
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding author: rcf29@mrc-cu.cam.ac.uk.
†Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium:
Rebecca C. Fitzgerald1, Ayesha Noorani1, Paul A.W. Edwards1,2, Nicola Grehan1, Barbara Nutzinger1, Caitriona Hughes1, Elwira 
Fidziukiewicz1, Jan Bornschein1, Shona MacRae1, Jason Crawte1, Alex Northrop1, Gianmarco Contino1, Xiaodun Li1, Rachel de la 
Rue1, Maria O’Donovan1,4, Ahmad Miremadi1,4, Shalini Malhotra1,4, Monika Tripathi1,4, Simon Tavaré2, Andy G. Lynch2, 
Matthew Eldridge2, Maria Secrier5, Lawrence Bower2, Ginny Devonshire2, Juliane Perner2, SriGanesh Jammula2, Jim Davies6, 
Charles Crichton6, Nick Carroll7, Peter Safranek7, Andrew Hindmarsh7, Vijayendran Sujendran7, Stephen J. Hayes8,15, Yeng 
Ang8,9,30, Shaun R. Preston10, Sarah Oakes10, Izhar Bagwan10, Vicki Save11, Richard J.E. Skipworth11, Ted R. Hupp11, J. Robert 
O’Neill11,24, Olga Tucker12,34, Andrew Beggs12,29, Philippe Taniere12, Sonia Puig12, Timothy J. Underwood13,14, Fergus 
Noble13, Jack Owsley13, Hugh Barr16, Neil Shepherd16, Oliver Old16, Jesper Lagergren17,26, James Gossage17,25, Andrew 
Davies17,25,, Fuju Chang17,25, Janine Zylstra17,25, Ula Mahadeva17, Vicky Goh25, Francesca D. Ciccarelli25, Grant Sanders18, 
Richard Berrisford18, Catherine Harden18, Mike Lewis19, Ed Cheong19, Bhaskar Kumar19, Simon L Parsons20, Irshad Soomro20, 
Philip Kaye20, John Saunders20, Laurence Lovat21, Rehan Haidry21, Laszlo Igali22, Michael Scott23, Sharmila Sothi27, Sari 
Suortamo27, Suzy Lishman28, George B. Hanna32, Krishna Moorthy32, Christopher J. Peters32, Anna Grabowska33, Richard 
Turkington35
5UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, London, UK
6Department of Computer Science, University of Oxford, UK, OX1 3QD
7Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK, CB2 0QQ
8Salford Royal NHS Foundation Trust, Salford, UK, M6 8HD
9Wigan and Leigh NHS Foundation Trust, Wigan, Manchester, UK, WN1 2NN
10Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK, GU2 7XX
11Edinburgh Royal Infirmary, Edinburgh, UK, EH16 4SA
12University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK, B15 2GW
13University Hospital Southampton NHS Foundation Trust, Southampton, UK, SO16 6YD
14Cancer Sciences Division, University of Southampton, Southampton, UK, SO17 1BJ
15Faculty of Medical and Human Sciences, University of Manchester, UK, M13 9PL
16Gloucester Royal Hospital, Gloucester, UK, GL1 3NN
17Guy’s and St Thomas’s NHS Foundation Trust, London, UK, SE1 7EH
18Plymouth Hospitals NHS Trust, Plymouth, UK, PL6 8DH
19Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK, NR4 7UY
20Nottingham University Hospitals NHS Trust, Nottingham, UK, NG7 2UH
21University College London, London, UK, WC1E 6BT
22Norfolk and Waveney Cellular Pathology Network, Norwich, UK, NR4 7UY
23Wythenshawe Hospital, Manchester, UK, M23 9LT
24Edinburgh University, Edinburgh, UK, EH8 9YL
25King’s College London, London, UK, WC2R 2LS
26Karolinska Institutet, Stockholm, Sweden, SE-171 77
27University Hospitals Coventry and Warwickshire NHS, Trust, Coventry, UK, CV2 2DX
28Peterborough Hospitals NHS Trust, Peterborough City Hospital, Peterborough, UK, PE3 9GZ
29Institute of Cancer and Genomic sciences, University of Birmingham, B15 2TT
30GI science centre, University of Manchester, UK, M13 9PL.
31Queen’s Medical Centre, University of Nottingham, Nottingham, UK, NG7 2UH
32Department of Surgery and Cancer, Imperial College London, UK, W2 1NY
33Queen’s Medical Centre, University of Nottingham, Nottingham, UK
34Heart of England NHS Foundation Trust, Birmingham, UK, B9 5SS.
35Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland, UK, BT7 1NN.

Data availability. The WGS and RNA expression data can be found at the European Genome-phenome Archive (EGA) under 
accessions EGAD00001004417 and EGAD00001004423, respectively.

Code availability. Code associated with the analysis is available upon request.

Ethics. The study was registered (UKCRNID 8880), approved by the Institutional Ethics Committees (REC 07/H0305/52 and 10/
H0305/1), and all subjects gave individual informed consent.

Reporting summary. Additional information is included in the Life Sciences Reporting Summary, which details exact software and 
biological materials used and efforts made to ensure reproducibility of results.

Author contributions
RCF and AMF conceived the overall study. AMF and SJ analyzed the genomic data and performed statistical analyses. RCF, AMF and 
XL designed the experiments. AMF, XL and JM performed the experiments. GC contributed to the structural variant analysis and data 
visualization. SK helped compile the clinical data and aided statistical analyses. JP and SA produced and QC’ed the RNA-seq data. 
EO aided the whole genome sequencing of EAC cell lines. SM and NG coordinated the clinical centres and were responsible for 
sample collections. ME benchmarked our mutation calling pipelines. MO led the pathological sample QC for sequencing. LB and GD 
constructed and managed the sequencing alignment and variant calling pipelines. RCF and ST supervised the research. RCF and ST 
obtained funding. AMF and RCF wrote the manuscript. All authors approved the manuscript.

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2019 August 04.

Published in final edited form as:
Nat Genet. 2019 March ; 51(3): 506–516. doi:10.1038/s41588-018-0331-5.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

http://www.nature.com/authors/editorial_policies/license.html#terms


The landscape of selection in 551 esophageal adenocarcinomas 
defines genomic biomarkers for the clinic

Alexander M Frankell 1, SriGanesh Jammula 2, Xiaodun Li 1, Gianmarco Contino 1, Sarah 
Killcoyne 1,3, Sujath Abbas 1, Juliane Perner 2, Lawrence Bower 2, Ginny Devonshire 2, Emma 
Ococks 1, Nicola Grehan 1, James Mok 1, Maria O’Donovan 4, Shona MacRae 1, Matthew D. 
Eldridge 2, Simon Tavaré 2, and Rebecca C. Fitzgerald *,1,† on behalf of the Oesophageal 
Cancer Clinical and Molecular Stratification (OCCAMS) Consortium
1MRC cancer unit, Hutchison/MRC research centre, University of Cambridge, Cambridge, UK

2Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK

3European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, 
UK

4Department of Histopathology, Cambridge University Hospital NHS Trust, Cambridge, UK

Abstract

Esophageal adenocarcinoma (EAC) is a poor prognosis cancer type with rapidly rising incidence. 

Our understanding of genetic events that drive EAC development is limited, and there are few 

molecular biomarkers for prognostication or therapeutics. Using a cohort of 551 genomically 

characterized EACs with matched RNA-seq, we discover 77 EAC driver genes and 21 non-coding 

driver elements. We identify a mean of 4.4 driver events per tumor, derived more commonly from 

mutations rather than copy number alterations, and compare these mutations to the exome-wide 

mutational excess using dN/dS calculations. We observe mutual exclusivity or co-occurrence of 

events within and between a number of dysregulated EAC pathways, suggestive of strong 

functional relationships. Poor prognostic indicators (SMAD4, GATA4) are verified in independent 

cohorts with significant predictive value. Over 50% of EACs contain sensitizing events for 

CDK4/6 inhibitors, which are highly correlated with clinically relevant sensitivity in a panel EAC 

cell lines and organoids.

Esophageal cancer is the eighth most common form of cancer world-wide and the sixth most 

common cause of cancer related death1. Esophageal adenocarcinoma (EAC) is the 

predominant subtype in the west, and incidence has been rapidly rising2. EAC is a highly 

aggressive neoplasm, usually presenting at a late stage, and is generally resistant to 

chemotherapy, leading to five-year survival rates below 15%3. It is characterized by very 

high mutation rates in comparison to other cancer types4 but also, paradoxically, by a 

paucity of recurrently mutated genes. EAC displays dramatic chromosomal instability and 

thus may be classified as a C-type neoplasm, which may be driven mainly by structural 

variation rather than mutations5,6. Currently, our understanding of precisely which genetic 
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events drive the development of EAC is limited, and consequentially there is a paucity of 

molecular biomarkers for prognosis or targeted therapeutics available.

Methods to differentiate driver mutations from passenger mutations use features associated 

with known drivers to detect regions of the genome in which mutations are enriched for 

these features7. The simplest of these features is the tendency of a mutation to co-occur with 

other mutations in the same gene at a high frequency, as detected by MutSigCV8. 

MutSigCV has identified 12 known cancer genes as EAC drivers (TP53, CDKN2A, 

SMAD4, ARID1A, ERBB2, KRAS, PIK3CA, SMARCA4, CTNNB1, ARID2, PBRM1 and 

FBXW7)6,9,10. The PCAWG ICGC analysis also identified a significantly mutated 

enhancer associated with TP53TG111. However, these analyses leave most EAC cases with 

only one known driver mutation, usually TP53. Equivalent analyses in other cancer types 

have identified three or four drivers per case12,13. Similarly, detection of copy number 

driver events in EAC has relied on identifying regions of the genome recurrently deleted or 

amplified, as detected by GISTIC9,14–17. However, GISTIC often identifies relatively large 

regions of the genome, with little indication of which specific gene-copy number aberrations 

(CNAs) may actually confer a selective advantage. There are also several non-selection 

based mechanisms that can cause recurrent CNAs, such as genomic fragile sites, which have 

not been well differentiated from selection-based CNAs18. Epigenetic events, for example 

methylation, may also be important sources of driver events in EAC but are much more 

difficult to assess formally for selection.

To address these issues, we accumulated a cohort of 551 genomically characterized EACs 

using our esophageal ICGC project, which have high quality clinical annotation, associated 

whole genome sequencing (WGS) and RNA-seq on cases with sufficient material. We 

augmented our ICGC WGS cohort with publicly available whole exome19 and whole 

genome sequencing20 data and applied a number of complementary driver detection 

methods to produce a comprehensive assessment of mutations and CNAs under selection in 

EAC. We use these events to define functional cell processes that have been selectively 

dysregulated in EAC and identify novel, verifiable and clinically relevant biomarkers for 

prognostication. Finally, we have used this compendium of EAC driver events to provide an 

evidence base for targeted therapeutics, which we have tested in vitro.

Results

A compendium of EAC driver events and their functional impact

In 551 EACs, we identified a total of 11,813,333 single nucleotide variants (SNVs) and 

small insertions or deletions (Indels), with a median of 6.4 such mutations/Mb 

(Supplementary Fig. 1), and 286,965 copy number aberrations (CNAs). We also identified 

134,697 structural variants (SVs) in WGS cases. We use several complementary driver 

detection tools to detect driver-associated features in mutations and CNAs (Fig. 1a). Each 

tool underwent quality control to ensure reliability of results (see Methods). These features 

include highly recurrent mutations within a gene (dNdScv21, ActivedriverWGS22, 

MutSigCV28), high functional impact mutations within a gene (OncodriveFM23, 

ActivedriverWGS22), mutation clustering (OncodriveClust24, eDriver25 and eDriver3D26) 
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and recurrent amplification or deletion of genes (GISTIC14) undergoing concurrent over or 

under-expression (see Methods) (Fig. 1a)7.

These complementary methods produced highly significant agreement in calling EAC driver 

genes, particularly within the same feature-type (Supplementary Fig. 2), and on average 

more than half of the genes identified by one feature were also identified by other features 

(Fig. 1b). In total, 76 EAC driver genes were discovered, 71% of which have not been 

detected in EAC previously9,10,15–17,19 and 69% of which are known drivers in pan-

cancer analyses21,27,28. To detect driver elements in the non-coding genome, we used 

ActiveDriverWGS22, a recently benchmarked29 method using both functional impact and 

recurrence to determine driver status (Fig. 1c and Supplementary Fig. 3). We discovered 21 

non-coding driver elements using this method. We have recovered several known non-coding 

driver elements from the pan-cancer PCAWG analysis11, including the enhancer on 

chromosome 7 linked to TP53TG1 previously identified in EAC and the promoter/5’UTR 

regions of PTDSS1 and WRD74 found in other cancer types. We also identified novel non-

coding cancer driver elements, including in the 5’UTR of MMP24 and promoters of two 

related histones (HIST1H2BO and HIST1H2AM).

EAC is notable among cancer types for harboring a high degree of chromosomal 

instability20. Using GISTIC, we identified 149 recurrently deleted or amplified loci across 

the genome (Fig. 2a, and Supplementary Tables 1 and 2). To determine which genes within 

these loci confer a selective advantage when they undergo CNAs, we use a subset of 116 

cases with matched RNA-seq to detect genes in which homozygous deletion or amplification 

causes a significant under or over-expression, respectively (Supplementary Note and 

Supplementary Tables 3-6). The majority of genes in these regions showed no significant 

copy number associated expression change (74%), although work in larger cohorts suggests 

we may be underpowered to detect small expression changes30. We observed highly 

significant expression changes in 17 known cancer genes within GISTIC loci such as 

ERBB2, KRAS and SMAD4, which we designate high-confidence EAC drivers (see 

Methods). We also found five tumor suppressor genes where copy number loss was not 

necessarily associated with expression modulation but tightly associated with presence of 

mutations leading to LOH, for example ARID1A and CDH11.

In a subset of GISTIC loci, we observed extremely high copy number amplification, 

commonly greater than 100 copies, and these events were highly enriched in recurrently 

amplified regions containing driver genes rather than those which appear to contain only 

passengers (ploidy adjusted copy number >10, two-sided Wilcoxon test, P = 4.97 x 10-8) 

(Supplementary Fig. 4). We use ploidy adjusted copy number to define amplifications as it 

produces superior correlation with expression data than absolute copy number alone. Ploidy 

of our samples varies from 1.4-6.2 (median 2.8), and hence ploidy adjusted copy number of 

>10 cut off translates into >14-62 absolute copies (on average 28 copies). To discern a 

mechanism for these ultra-high amplifications, we assessed structural variants (SVs) 

associated with these events. For many of these events, the extreme amplification was 

produced largely from a single copy number step, the edges of which were linked by 

structural variants with ultra-high read support. Two examples are shown in Figure 2b, and 

further randomly selected examples in Supplementary Figure 5. In the first example, 
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circularization and amplification initially occurred around MYC but subsequently 

incorporated ERBB2 from an entirely different chromosome, and in the second, an inversion 

was followed by circularization and amplification of KRAS. Such a pattern of 

extrachromosomal amplification via double minutes has been previously noted in EAC20 

and other neoplasms31, and hence we refer to this amplification class with ultra-high 

amplification (ploidy adjusted copy number >10) as ‘extrachromosomal-like’.

We found that extrachromosomal-like amplifications had extreme and highly penetrant 

effects on expression, while moderate amplification (ploidy adjusted copy number > 2 but < 

10) and homozygous deletion had highly significant (Wilcoxon test, two-sided, P = 9.62 x 

10-16 and P = 7.64 x 10-11, respectively) but less dramatic effects on expression with a lower 

penetrance (Fig. 2c). This lack of penetrance was associated with low cellularity as 

calculated by ASCAT (Wilcoxon test, two-sided, overexpression cut off = 2.5x normalised 

expression, P = 0.011) in non-extrachromosomal-like amplified cases but also likely reflects 

that specific genetic rearrangements, not just gene-dosage, can modulate expression. We also 

detected several cases of overexpression or complete expression loss without associated 

copy number changes, reflecting non-genetic mechanisms for driver dysregulation. One case 

overexpressed ERBB2 at 28-fold median expression but had entirely diploid copy number in 

and surrounding ERBB2, and a second case lost SMAD4 expression (0.008-fold median 

expression) despite possessing five copies of SMAD4.

Landscape of driver events in EAC

The overall landscape of driver gene mutations and copy number alterations per case is 

depicted in Figure 3a. These comprise both oncogenes and tumor suppressor genes activated 

or repressed via different mechanisms. Passenger mutations occur by chance in most driver 

genes. To quantify this, we used the observed:expected mutation ratios (calculated by 

dNdScv) to estimate the percentage of driver mutations in each gene and in different 

mutation classes. For many drivers, only specific mutation classes appear to be under 

selection. Many tumor suppressor genes (ARID2, RNF43, ARID1B for example) are only 

under selection for truncating mutations, i.e. splice site, nonsense and frameshift Indel 

mutations, but not missense mutations, which are passengers. However, oncogenes, like 

ERBB2, only contain missense drivers that form clusters to activate gene function in a 

specific manner. Where a mutation class is <100% driver mutations, mutational clustering 

can help us define the driver vs. passenger status of a mutation (Supplementary Fig. 6). 

Mutational hotspots in EAC or other cancer types32 (Supplementary Table 7 and 

Supplementary Data) are indicated in Figure 3a. Novel EAC drivers of particular interest 

include B2M, a core component of the MHC class I complex and a marker of acquired 

resistance to immunotherapy33, MUC6, a secreted glycoprotein involved in gastric acid 

resistance, and ABCB1, a channel pump protein associated with multiple instances of drug 

resistance34. We note that several of these drivers have been previously associated with 

gastric and colorectal cancer (Supplementary Table 8)13,35.

The identification of driver events provides rich information about the molecular history of 

each EAC tumor. We detect a median of five events in driver genes per tumor (IQR = 3-7, 

mean = 5.6), and only a very small fraction of cases has no such events detected (6 cases, 
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1%). When we remove the predicted percentage of passenger mutations using 

observed:expected mutation ratios calculated by dNdScv, one of the driver gene detection 

methods used, we find a mean of 4.4 true driver events per case. These derive more 

commonly from mutations than copy number events (Fig. 3b and Supplementary Table 9). 

Using hierarchal clustering of drivers, we noted that TP53 mutant cases had significantly 

more copy number drivers (Wilcoxon test, two-sided, P = 0.0032, Supplementary Figs. 7 and 

8). dNdScv also analyses the genome-wide excess of non-synonymous mutations based on 

dN/dS ratios to assess the mean number of exonic driver mutations per case. This is 

calculated at 5.4 (95% CIs: 3.5-7.3) in comparison to a mean excess of 2.7 driver mutations 

in specific EAC driver genes, suggesting further low frequency driver genes are yet to be 

discovered in EAC.

To better understand the functional impact of driver mutations, we analyzed expression of 

driver genes with different mutation types and compared their expression to normal tissue 

RNA (Fig. 3c and Supplementary Fig. 10). Since surrounding squamous epithelium is a 

fundamentally different tissue from which EAC does not directly arise, we have used 

duodenum and gastric cardia samples as gastrointestinal phenotype controls, likely to be 

similar to the, as yet unconfirmed, tissue of origin in EAC. A large number of driver genes 

have upregulated expression in comparison to normal controls; for example, TP53 has 

upregulated RNA expression in wild-type tumor tissue and in cases with non-truncating 

mutations but RNA expression is lost upon gene truncation. In depth analysis of different 

TP53 mutation types reveals significant heterogeneity within non-truncating mutations 

(Supplementary Fig. 9). Normal tissue expression of CDKN2A suggests that CDKN2A is 

generally activated in EAC, likely due to genotoxic or other cancer-associated cellular 

stresses36, and returns to physiologically normal levels when deleted. Heterogeneous 

expression in wild-type CDKN2A cases suggests a different mechanism of inhibition, 

perhaps methylation, in some cases. Overexpression of some oncogenes occurs without 

genomic aberrations, such as MYC, which is overexpressed in MYC-wild-type EACs 

relative to normal tissues (Fig. 3c). A smaller number of driver genes are downregulated in 

EACs without genomic aberrations. 3/4 of these genes (GATA4, GATA6 and MUC6) are 

involved in the differentiated phenotype of gastrointestinal tissues and may be lost with 

tumor de-differentiation.

Dysregulation of specific pathways and processes in EAC

It is known that selection preferentially dysregulates certain functionally related groups of 

genes and biological pathways in cancer37. This phenomenon is highly evident in EAC, as 

shown in Figure 4, which depicts the functional relationships between EAC drivers 

(Supplementary Note). While TP53 is the dominant driver in EAC, 28% of cases remain 

TP53 wild-type. MDM2 is a E3 ubiquitin ligase that targets TP53 for degradation. Its 

selective amplification and overexpression is mutually exclusive with TP53 mutation, 

suggesting it can functionally substitute the effect of TP53 mutation via its degradation. 

Similar mutually exclusive relationships are observed between KRAS and ERBB2, GATA4 
and GATA6, and cyclin genes (CCNE1, CCND1 and CCND3). Activation of the Wnt 

pathway occurs in 19% of cases either by mutation of phospho-residues at the N terminus of 

β-catenin, which prevent degradation, or loss of Wnt destruction complex components like 
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APC. Many different chromatin modifying genes, often belonging to the SWI/SNF complex, 

are also selectively mutated (28% of cases). In contrast to other pathways, SWI/SNF genes 

are co-mutated significantly more often than we would expect by chance (Fisher’s exact test, 

two-sided, q < 0.05 for each gene; see Methods), suggesting these mutations are synergistic. 

We also assessed mutual exclusivity and co-occurrence in genes in different pathways and 

between pathways themselves (Fig. 4b). Of particular note are co-occurring relationships 

between TP53 and MYC, GATA6 and SMAD4, and Wnt and immune pathways, as well as 

mutually exclusive relationships between ARID1A and MYC, gastrointestinal (GI) 

differentiation and RTK pathways, and SWI-SNF and DNA damage response pathways. We 

were able to confirm some of these relationships in independent cohorts in different cancer 

types (Supplementary Table 10), suggesting some of these may be pan-cancer phenomenon. 

Wnt dysregulation was associated with hyper-mutated cases (> 500 exonic SNVs or Indels, 

Fisher’s exact test, two-sided, P = 2.98 x 10-5, OR = 9.3), as was mutation in immune 

pathway genes (B2M and JAK1, > 500 exonic SNVs or Indels, Fisher’s exact test, two-

sided, P = 6.27 x 10-6, OR = 35.7).

EAC driver events correlate with clinical phenotype

Events undergoing selection during cancer evolution influence tumor biology and thus 

impact tumor aggressiveness, response to treatment, and patient prognosis, as well as other 

clinical parameters.

Univariate Cox regression was performed for events in each driver gene with driver events 

occurring in greater than 5% of EACs after passenger removal to detect prognostic 

biomarkers (Fig. 5a). Events in two genes conferred significantly poorer prognosis after 

multiple hypothesis correction: GATA4 amplification (HR = 0.54, 95% CI = 0.38–0.78, P = 

0.0008) and SMAD4 mutation or homozygous deletion (HR = 0.60, 95% CI = 0.42–0.84, P 
= 0.003), which were present in 31% of EACs (Fig. 5b). Both genes remained significant in 

multivariate Cox regression, including pathological TNM staging, resection margin, curative 

vs. palliative treatment intent, and differentiation status (GATA4, HR adjusted = 0.47, 95% 

CIs adjusted = 0.29–0.76, P = 0.002; SMAD4, HR adjusted = 0.61, 95% CI adjusted = 0.40–

0.94, P = 0.026) (Fig. 5b, Supplementary Fig. 11). We validated the poor prognostic impact 

of SMAD4 events in an independent TCGA gastroesophageal cohort (HR = 0.58, 95% CI = 

0.37–0.90, P = 0.014) (Fig. 5c), and we also found GATA4 amplifications were prognostic in 

a cohort of TCGA pancreatic cancers (HR = 0.38, 95% CI = 0.18–0.80, P = 0.011) (Fig. 5d), 

the only available cohort containing a feasible number of GATA4 amplifications. The 

prognostic impact of GATA4 has been suggested in previously published independent EAC 

cohort16, although it did not reach statistical significance after FDR correction, and SMAD4 

expression loss has been previously linked to poor prognosis in EAC38. We also noted stark 

survival differences between cases with SMAD4 events and cases in which TGFβ receptors 

were mutated (Fig. 5e, HR = 5.6, 95% CI = 1.7–18.2, P = 0.005), in keeping with the 

biology of the TGFβ pathway, where non-SMAD TGFβ signalling is known to be 

oncogenic39.

In additional to survival analyses, we also assessed driver gene events for correlation with 

various other clinical factors, including differentiation status, sex, age and treatment 
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response. We found Wnt pathway mutations had a strong association with well differentiated 

tumours (P = 0.001, OR = 2.9, Fisher’s test, two-sided, see Methods; Fig. 5f). Female cases 

(n = 81) were enriched for KRAS mutation (P = 0.001, Fisher’s exact test, two-sided) and 

TP53 wild-type status (P = 0.006, Fisher’s exact test, two-sided) (Fig. 5g). This is of 

particular interest given the male predominance of EAC3.

Targeted therapeutics using EAC driver events

To investigate whether driver events in particular genes and/or pathways might sensitize 

EAC cells to certain targeted therapeutic agents, we used the Cancer Biomarkers database40. 

We calculated the percentage of our cases that contain EAC-driver biomarkers of response to 

each drug class in the database (Fig. 6a, and full data in Supplementary Table 11). Aside 

from TP53, which has been problematic to target clinically so far, we found a number of 

drugs with predicted sensitivity in >10% of EACs, including EZH2 inhibitors for some 

SWI/SNF mutant cancers (23%, and 28% including all SWI/SNF EAC drivers), and BET 

inhibitors, which target KRAS activated and MYC amplified cases (25%). However, by far 

the most significantly effective drug was predicted to be CDK4/6 inhibitors, where >50% of 

cases harbored sensitivity causing events in the receptor tyrosine kinase (RTK) and core cell 

cycle pathways (e.g. in CCND1, CCND3 and KRAS).

To verify that these driver events would also sensitize EAC tumors to such inhibitors, we 

used a panel of 13 EAC or Barrett’s high grade dysplasia cell lines that have undergone 

whole genome sequencing41 and assessed them for presence of EAC driver events (Fig. 6b). 

The mutational landscape of these lines was broadly representative of EAC tumors. We 

found that the presence of cell cycle and or RTK activating driver events was highly 

correlated with response to two FDA approved CDK4/6 inhibitors, Ribociclib and 

Palbociclib, and several cell lines were sensitive below maximum tolerated blood 

concentrations in humans (Fig. 6b, Supplementary Table 12, and Supplementary Fig. 12)42. 

Such EAC cell lines had comparable sensitivity to T47D, which is derived from an ER-

positive breast cancer, where CDK4/6 inhibitors have been FDA approved. We noted three 

cell lines that were highly resistant, with little drug effect even at 4,000 nM concentrations, 

similar to a known Rb mutant resistant line breast cancer cell line (MDA-MB-468). Two of 

these three cell lines harbor amplification of CCNE1, which is known to drive resistance to 

CDK4/6 inhibitors by bypassing CDK4/6 and causing Rb phosphorylation via CDK2 

activation43. To verify these effects in a more representative model of EAC, we treated three 

whole genome sequenced EAC organoid cultures44 with Palbociclib and Ribociclib as well 

as a more recently approved CDK4/6 inhibitor, Abemaciclib. As was observed in cell lines, 

cell cycle and RTK driver events were present only in the more sensitive organoids and 

CCNE1 activation in the most resistant (Fig. 6c).

Discussion

We present here a detailed catalog of coding and non-coding genomic events that have been 

selected for during the evolution of esophageal adenocarcinoma. These events have been 

characterized in terms of their relative impact, related functions, mutual exclusivity and co-

occurrence and expression in comparison to normal tissues. We have used this set of 
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biologically important gene alterations to identify prognostic biomarkers and actionable 

genomic events for personalized medicine.

While clinical annotation and matched RNA data is a strength of this study, in some cases 

we may have been unable to assess selected variants expression changes that were detected 

in the full 551 cohort due to lack of representation RNA matched sub-cohort. Despite 

rigorous analyses to detect selected events, assessment of the global excess of mutations by 

dNdScv suggests that we are unable to detect all mutations selected in EAC, similar to many 

other cancer types21. All driver gene detection methods that we have used rely on driver 

mutation re-occurrence in a genomic region to some degree. Many of these undetected driver 

mutations are hence likely to be spread across a large number of genes, whereby each is 

mutated at very low frequency across EAC patients. This tendency for low frequency EAC 

drivers may be responsible for the low yield of MutSigCV in previous cohorts and may 

suggests that C-type cancers such as EAC are not less ‘mutation-driven’ than M-type 

cancers but rather that their mutational drivers are spread across a larger number of genes5. 

Copy number driver gene identification is even more challenging due to the large size and 

lower frequency of these events, and hence it is also possible that there are significantly 

more EAC copy number drivers yet to discovered, possibly already identified as candidates 

here.

While a number of previous reports have attempted to detect EAC drivers, they have had a 

limited yield per case. The first such study19 used methods that, despite being well regarded 

at the time, were subsequently discredited8. Since then, a number of reports, including our 

own, on medium and large cohort sizes using MutSigCV9,10,17 were only able to detect a 

small number of mutational driver genes (7, 5 and 15 in each study). By using both a large 

cohort and more comprehensive methodologies, we have significantly increased this figure 

to 66 mutational driver genes (excluding copy number drivers). Detection of driver CNAs 

has previously relied on GISTIC to detect recurrently copy number aberrant regions9,14–17, 

but no analyses have been performed to determine which genes in these large regions are 

true drivers. Many of the genes annotated by such papers are unlikely to be copy number 

drivers due to their lack of expression modulation with CNAs (e.g. YEATS4 and MCL1), the 

role of recurrent heterozygous losses to drive LOH in some mutational drivers (ARID1A and 

CDH11) or their association with fragile sites (PDE4D, WWOX, FHIT). Conversely, we 

have been able to identify novel EAC copy number drivers (e.g. CCND3, AXIN1 , PPM1D 
and APC).

We have noted a three-way association between hyper-mutation, Wnt activation and loss of 

immune signalling genes such as B2M. MSI-driven hyper-mutation has been previously 

associated with higher immune activity45,46. However, Wnt dysregulation and mutation of 

immune pathway genes such as B2M33 have been previously linked to immune escape47, 

suggesting this may be an acquired mechanism to prevent immune surveillance caused by 

hyper-mutation.

Functional characterization of many of the driver genes described is needed to understand 

why they are advantageous to EAC tumors and how they modify EAC biology. Biological 

pathways and processes that are selectively dysregulated deserve particular attention in this 
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regard, as do the gene pairs or groups with mutually exclusive or co-occurring relationships 

such as MYC and TP53 or SWI/SNF factors, suggestive of particular functional 

relationships. Prospective clinical work to verify and implement SMAD4 and GATA4 
biomarkers in this study would be worthwhile. While EAC is a poor prognosis cancer type, 

significant heterogeneity of survival outcome makes triaging patients in treatment groups an 

important part of clinic practice, which could be improved using better prognostication. A 

number of targeted therapeutics may provide clinic benefit to EAC cases based on their 

individual genomic profile. In particular, CDK4/6 inhibitors deserve considerable attention 

as an option for EAC treatment as they are, by a significant margin, the treatment to which 

the most EACs harbor sensitivity-causing driver events, excluding TP53 as an unlikely 

therapeutic biomarker. Previous work has noted activity of the CDK4/6 inhibitor Palbociclib 

in a small number of EAC cell lines48, but biomarkers were not investigated. The extensive 

in vitro validation of identified biomarkers for CDK4/6 inhibitors in EAC across 16 cell 

lines and organoids is persuasive of possible clinical benefit using a targeted approach.

In summary, this work provides a detailed compendium of mutations and copy number 

alterations undergoing selection in EAC, which have clinically relevant impact on tumor 

behaviour. This comprehensive study provides us with useful insights into the nature of EAC 

tumors and should pave the way for evidence based clinical trials in this poor prognosis 

disease.

Methods

Cohort, sequencing and calling of genomic events

379 cases (69%) of our EAC cohort were derived from the esophageal adenocarcinoma 

WGS ICGC study, for which samples are collected through the UK wide OCCAMS 

(Oesophageal Cancer Classification and Molecular Stratification) consortium. The 

procedures for obtaining the samples, quality control processes, extractions and whole 

genome sequencing are as previously described17. Strict pathology consensus review was 

observed for these samples with a 70% cellularity requirement before inclusion. 

Comprehensive clinical information was available for the ICGC-OCCAMS cases 

(Supplementary Table 13). In addition, previously published samples were included in the 

analysis from Dulak et al.19 (149 WES; 27%) and Nones et al.20 (22 WGS samples; 4%) to 

total 551 genome characterized EACs. RNA-seq data was available from our ICGC WGS 

samples (116/379). BAM files for all samples (include those from Dulak et al.19 and Nones 

et al.20) were run through our alignment (BWA-MEM), mutation (Strelka), copy number 

(ASCAT) and structural variant (Manta) calling pipelines, as previously described17. Our 

methods were benchmarked against various other available methods and have among the 

best sensitivity and specificity for variant calling (ICGC benchmarking exercise49,50). Cell 

lines were whole genome sequenced at 30X coverage with 150bp paired end reads on an 

Illumina Hiseq4000. Copy number calling was performed by Freec as previously 

described41. Mutations were called by GATK as previously described41, filtered for 

germline variants in the 1000 genomes project and any known oncogenic hotspots32 were 

recovered. Amplifications were defined as genes with 2x the median copy number of the 

host chromosome or greater.
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Total RNA was extracted using All Prep DNA/RNA kit from Qiagen, and the quality was 

checked on Agilent 2100 Bioanalyzer using RNA 6000 nano kit (Agilent). Qubit High 

sensitivity RNA assay kit from Thermo Fisher was used for quantification. Libraries were 

prepared from 250 ng RNA, using TruSeq Stranded Total RNA Library Prep Gold (Ribo-

zero) kit, and ribosomal RNA (nuclear, cytoplasmic and mitochondrial rRNA) was depleted, 

whereby biotinylated probes selectively bind to ribosomal RNA molecules forming probe-

rRNA hybrids. These hybrids were pulled down using magnetic beads and rRNA depleted 

total RNA was reverse transcribed. The libraries were prepared according to Illumina 

protocol51. Paired end 75-bp sequencing on HiSeq4000 generated the paired end reads. For 

normal expression controls, we chose gastric cardia tissue, from which some hypothesize 

Barrett’s esophagus may arise, and duodenum which contains intestinal histology, including 

goblet cells, which mimics that of Barrett’s esophagus. We did not use Barrett’s esophagus 

tissue itself as a normal control given the heterogeneous and plentiful phenotypic and 

genomic changes that it undergoes early in its pathogenesis.

Analyzing EAC mutations for selection

To detect positively selected mutations in our EAC cohort, a multi-tool approach across 

various selection related ‘features’ (recurrence, functional impact, clustering) was 

implemented in order to provide a comprehensive analysis. This is broadly similar to several 

previous approaches7,11. dNdScv21, MutSigCV8, e-Driver25, ActivedriverWGS22 and e-

Driver3D26 were run using the default parameters. To run OncodriverFM23, Polyphen52 

and SIFT53 were used to score the functional impact of each missense non-synonymous 

mutation (from 0 non-impactful to 1 highly impactful); synonymous mutations were given a 

score of 0 impact, and truncating mutations (nonsense and frameshift mutations) were given 

a score of 1. Any gene with less than 7 mutations, unlikely to contain detectable drivers 

using this method, was not considered to decrease the false discovery rate (FDR). 

OncodriveClust was run using a minimum cluster distance of 3, minimum number of 

mutations for a gene to be considered of 7 and with a stringent probability cut off to find 

cluster seeds of P = 1 x 10-13 to prevent infiltration of large numbers of, likely, false positive 

genes. For all tool outputs, we undertook quality control including Q-Q plots to ensure no 

tool produces inflated q-values and each tool produced at least 30% known cancer genes. 

Two tools were removed from the analysis due to failure for both of these parameters at 

quality control in our hands (Activedriver54 and Hotspot32). For three of the QC-approved 

tools (dNdScv, OncodriveFM, MutSigCV) where this was possible, we also undertook an 

additional FDR reducing analysis by re-calculating q values based on analysis of known 

cancer genes only21,27,28 as has been previously implemented21,55. Significance cut offs 

were set at q < 0.1 for coding genes. Tool outputs were then put through various filters to 

remove any further possible false positive genes. Specifically, genes where <50% of EAC 

cases had no expression (TPM<0.1) in our matched RNA-seq cohort were removed and, 

using dNdScv, genes with no or only a small mutation excess (observed: expected ratio > 

1.5:1) of any single mutation type were also removed. We also removed mitochondrial genes 

two (MT-MD2, MT-MD4) that were highly enriched for truncating mutations and were 

frequently called in OncodriveFM as well as other tools. This is may be due to the different 

mutational dynamics caused by ROS from the mitochondrial electron transport chain and the 

high number of mitochondrial genomes per cell, which enables significantly more 
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heterogeneity. These factors prevent the tools used from calculating an accurate null model 

for these genes, but they may be worthy of functional investigation. ActiveDriverWGS 

calculates an expected background mutation rate based on mutation rates of local, adjacent 

sequence for each tested element while correcting for the differential mutation rates within 

each trinucleotide context. It thus tests observed mutation rates against this predicted 

background for each element. ActiveDriverWGS also detects elements with mutations 

enriched in binding site regions (high impact). For non-coding elements called by 

ActivedriverWGS, filtering for expression or dN/dS was not possible, and despite recent 

benchmarking29, such methods are not so well established. Hence we took a more cautious 

approach with general significance cut offs of q < 0.001 and q < 0.1 for previously identified 

elements in other cancer types11. q values were not recalculated for previously identified 

elements alone like with coding genes, but the q < 0.1 cut off was calculated based on P 
values for all assessed elements. To calculate exome-wide mutational excess, hyper-mutated 

cases (>500 exonic mutations) were removed and the global non-synonymous dN/dS ratios 

were applied to all dNdScv annotated mutations excluding “synonymous” and “no SNV” 

annotations as described in Martincorena et al.21.

Detecting selection in CNVs

ASCAT raw copy number values were used to detected frequently deleted or amplified 

regions of the genome using GISTIC2.014. To determine which genes in these regions 

confer a selective advantage, CNVs from each gene within GISTIC identified loci were 

correlated with TPM from matched RNA-seq in a sub-cohort of 116 samples and with 

mutations across all 551 samples. To call copy number in genes that spanned multiple copy 

number segments in ASCAT, we considered the total number of full copies of the gene (i.e. 

the lowest total copy number). Occasionally ASCAT is unable to confidently call the copy 

number in highly aberrant genomic regions. We found that the expression of genes in such 

regions matched well what we would expect given the surrounding copy number, and hence 

we used the mean of the two adjacent copy number fragments to call copy number in the 

gene in question. We found amplification peak regions identified by GISTIC2.0 varied 

significantly in precise location both in analysis of different sub-cohorts and when 

comparing to published GISTIC data from EACs9,15,16. A peak would often sit next to but 

not overlapping a well-characterized oncogene or tumor suppressor. To account for this, we 

widened the amplification peak sizes upstream and downstream by twice the size of each 

peak to ensure we captured all possible drivers. Our expression analysis allows us to then 

remove false positives from this wider region, and called drivers were still highly enriched 

for genes closer to the centre of GISTIC peak regions.

To detect genes in which amplification correlated with increased expression, we compared 

expression of samples with a high copy number for that gene (above 10th percentile CN/

ploidy) with those that have a normal copy number (median +/- 1) using the Wilcoxon rank-

sum test and using the specific alternative hypothesis that high copy number would lead to 

increased expression. q-values were then generated based on the Benjamini and Hochberg 

method, not considering genes without significant expression in amplified samples (at least 

75% amplified samples with TPM > 0.1) and considering q < 0.001 as significant. We also 

included an additional known driver gene only FDR reduction analysis as previously 
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described for mutational drivers, with q < 0.1 considered as significant given the additional 

evidence for these genes in other cancer types. We also included MYC despite its P = 0.11 

for expression correlation. This is due to frequent non-amplification associated 

overexpression of MYC when compared to normal controls, and otherwise MYC is well 

evidenced by a very close proximity to the peak centre (top 4 genes) and its high rate of 

amplification (19%). We took the same approach to detect genes in which homozygous 

deletion correlated with expression loss, comparing cases with copy number = 0 to all 

others. Large expression modulation was a highly specific marker for known copy number 

driver genes and was not a widespread feature in most recurrently copy number variant 

genes. However, while expression modulation is a requirement for selection of CNV only 

drivers, it is not sufficient evidence alone, and hence we grouped such genes into those 

which have been characterized as drivers previously in other cancer types (high confidence 

EAC copy number drivers) and other genes (candidate EAC copy number drivers), which 

await functional validation. We used fragile site regions detected in Wala et al.56. We also 

defined regions that may be recurrently heterozygous deleted, without any significant 

expression modulations, to allow LOH of tumor suppressor gene mutations. To do this, we 

analyzed genes with at least 5 mutations for association between LOH (ASCAT minor allele 

= 0) and mutation using Fisher’s exact test and generated q values using the Benjamini and 

Hochberg method. The analysis was repeated on known cancer genes only for reduced FDR 

and q < 0.1 considered significant for both analyses. For those high confidence drivers, we 

chose to define amplification as total copy number/ploidy (referred to as ploidy adjusted 

copy number) because this produces superior correlation with expression. We chose a cut off 

for amplification at ploidy adjusted copy number = 2 as has been previously used, and 

causes a highly significant increase in expression in our copy number-driver genes when 

amplified.

Pathways and relative distributions of genomic events

The relative distribution of driver events in each pathway was analysed using a Fisher’s 

exact test in the case of pair-wise comparisons including wild-type cases. In the case of 

multi-gene comparisons such as cyclins, we calculate the P value and odds ratio for gene in 

the group using a two-sided Fisher’s exact test, corrected by Benjamini and Hochberg, and 

combine resulting q values using the Fisher method; genes without odds ratios > 2 for co-

occurrence and < 0.5 for mutual exclusivity were removed. For this analysis, we also remove 

highly mutated cases (>500 exonic mutations, 41/551) as they bias distribution of genes 

towards co-occurrence. To ensure that a non-random distribution of mutations across 

samples was still not affecting the strong co-occurrence of SWI/SNF genes (all genes q < 

0.05 before combining q values), we repeated the analysis randomly iterating 30,000 times 

over other driver gene eight combinations (excluding SWI/SNF genes) and found only 

0.01% (4/30,000) of random combinations had all genes q < 0.05 as found in SWI/SNF 

genes. We then performed this analyses across all pairs of driver genes using two sided 

Fisher’s exact tests and Benjamini and Hochberg multiple hypothesis correction (q values < 

0.1 are shown in Fig. 4b). We validated these relationships in independent TGCA cohorts of 

other GI cancers where we could find cohorts with reasonable numbers of the genomic 

events in question (not possible for GATA4/GATA6, for instance) using the cBioportal web 

interface tool57.
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Correlating genomics with the clinical phenotype

To find genomic markers for prognosis, we undertook univariate Cox regression for those 

driver genes present in >5% of cases (n = 16) along with Benjamini and Hochberg false 

discovery correction. We considered only these genes to reduce our false discovery rate and 

because other genes were unlikely to impact on clinical practice given their low frequency in 

EAC. We validated SMAD4 in the TCGA gastroesophageal cohort, which had a comparable 

frequency of these events, but notably is composed mainly of gastric cancers, and GATA4 in 

the TCGA pancreatic cohort using the cBioportal web interface tool. We also validated these 

markers as independent predictors of survival both in respect of each other and stage using a 

multivariate Cox regression in our 379 clinical annotated ICGC cohort. When assessing for 

genomic correlates with differentiation phenotypes, we found only very few cases with well 

differentiated phenotypes (<5% cases), and hence for statistical analyses, we collapse these 

cases with moderate differentiation to allow a binary Fisher’s exact test to compare poorly 

differentiated with well-moderate differentiated phenotypes.

Therapeutics

The cancer biomarker database was filtered for drugs linked to biomarkers found in EAC 

drivers, and Supplementary Table 8 was constructed using the cohort frequencies of EAC 

biomarkers. Ten EAC cell lines (SKGT4, OACP4C, OACM5.1, ESO26, ESO51, OE33, 

MFD, OE19, Flo-1 and JHesoAD) and three Barrett’s esophagus high grade dysplasia cell 

lines (CP-B, CP-C and CP-D) with WGS data41 were used in proliferation assays to 

determine drug sensitivity to CDK4/6 inhibitors, Palbociclib (Biovision) and Ribociclib 

(Selleckchem). Cell lines were grown in their normal growth media. Proliferation was 

measured using the Incucyte live cell analysis system (Incucyte ZOOM Essen biosciences). 

Each cell line was plated at a starting confluency of 10% and growth rate measured across 

4-7 days depending on basal proliferation rate (until 90% confluent). For each cell-line drug 

combination, concentrations of 16, 64, 250, 1,000 and 4,000 nM were used each in 0.3% 

DMSO and compared to 0.3% DMSO only. Each condition was performed in at least 

triplicate (technical replicates) and 12/12 randomly chosen cell line; drug combinations were 

successfully replicated with biological replicates (independent experiments). The time 

period of treatment to growth cessation in the control (0.3% DMSO) condition was used to 

calculate GI50 and AUC. Accurate GI50s could not be calculated in cases where a cell line 

had >50% proliferation inhibition even with the highest drug concentration, and hence AUC 

was used to compare cell line sensitivity. T47D had a highly similar GI50 for Palbociclib to 

that previously calculated in other studies (112 nM vs. 127 nM)58. Primary organoid 

cultures were derived from EAC cases included in the OCCAMS/ICGC sequencing study. 

Detailed organoid culture and derivation method have been previously described44. 

Regarding the drug treatment, the seeding density for each organoid line was optimized to 

ensure cell growth in the logarithmic growth phase. Cells were seeded in complete medium 

for 24 hours then treated with compounds at 5-point 4-fold serial dilutions for 6 days or 12 

days. Cell viability was assessed using CellTiter-Glo (Promega) after drug incubation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Genomic analysis of 551 esophageal adenocarcinomas identifies new driver mutations 

and biomarkers associated with poor prognosis. Over 50% of esophageal 

adenocarcinomas contain sensitizing events for CDK4/6 inhibitors, providing an evidence 

base for targeted therapeutics.
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Figure 1. Detection of EAC driver genes.
a, Types of driver-associated features used to detect positive selection in mutations and copy 

number events with examples of genes containing such features. b, Coding driver genes 

identified and their driver-associated features. c, Non-coding driver elements detected and 

their element types.
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Figure 2. Copy number variation under positive selection.
a, Recurrent copy number changes across the genome identified by GISTIC in 551 EACs. 

Frequency of different CNV types are indicated (dark blue, homozygous deletion; light blue, 

heterozygous deletion; dark red, extrachromosomal-like amplification; light red, 

amplification) as well as the position of CNV high confidence driver genes and candidate 

driver genes. The q value for expression correlation with amplification and homozygous 

deletion is shown for each gene within each amplification (wilcox test, one sided, expression 

compared above and below 90th percentile of pliody-adjusted CN) and deletion peak 

(wilcox test, one sided, expression compared between homozygous deleted and all other 

cases) respectively and occasions of significant association between LOH and mutation are 

indicated in green (fisher’s exact test, one sided). Benjamini & Hochberg false discovery 

correction was applied in each of these cases. Purple deletion peaks indicate fragile sites. b, 

Frankell et al. Page 20

Nat Genet. Author manuscript; available in PMC 2019 August 04.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



Examples of extrachromosomal-like amplifications suggested by very high read support SVs 

at the boundaries of highly amplified regions produced from a single copy number step. In 

the first example two populations of extrachromosomal DNA are apparent, one amplifying 

only MYC and the second also incorporating ERBB2 from a different chromosome. In the 

second example an inversion has occurred before circularization and amplification around 

KRAS. c, Relationship between copy number and expression in copy number driver genes in 

RNA matched sub-cohort (n=116). A 2D kernel density estimation and a leoss regression 

curve with 95% CIs (grey) are shown to describe the data.
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Figure 3. The driver gene landscape of EAC.
a, Driver mutations or CNVs are shown for each patient of 551 EACs. Amplification is 

defined as >2 copy number adjusted ploidy (2x ploidy of that case) and extrachromosomal 

amplification as >10 copy number adjusted ploidy (10x ploidy for that case). Driver 

associated features for each driver gene are displayed to the left. On the right, the 

percentages of different mutation and copy number changes are displayed, differentiating 

between driver and passenger mutations using dNdScv, and the % of predicted drivers by 

mutation type is shown. Above the plot are the number of driver mutations per sample with 
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an indication of the mean (red line = 5). b, Mean driver events per case in 551 EACsand 

comparison to exome-wide excess of mutations generated by dNdScv. c, Expression changes 

in EAC driver genes in comparison to normal intestinal tissues in RNA matched samples 

(n=116). Only genes with expression changes of note are shown.
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Figure 4. Biological pathways undergoing selective dysregulation in EAC.
a, Biological pathways dysregulated by driver gene mutation and/or CNVs in 551 cases. 

Wild-type cases for a pathway are not shown. Inter and intra-pathway interactions are 

described, and mutual exclusivities and/or associations between genes in a pathway are 

annotated. GATA4 and GATA6 amplifications have a mutually exclusive relationship, 

although this does not reach statistical significance (Fisher’s exact test, two-sided, P = 0.07, 

OR = 0.52). b, Pairwise assessment of mutual exclusivity and association in EAC driver 

genes and pathways. Two sided Fisher’s exact test were used and hyper-mutated (>500 
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exonic mutations) cases were removed to avoid bias towards co-occurrence, hence n = 510. 

RTK; Receptor Tyrosine Kinase pathway.
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Figure 5. Clinical significance of driver events in 379 clinically annotated EACs.
a, Hazard ratios and 95% confidence intervals for Cox regression analysis across all driver 

genes with at least a 5% frequency of driver alterations. *q < 0.05 after BH adjustment. b, 

Kaplan-Meier curves for EACs with different status of significant prognostic indicators 

(GATA4 and SMAD4). c, Kaplan-Meier curves for different alterations in the TGF-β 
pathway. d, Kaplan-Meier curves showing verification GATA4 prognostic value in GI 

cancers using a pancreatic TCGA cohort. e, Kaplan-Meier curves showing verification 

SMAD4 prognostic value in gastroesophageal cancers using a gastroesophageal TCGA 

cohort. f, Differentiation bias in tumors containing events in Wnt pathway driver genes. g, 

Relative frequency of KRAS mutations and TP53 mutations driver gene events in females 

vs. males (Fisher’s exact test, two sided).
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Figure 6. CDK4/6 inhibitors in EAC.
a, Drug classes for which sensitivity is indicated by EAC driver genes with data from the 

Cancer Biomarkers database36. b, Area under the curve (AUC) of sensitivity is shown in a 

panel of 13 EAC and Barrett’s esophagus high grade dysplasia cell lines with associated 

WGS and their corresponding driver events, based on primary tumor analysis. AUC is also 

shown for two control lines: T47D, an ER-positive breast cancer line (positive control), and 

MDA-MB-468, an Rb negative breast cancer (negative control). *CCNE1 is a known marker 

of resistance to CDK4/6 inhibitors due to its regulation of Rb downstream of CDK4/6, hence 

bypassing the need for CDK4/6 activity (see Fig. 4). c, Response of organoid cultures to 

three FDA approved CDK4/6 inhibitors and corresponding driver events. RTK; Receptor 

tyrosine kinase pathway, BC; Breast Cancer.
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