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Abstract

Protein networks have become a popular tool for analyzing and visualizing the often long lists of
proteins or genes obtained from proteomics and other high-throughput technologies. One of the
most popular sources of such networks is the STRING database, which provides protein networks
for more than 2000 organisms, including both physical interactions from experimental data and
functional associations from curated pathways, automatic text mining, and prediction methods.
However, its web interface is mainly intended for inspection of small networks and their

underlying evidence. The Cytoscape software, on the other hand, is much better suited for working
with large networks and offers greater flexibility in terms of network analysis, import, and
visualization of additional data. To include both resources in the same workflow, we created
stringApp, a Cytoscape app that makes it easy to import STRING networks into Cytoscape, retains
the appearance and many of the features of STRING, and integrates data from associated
databases. Here, we introduce many of the stringApp features and show how they can be used to
carry out complex network analysis and visualization tasks on a typical proteomics data set, all
through the Cytoscape user interface. stringApp is freely available from the Cytoscape app store:
http://apps.cytoscape.org/apps/stringapp
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INTRODUCTION

Modern high-throughput technologies, including proteomics, produce an ever growing flow
of new data on individual genes and proteins, which need to be interpreted in light of cellular
context and existing biological knowledge. Protein network resources, in particular the
STRING databaskhave proven highly useful for providing such context. Indeed, such
networks are very frequently shown in proteomics publications.

The STRING database provides known and predicted protein—protein associations data for a
large number of organisms, including both physical interactions and functional associations
with confidence scores that quantify their reliability. In addition to integrating available
experimental data and pathways from curated databases, STRING predicts interactions
based on coexpression analysis, evolutionary signals across genomes, automatic text-mining
of the biomedical literature, and orthology-based transfer of evidence across organisms.
However, the STRING web interface is not intended for large networks and provides limited
flexibility in terms of network analysis and visualization, and accessing it without using the
graphical user interface requires familiarity with programming.

The Cytoscape softwafe® on the other hand, is designed to analyze and visualize very large
networks and provides much greater flexibility in terms of import of additional data and
visualization of these onto networks. Moreover, Cytoscape has hundreds of apps, which
users can install to add further functionality, such as clusterMbieRimplements

numerous clustering algorithms and PTMOrathet allows PTMs to be analyzed in the
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context of protein networks. However, Cytoscape is a general network tool, not a network
database, and as such needs to import its networks from elsewhere.

Together this makes STRING and Cytoscape a perfect match, especially for analysis of
proteomics data; indeed, more than thousand papers in PubMed Central mention both
STRING and Cytoscape, clearly demonstrating a strong need to integrate them into a single
workflow. We have done exactly that by developing the stringApp, a Cytoscape app that
facilitates import of STRING networks into Cytoscape and integration with additional user-
provided data. At the same time, the app provides the look and many of the features of the
STRING web interface within Cytoscape. The app supports several types of queries to
retrieve networks starting from either a list of proteins, a disease of interest from the
DISEASES databaseor a PubMed query. Moreover, it provides access to additional data
from associated resources, namely small molecule interactions from STI3@idellular
localization from COMPARTMENTS tissue expression from TISSUE®nd drug target
information from Pharo? Together, these features enable users to easily carry out complex
network analysis and visualization tasks, all through the graphical user interface of
Cytoscape. In a typical use case, we demonstrate how a proteomics data set can be analyzed
and visualized with the help of the stringApp and Cytoscape.

METHODS
Data Sources Used by StringApp

The stringApp retrieves information collected from several source databases. The protein
network is imported from the current STRING vi0aehid augmented with protein—

chemical and chemical-chemical associations from the current STITCH versitinsis
complemented by drug-target classification from the current release of Prads

information on disease associations, tissue expression, and subcellular localization from the
weekly updated databases DISEASEBSSUES? and COMPARTMENTS.

Although these databases all provide Application Programming Interfaces (APIs), we mirror
the data from the current production versions of STRING and STITCH in a dedicated
PostgreSQL database on the same server that already hosts DISEASES, TISSUES, and
COMPARTMENTS. This is done both to provide additional functionality over the existing
APIs and to allow stringApp to efficiently retrieve all information for a protein network with

a single API request.

Algorithms Implemented at the Database Level

Another major benefit of having all data available in a single database is that it allows us to
implement certain algorithms, as described below, at the database level. Instead of first
loading large amounts of data from one or more databases into memory and then executing
the algorithms, we were able to implement the algorithms in Structured Query Language
(SQL) and execute them directly within the PostgreSQL database engine. We made use of
this approach for two algorithms used by stringApp.

Network Expansion.— This algorithm adds N additional nodes to the network based on
their total connectivity to a current selection of nod€srélative to their overall
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connectivity in the STRING database (if no nodes are selected, the complete network is
considered as the selection). All nodes not currently in the network are ranked according to
the following score:

S; = 2 il
JEX

wheres;; is the confidence score between the node be considered for inclusion in the
network) and the nodg(in the current selection of nodex)), while the sum ovesy

captures the connectivity of nodéo all other nodeg in the database. The parameiss

called the selectivity in the stringApp user interfa€edand networkption) and has a

default value of 0.5. This value gives a good trade-off between choosing nodes that have
high confidence links to the selection but possibly also to many other proteins (low
selectivity), and choosing nodes that are specifically linked to the selected nodes but with
lower confidence (high selectivity). The sum in the enumerator is calculated on-the-fly using
SUM aggregate function in SQL, whereas the sum in the denominator has been
precalculated for all nodes in the aforementioned database. We can thus with a single SQL
command score all candidate nodes, rank them, and return the top

PubMed Query.— The second algorithm implemented in SQL is used to retrieve a network
based on a PubMed query. The app sends the user-specified query to the PubMed API to
retrieve the setX) of matching PMIDs, selects the tdpentities that are preferentially
mentioned inX, and finally retrieves the network for them. To rank the entities, we use the
following scoring function:

Zof

T, = z 5,/
jex

whereéj; is 1 if the molecular entityis mentioned in abstracand O otherwise, whiléy is

1 if the molecular entityis mentioned in any abstract k in PubMed and O otherwise. The
parameteg is fixed to a value of 0.4 based on previously published text-mining

experiment$. It serves a similar purpose to the selectivity described above, controlling the
trade-off between choosing entities that are mentioned in as many of the selected abstracts as
possible but possibly also in many other abstracts vs choosing entities that are specifically
mentioned only in the selected abstracts. Given the similarity of this formula to the one used
for network expansion, it should come as no surprise that it too can be implemented as a
single SQL command that calculates the enumerator using the COUNT aggregate function,
whereas the denominator has been precalculated for all pairs of entity and abstracts in the
aforementioned database.

Implementation of the App

The stringApp is implemented in Java utilizing the Cytoscape 3.6 App API. The app has two
main functions: (1) to serve as a bridge between Cytoscape and the web service APIs of
STRING and the related databases, and (2) to provide visualizations resembling the ones on
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the STRING web server as well as additional features like the side panel and enrichment
visualizations. These two functions work together to bring much of the richness of the
STRING website into Cytoscape, which then allows the network and all associated data to
be analyzed with Cytoscape and its hundreds of other apps. For instance, the clusterMaker2
app* can be very useful for clustering STRING networks, as shown in the use case below.

The bridge functionality of the stringApp uses several RES¥fueb service APIs to query

the databases and retrieve networks. In case of protein and protein/compound queries, the
app first resolves the entered query terms to the internal database identifiers using the
standard STRING and STITCH API. For disease queries, it instead contacts the API of the
DISEASES database twice, first to resolve the entered disease name to a disease identifier,
and second to retrieve the list of proteins associated with the disease. For all three types of
queries, stringApp provides the user with the ability to manually resolve any ambiguous
names. The handling of PubMed queries was described in the previous section. Irrespective
of the type of query, these steps result in a list of nodes, for which stringApp retrieves all
node and edge data by calling the web service API of the dedicated PostgreSQL database.
The latter API is also used to retrieve any node or edge data required when expanding an
existing network, lowering the confidence cutoff, or adding additional nodes to a network.

The stringApp retrieves functional enrichment analysis results for a whole STRING network
or a selected subset of it by sending a request to the STRING enrichment API. The results
are stored and shown in a Cytoscape table called STRING Enrichment, which lists all
enriched terms along with their gene counts, corresponding FDR values, and gene sets.
Since the list of enriched terms can become very long, especially for large networks, the app
allows the user to filter the enrichment results to show terms from any combination of six
term categories as well as to eliminate redundant terms, which represent similar sets of
genes.

The redundancy filtering takes the list of enriched terms sorted by FDR value and removes
the terms that are too similar to any of the previous, better scoring terms that were not
themselves removed (also referred to as the Hobohm 1 mMéthdde similarity between

two terms is measured by the Jaccard index of the sets of genes annotated by the two terms.
A term is added to the filtered list only if it has Jaccard similarity less than the user-specified
redundancy cutoff to any other term already in the filtered list.

To retain the look and feel of STRING networks, the stringApp adds &ST&WVG Visual

Style to the already existing set of Cytoscape styles. This style enables the glass ball effect
and the optional visualization of the protein or compound structures within the nodes. These
visual properties can be enabled or disabled by the user from the stringApp menu. The initial
node colors are assigned arbitrarily by the app but can be easily substituted by a node color
mapping of any node attribute. In addition to the node visual properties, the STRING style
also includes a mapping of the interaction confidence scores to edge color and thickness.

Specific Data and Software for the Use Case

The proteomics data used in the case study were obtained from a phosphoproteomics study
of ovarian cancé? (specifically Supplementary Table 3 of the study). The list of proteins
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used to retrieve the network was extracted from the significantly regulated phosphorylation
sites listed in this table. Furthermore, log-ratios of abundance in disease versus healthy
tissues were computed based on the average abundance values over the samples listed in the
same table. To facilitate the subsequent visualization in Cytoscape, we also modified the
Supplementary Table 3 by keeping only the significantly regulated phosphorylation sites and
sorting them by significance. This modified version of the table, which was imported into
Cytoscape, is provided as Table S1.

During import of the associated log-ratios and phosphorylation cluster assignments, the most
significant phosphorylation site was chosen whenever multiple sites were found on the same
protein (by first sorting the table based on “Gene name” and then op\aajie”).

All analyses were performed on the 12th of April 2018 using Cytoscape version 3.6.1 and
stringApp version 1.3.2 and are provided in a Cytoscape sessips:{doi.org/10.6084/
m9.figshare.7258235Additionally, we used clusterMaker2 version 1.2.1 to perform
Markov clustering (MCL3}* of the protein network and EnhancedGraphics version®.@0
enable stringApp visualization of enriched terms as circular plots onto the network nodes.

Presentation of the StringApp

The stringApp was designed to serve as a bridge between two well-known and widely used
resources, the STRING database for quality-controlled protein—protein association networks
and the Cytoscape software platform for network data integration, analysis and visualization.
Thus, the core purpose of the stringApp is to retrieve network data from STRING, import it
into Cytoscape and retain the look and most of the functionality of the STRING database,
while at the same time allowing users to analyze the network with the full set of Cytoscape
features and integrate it with their own data. Nevertheless, stringApp also imports protein
—protein interactions from STRING for a disease or PubMed query of interest as well as
protein—chemical interaction data from STITCH. A list of the main stringApp features can

be found in Table 1.

Currently, four different types of queries are supported by the stringApp, which allow users
to retrieve a STRING network starting from (1) a list of one or more genes/proteins, (2) a list
of chemical compounds, (3) a disease, or (4) a PubMed query. Additionally, the user can
choose the species of interest and the confidence cutoff for the interactions to be retrieved.
The STRING protein querypobtains a STRING network for an arbitrarily long list of

proteins and can be used, for example, to retrieve a STRING network for a proteomics or
transcriptomics study. In a similar manner, 8\ 7CH. protein/compound quepbtains a
network for a list of protein or chemical compound names from STITCH as shown in Figure
1. TheSTRING diseasauery first queries the DISEASES for the thfliuman proteins
associated with the disease specified by the user and then retrieves a STRING network for
these. TheSTRING PubMed quergllows users to get a STRING network for any topic of
interest by first querying PubMed for abstracts pertaining to the topic, then using text mining
on these abstracts to identify the thjproteins associated with the topic, and retrieving a
STRING network for these.
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Similar to the STRING database query interface, stringApp supports single- or multiprotein
gueries and many different types of names and identifiers, including gene symbols and
UniProt identifiers/accession numbers. The STRING disambiguation service is used to map
the query proteins to the internal STRING identifiers and the exact query term that matched
each protein is stored as a node attribute in the resulting STRING network in Cytoscape.
This is particularly helpful when querying with lists of proteins or genes coming from a
proteomics or transcriptomics study, since it facilitates subsequent import of tabular data
from the same study (as demonstrated in the use case and in Figure 2 and 3).

In addition to the interactions from STRING/STITCH, stringApp retrieves a variety of

related information, which is stored as node and edge attributes for each protein/chemical or
interaction, respectively. The node attributes include the STRING and UniProt accession
numbers, which allow for cross-linking with other resources, a human-readable name for
display purposes, the protein sequence or a chemical SMILES string, and a structure image
where possible. The edge attributes include the overall confidence score of each interaction
as well as the subscores from each individual evidence channel in STRING/STITCH.
Whenever available for the organism in question, information on the tissue expression and
subcellular localization of each protein is included from the TISSUES and
COMPARTMENTS databases. Furthermore, stringApp fetches drug target information from
Pharos. If a protein was retrieved through a disease query or PubMed query, the
corresponding confidence score for the disease—gene association according to DISEASES or
text-mining score (see Methods) are included as node attributes. As shown in Figure 1,
stringApp also provides a results panel in Cytoscape, which shows the protein or compound
structure of a selected node as well as links to other related resources, including8niProt,
GeneCard$/ COMPARTMENTS, TISSUES, and Pharos.

Once a STRING/STITCH network is in Cytoscape, it can be modified in several ways. First,
users can expand the network with the nodes that are most strongly connected with the
nodes currently in the network or with a selected subset of them (see Methods for details on
the underlying algorithm). These new nodes can be either proteins from STRING or
chemical compounds from STITCH. Second, it is possible to add specific new nodes to the
network by providing their names just like in the original query. Third, users can change the
confidence cutoff of the imported interactions; increasing it filters the current network to
remove edges that do not pass the new cutoff, whereas decreasing it will requery the server
to fetch the additional interactions, that did not pass the original cutoff.

Network analysis and functional enrichment analysis are complementary methods to gain an
overview of a long gene or protein list. The stringApp allows users to combine the two, by
first performing an enrichment analysis and subsequently visualizing the results onto a
STRING network. To do so, the user specifies the enrichment significance threshold (with
default value of 0.05). Then, enriched Gene Ontology terms, KEGG Pathways, and protein
domains are retrieved from the STRING enrichment web service and shown as a table (see
example in Figure 1). From the table, the user can then optionally filter the enrichment
results to reduce redundancy (see Methods for details) and visualize the top terms onto the
network as donut or pie charts using ColorBréfpalettes to distinguish the different

terms.
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Use Case: Analysis of a Phosphoproteomics Data Set

To illustrate some of the more important features of stringApp that are relevant to analysis of
proteomics data, we have chosen a typical data set resulting from a phosphoproteomics
study of ovarian cancer by Francavilla et&published in 2017. In this study, the authors
compare the phosphoproteome of primary cells derived from epithelial ovarian cancer
(EOC) and two healthy tissues, namely ovarian surface epithelium (OSE) and distal
fallopian tube epithelium (FTE). The aim of the study was to uncover cancer-specific
changes in expression, phosphorylation state, and kinase signatures.

In the following sections, we will go through how this data set can be analyzed and
visualized in a variety of ways using the stringApp and Cytoscape. Starting with the list of
proteins with significantly regulated phosphorylation sites in the study, we first retrieve the
corresponding STRING network in Cytoscape. Then, we import data from the study, namely
the log-ratios of phosphorylation between disease cells and healthy tissues and the
phosphorylation cluster assignments, to be able to visualize them on the network nodes. To
gain insight from the resulting highly connected protein network, we partition it using a
clustering algorithm and relay out the network. The largest identified cluster turns out to be
highly relevant to the main findings of the study since it contains both CDK7 and POLR2A
as well as many splicing related proteins. The study by Francavilla et al. showed that CDK7
phosphorylates POLR2A and regulates EOC cell proliferation, and that peptides in proteins
with splicing variants were over represented in the EOC proteome. We thus focus on this
cluster, analyze it for enriched functional terms, and visualize selected terms on the network.
Finally, we highlight the proteins from the study that are annotated as druggable targets in
the Pharos database or associated with EOC according to the DISEASES database.

Network Retrieval and Data Import

The first step of the analysis is to retrieve a STRING network for the 541 unique proteins
with significantly regulated phosphorylation sites. This is done by openingihat

Network from Public Databasdslog, choosingSTRING protein queryentering their

UniProt accession numbers into the dialog, and leaving all query parameters at their default
values. The resulting network retrieved from STRING 10.5 consists of 537 nodes and 3027
edges with the default confidence score of 0.4 and above, which is consistent with the
default of the STRING website. Four proteins in the data set, three of which were
unreviewed TrEMBL entries, could not be mapped to STRING identifiers by the app and
were thus not included in the further analysis. To simplify the figures, we also opted to
delete the 78 singleton nodes, i.e., the proteins with no interactions in the retrieved network.

To add data from the proteomics study to the STRING network, we import the modified
version of Supplementary Table 3 from Francavilla et al. (Table S1) using the built-in
functionality of Cytoscape to import data columns from a tabular file. In this step it is crucial
to correctly choose which column from the file should be mapped to which column in the
Cytoscape node table; if the identifiers do not match, the data will not be imported. To
facilitate this mapping, stringApp saves the user-provided query identifiers in the “query
term” column in the Cytoscap®ode tableln this use case, the UniProt identifiers from the
“Uniprot” column in Table S1 were used to retrieve the STRING network and therefore, this
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is the column that should be selected as the “Key” column in the table preview7itiee
import dialog. Since these identifiers were stored in the “query term” column in the
CytoscapeVode tableit should be selected as the “Key Column for Network” in/thgort

tabledialog. Upon successful import of the data, the new columns are inserted at the end of

the Cytoscap@/ode tableHere, we import the average log-ratios between disease and

healthy tissue (“EOC vs. EOS&FTE” column) and the phosphorylation cluster assignments
(“Cluster” column).

Network Layout and Visual Mapping of Data

Having imported the proteomics data, we can map it onto the nodes in the network using the
Cytoscape Visual Styles functionality. Numeric data such as the log ratios between disease
and healthy tissues are best shown using a continuous mapping of the values to a color
gradient. Here, we use a blue- white-red color gradient to highlight nodes with low or high
log ratios (Figure 2). Categorical data such as the phosphorylation cluster assignments

should be represented by a discrete color mapping, which assigns a different color to each

category (Figure 3). Mappings between visual properties and attributes can also be created
for edges; the default STRING visual style uses this to show edges with higher confidence
scores as thicker, darker lines.

Network visualization of large proteomics data sets is challenging for several reasons. First,
these networks tend to be large, typically consisting of hundreds to thousands of proteins
with thousands to tens of thousands of interactions between them as exemplified by Figure
2. Visualizing large, dense networks in a way that reveals the patterns within them, such as
groups of similarly regulated proteins, is inherently diffiédiSecond, whereas a single
comparison of two conditions is easily visualized using a color gradient, many proteomics
studies, including the one used in this example, compare multiple conditions or time points.

Using Clustering to Improve Visualization

Clustering can be a powerful strategy to visualize multidimensional data on large networks.

In Cytoscape, a broad selection of clustering algorithms are available through the widely
used clusterMaker2 adpThis app can cluster the nodes in the network both based on the
edges that connect them (network clustering) and based on numeric data from the Cytoscape
Node Tabldattribute clustering). We could thus have used the attribute-clustering

algorithms in clusterMaker2 to identify groups of proteins that exhibit similar changes in
phosphorylation. However, in this use case we instead opted to import the phosphorylation
cluster assignments from the original study as described in the previous section.

To group the proteins in the network based on their interactions from STRING, we used
clusterMaker2 to run Markov clustering (MCHWe increased théflation valueto 4.0 to
reduce the cluster size, setay sourcem use the STRING confidenseoreattribute as
weights, checked the option tweate new clustered netwpghnd left all other settings at

their default. The resulting network is greatly simplified and much easier to visualize, since
only the 1058 interactions within clusters are retained (Figure 3). Finally, to visualize how
the proteins are regulated, we color the nodes based on the phosphorylation cluster they
were assigned t&/uster A(blue) is up-regulated in both healthy tissues (FTE and OSE),
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cluster B(yellow) is up-regulated in one healthy tissue (FTE) and in disease tissue (EOC);
andcluster dred) is up-regulated in disease tissue (EOC). For comparison, we also provide
the same network colored by log ratios between disease and healthy tissues (Figure S1).

Functional Enrichment Analysis

In the last parts of the use case we will focus on the largest cluster in the network, which
consists of 62 proteins and relates several of the findings of the original study. We thus
created a new, separate network in Cytoscape that consists only of this cluster.

To functionally characterize the cluster, we used stringApp to perform functional enrichment
analysis with an FDR threshold of 5%, which resulted in a list of 129 statistically significant
terms that span all six categories: GO Biological Process, GO Molecular Function, GO
Cellular Component, KEGG Pathways, PFAM, and InterPro protein domains. We next used
the filter functionality to eliminate redundant terms (using the default redundancy cutoff of
0.5), thereby reducing the list to a more manageable 38 enriched terms. Of these, the two
most significant terms were the GO biological procasdVA processingnd the KEGG
pathwaysSpliceosomewhich covered 39 and 20 out of the 62 proteins in the cluster,
respectively. To show which proteins are annotated with which of these terms, we used the
stringApp to visualize them assp/it donut chartaround the nodes (Figure 4). These
enrichment results fit well with the finding by Francavilla et3that peptides from proteins

with splicing variants were overrepresented among EOC-regulated phosphorylated peptides.
Moreover, the same cluster contains the protein POLR2A, the phosphorylation of which has
been associated with both transcriptional regulation and alternative sgficing.

Annotation of Disease-Associated Proteins and Drug Targets

The stringApp automatically retrieves drug target information from the Pharos database into
the “target development level” and “target family” columns of the Cytostate table

The latter column includes annotations of known kinases and other drug target families.
Using the discrete mapping functionality of Cytoscape, one can highlight the kinases (and
other drug target families) by assigning different colors to the corresponding nodes (see
Figure 4). The cluster contains 3 of the 22 kinases present in the full network, including
CDK?7 that the study showed phosphorylates POLR2A and thereby likely regulates the
processes identified in the enrichment analysis.

Finally, to annotate the network with proteins already associated with EOC, we use the
STRING disease querjanctionality of stringApp to import a STRING network of the top

500 candidate disease genes according to the DISEASES database. The confidence scores of
the associations between these genes and EOC range from 0.69 to 2.66 on a scale from 0 to
5. As a compromise between confidence and coverage, we decided to keep only genes with a
disease confidence score above 1.0, resulting in a network of 222 genes likely associated
with EOC. We then identified the proteins from the DISEASES network in the study

network by first creating the union of the two networks usingifeege Nefworksool in

Cytoscape and then removed all nodes not coming from the study. In the resulting network,
the node attributeisease scomaarks all proteins associated with EOC according to the
DISEASES database, which we used to highlight them as bigger nodes (see Figure 3 and 4).
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DISCUSSION
Scope of the StringApp

In our use case, we have illustrated how many of the features of stringApp (see Table 1 for a
more comprehensive list) and Cytoscape can be used to analyze and visualize a proteomics
study of human cells. However, this does not showcase the full scope of the app.

The current version of STRING provides functional association networks for more than
2000 different organisms, all of which can be accessed through stringApp. Moreover, the
app can equally well be used to visualize other types of high throughput experiments that
give rise to a list of genes or proteins. This is true for transcriptomics data, which can be
imported and visualized on a network by following the same steps we showed for
proteomics data, as well as for phenotypic screens and mutation data. For example, the
stringApp has already been used in the literature for network analysis of microarray data on
the mammalian circadian pacemaXeand for comparing a coexpression network obtained
from maize RNA-seq data to a network from STRIRG.

One key feature of the stringApp, which was not used in the use case, is the ability to expand
a network. This uses the STRING network as a whole to bring in additional proteins that
were not initially identified, but which may be of interest because they are preferentially
associated with the proteins on the initial list. In case of phosphoproteomics data, this can be
used to identify proteins that may not themselves be regulated through phosphorylation, but
which function together with proteins that are.

While users can import their own data, it is worth noting the stringApp also automatically
augments the network with tissue expression data and information on protein subcellular
localization. Without having to provide any data, it is thus possible for users to visualize
which proteins localize to a certain tissue or part of the cell. The data can also be highly
useful for filtering networks to produce, for example, a protein network for a specific tissue
of interest.

The stringApp is thus also useful beyond analysis of user-provided high-throughput data.
For example, one can easily perform a disease query to retrieve a network of proteins known
to be involved in a given disease, use network expansion to obtain novel candidates, filter
them by expression in disease-relevant tissues, and highlight the druggable targets from
Pharos.

Automation of Analyses

In addition to having a graphical user interface, which we have focused on in this paper, the
stringApp also supports the Cytoscape Automation feature, which allows scripted execution
of STRING analyses within Cytoscape. This command interface can be used in a variety of
ways. First, it is accessible through the Command Tool, which provides an interactive
command line as well as the ability to execute Cytoscape script files. Second, the commands
can be used from web pages viewed in the built-in Cytoscape web browser, as illustrated in
the online stringApp training materialt{ps://jensenlab.org/training/stringapprhird, the

cyREST app? enables other programs to control Cytoscape through an API, which in turn
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allows stringApp analyses to be scripted from R using the BioConductor packag&'RCy3
from Python using package py2cytoscdpd tutorial on the latter can be found in the
Cytoscape Automation training materibttps://git.io/RstringAppTutoridl

Open Challenges in Network Visualization of Proteomics Data

There are still several open challenges in network visualization of MS-based proteomics
data, which are in no way specific to stringApp but also not addressed by it.

The proteolytic cleavage of the proteins, typically with trypsin, results in peptides that do not
map uniquely to specific proteins. Instead, these peptides are generally mapped to so-called
protein groups, which consist of multiple proteins from which the peptides could have
originated. How to best represent this ambiguity in a protein network is not clear; options
include choosing a single representative protein for each group, showing all proteins from
each group, or constructing network nodes that fuse all interaction evidence for the proteins
in a protein group.

Another challenge relates specifically to data on post-translational modifications. Since each
protein can have multiple post-translational modifications on different sites, an MS data set
may show that some sites on a protein are up-regulated while others are down-regulated.
Since a protein network will have only a single node for each protein, visualization of site-
specific data requires multiple values to be shown on each node, for example, in the form of
a donut plot. However, this visualization will result in information overload if used directly

on large networks. Visualization of networks with complex data overlays, such as time
courses or site specific data, might be achieved by separating the data from the network view
and using interactive techniques to identify subnetworks of int€test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Highlighting various stringApp features in a screenshot of a small STITCH network in

Cytoscape. Edge colors indicate type of interaction (green for protein-compound and gray
for protein—protein interactions) and node colors are arbitrary. The results panel (right)
shows the 3D structure of the currently selected node CDK?7 (indicated by yellow node
color) and provides links to other related resources. The STRING enrichment table panel
(bottom) lists the enriched terms for this network (FDR-correpteslue <0.05) with their
category, term name description, FDR-corregtedlue and the enriched genes. The Filter
STRING Enrichment table dialog (left) demonstrates the available options for filtering
enriched terms by category and redundancy.
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Figure 2.
STRING network of proteins with significantly regulated phosphorylation sites detected in a

phosphoproteomics study of ovarian cadédrog-ratios between disease and healthy

tissues for the most significant site for each protein were mapped to the nodes using a blue-
white-red gradient. Proteins without any interaction partners within the network (singletons)
are omitted from the visualization.
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Figure 3.
Clustered protein association network with proteins colored by the phosphorylation cluster

to which they were assigned in the original anal}gisetwork clustering was performed
using the Markov clustering (MCL) implementation in the clusterMaker2 Cytoscape app.
The 13 proteins associated withvary epitheliatancer according to DISEASES are
represented by bigger nodes. Clusters consisting of one node only are omitted from the
visualization.
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category chart color term name description FDR p-value # enriched genes  enriched genes
GO Process G0:0006397 mRNA processing 3.29E-48 39 [CDK13, SF3AL,S...
KEGG Pathways I 03040 Spliceosome 1.936-27 20 [SF3A1, SRSFO, S...
GO Component G0:0044451 nucleoplasm part 9.62E-25 29 [CDK13, SRSF6, R...
GO Component G0:0005681 spliceosomal complex 8.2E-19 16 [SF3A1, SRSF1,SL...
GO Process G0:0050684 regulation of mRNA processing 6.64E-18 14 [SRSF9, SRSF6, SR...
InterPro IPRO00504 RNA recognition motif domain 3.2E-16 15 [SRSF9, SRSF6, RB...
GO Process G0:0031124 mRNA 3'-end processing 1.12E-14 11 [SRSF9, SRSF6, SR...
GO Process G0:0000245 spliceosomal complex assembly  9.32E-14 10 [SF3A1, SRSF9,S...

Node Table  Edge Table ~ Network Table | SIIXNIE =0deians

Figure 4.
Functional analysis of the largest cluster obtained by Markov clustering (Figure 3). The

top-2 enriched terms after redundancy filtering were visualized as split donut charts around
the nodes annotated with those terms. CDK12 is highlighted by bigger node size because it
is associated witlDvary epithelial cancarccording to DISEASES. The three kinases

CDK7, CDK12, and CDK13 are highlighted in green based on annotations from the Pharos
database.
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Table 1.

Main StringApp Features with Corresponding Inputs and Outputs

Function Operation Input Output
STRING: protein query Create a network for one or multiple proteins Protein name(s) or identifier(s) Network
STRING: disease query Create a network of proteins associated with a disease Disease name or identifier

STRING: PubMed query Create a network by entering a PubMed query PubMed query

STITCH: protein compound query

Create a network for one or multiple proteins and compounds  Protein/compound name(s) or identifier(s)

Expand network

Expand network by more interactors STRING network Network with nodes and edges added
Number and type of interactors to expand by

Query for additional nodes Add more proteins or compounds to an existing network STRING network
Protein/compound name(s) or identifier(s)

Change confidence Change confidence of the network STRING network Network with edges added or removed
New confidence cutoff

Retrieve functional enrichment Retrieve functional enrichment for several categories STRING network Enrichment table

Filter enrichment Filter terms in the enrichment table by category or redundancy ~ STRING enrichment table Filtered enrichment table
Filter options

Draw charts Show selected enrichment terms as charts on the nodes STRING network Network with enrichment visualization

Enrichment table
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