CD8+ T cells, as well as thymic epithelial cells (TEC).

We performed an assay for transposase-accessible chromatin using sequencing (ATAC-seq), 

which profiles chromatin-accessible regions as a sequencing depth read out18, and RNA-seq 

on isolated cell types. Details further verifying the quality of the samples can be found in the 

Supplementary Note. On average, across all resting cell type samples, we identified 36,810 

accessible peaks (q-value < 0.05), controlling for the effects of read depth and sample 

quality.

Unsupervised clustering of ATAC-seq identified distinct chromatin signatures for different 

lineages (Fig. 1c, Supplementary Fig. 2c). For example, hematopoietic stem cell progenitors 

clustered separately from more differentiated immune cell types (data from Corces, et al.19). 

T cell subsets including CD4+, CD8+ and ³´ T cells clustered closely together, indicating 

similar chromatin accessibility profiles for each of them under resting conditions. 

Circulating mature T cells could be distinguished from their single positive thymocyte 

precursors, suggesting further chromatin remodeling in the periphery. Finally, samples 

generally clustered as expected with published data from the same cell types (Fig. 1c).

The same major cell type clusters observed in the chromatin accessibility data were 

recapitulated when we clustered RNA-seq samples (Supplementary Fig. 2c,d). However, cell 

type clustering accuracy was higher when using chromatin accessibility than when using 

gene expression (mean HA-adjusted RAND index 0.19 and 0.12 respectively), consistent 

with previous analyses19.

Identifying immune memory-associated accessible regions

Taking advantage of the variety of cell types profiled, we quantified changes in chromatin 

accessibility and gene expression along paths of lymphoid cell differentiation in resting cell 

types (Fig. 2a; Supplementary Data 1 and 2).

Focusing on immune memory formation in different lineages, we found that B and T cells 

gained accessible chromatin regions as they mature from naïve to memory cells (Fig. 2a,b; 

Supplementary Note). To discover factors that potentially drive these chromatin changes, we 

scanned for transcription factor motifs within accessible regions genome-wide. We observed 

an enrichment of binding sites for known immune regulators such as JUN/FOS and RUNX3 

(Fig. 2c), in addition to increased expression of these transcription factors in memory cells 

compared to naïve cells (Supplementary Fig. 4b)20.

Comparing memory-associated signatures of chromatin accessibility between different 

lineages, we observed concordant changes between different T cell subsets and a marginal 

overlap with the accessibility dynamics during B cell memory formation, quantified in terms 

of Pearson’s R correlation coefficients as well as overlap between sets of differentially 

accessible peaks (Fig. 2d,e).
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In accordance with previous studies21–23, many genes which are dynamic during memory 

formation are associated with genomic regions that are putatively regulatory. For example, 

we found regions exhibiting increased accessibility in memory cells of the B and T lineage 

compared to naïve cells upstream of the chromatin regulator gene EED, which also 

correlated with increased expression in memory cells (Fig. 2f,h).

To highlight the importance of these regions for understanding autoimmunity, we integrated 

our estimates of memory-associated accessible regions and differentially expressed genes 

with a database of GWAS variants24. As an example, we found several regions that increase 

in accessibility around the IL23R gene in effector memory CD8+ T cells that contained 

variants associated with several autoimmune traits (Fig. 2g, Supplementary Fig. 4a). 

Moreover, IL23R was significantly upregulated in effector memory CD8+ T cells (Fig. 2h). 

Thus, dysregulation of immune memory-associated chromatin accessible regions represents 

a potentially important effect on autoimmunity.

Stimulation leads to large-scale chromatin changes

Previous studies have shown large-scale chromatin remodeling upon stimulation of 

individual cell types9,10,25,26. We set out to perform a comprehensive analysis of 

stimulation-dependent chromatin and gene expression changes across a wide range of cell 

types and lineages. To investigate these effects, we ex vivo stimulated the majority of the 

collected cell types and performed ATAC-seq and RNA-seq.

Our aim was to provide a strong stimulus to each cell type in order to measure chromatin 

dynamics of strongly activated cells. Subsets from distinct lineages were activated with 

distinct stimuli to induce biologically relevant responses: T cell subsets were stimulated by 

cross linking T cell receptor and co-stimulatory receptor (anti CD3/CD28 dynabeads)27–29; 

B cell subsets were stimulated with anti-human IgG/IgM and human IL-430–32; Monocytes 

were stimulated with lipopolysaccharide (LPS)9; and NK cells were stimulated with IL2, 

CD2 and CRTAM (NCR1) coated beads33. Stimuli exposure duration was chosen according 

to the corresponding literature and activation status was confirmed by inspecting surface 

expression of CD69 (Supplementary Fig. 7).

Overall, stimulation drives dramatic changes in chromatin landscapes of B and T cells. In 

contrast, we saw only limited effects in innate lineage cells (Supplementary Fig. 5a,b). Upon 

further inspection of the monocyte dataset, even though differentially expressed genes 

replicated results from Alasoo et al.10, we did not observe a robust stimulation response at 

the chromatin level or changes in CD69 surface expression (Supplementary Fig. 6b,c; 7). 

Therefore, we do not discuss the stimulated monocytes further.

Stimulation was a major driver of sample clustering of B and T cells (Fig. 3a). The primary 

axes of variation in chromatin accessibility were associated with both stimulation and cell 

type. Moreover, stimulated samples moved in a similar direction, suggesting an underlying 

shared chromatin response to stimulation. Furthermore, many similar pathways were 

enriched for significant stimulation-associated genes among distinct subsets (Supplementary 

Fig. 8, Supplementary Table 1).
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To quantify these observations, we used a random effects model to estimate the proportion 

of biological variance of chromatin accessibility explained by stimulation condition, lineage 

(CD4+, CD8+, and B) and cell subset (e.g. naïve, memory and T helper cells; Methods). We 

found that stimulation, regardless of lineage or cell type, accounted for roughly a quarter of 

the explained chromatin variation (Fig. 3b). In fact, the chromatin differences due to 

stimulation were nearly as large as differences between cell lineages (25% versus 32%, 

respectively). Additionally, lineage-dependent stimulation changes explained a significantly 

greater amount of chromatin variation than cell subset-specific stimulation. In summary, 

broadly shared simulation and lineage-specific stimulation effects drove a large proportion 

of observed chromatin variation.

One major effect of stimulation was a marked increase in the number of accessible sites and 

in widespread up-regulation of gene expression (Fig. 3c). Specifically, we found 30,224 

additional peaks in stimulated cell types compared to resting state (Supplementary Fig. 5c). 

Testing for differential accessibility, we found, on average, that 12,119 peaks were 

significantly more accessible, versus 1,722 peaks that were significantly less accessible 

following stimulation (Fig. 3c, left panel; Supplementary Data 3). We observed a similar 

pattern in gene expression where, per sample, an average of 394 genes were up-regulated 

compared to 237 down-regulated genes in stimulated cell types relative to their resting cell 

state (Fig. 3c, right panel; Supplementary Data 4).

For example, stimulation of memory B cells leads to considerable increases of accessibility 

and expression. At the same time, only 226 peaks become less accessible and 59 genes are 

down-regulated following stimulation. We found a similar trend within subsets of the T cell 

lineage (Fig. 3d).

Finally, given that both B and T cell subsets have highly distinct functions during an immune 

response, we were interested in quantifying the strength of shared effects of stimulation on 

chromatin remodeling. Therefore, we computed Pearson’s R correlation of effects estimated 

from stimulation-induced changes in chromatin accessibility and gene expression between 

each pair of cell types as a summary statistic of the shared effect of stimulation (Fig. 3e).

We observed large proportions of shared stimulation-induced chromatin accessible regions 

between CD4+, CD8+ and ³´ T cells (mean R = 0.74) upon activation. Similarly, we 

observed strong sharing among B cell subsets (mean R = 0.82). Furthermore, despite the 

divergent mechanisms of activation in B and T cells, we identified a significant level of 

sharing globally between stimulation-response in B and T cells (mean R = 0.37), indicating 

that some stimulation-induced regulatory networks are utilized by both B and T cells. 

However, while stimulation induces both unique and shared chromatin responses, the 

stimulation-induced transcriptional signatures are broadly shared among cell types (mean R 

= 0.77). We further characterize transcription factors driving stimulation chromatin effects 

and their connection to gene expression in the Supplementary Note.

Context-specific allelic imbalance

In addition to identifying stimulation-associated chromatin regions, we were interested in 

characterizing genetic variants that alter context-specific chromatin regulation. Due to the 
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small number of individuals included in this study, and thus insufficient power to call 

chromatin accessibility quantitative trait loci (caQTLs), we used the observed allelic 

imbalance of ATAC-seq reads that map to heterozygous SNPs to identify significant sites of 

allele-specific chromatin accessibility (ASC). The hypothesis is that a heterozygous variant 

may cause local, allele-specific changes in chromatin accessibility, for example by 

disrupting local transcription factor binding. Such events result in an imbalance in the 

number of ATAC-seq reads overlapping each allele34–38. After read-filtering to account for 

mapping biases39, we computed binomial test p-values and identified 607 significant ASC 

sites, on average, per sample, and a total of 10,780 sites overall (q-value < 0.1, see Methods, 

Supplementary Table 1).

Because we collected many cell samples from each donor, we could test for allelic 

imbalance of chromatin accessibility at an individual heterozygous site across cell and 

condition-specific contexts. For instance, we observed a heterozygous variant, rs3795671, 

that resulted in increased chromatin accessibility at the reference allele across resting and 

stimulated samples (Fig. 4a). Other variants exhibited allelic imbalance in a subset of cell 

type states; these include rs7011799, rs12091715, rs1250567, and rs1445033, which are 

associated with chromatin accessibility within resting, stimulated, T, and B lineage contexts, 

respectively.

Next, we leveraged these data to verify transcription factors that regulate chromatin in 

specific contexts, and thus drive context-specific allelic imbalance. As described in the 

Supplementary Note, motif enrichment analysis (Supplementary Fig. 5d) suggested that 

BATF (or perhaps another transcription factor from the AP-1 family, which can have similar 

position weight matrices (PWMs)), among others, is an important regulator of chromatin in 

stimulated cells26. We therefore hypothesized that sites that affect BATF binding would 

result in ASC within stimulated samples. As a proxy for true BATF binding, for each 

heterozygous site within a BATF binding motif, we computed the relative binding affinity 

for the reference and the alternative allele using the BATF PWM. Upon stimulation, alleles 

that were predicted to increase BATF binding affinity were associated with increased 

accessibility. However, there was no such effect in resting cells, indicating that BATF does 

not impact chromatin accessibility in the resting state (Fig. 4b). We observed a similar 

preferential binding effect for other stimulation-associated transcription factors, including 

JUNB, FOSL1 and BACH1 (Supplementary Fig. 9a). Thus, the PWMs of these factors can 

predict sequence dependent changes of stimulation-specific effects on chromatin 

accessibility. However, because of correlation between PWMs of distinct transcription 

factors, further study will be required to link these signals definitively to specific 

transcription factors.

Intrigued by the stimulation-specific effect of the BATF-associated PWM, we wanted to 

leverage our ASCs to determine the prevalence of context-specific chromatin regulation. We 

propose three possible models of chromatin effects at a significant ASC site, in pairs of cell 

types or conditions (Fig. 4c, from left to right). The variant can: 1) differentially affect 

chromatin in cell type A, while the region is inaccessible in cell type B; 2) differentially 

affect chromatin in cell type A, but not in cell type B, even though the region is accessible 

therein, or; 3) differentially affect chromatin in both cell types. The relative fractions of case 
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2 versus case 3 were estimated using a method that accounts for incomplete power in each 

statistical test40.

We quantified the proportion of ASCs that fit each possible model and observed that most 

ASCs have shared effects on chromatin regulation (Methods). To further investigate changes 

in the prevalence of shared regulation across differences in cell state, we varied whether the 

two compared samples were of the same lineage and condition. For the purpose of this 

analysis, we grouped all “stimulated” samples.

Notably, most effects on allelic imbalance are shared regardless of lineage or condition (Fig. 

4d). In contrast, the proportion of accessible sites covaried more strongly with differences in 

lineage and condition between the two samples. These observations suggest that changes in 

cellular function due to chromatin remodeling occur primarily through changes in chromatin 

accessibility, rather than regulation of already accessible chromatin. Moreover, these trends 

held when the analysis was performed in the other donors (Supplementary Fig. 9b,c). The 

BATF analysis in Fig. 4b indicates that at least some sites containing BATF motifs are likely 

differentially regulated upon stimulation, however this scenario represents a small minority 

of all ASC sites, which corroborates findings from previous studies on caQTLs41.

GWAS enrichment in immune-specific accessible regions

Understanding the molecular mechanisms behind autoimmune disease risk variants requires 

the identification of disease-relevant cell types and states. With chromatin accessibility 

information from a large number of resting and activated immune cell types, we can identify 

cell types and conditions enriched for variants associated with autoimmune disease. For 

example, the inclusion of thymocytes and progenitor cells allow us to examine the 

possibility that autoimmunity risk variants affect enhancers that are selectively accessible 

during early differentiation.

Using publicly available summary statistics for nine autoimmune disorders and four non-

immune traits (as controls), we identified trait-relevant functional annotations using the 

partitioning heritability functionality of LD Score regression2. This allowed us to compute 

the proportion of heritability explained by SNPs in open chromatin for a particular cell type. 

This quantity, divided by the overall proportion of open chromatin SNPs in that cell type, 

will be referred to as the enrichment of heritability (Supplementary Table 1).

We observed greater enrichment of heritability in differentiated immune cells compared to 

progenitor cells and non-immune tissues for most autoimmune traits (Fig. 5a; 

Supplementary Fig. 5a,b). Specifically for rheumatoid arthritis (RA) we saw about ten-fold 

enrichment of heritability in open chromatin from control tissues and progenitors compared 

to the genome-wide background (Fig. 5a), and a median 23-fold enrichment in open 

chromatin of adult immune cell types. Heritability enrichment in non-immune tissues 

compared to the genome-wide background is likely due to the fact that many open chromatin 

regions are shared among diverse cell types. Thus, many of the SNPs that affect disease risk 

through immune cell functions are also located in open chromatin in many other tissues42.
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Notably, heritability enrichment was particularly strong in stimulated immune cells, 

compared to their resting counterparts (Fig. 5b). This signal was spread across diverse cell 

types, including both B and T cell lineages, and did not implicate particular immune subsets 

as drivers of rheumatoid arthritis. We wondered whether this relatively diffuse signal arises 

because multiple cell types play causal roles in rheumatoid arthritis, or simply because the 

broad sharing of stimulation peaks makes it difficult to identify a critical cell type.

To investigate this further, we grouped the open chromatin peaks into 11 disjoint clusters 

based on their profiles of accessibility across cell types and conditions (Methods, 

Supplementary Fig. 10c). For example, we defined a cluster of peaks that are open only in 

stimulated B cells, and a cluster of peaks that are open only in stimulated T cells. We used 

these peak groupings to test which clusters are enriched for autoimmune trait heritability 

(Fig. 5c).

Overall, we observed strong enrichment of heritability in accessible regions from multiple 

peak groups, especially among the stimulation-related peaks. No single peak group could 

explain the entirety of the signal. Since these groups are disjointed, this observation implies 

that multiple separate immune components contribute to heritability. In the case of 

rheumatoid arthritis, we identified enriched heritability in stimulation peaks specific to B 

lineage cells, and in stimulation regions specific to T lineage cells, thus implicating a role 

for both stimulated B and T cells. Previous studies have separately identified B19,43 and T 

cells1,4 in driving the development of rheumatoid arthritis, although our analysis would 

suggest that both contribute to autoimmunity. In addition to signals from cell type-specific 

clusters, all traits had significant enrichment within loci that were broadly accessible, 

highlighting the contribution of broadly open “housekeeping” peaks to heritability.

Taken together, these results suggest that stimulated cells from both B and T lineages likely 

contribute to autoimmunity. Furthermore, it remains difficult to implicate more narrowly-

defined subsets through this type of analysis, due to the extensive sharing of open chromatin 

among closely related subsets.

Stimulation-specific data increase GWAS and eQTL overlap

One important approach for linking noncoding GWAS hits to the genes they regulate is 

through eQTL mapping. However, only a small proportion of significant GWAS sites have 

been successfully linked to an eQTL. One hypothesis for the limited overlap is that many 

eQTLs may be context-specific and thus remain unidentified if not all of the relevant cell 

types or conditions have been studied44. Since we found a strong signal of autoimmune trait 

risk variants located within stimulation-specific chromatin accessibility peaks, we sought to 

investigate whether these variants would have been identified as candidate regulatory 

variants in a standard tissue-based eQTL study. We present results primarily from 

rheumatoid arthritis, because the heritability of this disorder was highly enriched in the 

stimulation-specific accessible regions in our previous analysis.

For this analysis, we partitioned the set of allelic imbalance sites into two groups: ASC sites 

that were identified in resting samples, and ASC sites that were only identified in stimulated 

samples (either B or T cells; nominal p < 0.10). In this analysis, sites that were present in 
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both resting and stimulated cells were included in the resting set, as those could be identified 

even without using stimulated cell data. Since variants that affect chromatin accessibility are 

strongly associated with regulation of gene expression34, the former set of ASCs likely 

contain sites that regulate gene expression in the resting cell state, while the latter contain 

sites associated with stimulation-specific gene regulation.

Both sets of SNPs exhibited highly significant enrichment of rheumatoid arthritis GWAS 

signal relative to control SNPs (p = 2 × 10−19 (resting), and p = 3 × 10−14 (stimulation only); 

Fig. 6a). However, the stimulation-specific ASCs would not have been identified in resting 

samples. Moreover, we compared these two sets to all variants for which an ASC p-value 

was computed and similar trends were observed (Supplementary Fig. 11a). Thus, 

stimulation-specific chromatin is as important, in terms of disease risk enrichment, as 

resting-specific chromatin from immune cells.

Thus far there have been many studies of blood eQTLs (PBMCs) encompassing many 

thousands of samples45. However, since the proportion of stimulated cells in bulk tissues is 

relatively low, we hypothesized that sites that affect stimulation-specific chromatin 

accessibility may not be detected as eQTLs using whole blood or resting immune cells. To 

test this hypothesis, we determined the enrichment of blood eQTL signal from GTEx in the 

two previously described sets of resting and stimulation-specific ASC sites. We observed a 

strong enrichment (p = 3 × 10−24) of blood eQTL signal within the resting state-specific set 

of ASC variants compared to the stimulation-specific set (Fig. 6b). Furthermore, a similar 

trend was observed when using eQTLs from naïve T cells (Supplementary Fig. 11b)7. These 

observations indicate a clear need for large-scale eQTL mapping in stimulated immune cells 

and argue that the low overlap of autoimmune GWAS and eQTL data8 is at least partly 

driven by the current lack of such data.

These observations suggest that the inclusion of data from stimulated cells could help fine-

map previously unexplained causal mutations. To identify such examples, we intersected a 

database of fine-mapped candidate causal GWAS SNPs1 with a set of stimulation-specific 

allelic imbalance heterozygous SNPs and PWM-disruption scores for TFs (Supplementary 

Data 5).

Using these data, we identified a T cell lineage-specific stimulation peak within an 

intergenic region upstream of the TNFAIP3 locus (encoding A20 protein). Moreover, this 

region contains several variants that are included in a credible set of regions identified for 

rheumatoid arthritis and ulcerative colitis. For rheumatoid arthritis, only rs6927172 falls 

within a stimulation-specific chromatin accessible peak (Fig. 7a). For ulcerative colitis, in 

addition to rs6927172, three additional variants fall within another nearby stimulation-

responsive peak, yet this second peak does not demonstrate as strong a response as the first 

peak (Supplementary Fig. 13a). Notably, rs6927172 was associated with altered chromatin 

accessibility in stimulated CD4+ T cells across multiple donors, suggesting a potential role 

of the SNP in regulating chromatin remodeling (Fig. 7b).

Indeed, the cytosine to guanine mutation leads to a large change in the PWM-predicted 

binding affinity of the p50 subunit of NFKB1 (Fig. 7c, Supplementary Fig. 13b; see 
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Supplementary Fig. 13c for expression levels). To validate this observation, we performed 

ChIP-seq for the p65 and p50 subunits of NFKB1 from stimulated CD4+ T cells isolated 

from two healthy donors who are heterozygous for rs6927172. We observed an increased 

count of p50 ChIP-seq reads that mapped to the region containing our SNP of interest in one 

of the two donors. As predicted, we detected significant allelic-imbalance for p50 in the 

same donor (Fig. 7d).

As NFKB1 has been shown to regulate TNFAIP3 expression46,47, this result suggests that 

rs6927172 may contribute to the pathology of autoimmune diseases by disrupting binding of 

NFKB1 in stimulated T cells to the TNFAIP3 locus and therefore inhibit gene expression 

(Fig. 7c).

Discussion

While increasing evidence points to an important role of stimulation response in 

autoimmune dysregulation, little work has been done to characterize shared and cell subset-

specific stimulation effects across multiple differentiation lineages. Therefore, we developed 

a map of stimulation-responsive chromatin accessibility and transcription in a diverse set of 

immune cell populations.

To study the impact of genetic variation on the chromatin landscape, we used allele-specific 

measurement of open chromatin to identify genotype-dependent sites (ASC). While the 

majority of ASC are shared between closely related cell types, only 60% of ASC are shared 

for comparisons between lineages and between stimulated and resting cells. Most non-

sharing of ASC is due to differential accessibility between cell types/conditions, while a 

smaller fraction is due to differential regulation of shared open sites as exemplified by BATF 

activity in stimulated cells.

Several past studies have mapped GWAS signals to cell type-specific functional elements, 

allowing the prediction of the cell types that may be involved in disease pathology1–6,48. We 

observed significant autoimmune trait heritability within accessible regions of distinct 

stimulated cell types, suggesting contributions of multiple stimulation-response components 

to autoimmunity. Moreover, we showed that genetic variation associated with stimulation-

specific gene regulation is significantly underrepresented in existing large-scale eQTL 

datasets from whole blood PBMCs. As a concrete example of this point we identified 

rs6927172, which was associated with CD4+ T cell stimulation-specific changes in 

chromatin accessibility near TNFAIP3 and affects the predicted binding of the p50 subunit 

of NFKB1. This region has been associated with several autoimmune phenotypes, such as 

variable patient responses to anti-TNF treatment49, ulcerative colitis15, and rheumatoid 

arthritis50. We further propose a model by which this variant affects autoimmunity in the 

Supplementary Note.

Taken together, these data provide insights into the interplay of specific loci and regulatory 

networks involved in the human immune system. Additionally, we present a powerful 

platform to map genetic variants to cell and context-specific functional regions genome-

wide, and therefore, to their context-specific effects on disease phenotypes.
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Methods

Data collection

Sample collection and processing— This study was approved by the UCSF 

Committee on Human Research and written consent was obtained from all donors. 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood (~450 ml) 

using Ficoll-Plaque Plus (GE Healthcare, IL, USA) centrifugation. Bulk population of CD4+ 

T cells, B cells and monocytes were positively enriched, whereas pan T cells, NK cells and 

dendritic cells were negatively enriched using magnetic beads prior to sorting (STEMCELL, 

Canada). Different cell subsets were sorted on a FACS Aria flow cytometer (BD 

Biosciences, CA, USA) up to >95% purity (Supplementary Table 1). Sorted cells were 

washed once in PBS, cryopreserved in Bambanker freezing media (LYMPHOTEC Inc, 

Japan) for ATAC experiments and in TriReagent (Sigma-Aldrich, MO, USA) for RNA 

experiments. Cells frozen in Bambanker freezing media were stored in liquid nitrogen until 

ready to use. Cells frozen in TriReagent were stored at −80°C until further use.

Ex vivo activation— Freshly sorted cells were cultured in RPMI-1640 medium 

supplemented with glutamine, sodium pyruvate, penicillin, streptomycin, non-essential 

amino acid and 10% FCS (Sigma-Aldrich, MO, USA). T lymphocytes were stimulated for 

24 hours with anti-human CD3/CD28 dynabeads (Thermo Fisher Scientific, MA, USA) at a 

1:1 cell to bead ratio and human IL-2 (UCSF Pharmacy, 300 unit/ml for regulatory T cells, 

50 unit/ml for other T lymphocytes). B lymphocytes were activated for 24 hours with 10 

µg/ml F(ab)’2 anti-human IgG/IgM (Affymetrix, CA, USA) and 20 ng/ml human IL-4 (Cell 

Sciences, MA, USA). NK cells were activated using 2 conditions: 1) with the NK Cell 

Activation/Expansion Kit as per manufacturer’s instructions for 48 hours (Milteny, 

Germany) and 2) with 500 unit human IL-2 for 24 hours. Monocytes were stimulated with 

100 ng/ml and 1µg/ml LPS (Sigma-Aldrich, MO, USA) for 6 hours and 24 hours, 

respectively. The detailed activation conditions are listed in Supplementary Table 1). After 

stimulation, cells were washed once with PBS, cryopreserved in Bambanker freezing media 

and TriReagents, and stored in liquid nitrogen until ready to use.

RNA-seq library preparation— Cells frozen in TriReagent were thawed at room 

temperature for 10 min. Technical replicates were done for each cell aliquot. One hundred µl 

chloroform was added to 500 µl of sample, mixed, incubated at room temperature for 10 min 

and centrifuged at 12,000 g for 10 min at 4°C. The aqueous phase was transferred to a new 

tube and an equal volume of 100% ethanol was added. For further RNA extraction the 

Direct-zol RNA MicroPrep kit (Zymo Research, CA, USA) was used. Samples were mixed 

thoroughly before transferring onto a Zymo-Spin IC Column and RNA was extracted 

according to the manufacturer’s protocol starting at step 2. RNA sequencing library 

preparation was based on the Smart-seq2 protocol52. For oligo dT annealing, 2 µl RNA was 

mixed with 1 µl recombinant RNase inhibitor (Takara Bio USA, CA, USA), 1 µl of 10 µM 

oligo dT (Integrated DNA Technologies, [IDT], IA, USA) and 1 µl of 10 mM dNTPs (New 

England Biolabs, MA, USA), and incubated at 72°C for 3 min. Reverse transcription and 

template switching were done in 1x first strand synthesis buffer (Thermo Fisher Scientific, 

MA, USA), 100 U SuperScript II reverse transcriptase (Thermo Fisher Scientific), 10 U 
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RNase inhibitor (Takara Bio USA), 5 mM DTT, 1 M Betaine (Sigma-Aldrich, MO, USA), 6 

mM MgCl2, and 1 µM TSO (IDT). The mixture was incubated at 42°C for 90 min, 10 cycles 

of 50°C for 2 min and 42°C for 2 min, followed by a final incubation of 15 min at 70°C. 

Transcribed RNA was amplified in 1x KAPA HiFi HotStart ReadyMix (Kapa Biosystems, 

MA, USA), 0.1 µM IS primer and 0.6 ×Sybr Green (Thermo Fisher Scientific) as follows: 

98°C for 3 min, 18 cycles of 98°C for 20 seconds, 67°C for 15 seconds, followed by a final 

extension at 72°C for 5 min. Samples were purified using AMPure XP beads (Beckman 

Coulter, CA, USA) in a 1:1 ratio. Tagmentation of amplified cDNA was carried out using the 

Nextera XT DNA library kit (Illumina, CA, USA). In a 20 µl reaction, 150–200 pg cDNA 

was added to 1x TD buffer (Illumina) and 5 µl of ATM (Illumina). The mixture was 

incubated at 55°C for 5 min. Five µl of NT buffer was added to the mixture to stop the 

fragmentation reaction and incubated for 5 min at room temperature. Tagmented libraries 

were further amplified in a total reaction volume of 50 µl by adding 15 µl of NPM (Illumina) 

and 1.25 µM of each, i7 and i5, custom Nextera barcoded PCR primers53 for 3 min at 72°C, 

30 seconds at 95°C, and 12 cycles of 10 seconds at 95°C, 30 seconds at 55°C, and 30 

seconds at 72°C. Amplified libraries were purified using AMPure XP beads (Beckman 

Coulter) using a 1:1 ratio.

ATAC-seq library preparation— ATAC-seq libraries were prepared following the Fast-

ATAC protocol19. In detail, frozen cells were thawed in a water bath, resuspended in 2 ml 

media and centrifuged at 500 g for 5 min. Pelleted cells were resuspended in 1 ml and 

counted using a hemocytometer. For the ATAC reaction, we took aliquots of 10,000 live 

cells, unless limited by cell number. Technical replicates were done for all samples. Cells 

were spun down at 4°C at 500 g for 5 min, washed once in cold PBS and resuspended in the 

Tn5 reaction buffer (1x TD buffer [Illumina, CA, USA], 50 µl TDE1 Tn5 transposase 

[Illumina] per ml Tn5 reaction buffer and 0.01% Digitonin). 5,000–10,000 cells were 

transposed in 50 µl of reaction buffer. The reaction volume of samples containing fewer than 

5,000 cells was linearly scaled to the number of cells present whereby, for example, 4,000 

cells were done in a 40 µl reaction and 2,500 cells were done in a 25 µl reaction. The Tn5 

reaction mix was incubated at 37°C for 30 min at 300 rpm. Transposed samples were 

purified using MinElute PCR purification columns according to the manufacturer’s protocol 

(Qiagen, Germany). Purified samples were amplified and indexed using custom Nextera 

barcoded PCR primers (Supplementary Table 1) as described in Buenrostro, et al.18. 

Amplified libraries were purified using MinElute PCR purification columns.

DNA sequencing— To circumvent index hopping, subpools of samples were created, ran 

over a 2.5% Agarose gel and size selected, excluding high molecular weight DNA, free PCR 

primers, and primer dimers. Samples were purified using a MinElute Gel Purification kit 

according to manufacturer’s instructions (Qiagen). Prior to sequencing, samples were 

amplified in 1x NEBNext Master Mix (New England BioLabs, MA, USA), 1.25 µM oligo C 

(Illumina P5) and 1.25 µM oligo D (Illumina P7) using the following cycle conditions: 30 

seconds at 98°C followed by 3–4 cycles of 10 seconds at 98°C, 30 seconds at 63°C and 1 

min at 72°C. All samples were purified using MinElute PCR purification columns (Qiagen). 

Samples run on the NovaSeq 6000 were additionally purified using 1x AMPure XP beads 

(Beckman Coulter, CA, USA) to remove free oligo C and D primers. ATAC-seq samples 
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were sequenced on a HiSeq 4000 in paired-end 76 bp cycle mode or on a NextSeq 500, 

without prior gel clean-up, in paired-end 76 bp cycle, high-output mode. RNA-seq (cDNA) 

libraries were either sequenced on a NovaSeq using a S2 flow cell in paired-end 100 bp 

cycle mode or on a HiSeq 4000 in paired-end 76 bp cycle mode.

Genotyping— Three hundred µl of donor blood (donors: 1001,1002, 1003 and 1004) was 

used to extract genomic DNA using DNeasy Blood and Tissue Kits (Qiagen, Germany) as 

per manufacturer’s protocol. We genotyped 958,497 markers using Infinium 

OmniExpressExome-8 v1.4 kit (Illumina, CA, USA). We phased and imputed all biallelic 

common variants (MAF > 1%) using the Michigan imputation server that ran minimac3 with 

1000G Phase 3 v5 as the reference genome and Eagle v2.354. All genotypes with an imputed 

heterozygous probability of 0.9 or greater were included in downstream allele-specific 

chromatin accessibility analysis.

Additional details regarding data collection can be found in the Supplementary Note.

Data analysis

RNA-seq— We trimmed remaining transposase adapters with cutadapt version 1.13 with a -

minimum-length of 20 and an -overlap of 5 in paired-end mode55. RNA-seq reads were 

pseudoaligned using Kallisto version 0.43.056. The Kallisto index was made with default 

parameters and the gencode v25lift37 fasta file57 and was run in quant mode with default 

parameters. Following pseudoalignment we computed gene abundances using tximport 

version 1.2.058. We excluded donor cell type samples with fewer than one million total reads 

from all technical replicates or that were extreme PCA outliers. Discarded cell types include 

thymocyte subsets and TEC cells.

ATAC-seq— We trimmed remaining transposase adapters with cutadapt version 1.13 with a 

-minimum-length of 20 and an -overlap of 5 in paired-end mode55. We aligned ATAC-seq 

reads using bowtie2 version 2.2.9 with default parameters and a maximum paired-end insert 

distance of 2kbp. The bowtie2 index was constructed with the default parameters for the 

hg19 reference genome. We filtered out reads that mapped to chrM and used samtools 

version 1.4 to filter out reads with MAPQ < 30 and with the flags ‘-F 1804’ and ‘-f 2’. 

Additionally, duplicate reads were discarded using picard version 1.134 (http://

broadinstitute.github.io/picard/). We calculated percentage aligning to mitochondria, 

percentage within blacklist regions59, and enrichment of reads at TSS regions relative to 2kb 

away using the RefSeq gene annotation (referred to elsewhere as the TSS enrichment). 

Chromatin accessibility peaks were identified with MACS2 version 2.1.1 under default 

parameters and ‘--nomodel --nolambda --keep-dup all --call-summits’. The count of absolute 

peaks per cell type refers to the number of peak regions reported in the ‘narrowPeak’ file 

(peaks with multiple summits are only counted once). We reported the peak count estimate 

after linearly adjusting for estimated confounding effects from sample read depth, and TSS 

enrichment (a proxy for sample quality). A consensus set of peaks was defined by merging 

overlapping (1bp or more) peaks identified in at least two samples across all samples. This 

set of peaks had a median peak length of 346 bps following removal of peaks that were 

greater than 3 kb or non-autosomal. We then used the ‘get_count’ function from the 
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nucleoATAC python package to count the number of fragments within the consensus peak 

set across all samples60. We excluded donor samples with fewer than 5 million reads from 

all technical replicates that passed quality filters, TSS enrichment score less than 4, more 

than 0.5% of reads mapping to a known set of region blacklist59, more than 25% of reads 

mapping to the mitochondria, or that were extreme PCA outliers. We used deeptools version 

2.5.1 to generate bigwig tracks with a genomic bin size of 10 bp, RPKM normalization and 

the ‘—extendReads’ parameter.

Differentially expressed genes— For this analysis, we included only unique protein 

coding genes from gencode v25. Additionally, we eliminated all genes that had below ten 

counts per million (CPM) in at least two biological replicate samples, resulting in 13,512 

genes tested. We used the TMM normalization method to compute scale factors for each 

sample, and voom to compute weights capturing the relationship between gene expression 

mean and variance. For each cell type, we used limma to estimate the log2 fold change 

(log2FC) of gene expression for each gene upon stimulation. We included donor in the 

design matrix to correct for donor-specific effects. We considered a gene differentially 

expressed if the limma-reported Benjamini-Hochberg (BH) corrected p-value61, which we 

refer to as a q-value, was less than 0.01 and the absolute log2FC was greater than 1.

Differentially accessible chromatin regions— Starting with the consensus peak set 

we eliminated all peaks with fewer than one CPM in at least two biological replicate 

samples, resulting in 671,448 tested peaks. We used the TMM method to compute scale 

factors for each sample, and voom to compute weights capturing the relationship between 

mean and variance chromatin accessibility across samples. For each cell type we used limma 

to estimate the log2FC of each chromatin accessibility region upon stimulation, while 

controlling for donor and the enrichment of reads at transcription start sites (the latter serves 

as a proxy for sample quality). We considered a region a significant differentially accessible 

chromatin peak if the limma-reported BH corrected p-value was less than 0.01 and the 

estimated absolute log2FC from the resting to stimulation condition was greater than 1. We 

initially considered different stimulation conditions of NK and monocyte samples separately. 

However, estimated log2FC stimulation effects were nearly identical among significant 

stimulation peaks when the conditions were pooled or unpooled (adjusted R2 = 0.88 for 

Mature NK cells and R2 = 0.99 for Monocytes). Thus, we reported summary statistics from 

the pooled differential accessibility analysis.

Quantifying the amount of shared stimulation response— We aimed to quantify 

sharing of simulation effects between two cell types, denoted A and B. To do this we first 

determined the set of differentially accessible peaks (q<0.01 and |log2FC|>1.0) from cell 

type A (using limma-voom, see Differentially accessible chromatin regions above). For this 

set of peaks, we computed Pearson correlation (with the ‘cor’ function in R) between 

stimulation effects (log2FC) in cell type A and B. This analysis results in asymmetric 

sharing estimates conditioning on significant peaks from cell type A or B. We found that the 

asymmetric estimates were broadly consistent, so we report the mean correlation weighted 

by the number of significant peaks in each cell type (individual asymmetric correlation 

estimates can be found in Supplementary Table 1).
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Allele-specific chromatin accessibility— We collected all aligned reads that overlap 

heterozygous sites. Initially, we used the set of heterozygous sites identified with 

‘HaplotypeCaller’ from GATK version 3.7 with ‘—minPruning 10’ and ‘-stand_call_conf 

20’ run on a donor-specific bam file including all samples from the donor62. The final set of 

heterozygous sites that we used for analysis were the intersection of the GATK and 

genotyped sites passing filters (see Genotyping above). Next, we passed all aligned reads 

that overlap heterozygous sites through WASP filtering39. Briefly, the read is remapped with 

the SNP allele flipped (we only examine biallelic sites) and is only retained if it maps to the 

same location. This filtering approach effectively eliminates reference genome biases 

enabling unbiased estimation of the proportion of reads mapping to the reference allele. At 

each heterozygous site we counted the number of WASP filtered reads mapping to the 

reference and the alternative allele. We computed a p-value per heterozygous site using a 

binomial test, and for each sample corrected for multiple hypotheses by computing BH q-

values. P-values were converted to BH q-values using the ‘p.adjust’ function in R.

Estimating the proportion of shared allele-specific imbalance effects— We first 

computed the posterior mean and variance of the proportion of reads mapping to the 

reference allele, assuming a uniform prior on the proportion and a binomial likelihood. The 

posterior under this model is Beta(r + 1, a + 1), where r and a are the numbers of reads 

mapping to the reference and alternative allele respectively. At each heterozygous site, we 

defined the effect as the difference between the proportion of reads mapping to the reference 

and the expectation under the null of no allele-specific effect, i.e., 50%.

We aimed to estimate the proportion of shared imbalance effects between two cell types, 

denoted A and B. To do this we first determined the set of significant ASC sites (q-value < 

0.01) from cell type A (see Allele-specific chromatin accessibility above). We collected 

effects and variances for these ASC sites in cell type B, and then used ashR40 to estimate the 

proportion of these effects that are nonzero. While comparable methods such as Storey’s pi1 

only uses p-values63, ashR leverages both effect size and standard error estimates to improve 

power. We reported the average sharing estimates, however individual values can be found in 

Supplementary Table 1.

GWAS and eQTL enrichments— To identify genomic annotations enriched for genetic 

trait heritability we used LD Score regression version 1.0.0 under the partitioning heritability 

mode with default parameters. We excluded SNPs from the MHC region for this analysis. To 

assess enrichment of rheumatoid arthritis signal in ASC sets, we compared against the 

distribution of the p-values for the rheumatoid arthritis GWAS genome-wide (the same 

summary statistics that were used in the LD Score analysis). To assess enrichment of blood 

eQTL signal in ASC sets, we compared against the distribution of p-values from all variant-

gene pairs available.

Additional details regarding data analysis can be found in the Supplementary Note and the 

Life Sciences Reporting Summary.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Study workflow and tSNE of ATAC-seq data.
a, Illustration of isolated cell types, which include cell types that were previously published 

(gray) and resting (colored) and stimulated (red) immune cells obtained from this study. b, 

Schematic of sample processing pipeline. Immune cells were sorted by flow cytometry from 

up to four healthy donors, activated and subjected to ATAC-seq and RNA-seq. c, 

Exploratory tSNE of ATAC-seq chromatin accessibility from all cell types in a resting state. 

Each sample is colored by broad cell lineage. Samples for each cell type from different 

donors are plotted separately (counts can be found in Supplementary Table 1). Triangles 

represent previously published data19 and circles represent data generated in this study. d, 

Representative ATAC-seq profiles (y-axis = 0 to 400 RPKM) at several cell type-specific 

genes (see Methods). Cell type abbreviations listed in Supplementary Table 1.
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Fig. 2: Identification of accessible regions associated with memory.
a, Number of differentially accessible regions when comparing cell subtypes to their 

progenitors. The count of regions that gain versus lose accessibility are labeled green and 

red, respectively. Edge starting and ending widths are proportional to the number of peaks 

losing and gaining accessibility. b, Example MA-plots comparing accessibility during the 

transition from naïve to memory states. Point density is shown as blue shading. The 0.1% of 

points in the least densely populated regions of the plot are shown as separate points. c, 

Transcription factor footprints showing genome-wide aggregate accessibility at PWM-

predicted binding sites stratified by cell subset and with the distribution of normalized RNA 

expression of corresponding genes. d, Heatmap displaying Pearson’s R correlation between 

log2(FC) estimates of memory-associated chromatin changes between cell subsets. e, 

UpSet51 plot of the number of shared or unique regions that gain accessibility in memory 

formation in T cell and B cell lineages. f, ATAC-seq profile highlighting a region that 

increases in accessibility upon transition to memory that is shared among multiple cell types. 

g, ATAC-seq profile highlighting a region associated with effector memory CD8+ T cells 
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that contains a GWAS variant linked with either Crohn’s disease, ankylosing spondylitis, or 

primary biliary cirrhosis. h, Boxplot (see Methods) of the gene expression of the genes 

highlighted in (f) and (g). All comparisons were performed on cells in a resting state and the 

number of samples used is listed in Supplementary Table 1.
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Fig. 3: Stimulation induces large-scale changes in chromatin and gene expression in B and T 
cells.
a, Principal component analysis (PCA) of ATAC-seq read counts of B and T cell subsets 

(excluding plasmablast cells), which were merged from multiple donors. Analysis based on 

the top 100k most variable peaks. b, Explained proportion of variation in chromatin 

accessibility of the samples in (a) with at least 3 biological replicates, explained by 

biological factors of interest (see Methods). The interaction effect for lineage is labeled 

Stim:Lin and the interaction effect for cell type is labeled Stim:Cell. c, Counts of significant 

differentially accessible chromatin regions (left) and expressed genes (right) identified for B 

and T cells during stimulation (see Methods). Naïve regulatory T cells were excluded due to 

a lack of power because we had too few biological samples passing QC. d, Volcano plots 

showing stimulation effects for ATAC-seq (top) and RNA-seq (bottom) for memory B (left) 

and effector CD4+ T (right) cells. e, Displayed is the Pearson’s R correlation between 

samples from stimulation-response chromatin (top-right triangle) and gene expression 

(bottom-left triangle) effects, at sites or genes with a significant stimulation response in at 

least one of the two cell types in the comparison. All estimates are from at least three 

biological replicates, except the Naïve Regulatory T cells, which had two. Counts of the 

number of samples included and overlapping significant stimulation-associated peaks 

between cell subsets can be found in Supplementary Table 1.
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Fig. 4: Observed allelic imbalance in chromatin accessibility data.
a, Examples of allele-specific chromatin accessibility imbalance shared across various 

groups. For each heterozygous site, we display the proportion of reads mapping to the 

reference allele (x-axis) for cell samples (y-axis). Error bars represent 95% confidence 

intervals computed from read depth. Samples without significant imbalance are lightly 

shaded. We excluded samples from the visualization with fewer than four reads at the 

specific variant. b, Heterozygous sites were grouped into three bins based on the PWM-

predicted BATF binding affinity: preference for the alternative, no preference, preference for 

the reference allele. The y-axis represents the aggregate proportion of reads mapping to the 

reference allele for these groups in Th1 precursor cells under resting (left) and stimulated 

(right) conditions. Sites with fewer than four reads were excluded. c, Scenarios of allele-

specific chromatin accessibility imbalance in two different cell types or conditions for the 

same donor. d, Proportion plot displaying the estimated average proportions for each case 

from (c), stratified by whether the two samples were of the same lineage and condition. 

Innate cells were excluded from this analysis. All plots are for Donor 1, who had the highest 

sequencing depth, although similar trends were found in the other donors (Supplementary 

Fig. 9b,c). Read counts for (a) and sample sizes for (b) and (d) can be found in 

Supplementary Table 1.
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Fig. 5: GWAS analysis of accessible regions.
a, Rheumatoid arthritis heritability enrichment is aggregated by differentiation and 

condition. Stimulated innate cells were excluded from this visualization. The dashed line 

represents a baseline proportion of disease heritability across all SNPs. b, Enrichment of 

rheumatoid arthritis (RA) heritability (x-axis) in open chromatin regions for resting (blue) 

and stimulated (red) samples (y-axis). Error bars indicate one standard deviation in each 

direction. The dashed line represents a baseline proportion of disease heritability across all 

SNPs. c, We grouped peaks into disjoint clusters based on their patterns of accessibility 

across cell types (x-axis). Then, we used partitioning heritability functionality of LDScore 

regression to estimate enrichments of trait signal (x-axis) in these peak clusters (y-axis). We 

highlighted groups of peaks related to stimulation with a red box, and asterisks (*) indicate 

significant enrichment of trait heritability (Bonferroni adjusted p < 0.05). Sample sizes for 

panels a, b and c can be found in Supplementary Table 1.
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Fig. 6: GWAS and expression quantitative trait loci (eQTL) enrichment in sites of allele-specific 
chromatin.
a, Comparison of rheumatoid arthritis GWAS enrichment within the set of SNPs that 

regulate chromatin accessibility, in either B or T cells, under stimulation (red) or resting 

(blue) conditions. b, Comparison of eQTL signal in the same two sets of variants from (a), 

using eQTL data from GTEx v7. For both plots the x-axis reflects an empirical distribution 

of p-values. Sample sizes can be found in Supplementary Table 1. We computed p-values 

with a two-sided Mann–Whitney U text.
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Fig. 7: Identifying rs6927172 as a stimulation-specific chromatin regulator in a complex 
autoimmune GWAS region.
a, Chromatin accessibility profile for stimulated (red) and resting (blue), bulk B (top) and 

Th17 (bottom) cells, around variant rs6927172. This region contains significant GWAS 

signals for ulcerative colitis and rheumatoid arthritis, but the causal variant(s) have not been 

determined (credible set indicated). We include a trackplot with all samples in 

Supplementary Fig. 12. b, Allele-specific ATAC-seq reads at rs6927172 in the three 

heterozygous donors (the fourth was not heterozygous at this site). Displayed is the 

proportion of reads mapping to the reference allele. Error bars represent 98% confidence 

intervals and were computed from read depth. Significant (p < 0.01) allelic imbalance 

associations are colored (see Methods). Exact read counts for these sites can be found in 

Supplementary Table 1. c, A proposed negative feedback model of gene regulation linking 

NFKB1 toTFNAIP3. We included the canonical PWM for the p50 subunit of NFKB1, as 

downloaded from the Jaspar TF motif database. The heterozygous allele disrupts the 

nucleotide indicated by the arrow. d, ChIP-seq read count for the input genomic DNA 

control, and p50 and p65 subunits of NFKB1 (left, n = 2, read counts found in 

Supplementary Table 1). Allelic-imbalance of ChIP-seq reads mapping to rs6927172 (right).
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