WEALTY 4
of %,

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

/ HHS Public Access

Author manuscript
j Nat GenetAuthor manuscript; available in PMC 2019 April 23.

Published in final edited form as:
Nat Genet2018 June ; 50(6): 825-833. doi:10.1038/s41588-018-0129-5.

Genetic identification of brain cell types underlying
schizophrenia

Nathan G Skene 12T, Julien Bryois 3, Trygve E Bakken 4, Gerome Breen >, James J
Crowley 7, Héléna A Gaspar 26, Paola Giusti-Rodriguez 7, Rebecca D Hodge 4, Jeremy A
Miller 4, Ana B Mufioz-Manchado 1, Michael C O’'Donovan 8, Michael J Owen &, Antonio F
Pardifias 8, Jesper Ryge 9, James T R Walters 8, Sten Linnarsson 1, Ed S Lein 4, Major
Depressive Disorder Working Group of the Psychiatric Genomics Consortium 10, patrick F
Sullivan 37", and Jens Hjerling-Leffler 1.*

ILaboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics,
Karolinska Institutet, SE-17177 Stockholm, Sweden. 2UCL Institute of Neurology, Queen Square,
London WC1N 3BG, UK. 3Department of Medical Epidemiology and Biostatistics, Karolinska
Institutet, SE-17177 Stockholm, Sweden. “Allen Institute for Brain Science, Seattle, Washington
98109, USA. °King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC
Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK. 8National Institute for
Health Research Biomedical Research Centre, South London and Maudsley National Health
Service Trust, London, UK. “Departments of Genetics, University of North Carolina, Chapel Hill,
NC, 27599-7264, USA. 8MRC Centre for Neuropsychiatric Genetics and Genomics, Division of
Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University,
Cardiff, UK. °Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne,
Switzerland. 1%Members of Major Depressive Disorder Working Group of the Psychiatric
Genomics Consortium are in the Supplementary Note

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
"Correspond with Dr Hjerling-Leffler (jens.hjerling-leffler@ki.se) and Dr Sullivan (patrick.sullivan@ki.se).

Equal contributions.
Author contributions
Study design: N.G.S., J.B., P.F.S., J.H.L.; Writing and review of manuscript: N.G.S., J.B., P.F.S., J.H.L.; Analyses using LDSC were
performed by N.G.S.; Analyses using MAGMA were performed by J.B.; Generation of human mid-temporal cortex data: T.E.B.,
R.D.H., J.AM., E.S.L; Generation of Kl single cell data: A.B.M-M., J.R., S.L., J.H.L.; MDD GWAS: PGC MDD working group;
Schizophrenia CLOZUK GWAS: J.T.R.W., J.J.C., P.G.R., M.C.O'D., M.J.0., A.F.P.; Antipsychotic drug targets: G.B., H.A.G.; All
authors read and approved the manuscript.

Conflicts of Interest

The authors reports the following potentially competing financial interests. PF Sullivan: Lundbeck (advisory committee), Pfizer
(Scientific Advisory Board member), and Roche (grant recipient, speaker reimbursement). J Hjerling-Leffler: Cartana (Scientific
Adviser) and Roche (grant recipient).

Data availability

The RNAseq data used in this report can be obtained from the Hjerling-Leffler lab website (URLS), and includes the Kl single-cell
RNAseq superset, processed versions of the human and mouse snRNAseq DroNc-seq data, and the Allan Brain Institute human
snRNAseq data. The specificity values for the Kl single-cell RNAseq superset are included in Supplementary Table 4. The dataset has
also been made available in the ‘MAGMA_Celltyping’ R package (URLS).

Code availability
An R package which can be used for running the cell type association analysis can be obtainggdsfrégrihub.com/NathanSkene/
MAGMA_Celltyping


https://github.com/NathanSkene/MAGMA_Celltyping
https://github.com/NathanSkene/MAGMA_Celltyping

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuey Joyiny

Skene et al. Page 2

Abstract

With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia
have not converged on findings that can be confidently used for precise experimental modeling.
Applying knowledge of the cellular taxonomy of the brain from single-cell RNA-sequencing, we
evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types.
We found that the common variant genomic results consistently mapped to pyramidal cells,
medium spiny neurons, and certain interneurons but far less consistently to embryonic, progenitor,
or glial cells. These enrichments were due to sets of genes specifically expressed in each of these
cell types. We also found that many of the diverse gene sets previously associated with
schizophrenia (synaptic genes, FMRP interactors, antipsychotic targets, etc.) generally implicate
the same brain cell types. Our results suggest a parsimonious explanation: the common-variant
genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the
same cells. The genetic risk associated with medium spiny neurons did not overlap with that of
glutamatergic pyramidal cells and interneurons, suggesting that different cell types have
biologically distinct roles in schizophrenia.

Introduction

Knowledge of the genetic basis of schizophrenia has markedly improved in the past five
yearg. We now know that much of the genetic basis and heritability of schizophrenia is due
to common variatioh3. However, identifying “actionable” genes in sizable stutidsas

proven difficult with a few exceptiofis®. For example, there is aggregated statistical

evidence for diverse gene sets including genes expressed in brain or h2drgeses

highly intolerant of loss-of-function variatiéf) synaptic genés, genes whose mRNA bind

to FRMP2, and glial genés (Supplementary Table 1). Several gene sets have been
implicated by both common and rare variant studies of schizophrenia, and this convergence
strongly implicates these gene sets in the pathophysiology of schizophrenia. However, the
gene sets in Supplementary Table 1 often contain hundreds of functionally distinctive genes
that do not immediately suggest reductive targets for experimental modeling.

Connecting the genomic results to cellular studies is crucial since it would allow us to
prioritize for cells fundamental to the genesis of schizophrenia. Enrichment of schizophrenia
genomic findings in genes expressed in macroscopic samples of brain tissue has been
reported1415but these results are insufficiently specific to guide subsequent
experimentation.

A more precise approach has recently become feasible. Single-cell RNA-sequencing
(scRNAseq) can be used to derive empirical taxonomies of brain cell types. We thus
rigorously compared genomic results for schizophrenia to brain cell types defined by
scRNAseq. Our goal was to connect human genomic findings to specific brain cell types
defined by gene expression profiles: to what specific brain cell types do the common variant
genetic findings for schizophrenia best “fit"? A schematic of our approach is shown in
Figure 1.
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Results

Cell type specificity of gene expression

We assembled a superset of brain scRNAseq data from Karolinska Institutet (KI;
Supplementary Tables 2—3). Brain regions in the K| superset include nedgortex
hippocampu®, hypothalamu¥’, striatum, and midbral§ plus samples enriched for
oligodendrocytes, dopaminergic neurons, and cortical parvalbuminergic interneurons (total

of 9,970 cells, Figure 1c). These data were generated using identical methods from the same
labs with unique molecular identifiers that allow for direct comparison of transcription

across regions. Quality control and alignment are described elséftweedid not identify
important batch effects (Supplementary Figure 1). Based on the scRNAseq data and
subsequent clustering each cell have been assigned to a Level 1 classification (e.g.,
pyramidal cell, microglia, or astrocyte). Level 2 classifications are subtypes of a Level 1
grouping (e.g., medium spiny neurons expressing Drd1 or Drd2). Clustering was based on
patterns of correlations across hundreds of genes and not on single markers. After clustering,
cell type identities were derived using known expression patterns, histology, and/or
molecular studié$-18(Supplementary Table 2). The KI mouse superset identified 24 Level

1 brain cell types (Supplementary Figure 2) and 149 Level 2 cell types (all sub-groupings of
Level 1), far more than any other brain scRNAseq or single nuclei RNA-seq (shRNAseq)
dataset presently available (Figure 1a).

For each scRNAseq and snRNAseq dataset, we estimated the specificity of each gene and
cell type. This measure represents the proportion of the total expression of a gene found in
one cell type compared to all cell types (i.e., the mean expression in one cell type divided by
the mean expression in all cell types). If the expression of a gene is shared between two or
more cell types, it will get a lower specificity measure. For exandpig?is highly

expressed in medium spiny neurons (MSNs), adult dopaminergic neurons, and hypothalamic
interneurons, and its specificity measure in MSNs of 0.17, but this pl2&in the top

specificity decile for MSNs (Figure 1b). Figure 1c shows cell type specificity for seven

genes with known expression patterns. Because expression is spread over several cell types,
the pan-neuronal markeytpib1has lower specificity tha®op1rIf{DARPP-32, an MSN
marker),AifI (a microglia marker), o6Gfap(an astrocyte marker).

Cell type specificity of schizophrenia genetic associations

For each cell type, we ranked the expression specificity of each gene into groups (deciles or
40 quantiles). The underlying hypothesis is that if schizophrenia is associated with a
particular cell type, then more of the genome-wide association (GWA) signal should be
concentrated in genes with greater cell type specificity. For example, we plotted the
enrichment of SNP-heritability for schizophrenia and human height in the cell-type
specificity deciles of for MSNs and found a positive relationship for schizophrenia but no
relationship with human height (Figures 1d—1e). To ensure rigor, we required that two
different statistical methods (LDS@nd MAGMAL®) each give strong evidence for
connecting schizophrenia GWA results to a cell type. These two methods are based on
different assumptions and algorithms. LDSC assessed enrichment of the common SNP-
heritability of schizophrenia in the most cell type-specific genes. MAGMA evaluated
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whether gene-level genetic association with schizophrenia linearly increased with cell type
expression specificity. Both methods account in different ways for confounders like gene
size and linkage disequilibrium. We required that both methods give similar results after
correcting for multiple comparisons to minimize the chance of a spurious conclusion. As
described in the Online Methods, we evaluated and excluded multiple potential threats to the
validity of these analyses.

To identify brain cell types associated with schizophrenia, we used the largest available
GWA study of schizophrenia: CLOZUK identified ~140 genome-wide significant loci in
40,675 cases and 64,643 conttBlsVe first compared the CLOZUK results to GTEx
(RNA-seq of macroscopic samples from multiple human tisshasing MAGMA and
confirmed that smaller schizophrenia GWRvalues were substantially enriched in brain
and pituitary (Supplementary Figure 3).

We evaluated the relation of the CLOZUK GWA schizophrenia results to the 24 Kl Level 1
brain cell types. Both LDSC and MAGMA strongly highlighted only four cell types:
hippocampal CA1 pyramidal cells, striatal medium spiny neurons, neocortical
somatosensory pyramidal cells, and cortical interneurons (Figure 2a, Supplementary Figures
4-5). Each exceeded a Bonferroni significance level by several orders of magnitude. The
results were not pan-neuronal as multiple other types of neurons did not show enrichment.
Schizophrenia risk was greater in mature cells than in embryonic or progenitor cells. We
extended the analysis to 149 KI Level 2 cell types (subtypes of Level 1 cells): for
hippocampal CA1 pyramidal cells, both major subgroups were significant; for striatum,
medium spiny neurons expressiBgdZ, Drd1and striatalPval/bexpressing interneurons

were consistently significant; and for neocortical somatosensory pyramidal cells, cortical
layers 2/3, 4, 5, and 6 were significant (Supplementary Figure 6). The cortical Level 1
interneuron signal appeared to result from four interneuron subcategories all expressing
Rein

Additional analyses showed that these results were not influenced by the total number of
molecules detected per cell type or total number of cells per cell type (Supplementary Table
3). We conducted null simulations and confirmed that there was no Type 1 error inflation
(Supplementary Figure 7). We also applied an alternative approach based on differential
expressiof?, and replicated the association of MSNs, pyramidal CA1, and neocortical
somatosensory pyramidal cells with schizophrenia using a third method (Supplementary
Figure 8). These additional analyses suggest the robustness of our results.

We next evaluated whether these results were specific to schizophrenia or if they resulted
from some feature common across human traits. Heat maps of Kl Level 1 enri¢ément

values for GWA results from eight studies of human complex traits are depicted in Figure

2b. Seven studies evaluated common variants associations for brain-related diseases or traits
with 20,000 cases and 20 genome-wide significant associations. Human height was

included as a non-brain comparator. The results from the earlier PGC GWA study of
schizophreniZwere similar to those from CLOZUK. Although we observed cell types being
enriched in other sets, none had the specific signal observed in the two schizophrenia sets.
For example, for major depressive disorder, we found that GABAergic interneurons,
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embryonic midbrain neurons, and dopaminergic interneurons were the most enriched cell
types. For each cell type, we tested whether the enrichment observed in other GWA studies
was significantly different from that in CLOZUK. We observed no significant difference for
SCZ2 (a subset of CLOZUK) and years of education but all other studies contained
significantly different cell type enrichments (Supplementary Figure 9).

Replication of results in additional single cell datasets

We replicated most findings in independent scRNAseq/snRNAseq mouse brain studies. We
found significant enrichment for schizophrenia in hippocampal CA1 pyramidal cells,
neocortical pyramidal cells, cortical interneurons (although not in all data sets), and medium
spiny neurons—28 We also saw enrichment in pyramidal neurons from CA3 and dentate
gyrus granule cells. (Supplementary Figures 10a—d). Replication of our results in external
other datasets again highlight the robustness of our cell type association results.

We identified an important technical issue for scRNAseqg/snRNAseq studies of brain.
scRNAseq is readily done in mouse brain but more difficult in larger and more fragile
human brain neurons. Nearly all currently available human data have been generated using
snRNAseq. The isolated nuclei used in snRNAseq lack the cytoplasmic compartment and
proximal dendrites, and there are systematic differences between the types and amounts of
mRNA in nucleus versus cell soAfaTo evaluate the impact of this issue, we analyzed
multiple mouse and human datasets. We confirmed that transcripts destined for export to
synaptic neuropff were better captured by scRNAseq and specifically depleted in
snRNAseq (Figure 3a). This is important for the purposes of this study because synaptic
neuropil transcripts are enriched for genetic associations with schizophPehiex104).

This places an important caveat on the use of snRNAseq to evaluate brain cell type
associations with schizophrenia given that shRNAseq from human or mouse brain may not
comprehensively capture the relevant transcriptome.

With these caveats in mind, we evaluated human snRNAseq datasets from mid-temporal
cortex (Allen Institute for Brain Science, unpublished) and DroNc-seq in prefrontal cortex
and hippocampd8. Using hierarchical clustering on specificity scores, we found that
human and mouse cell types clustered together (Supplementary Figure 11); Level 1 cell
types had greater similarity to the same cell type across species than to a different cell type
in the same species. We confirmed enrichment of schizophrenia SNP-heritability in cortical
pyramidal neurons (glutamatergic cells) and cortical interneurons (GABAergic cells) in two
different human datasets (Figure 3b). In the DroNc-seq d&taset confirmed enrichment

in hippocampal pyramidal neurons (glutamatergic cells) along with greater enrichment in
Relnexpressing GABAergic interneurons compared to those expre8gaig In both

human studies, oligodendrocyte precursor cells (OPCs) were significant or close to
significance but it is hard to judge if this is related to a loss of neuronal-specific signal in
snRNAseq (note that OPCs showed stronger signal in OPCs in mouse snRNAseq vs
scRNAseq; Figure 2 and Supplementary Figure 10d). In a small scRNAse¢studygan

adult and fetal cortical neurons were significantly enriched for schizophrenia SNP-
heritability. These are likely pyramidal cells but the small numbers of cells sequenced
precluded further exploration. No significant enrichments were found in another snRNAseq
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study of a single humaf, perhaps due to a lack of cellular diversity (data not shown). We
are unaware of scRNAseq/snRNAseq data from human striatum. The specificity of the
human cortical signal for schizophrenia was confirmed in relation to the same set of brain-
specific GWA studies (Figure 2d). In summary, all major findings from the Kl dataset were
replicated in independent mouse or human studies.

Cell type enrichments of schizophrenia associated gene sets

A major question in the field regards interpretation of the large and diverse gene sets that
have been compellingly related to schizophrenia (Supplementary Table 1). These gene sets
are highly significant, replicate well, and are often implicated in both common and rare
variant studies. However, their implications for an experimentalist are unclear: what do these
large sets of genes really tell us? These gene sets are large, and could be expected to
recapitulate the cell type enrichments found above. However, all neurons have synapses and
NeuN (the protein product #®bfox3 is a widely used neuronal marker, so another

possibility is that the RBFOX, PSD95, and FMRP gene sets could simply be pan-neuronal.

We thus evaluated whether gene sets previously implicated in schizophrenia were
specifically expressed in the Kl level 1 brain cell types (using Expression Weighted Cell
type Enrichment, EWCEY. The inputs to EWCE are a list of genes (e.g., FRMP interacting
genes or genes intolerant to loss-of-function variation) and the same scRNAseq cell type
specificity matrix used in the MAGMA and LDSC analyses above. Association with
schizophrenia is not a direct input although these data are incorporated indirectly (why a
gene set was selected in the first place). However, these effects are subtle. For instance, there
is a CLOZUK significant GWA hit in only 7.0% of genes that interact with FMRP versus
4.0% that do not interact with FMRP (using MAGMA gene-widalues), and there is a
CLOZUK significant GWA hit in only 4.1% of genes with EXAC pLI > 0.9 versus 3.3%

with low pLI. We also determined that overlap between gene sets was relatively low. For 10
key gene sets (antipsychotic targets, CELF4, FMRP, high or low dN/dS, high pLI, NMDAR,
PSD, PSD95, and RBFOX), of 45 pairs of correlations (count of intersection/union), only
two correlations exceeded 0.25 (RBFOX-CELF4 0.31 and RBFOX-high pLI 0.28), and most
other correlations were near zero.

First, pharmacologically-defined molecular targets of antipsychotics (the mainstay of
treatment for schizophrenia) have been associated with schizogRraniwe found that
antipsychotic medication targets were associated with the same cell types as for the
schizophrenia GWA results: neocortical S1 pyramidal cells, MSNs, and hippocampal CA1
pyramidal cells, while cortical interneurons were just above the significance threshold
(Figure 4a). Expanding these analyses, we found that other gene sets associated with
schizophrenia were specifically expressed in schizophrenia-relevant cell types (Figures 4b—
d). The gene sets consistently associated with schizophrenia — intolerant to loss-of-function
variation, NMDA receptor complex, post-synaptic density, PSD95 complex, RBFOX
binding, CELF4 binding, and FMRP associated genes — all had more specific expression in
neocortical S1 and hippocampal CA1 pyramidal cells, MSNs from the dorsal striatum, and
cortical interneurons (with the exception of NMDA receptor complex genes). Because some
of these gene sets are involved in diverse cellular functions, there were, as expected,
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associations with other Level 1 cell types. For example, genes intolerant to loss-of-function
variation had significantly greater expression in progenitor cells (dopaminergic neuroblasts,
neuroblasts, and embryonic GABAergic neurons). Notably, none of the gene sets previously
associated with schizophrenia was pan-neuronal. A prior &tuelgorted that expert-

curated glial gene sets were enriched for schizophrenia associations. We confirmed that
those gene sets were significantly associated with glia (Supplementary Figure 12) but could
not replicate the association of these gene sets with schizophrenia using MAGMA. Finally,
we observed that gene sets previously associated with schizophrenia were substantially less
associated with schizophrenia after controlling for the pyramidal neurons, MSNs, cortical
interneurons (Supplementary Figure 13). Only loss of function intolerant, CELF4-binding
and Rbfox-binding gene sets remained significant after controlling for the cell type
enrichments. Our findings highlight that non-overlapping subsets of risk genes each point at
the same cell types. Indeed, gene set analysis results can be further subdivided according to
cell type-specific expression. Improved methods are thus needed for gene set analysis
explicitly accounting for cell types — particularly given intensive efforts to conduct a census
of the cellular complexity of the human body.

As neurological diseases are generally not genetically correlated with schizopthneaia
evaluated the associations of Level 1 cell types with gene sets associated with neurological
diseases. Genes associated with Alzheimer’s did28%and multiple sclerost€ were

associated with microglia. Risk genes for leukodystrépimere associated with
oligodendrocytes (Figure 4e). We analysed genes associated with neurological phenotypes
from the Human Phenotype Ontology (HPO) and subcellular localization data from the
Human Protein Atlas (Supplementary Figures 14—19). We found that these mostly targeted
cell types distinct from those implicated in schizophrenia. For example, the HPO category
“neural tube defect” was associated with neural progenitor cells (p=0.0002) and “abnormal
myelination” was associated with oligodendrocytes (p<0.0001). We analysed genes with
weak or strong conservation between human and mouse (low or high dN/dS scores), and
found that highly conserved genes were specific to some types of neuron (e.g., serotonergic)
while divergent genes were associated to other cell types (e.g., hypothalamic glutamatergic).
None of the schizophrenia associated cell types showed unusually weak or strong
evolutionary pressure on their coding sequences (Figure 4f).

Independence of genetic association between cell types

Finally, we assessed how much of cell type connections to schizophrenia was due to shared
gene expression between cell types. For instance, the association of cortical interneurons
with schizophrenia is weaker than for MSNs: are these independent connections to
schizophrenia? Alternatively, given that both are GABAergic neurons, are both associations
being driven by a common set of genes? We tested this using resampling without
replacement: if the interneuron enrichment is driven solely by overlapping genes with
MSNs, then an equivalent level of interneuron association should be found if the
schizophrenia association scores of genes within each MSN specificity decile are
randomized (Supplementary Figure 20). We performed 10,000 resamplings for each Level 1
cell type while controlling for all four of the significantly associated cell types (Figure 4a).
We found that MSNs, cortical interneurons, and hippocampal CA1 pyramidal neurons were
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independently associated with schizophrenia. However, the association with somatosensory
pyramidal neurons was largely due to shared expression with hippocampal CA1 pyramidal
neurons. We confirmed this using conditional analysis (Supplementary Figure 21a). We then
tested whether each cell type remained significant after conditioning on the three other
significant cell types together. Strikingly, only MSNs remained significantly associated with
schizophrenia (Supplementary Figure 21b), indicating that the association of MSNs with
schizophrenia is independent from that of pyramidal neurons and cortical interneurons.

To evaluate whether the main sources of enrichment signal in different cell types were from
overlapping genes, we used a qualitative measure. We plotted the overlap of the top 1,000
genes associated with schizophrenia (MAGMA gene-Wisgalues) that also fell in the top

decile of specificity scores for each of the four main cell types (Figure 5b). About half of the
schizophrenia-associated genes enriched in pyramidal cells and MSNs were shared but those
conferring risk-enrichment in interneurons were to a larger extent exclusive. We then
evaluated enrichment of gene sets previously associated with schizophrenia (Rbfox, CELF4
or FMRP binding genes, loss of function intolerant gene, genes involved in synapse
function, and dendritically transported genes) and genes involved in dopaminergic signalling
(Online Methods) in the different areas of Figure 5b using a hypergeometric test. The most
associated Rbfox genes were enriched in CA1 pyramidal cells, genes related to loss of
function intolerant genes, and dopamine signalling were specifically enriched in medium
spiny neurons (Figure 5c¢). A subset of synaptic genes associated with schizophrenia were
shared by all cell types. These findings show that neuronal classes express a combination of
overlapping and non-overlapping functional sets of risk genes.

A major issue in schizophrenia genomics is the meaning of the many GWA findings — how
do we interpret the hundreds of common variant associations? Similarly, many sets of genes
have been compellingly associated with schizophrenia: what are these diverse functional
findings telling us? Thus, we attempted to connect human genomic findings for
schizophrenia to specific brain cell types defined by their scRNAseq expression profiles: to
what specific brain cell types do the common variant genetic findings for schizophrenia best
“fit"? Other studies have addressed this questfolf, but using gene expression based on
aggregates of millions of cells. As described more fully in the Online Methods

(“Rationale™), we used scRNAseq data to answer this question. We set a high bar: we
required that the connections to cell types be identified using two different methods and
exceed an appropriately rigorous statistical threshold.

The results were not pan-neural, pan-neuronal, or in cell types prominent in early
development. We found clear connections to just four of 24 main brain cell types: MSNs,
pyramidal cells in hippocampal CA1, pyramidal cells in somatosensory cortex, and cortical
interneurons. Most of the strong results found in the mouse data replicated in external mouse
data and in the more limited human data sets. Intriguingly, many of the diverse gene sets
(e.g., antipsychotic drug targets or genes that interact with FMRP or RBFOX proteins)
robustly associated with schizophrenia connected to the same cell types. Our results suggest
that these discrete cell types are central to the etiology of schizophrenia, and provide an
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empirical rationale for deeper investigation of these cell types in regard to the basis of
schizophrenia. These results can be used to guideo studies andn vitro modeling (e.g.,
patient-derived neurons from induced pluripotent stem cells) and provide a basis for
analyzing how different risk genes interact to produce the symptoms of schizophrenia.

Our results also suggest that single-nuclei RNAseq of neurons leads to systematic
underrepresentation of dendritically exported mRNA species. We hypothesize that this is due
to destination-specific differences in rates of mMRNA déa9ur data on single-nuclei

versus single-cell mRNA capture warrants caution when using single-nuclei data sets for the
study of neuronal disorders or processes. This fact should be taken into consideration in the
design or analysis of future large scale sequencing efforts.

There are several important caveats as described more fully in the Online Methods
(“Limitations”, including discussion and analyses of gene conservation). Despite our use of
multiple statistical methods and efforts to identify and resolve any spurious explanations for
our findings, our work has to be considered in light of inevitable limitations. Although the

Kl scRNAseq data cover a broad range of brain regions thought to be relevant to the
neurobiology of schizophrenia, extensive coverage of cortical and striatal development is
lacking at present (gestation, early postnatal, or adolescence). The currently available
functional genomic data in human brain are limited but improving rapidly via
PsychENCODE? and similar efforts, but precisely how schizophrenia GWAS signals

impact cell-specific gene expression is not yet a solved problem. Finally, the genetic signals
we captured were reflected in the expression levels of hundreds of genes. It is certainly
possible for a gene to play an important role in schizophrenia and yet not be in one of the
cell types we implicated. For example, genetic polymorphisni¥/igappear to be

etiologically involved in schizophrerfidut the expression af4ais highest in astrocytes,
vascular leptomeningeal cells, and microglia. We were thus careful with our conclusions: we
can implicate a cell type (e.g., MSNs show positive evidence) but it is premature to exclude
cell types for which we do not have data, or those with dissimilar function or under selection
pressure between mouse and human.

In sum, our results support a parsimonious hypothesis: the common variant GWA results for
schizophrenia point to a limited set of brain cells, and that subsets of these genes - the gene
sets associated with schizophrenia (including antipsychotic medication targets) — each point
at the same cell types.

Online Methods

Mouse-to-human gene mapping

We used the expert curated human-mouse homolog list (Mouse Genome Informatics,
Jackson Laboratory, URLSs, version of 11/22/2016). Only genes with a high-confidence, 1:1
mapping were retained. This is discussed further in the Supplementary Note.

Calculation of cell type expression specificity

A key metric used for our cell type analyses is the specificity (proportion of expression) for
a given gene. This metric is calculated separately for each single cell dataset. This is a
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measure of cell type specificity scaled so that a value of 1 implies that the gene is completely
specific to a cell type and a value of 0 implies the gene is not expressed in that cell type. It
was calculated using thgenerate.celltype.datanction of the EWCE package (URLSs). See
Supplementary Note for further details.

Thresholding of low expressed transcripts

Becauses; cis independent of the overall expression level of a gene, it is desirable to

exclude genes with very low or sporadic gene expression levels, as a small number of reads
in one cell can falsely make that gene appear to be a highly specific cell marker. Direct
thresholding of low expressed genes is not ideal for performing this as thresholds need to be
set individually for each dataset, and some individual cells can show exceptionally and
anomalously high expression of the sporadically expressed gene. We reasoned that all the
genes we want to include in the study should be differentially expressed in at least one Level
2 cell type included in the study. We thus excluded sporadically expressed genes via
ANOVA with the Level 2 cell type annotations as groups, and excluding all gene®with
0.00001. Gene filtering was performed separately for each single cell dataset; importantly
though, the Kl dataset was filtered as a merged superset. A consequence of this (and of
differences in sample preparation and sequencing) is that different genes are used for
example in the analysis of the Kl superset than were used for the Habib et al (Mouse
Hippocampus Div-Seq) dataset. For datasets where level 2 cell type annotations were not
available (e.g. the Allan Brain Institute Human Cortex dataset) we used the same approach
but with level 1 cell type annotations instead.

LD Score Regression (LDSC) and partitioning SNP-heritability

To partition SNP-heritability using LDSC (URI%)t is necessary to pass LDSC annotation

files (one per chromosome) with a row per SNP and a column for each sub-annotation (1=a
SNP is part of that sub-annotation). To map SNPs to genes, we used dbSNP
SNPContigLocusld file (build 147 and hg19/NCBI Build 37 coordinates). All SNPs not
annotated in this file were given a value of 0 in all sub-annotations. Template annotation

files obtained from the LDSC Github repository were used as the basis for all cell type and
gene set annotations (“cell_type_group.1*"). Only SNPs present in the template files were
used. If an annotation had no SNPs, then 50 random SNPs from the same chromosome were
selected as part of the annotation (if no SNPs are selected then the software fails to calculate
SNP-heritability).

URLS

Expression Weighted Cell type Enrichment (EWGCHE)ps://github.com/NathanSkene/EWCE
Linnarsson lab datéttp://linnarssonlab.org/data

Mouse Genome Informatics, Jackson Laboratuotty,//www.informatics.jax.org/homology.shtml
LDSC, https://github.com/bulik/ldsandhttps://github.com/bulik/ldsc/wiki

PGC resultshttps://www.med.unc.edu/pgc/results-and-downloads

AlzGene databaséftp://www.alzgene.org/TopResult.asp

AlsGene databaséitp://www.alsgene.org/TopResult.asp

GREAT, http://great.stanford.edu/public/html

Hjerling-Leffler lab websitehttp://www.hjerling-leffler-lab.org/data/scz_singlecell

Human Phenotype Ontologyttp://compbio.charite.de/hpoweb

MAGMA_Celltyping, https://github.com/NathanSkene/MAGMA_Celltyping
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Annotation files were created for each cell type for which we applied partitioned LDSC.
Twelve sub-annotations were created for each cell type. The first represented all SNPs which
map onto named regions which are not MGI annotated genes or which map onto a gene
which does not have a 1:1 mouse:human homolog. The second contained all SNPs which
map onto genes not expressed in a cell type. The other 10 sub-annotations are associated
with genes with increasing levels of expression specificity for that cell type. To assign these,
the deciles of, cwere calculated over all values gfseparately for each value gfto give

ten equal length sets of genes. These are then mapped to SNPs as described above. To
partition SNP-heritability amongst the gene sets (not the cell types), a single set of
annotation files was created with each of the gene sets used as a sub-annotation column.

LDSC was then run using associated data files from phase 3 of the 1000 Genome¥.Project
We computed LD scores for cell type annotations using a 1 ¢cM window (--ld-wind-cm 1).
As recommended (LDSC Github Wiki, URLS), we restricted the analysis to using Hapmap3
SNPs, and, as in the original refoexcluded the major histocompatibility region due to its
high gene density and exceptional LD. The LDSC “munge_sumstats.py” script was used to
prepare the summary statistics files. The SNP-heritability is then partitioned to each sub-
annotation. We used LD weights calculated for HapMap3 SNPs, excluding the MHC region,
for the regression weights available from the Github page (files in the
‘weights_hm3_no_hla’ folder).

For the LD score files used as independent variables in LD Score regression we used the full
baseline modé&land the annotations described above. We used the ‘--overlap-annot’
argument and the minor allele frequency files (‘1000G_Phase3_frqg’ folder via the ‘--frfile-
chr’ argument).

Partitioned LDSC computes the proportion of SNP-heritability associated with each
annotation column while taking into account all other annotations. Based on the proportion
of total SNPs in an annotation, LDSC calculates an enrichment score and an associated
enrichment”value (one-tailed as we were only interested in annotations showing
enrichments of SNP-heritability). All figures showing partitioned LDSC results ghow
values associated with the enrichment of the most specific decile for each cell type.

Cell type identification using MAGMA

We used MAGMA (v1.04%, a leading program for gene set anafi%si® evaluate the
association of gene-level schizophrenia association statistics with cell-type specific
expression under the hypothesis that, in relevant cell types, genes with greater cell type
specificity should be more associated with schizophrenia. Gene level association statistics
were obtained using MAGMA (window size 10 kb upstream and 1.5 kb downstream of each
gene — see below for discussion window size) using an approach based on Brown’s
method?3 (model: snpwise-unweightddThis approach allows to combiivalues in the
specified windows surrounding each gene into a gene-level pvalue while accounting for LD
(computed using the European panel of 1000 Genomes Project PHase 3

The tissue specific expression metric for each gene in each cell type was obtained by
dividing the gene expression level in a particular cell type by the sum of the expression of
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the gene in all cell types (seg, defined above). The distributions $f.were complex
(point mass at zero expression, substantial right-skewing). For each cell type, we
transformedSinto 41 bins (O=not expressed, 1=below'2g&rcentile, 2=2.518 percentile,
..., 40=above 978 percentile), so that each cell type would be comparable.

MAGMA was then used to test for a positive association (one-sided test) between the binned
fractions in each cell type and the gene-level associations (option --gene-covar onesided).
For a given mouse or human brain cell type, this tested whether increasing tissue specificity
of gene expression is associated with increasing common-variant genetic findings for
schizophrenia using information from all genes. By default, the linear regression performed
by MAGMA is conditioned on the following covariates: gene size, log(gene size), gene
density (representing the relative level of LD between SNPs in that gene) and log(gene
density). The model also takes into account gene-gene correlations. For the conditional
analysis, we used the condition modifier of thgene-covaparameter to condition on each

of the significant cell types

Random permutations of MAGMA

For the analysis in Supplementary Figure 7, we randomly permuted gene labels of gene-
level association statistics of MAGMA and looked for cell type association with
schizophrenia using 1,000 permutations. We observed a mean of 24.8 significant results
across cell types at P<0.05 indicating that MAGMA is conservative using our approach (50
significant results expected by chance).

Schizophrenia association using alternative cell type specificity method

We tested another recent approach to associate cell types with traits using differentially
expressed gen® We computed a normalization factor for each single cell using the scran
R packag® using the 50% of the genes with mean expression higher than the median. The
normalization factors were computed after clustering cells using the gueiai/uster

function to account for cell type heterogeneity. We then performed 24 differential expression
analysis using BPSE€testing each cell type against the 23 other cell types with the
normalization factors as covariate. For each cell type, we then selected the 10% most
upregulated genes and created bed files with the coordinate of these genes extended by
100kb upstream and 100kb downstream. SNPs of the baseline model from Finucane et al.
located in the top 10% of the genes were used to create a cell type specific annotation that
was added to the “baseline” model. We then used 148&Ctest for association between the
cell type specific annotations and schizophrenia using a one-Bidede based on the
coefficient Z-score from the output of LDSC.

Enrichment analyses of gene sets and antipsychotic drug targets

Expression Weighted Cell type Enrichment (EWCE, URLg)as used to test for cell types
which show enriched expression of genes associated with particular schizophrenia-
associated gene sets. These analyses used the same speSificityes for the Kl Level 1
data that were used for the MAGMA and LDSC analyses. EWCE was run with 10,000
bootstrap samples. EnrichmeRvalues were corrected for multiple testing using the
Bonferroni method calculated over all cell types and gene lists tested. EWCE returns a Z-
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score assessing standard deviations from the mean. Values < 0 (depletion of expression)
were recoded to zero.

Schizophrenia common variant association results

The schizophrenia GWA results were from the CLOZUK and PGC s&rflegSLOZUK is

the largest currently obtainable GWA for schizophrenia (40,675 cases and 64,643 controls),
and the authors identified ~150 genome-wide significant loci. It includes the schizophrenia
samples from earlier PGC papers. For selected analyses, we also included the PGC
schizophrenia results from théature2014 report (URLS). This paper included 36,989 cases
and 113,075 controls, and identified 108 loci associated with schizophrenia. Results from
the published PGC and CLOZUK studies were qualitatively similar with the CLOZUK data
generally showing increased significance owing to its larger sample size.

Comparison GWA results for other traits

We included comparisons for a selected set of brain related traits as well as height as a
negative control. As power to identify cell types is directly proportional to the sample size of
the GWA study, we only included traits with at least 20’000 samples that discovered at least
20 genome-wide significant loci. The GWA results were from the following sources:
schizophreni&from the PGC; Alzheimer’s disea@Sgeducational attainmeht 1Q48;, MDD

from the PGC (unpublished); Parkinson’s disé&sad heighi?,

Test of cell-type association differences between traits

We tested whether the beta coefficient in MAGMA were significantly different between two
traits for each cell type using the approach described in Paternoster et 2}, ¥@98rst

By—B
compute a Z-score for each cell tyge: 2 Wheref; andp, are the SNP-
SEf} + SEf;

heritability enrichments for trait 1 and 2 (or beta coefficients in MAGMA) and SE are the
standard errors. A two-sided p-value is then computed based on the Z-score using the R
pnormfunction.

Gene sets associated with schizophrenia

The gene set results for schizophrenia are summarized in Supplementary Table 1. For
CELF4 binding genés, we used genes with iCLIP occupancy > 0.2 from Table S4. For
FMRP binding genes, we used genes from Table!3Z2enes intolerant to loss-of-function
variation were from the Exome Aggregation Consortium (pLI >8.@enes containing
predicted miR-137 target sites were frantrorna.org NMDA receptor complex genes
came from Genes-to-Cognition database entry L0003G800Fe human post-synaptic
density gene set was from Table®$Zhe PSD95 complex came from Table S1 using all
genes marked with a cross in the ‘PSD-95 Core Complex’ céfuriar RBFOX binding,
we took all genes witRBFOX2count > 4 or summe@BFOX1and RBFOX3> 12 from
Table S¥6. For antipsychotic drug targets, we used a gene list provided by Drs Gerome
Breen and Héléna Gaspar as reported in the biorXiv prépriftie oligodendrocyte and
astrocyte gene lists came from Supplementary TdSleMl EWCE Rvalues were corrected
with the Benjamini—-Hochberg method.
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Gene sets for neurological disorders & human phenotype ontology & dN/dS

For multiple sclerosis, we used results from the largest available GWAS (the Multiple
Sclerosis Genomic Map); we used the genes listed in the Supplementaty fadle

Alzheimer's disease, we used the top results from the AlzGene d&b@aRes) as well as
genome-wide significant gem®s For genes associated with leukodystrophy (HP:0002415,)
we used the Human Phenotype OntofSgRLs). For amyotrophic lateral sclerosis we

used the top results from the ALSGene database (URLS). For epilepsy, migraine, and stroke
we used the EBI GWAS catalog. For the Human Phenotype Ontology (HPO) gene sets, the
‘ALL_SOURCES_ALL FREQUENCIES phenotype to_genes.txt’ file was downloaded

from build 133. To obtain the genes with the top 500 highest/lowest dN/dS between humans
and mice we obtained the dN and dS values through BioMart.

Gene sets associated with subcellular localization

Subcellular localization data were downloaded from the Human Protein Atlas website (HPA,
v17P7. Only gene lists with >100 genes were used. Lysosomal genes were downloaded from
the Human Lysosome Gene Datal¥8sMlitochondrial genes were obtained from Human
MitoCarta2.3°. Axonal (Adult) and Axonal (E17) were obtained from a study which used
axon-TRAP-RiboTags to capture the mRNAs from retinal ganglion cell axons projecting to
the superior collicull® (Supplementary Table 1). Presynaptic genes come from
Supplementary Tableé’1 Synaptic vesicle genes came from Supplementary T&hle 1

Depletion of dendritically enriched transcripts in nuclei datasets

Dendritically enriched transcripts were obtained #8x§Supplementary Table 10). This list

was produced from pyramidal cells from rat hippocampus and human 1:1 homologs were
obtained. We refer to this set of genes gsditic TO enable direct comparisons between
datasets, all datasets were reduced to contain a common set of six Kl Level 1 cell types:
pyramidal neurons, interneurons, astrocytes, interneurons, microglia, and oligodendrocyte
precursors. For the Kl dataset, we used S1 Pyramidal neurons. The specificity metric
(denoted asy, g was recalculated for each dataset using this reduced set of cell types.
Comparisons were then made between datasets (denoted in the graph with the format ‘X vs
Y’). We denote the mean pyramidal neuron specificity scores for dendritically enriched

genes in dataset X &g _ , Pyramidal We then get the difference in pyramidal
— > “dendritic’

specificity of for listL between two datasets as

DyyrL=Sp_x.L Pyramidal ~ Sp=v.L Pyramidal We then calculate values By v for

20,000 random gene lists, having the same length as the dendritically enriched gene list,
with the genes randomly selected from the background gene set. We denéteahéam
gene list ask), The mean and standard deviation of the bootstrapeg, values are

denoted.,, ande respectively. The depletion Z-score is then calculated as:
X,Y,R X,Y,R
D —H
X,Y,L .. THD
> Zdendritic X,Y,R - .
Zx v Ldendritic = o . A large positive Z-score thus indicates that
X,Y,R

dendritically enriched transcripts are specifically depleted from pyramidal neurons from
dataset Y relative to dataset X.
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Conditional cell type enrichments

Gene association Z-scores for schizophrenia were calculated in MAGMA as described
above. To enable randomization of the Z-scores and recalculation of the associations to be
done programmatically, these were then loaded into R and associations with disease were
calculated within this environment without external calls to MAGMA. All genes within the
extended MHC region (chr6 25-34 mb) were removed due to its confounding effects. We
controlled for gene size and gene density by regressing out the effect of NSNPS and
NDENSITY parameters (and the log of each) on the Z-score. To ensure a meaningful
number of genes were randomized within each group, associations were calculated over
deciles rather than the smaller percentile bins used earlier with MAGMA. Probabilities of
association are calculated using the ImFit and ebayes functions from the limma package to
enable rapid computation. We denote the set of cells studi€dash that; represents the

ith celltype. The original Z-scores are denafslich thatz; is the Z-score of théigene

while the randomized Z-scores are dend®d@he set of genes in th& specificity decile of

the controlled cell typeg, and the ' specificity decile of target cell type, are denoted;f’jy

and thudJ, . CS;f’ky contains all genes in th® specificity decile of cell typeg,.

The basis of the approach (Supplementary Figure 23) is to randomise the Z-scores with
respect to the specificity deciles of the target cell tgpbut not with respect to the
specificity deciles of the controlled cell typs, Thus for each of the deciles indexed by i
we randomly resampled without replacement the Z-scores such that

s¥Y

{R } = {Z } and yetR, # Z, In practical terms, this would
8 X,y 8 9= <g ’
8€UpecSii 8€UrecSii

mean that if we controlled for MSN’s and targeted cortical interneurons, the mean Z-score in
the 16" MSN decile would remain the same but would be different in cortical interneurons;
the question being tested is the degree to which this equates to total randomisation in terms
of the schizophrenia association found in cortical interneurons.

The baseline association values shown in Figure 4a leftmost column (described as
Pcelitypey,baselint Were calculated using The values of Rjitypey,celitypex(Probability of

cell type y being associated with schizophrenia controlling for cell type x) are calculated
using intermediate probabilities: 10,000 association p-values are calculated for resampled
values of R. We selected the SDl@west of these p-values (equivalent to the value which
the baseline association probability would need to exceed to be declared independently

associated with a probability of 95%) and denoteﬁfﬁ)g’m“”. The value of

; b
PeelitypeY,celitypexiS then calculated as exp(lOgémypeY,celltype))'bg(P;?tszrap))- If the

value of Rejitypey,celitypexeXceeds 1 (indicating that the randomised samples were actually
more significantly associated than was found to be the case) then it is set to 1. We were also
able to evaluate whether the probability of schizophrenia association in cell type y is greater
than would be expected based solely on the expression in cell type x by asking whether the
actual association p-value was lower than 95% of the bootstrapped p-values. As expected, all
self-self comparisons were found to be non-significant by this metric (i.e. after accounting

for expression in CAl pyramidal neurons, CA1 pyramidal neurons are no longer

significant). In Figure 4a, a red box was placed around the CA1 Pyramidal vs
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Somatosensory Pyramidal square because this was the only comparison involving the four
significantly associated cell types in which controlling for expression of a different cell type
abolished the enrichment.

Venn diagram enrichments

The Venn diagram shown in Figure 5 was generated using by selecting the top 1000 genes
most associated with schizophrenia based on the MAGMA gene specific Z-scores. All genes
within the extended MHC region (chr6é 25-34mb) were dropped from the analysis. We
controlled for gene size and gene density by regressing out the effect of NSNPS and
NDENSITY parameters (and the log of each) on the Z-score. We then took the intersection
of the top 1000 genes with the top decile for each of the four significantly associated level 1
cell types and generated the Venn diagram using therlRD/agranpackage. The

dopamine gene set include all genes associated with any of the following GO terms: GO:
0090494 (“dopamine uptake”), GO:0090493 (“catecholamine uptake”), GO:0051584
(“regulation of dopamine uptake involved in synaptic transmission”), GO:0032225
(“regulation of synaptic transmission, dopaminergic”), GO:0001963 (“synaptic transmission,
dopaminergic”) and GO:0015872 (“dopamine transport”). The synaptic gene list comprised
a combination of three published gene lists: the human post-synaptic density (referenced
above); presynaptic active vesicle docking $tesd synaptic vesicle geffésFor the

presynaptic gene list, the data came from Supplementary table 1, the genelnfo numbers were
converted from genlinfo accessions to Refseq IDs using Entrez Batch then from Rat RefSeq
to HGNC symbols keeping only 1:1 homologs. The synaptic vesicle gene list came from
Supplementary table 1, and were converted from Rat RefSeq to HGNC symbols using only
1:1 homologs. Enrichment probabilities were calculated using a hypergeometric test against
a background set of all MGI genes with 1:1 homologs in human (as described above).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Specificity metric calculated from single cell transcriptome sequencing data can be
used to test for increased burden of schizophrenia SNP-heritability in brain cell types.

(A) Comparison of Level 2 cell type categories and number of cells with snRNAseq or
scRNAseq from adult brain tissue. Plum colored circles are mouse studies and blue are
human studies. The number of different tissues is reflected in size of circle. See
Supplementary Table 2 for citations. AIBS=Allen Institute for Brain Science. Kl=Karolinska
Institutet. (B) Histogram of specificity metric 8y k) for medium spiny neurons from the

Kl superset level 1. Colored regions indicate deciles (the brown region contains the genes
most specific to MSNs). Specificity value for dopamine receptor/Da2

SwmisN,K1,Drd2=0.17) is indicated by the arrow. (C) Schematic highlighting the brain regions
sampled in the Kl dataset in blue (D) Specificity values in the Kl level 1 dataset for a range
of known cell type markers. (E) Enrichment of schizophrenia SNP-heritability in each of the
specificity deciles for medium spiny neurons (calculated using LDSC). Color of dots
corresponds to regions of the specificity matrix in B. Error bars indicate the 95% confidence
intervals. The light blue dot (marked ‘X’) represents all SNPs which map onto named
transcripts which are not MGl annotated genes or which map onto a gene which does not
have a 1:1 mouse:human homolog. The dark blue dot (marked ‘N’) represents all SNPs
which map onto genes not expressed in MSNs. Blue line slows the linear regression slope
fitted to the enrichment values. (F) Enrichment of height SNP-heritability in each of the
specificity deciles for MSNs.
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Figure 2. Evaluation of enrichment of common variant CLOZUK schizophrenia GWA resultsin

the K1 brain scRNAseq dataset from mouse.

(A) KI Level 1 brain cell types. Both LDSC and MAGMA show enrichment for pyramidal
neurons (somatosensory cortex and hippocampus CA1), striatal medium spiny neurons, and
cortical interneurons. The black line is the Bonferroni significance threshold (0.05/
((24+149)*8). (B) Heat map of association pvalues of diverse human GWA with Kl Level 1
mouse brain cell types using MAGMA (left panel) and LDSC (right panel). Bonferroni
significant results are marked with red borders (0.05/((24+149)*8). Total number of cases
and controls used in the GWAS are shown in the top bar plots, where numbers in red
indicate the amount of genome-wide significant loci identified. The CLOZUK results do not
generalize indiscriminately across human diseases/traits. In the more sensitive MAGMA
analysis major depressive disorder (MDD) is primarily enriched in cortical interneurons and
embryonic midbrain neurons, unlike schizophrenia. Similar but non-significant trends can be

observed using LDSC.
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Figure 3. Comparison of single-cell and single-nuclel RNAseq, and evaluation of enrichment of
common variant CLOZUK schizophrenia GWA resultsin brain single-nuclei RNAseq datasets
from adult human.

(A) Each bar represents a comparison between two datasets (X vs Y), with the bootstrapped
Z-scores representing the extent to which dendritically enriched tran$€ripte lower
specificity for pyramidal neurons in dataset Y relative to X. Larger Z-scores indicate greater
depletion of dendritically enriched transcripts, and red bars indicate a statistically significant
depletion. Supplementary Table 2 describes the studies. (B) Human mid-temporal cortex
brain cell type enrichment. Cortical pyramidal neurons and cortical interneurons show
significant enrichment. Oligodendrocyte precursors also show enrichment that was not
observed in the Kl Level 1 data. The black line is the Bonferroni significance threshold (6x8
comparisons). (C) Human prefrontal cortex and hippocampus brain cell type enrichments
from26. These data show enrichment in cortical and hippocampal glutamatergic (i.e.,
pyramidal and granule) cells. There is also an enrichment in cortical interneurons with the
highest level inRelri Vip cells. The black line is the Bonferroni significance threshold (15%8
comparisons). (D) Heat map of enrichment of diverse human GWA studies with human mid-
temporal cortex Level 1 brain cell types using MAGMA and LDSC. The CLOZUK results

do not generalize across human diseases. MDD again shows significant enrichments in
cortical interneurons. Common variant genetic associations for Alzheimer’s disease were
enriched in microglia. Bonferroni significant results are marked with red borders.
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Figure 4. Cell type enrichment of gene sets associated with schizophrenia, neurological disorders,
and the evolutionary diver gence between human and mouse.

(A) Antipsychotic medication targets. (B-F) Gene sets previously shown to be enriched for
schizophrenia SNP-heritability. (B) Genes intolerant to loss-of-function variation. (C)

Synaptic gene sets. (D) Gene sets mediating DNA or RNA interactions. (E) Gene sets
associated with neurological disorders. (F) The top 500 genes with lowest or highest dN/dS
ratios between human and mouse (i.e., non-synonymous to synonymous exon changes). The
Level 1 cell types associated with schizophrenia (MSNs, pyramidal CA1, pyramidal SS, and
cortical interneurons) show enrichment in A-D but neurological diseases do not. Asterisks
denote Benjamini—Hochberg corrected p-value <0.05 calculated using EWCE.
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Figure5. CA1 pyramidal neurons, medium spiny neurons, and cortical Interneuronsare
independently associated with schizophrenia and distinct molecular pathways contributeto each
cell type.

(A) Conditional enrichment analysis accounting for correlated gene expression between cell
types. The left column shows baseline cell type enrichment probabilities values for
schizophrenia calculated by fitting a linear model to specificity deciles against MAGMA
gene enrichment Z-scores. The central four columns show the enrichment probabilities
calculated using bootstrapping to control for correlated expression in other cell types; these
probabilities approaching zero indicate that after accounting for expression of the other cell
type, there is no enrichment remaining. The red box highlights that there is no longer
enrichment in somatosensory pyramidal neurons after accounting for expression in CAl
pyramidal neurons; however, the converse is not true. The bar plot on the right shows the
minimum value of the conditional probabilities (excluding self-self-comparisons). (B)
Overlap of genes in the schizophrenia-associated cell types. Venn-diagram of the top 1,000
schizophrenia-associated genes from the highest enrichment-deciles in the four Level 1 cell
types. (C) Benjamini-Hochberg corrected p-values for hypergeometric enrichment of genes
in Figure 5b. We note enrichment for Rbfox in CA1 pyramidal cells, Mir137 targets and
dopamine signaling in MSNs, along with shared synaptic genes between pyramidal cells but
separate for GABAergic cells. Areas with striped shading indicates region with gene number
<10.
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