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Abstract

Esophageal adenocarcinoma (EAC) is a poor prognosis cancer type with rapidly rising incidence.
Our understanding of genetic events that drive EAC development is limited, and there are few
molecular biomarkers for prognostication or therapeutics. Using a cohort of 551 genomically
characterized EACs with matched RNA-seq, we discover 77 EAC driver genes and 21 non-coding
driver elements. We identify a mean of 4.4 driver events per tumor, derived more commonly from
mutations rather than copy number alterations, and compare these mutations to the exome-wide
mutational excess using dN/dS calculations. We observe mutual exclusivity or co-occurrence of
events within and between a number of dysregulated EAC pathways, suggestive of strong
functional relationships. Poor prognostic indicat@®8MA4D4, GATA4) are verified in independent
cohorts with significant predictive value. Over 50% of EACs contain sensitizing events for
CDKA4/6 inhibitors, which are highly correlated with clinically relevant sensitivity in a panel EAC
cell lines and organoids.

Esophageal cancer is the eighth most common form of cancer world-wide and the sixth most
common cause of cancer related deathl. Esophageal adenocarcinoma (EAC) is the
predominant subtype in the west, and incidence has been rapidly rising2. EAC is a highly
aggressive neoplasm, usually presenting at a late stage, and is generally resistant to
chemotherapy, leading to five-year survival rates below 15%3. It is characterized by very
high mutation rates in comparison to other cancer types4 but also, paradoxically, by a
paucity of recurrently mutated genes. EAC displays dramatic chromosomal instability and
thus may be classified as a C-type neoplasm, which may be driven mainly by structural
variation rather than mutations5,6. Currently, our understanding of precisely which genetic
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events drive the development of EAC is limited, and consequentially there is a paucity of
molecular biomarkers for prognosis or targeted therapeutics available.

Methods to differentiate driver mutations from passenger mutations use features associated
with known drivers to detect regions of the genome in which mutations are enriched for

these features7. The simplest of these features is the tendency of a mutation to co-occur with
other mutations in the same gene at a high frequency, as detected by MutSigCV8.

MutSigCV has identified 12 known cancer genes as EAC drivé?s3 CDKNZA,

SMAD4, ARID1A, ERBBZ KRAS, PIK3CA, SMARCA4, CTNNB1, ARID2, PBRMIand
FBXW?7)6,9,10. The PCAWG ICGC analysis also identified a significantly mutated

enhancer associated willP537G11. However, these analyses leave most EAC cases with
only one known driver mutation, usually?53 Equivalent analyses in other cancer types

have identified three or four drivers per casel2,13. Similarly, detection of copy number

driver events in EAC has relied on identifying regions of the genome recurrently deleted or
amplified, as detected by GISTIC9,14-17. However, GISTIC often identifies relatively large
regions of the genome, with little indication of which specific gene-copy number aberrations
(CNAs) may actually confer a selective advantage. There are also several non-selection
based mechanisms that can cause recurrent CNAs, such as genomic fragile sites, which have
not been well differentiated from selection-based CNAs18. Epigenetic events, for example
methylation, may also be important sources of driver events in EAC but are much more
difficult to assess formally for selection.

To address these issues, we accumulated a cohort of 551 genomically characterized EACs
using our esophageal ICGC project, which have high quality clinical annotation, associated
whole genome sequencing (WGS) and RNA-seq on cases with sufficient material. We
augmented our ICGC WGS cohort with publicly available whole exome19 and whole
genome sequencing20 data and applied a number of complementary driver detection
methods to produce a comprehensive assessment of mutations and CNAs under selection in
EAC. We use these events to define functional cell processes that have been selectively
dysregulated in EAC and identify novel, verifiable and clinically relevant biomarkers for
prognostication. Finally, we have used this compendium of EAC driver events to provide an
evidence base for targeted therapeutics, which we have fest&w.

A compendium of EAC driver events and their functional impact

In 551 EACs, we identified a total of 11,813,333 single nucleotide variants (SNVs) and
small insertions or deletions (Indels), with a median of 6.4 such mutations/Mb
(Supplementary Fig. 1), and 286,965 copy number aberrations (CNAs). We also identified
134,697 structural variants (SVs) in WGS cases. We use several complementary driver
detection tools to detect driver-associated features in mutations and CNAs (Fig. 1a). Each
tool underwent quality control to ensure reliability of results (see Methods). These features
include highly recurrent mutations within a gene (dNdScv21, ActivedriverWGS22,
MutSigCV28), high functional impact mutations within a gene (OncodriveFM23,
ActivedriverWGS22), mutation clustering (OncodriveClust24, eDriver25 and eDriver3D26)
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and recurrent amplification or deletion of genes (GISTIC14) undergoing concurrent over or
under-expression (see Methods) (Fig. 1a)7.

These complementary methods produced highly significant agreement in calling EAC driver
genes, particularly within the same feature-type (Supplementary Fig. 2), and on average
more than half of the genes identified by one feature were also identified by other features
(Fig. 1b). In total, 76 EAC driver genes were discovered, 71% of which have not been
detected in EAC previously9,10,15-17,19 and 69% of which are known drivers in pan-
cancer analyses21,27,28. To detect driver elements in the non-coding genome, we used
ActiveDriverWGS22, a recently benchmarked29 method using both functional impact and
recurrence to determine driver status (Fig. 1¢c and Supplementary Fig. 3). We discovered 21
non-coding driver elements using this method. We have recovered several known non-coding
driver elements from the pan-cancer PCAWG analysis11, including the enhancer on
chromosome 7 linked t@P537G Ipreviously identified in EAC and the promoter/5’'UTR
regions ofPTDSSIand WRD74found in other cancer types. We also identified novel non-
coding cancer driver elements, including in the 5’ UTRVSf/P24and promoters of two

related histonesH/ST1H2BOand HISTIHZAM).

EAC is notable among cancer types for harboring a high degree of chromosomal
instability20. Using GISTIC, we identified 149 recurrently deleted or amplified loci across

the genome (Fig. 2a, and Supplementary Tables 1 and 2). To determine which genes within
these loci confer a selective advantage when they undergo CNAs, we use a subset of 116
cases with matched RNA-seq to detect genes in which homozygous deletion or amplification
causes a significant under or over-expression, respectively (Supplementary Note and
Supplementary Tables 3-6). The majority of genes in these regions showed no significant
copy number associated expression change (74%), although work in larger cohorts suggests
we may be underpowered to detect small expression changes30. We observed highly
significant expression changes in 17 known cancer genes within GISTIC loci such as
ERBB2 KRAS and SMAD4, which we designate high-confidence EAC drivers (see

Methods). We also found five tumor suppressor genes where copy number loss was not
necessarily associated with expression modulation but tightly associated with presence of
mutations leading to LOH, for examp#e®/D1A and CDH11

In a subset of GISTIC loci, we observed extremely high copy number amplification,
commonly greater than 100 copies, and these events were highly enriched in recurrently
amplified regions containing driver genes rather than those which appear to contain only
passengers (ploidy adjusted copy number >10, two-sided WilcoxorPtegdt97 x 16F)
(Supplementary Fig. 4). We use ploidy adjusted copy number to define amplifications as it
produces superior correlation with expression data than absolute copy number alone. Ploidy
of our samples varies from 1.4-6.2 (median 2.8), and hence ploidy adjusted copy number of
>10 cut off translates into >14-62 absolute copies (on average 28 copies). To discern a
mechanism for these ultra-high amplifications, we assessed structural variants (SVs)
associated with these events. For many of these events, the extreme amplification was
produced largely from a single copy number step, the edges of which were linked by
structural variants with ultra-high read support. Two examples are shown in Figure 2b, and
further randomly selected examples in Supplementary Figure 5. In the first example,
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circularization and amplification initially occurred aroutt¥’C but subsequently
incorporatede RBB2from an entirely different chromosome, and in the second, an inversion
was followed by circularization and amplification RAS. Such a pattern of
extrachromosomal amplification via double minutes has been previously noted in EAC20
and other neoplasms31, and hence we refer to this amplification class with ultra-high
amplification (ploidy adjusted copy humber >10) as ‘extrachromosomal-like’.

We found that extrachromosomal-like amplifications had extreme and highly penetrant
effects on expression, while moderate amplification (ploidy adjusted copy number > 2 but <
10) and homozygous deletion had highly significant (Wilcoxon test, two-sie®,62 x

1016 andP= 7.64 x 101, respectively) but less dramatic effects on expression with a lower
penetrance (Fig. 2c¢). This lack of penetrance was associated with low cellularity as
calculated by ASCAT (Wilcoxon test, two-sided, overexpression cut off = 2.5x normalised
expressionP= 0.011) in non-extrachromosomal-like amplified cases but also likely reflects
that specific genetic rearrangements, not just gene-dosage, can modulate expression. We also
detected several cases of overexpression or complete expression loss without associated
copy number changes, reflecting non-genetic mechanisms for driver dysregulation. One case
overexpresseffRBB2at 28-fold median expression but had entirely diploid copy number in
and surroundingRBBZ and a second case |&WAD4 expression (0.008-fold median
expression) despite possessing five copieSMAD4.

Landscape of driver events in EAC

The overall landscape of driver gene mutations and copy number alterations per case is
depicted in Figure 3a. These comprise both oncogenes and tumor suppressor genes activated
or repressed via different mechanisms. Passenger mutations occur by chance in most driver
genes. To quantify this, we used the observed:expected mutation ratios (calculated by
dNdScv) to estimate the percentage of driver mutations in each gene and in different
mutation classes. For many drivers, only specific mutation classes appear to be under
selection. Many tumor suppressor genéRAD2, RNF43 ARID1B for example) are only

under selection for truncating mutations, i.e. splice site, nonsense and frameshift Indel
mutations, but not missense mutations, which are passengers. However, oncogenes, like
ERBBZ only contain missense drivers that form clusters to activate gene function in a
specific manner. Where a mutation class is <100% driver mutations, mutational clustering
can help us define the driver vs. passenger status of a mutation (Supplementary Fig. 6).
Mutational hotspots in EAC or other cancer types32 (Supplementary Table 7 and
Supplementary Data) are indicated in Figure 3a. Novel EAC drivers of particular interest
include B2M, a core component of the MHC class | complex and a marker of acquired
resistance to immunotherapy3B(/C6, a secreted glycoprotein involved in gastric acid
resistance, andBCBI1, a channel pump protein associated with multiple instances of drug
resistance34. We note that several of these drivers have been previously associated with
gastric and colorectal cancer (Supplementary Table 8)13,35.

The identification of driver events provides rich information about the molecular history of
each EAC tumor. We detect a median of five events in driver genes per tumor (IQR = 3-7,
mean = 5.6), and only a very small fraction of cases has no such events detected (6 cases,
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1%). When we remove the predicted percentage of passenger mutations using
observed:expected mutation ratios calculated by dNdScv, one of the driver gene detection
methods used, we find a mean of 4.4 true driver events per case. These derive more
commonly from mutations than copy number events (Fig. 3b and Supplementary Table 9).
Using hierarchal clustering of drivers, we noted tha@b3mutant cases had significantly

more copy number drivers (Wilcoxon test, two-sid@ed, 0.0032, Supplementary Figs. 7 and

8). dNdScv also analyses the genome-wide excess of non-synonymous mutations based on
dN/dS ratios to assess the mean number of exonic driver mutations per case. This is
calculated at 5.4 (95% Cls: 3.5-7.3) in comparison to a mean excess of 2.7 driver mutations
in specific EAC driver genes, suggesting further low frequency driver genes are yet to be
discovered in EAC.

To better understand the functional impact of driver mutations, we analyzed expression of
driver genes with different mutation types and compared their expression to normal tissue
RNA (Fig. 3c and Supplementary Fig. 10). Since surrounding squamous epithelium is a
fundamentally different tissue from which EAC does not directly arise, we have used
duodenum and gastric cardia samples as gastrointestinal phenotype controls, likely to be
similar to the, as yet unconfirmed, tissue of origin in EAC. A large number of driver genes
have upregulated expression in comparison to normal controls; for exarplghas
upregulated RNA expression in wild-type tumor tissue and in cases with non-truncating
mutations but RNA expression is lost upon gene truncation. In depth analysis of different
TP53mutation types reveals significant heterogeneity within non-truncating mutations
(Supplementary Fig. 9). Normal tissue expressio&@BKN2A suggests thalDKN2ZA is
generally activated in EAC, likely due to genotoxic or other cancer-associated cellular
stresses36, and returns to physiologically normal levels when deleted. Heterogeneous
expression in wild-type&CDKN2A cases suggests a different mechanism of inhibition,
perhaps methylation, in some cases. Overexpression of some oncogenes occurs without
genomic aberrations, such &C, which is overexpressed MYC-wild-type EACs

relative to normal tissues (Fig. 3c). A smaller number of driver genes are downregulated in
EACs without genomic aberrations. 3/4 of these ge@GeSA4, GATA6 and MUC6) are
involved in the differentiated phenotype of gastrointestinal tissues and may be lost with
tumor de-differentiation.

Dysregulation of specific pathways and processes in EAC

It is known that selection preferentially dysregulates certain functionally related groups of
genes and biological pathways in cancer37. This phenomenon is highly evident in EAC, as
shown in Figure 4, which depicts the functional relationships between EAC drivers
(Supplementary Note). WhiléP53is the dominant driver in EAC, 28% of cases remain
TP53wild-type. MDM2 is a E3 ubiquitin ligase that targets TP53 for degradation. Its
selective amplification and overexpression is mutually exclusive i$imutation,

suggesting it can functionally substitute the effecT/Bb3mutation via its degradation.

Similar mutually exclusive relationships are observed betw@&@4S and ERBBZ GATA4

and GATA6, and cyclin genes{CNEL CCND1and CCND3. Activation of the Wnt

pathway occurs in 19% of cases either by mutation of phospho-residues at the N terminus of
B-catenin, which prevent degradation, or loss of Wnt destruction complex components like
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APC. Many different chromatin modifying genes, often belonging to the SWI/SNF complex,
are also selectively mutated (28% of cases). In contrast to other pathways, SWI/SNF genes
are co-mutated significantly more often than we would expect by chance (Fisher's exact test,
two-sided,g < 0.05 for each gene; see Methods), suggesting these mutations are synergistic.
We also assessed mutual exclusivity and co-occurrence in genes in different pathways and
between pathways themselves (Fig. 4b). Of particular note are co-occurring relationships
between7P53andMYC, GATA6 and SMAD4, and Wnt and immune pathways, as well as
mutually exclusive relationships betwedR/D1A andMYC, gastrointestinal (GI)

differentiation and RTK pathways, and SWI-SNF and DNA damage response pathways. We
were able to confirm some of these relationships in independent cohorts in different cancer
types (Supplementary Table 10), suggesting some of these may be pan-cancer phenomenon.
Wnt dysregulation was associated with hyper-mutated cases (> 500 exonic SNVs or Indels,
Fisher's exact test, two-side®= 2.98 x 1P, OR = 9.3), as was mutation in immune

pathway genesB2M andJAKI, > 500 exonic SNVs or Indels, Fisher’s exact test, two-
sided,P=6.27 x 1%, OR = 35.7).

EAC driver events correlate with clinical phenotype

Events undergoing selection during cancer evolution influence tumor biology and thus
impact tumor aggressiveness, response to treatment, and patient prognosis, as well as other
clinical parameters.

Univariate Cox regression was performed for events in each driver gene with driver events
occurring in greater than 5% of EACs after passenger removal to detect prognostic
biomarkers (Fig. 5a). Events in two genes conferred significantly poorer prognosis after
multiple hypothesis correctioGA7A4 amplification (HR = 0.54, 95% CI = 0.38-0.785
0.0008) andSMAD4 mutation or homozygous deletion (HR = 0.60, 95% CI = 0.42—-®84,

= 0.003), which were present in 31% of EACs (Fig. 5b). Both genes remained significant in
multivariate Cox regression, including pathological TNM staging, resection margin, curative
vs. palliative treatment intent, and differentiation statddfA44, HR adjusted = 0.47, 95%

Cls adjusted = 0.29-0.78= 0.002;SMAD4, HR adjusted = 0.61, 95% CI adjusted = 0.40—
0.94,P=0.026) (Fig. 5b, Supplementary Fig. 11). We validated the poor prognostic impact
of SMAD4 events in an independent TCGA gastroesophageal cohort (HR = 0.58, 95% CI =
0.37-0.90,,= 0.014) (Fig. 5¢), and we also foustfA744 amplifications were prognostic in

a cohort of TCGA pancreatic cancers (HR = 0.38, 95% CI = 0.18-8:80,011) (Fig. 5d),

the only available cohort containing a feasible numbe®4TA4 amplifications. The

prognostic impact 0GA7TA4 has been suggested in previously published independent EAC
cohort16, although it did not reach statistical significance after FDR correction, and SMAD4
expression loss has been previously linked to poor prognosis in EAC38. We also noted stark
survival differences between cases WtWAD4 events and cases in which Tfeceptors

were mutated (Fig. 5e, HR = 5.6, 95% CI = 1.7-182,0.005), in keeping with the

biology of the TGB pathway, where non-SMAD T@Fsignalling is known to be

oncogenic39.

In additional to survival analyses, we also assessed driver gene events for correlation with
various other clinical factors, including differentiation status, sex, age and treatment

Nat GenetAuthor manuscript; available in PMC 2019 August 04.
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response. We found Wnt pathway mutations had a strong association with well differentiated
tumours P=0.001, OR = 2.9, Fisher’s test, two-sided, see Methods; Fig. 5f). Female cases
(n=81) were enriched fokRAS mutation = 0.001, Fisher's exact test, two-sided) and
TP53wild-type status = 0.006, Fisher’'s exact test, two-sided) (Fig. 5g). This is of

particular interest given the male predominance of EAC3.

Targeted therapeutics using EAC driver events

To investigate whether driver events in particular genes and/or pathways might sensitize

EAC cells to certain targeted therapeutic agents, we used the Cancer Biomarkers database40.
We calculated the percentage of our cases that contain EAC-driver biomarkers of response to
each drug class in the database (Fig. 6a, and full data in Supplementary Table 11). Aside
from TP53, which has been problematic to target clinically so far, we found a number of
drugs with predicted sensitivity in >10% of EACs, including EZH2 inhibitors for some
SWI/SNF mutant cancers (23%, and 28% including all SWI/SNF EAC drivers), and BET
inhibitors, which targeKRAS activated and/YC amplified cases (25%). However, by far

the most significantly effective drug was predicted to be CDK4/6 inhibitors, where >50% of
cases harbored sensitivity causing events in the receptor tyrosine kinase (RTK) and core cell
cycle pathways (e.g. IGCNDI CCND3andKRAS).

To verify that these driver events would also sensitize EAC tumors to such inhibitors, we
used a panel of 13 EAC or Barrett’s high grade dysplasia cell lines that have undergone
whole genome sequencing4l and assessed them for presence of EAC driver events (Fig. 6b).
The mutational landscape of these lines was broadly representative of EAC tumors. We
found that the presence of cell cycle and or RTK activating driver events was highly
correlated with response to two FDA approved CDK4/6 inhibitors, Ribociclib and

Palbociclib, and several cell lines were sensitive below maximum tolerated blood
concentrations in humans (Fig. 6b, Supplementary Table 12, and Supplementary Fig. 12)42.
Such EAC cell lines had comparable sensitivity to T47D, which is derived from an ER-
positive breast cancer, where CDK4/6 inhibitors have been FDA approved. We noted three
cell lines that were highly resistant, with little drug effect even at 4,000 nM concentrations,
similar to a known Rb mutant resistant line breast cancer cell line (MDA-MB-468). Two of
these three cell lines harbor amplification@C/NVEZ which is known to drive resistance to
CDKA4/6 inhibitors by bypassing CDK4/6 and causing Rb phosphorylation via CDK2
activation43. To verify these effects in a more representative model of EAC, we treated three
whole genome sequenced EAC organoid cultures44 with Palbociclib and Ribociclib as well
as a more recently approved CDK4/6 inhibitor, Abemaciclib. As was observed in cell lines,
cell cycle and RTK driver events were present only in the more sensitive organoids and
CCNEL1 activation in the most resistant (Fig. 6c¢).

Discussion

We present here a detailed catalog of coding and non-coding genomic events that have been
selected for during the evolution of esophageal adenocarcinoma. These events have been
characterized in terms of their relative impact, related functions, mutual exclusivity and co-
occurrence and expression in comparison to normal tissues. We have used this set of
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biologically important gene alterations to identify prognostic biomarkers and actionable
genomic events for personalized medicine.

While clinical annotation and matched RNA data is a strength of this study, in some cases

we may have been unable to assess selected variants expression changes that were detected
in the full 551 cohort due to lack of representation RNA matched sub-cohort. Despite

rigorous analyses to detect selected events, assessment of the global excess of mutations by
dNdScv suggests that we are unable to detect all mutations selected in EAC, similar to many
other cancer types21. All driver gene detection methods that we have used rely on driver
mutation re-occurrence in a genomic region to some degree. Many of these undetected driver
mutations are hence likely to be spread across a large number of genes, whereby each is
mutated at very low frequency across EAC patients. This tendency for low frequency EAC
drivers may be responsible for the low yield of MutSigCV in previous cohorts and may
suggests that C-type cancers such as EAC are not less ‘mutation-driven’ than M-type
cancers but rather that their mutational drivers are spread across a larger number of genesb.
Copy number driver gene identification is even more challenging due to the large size and
lower frequency of these events, and hence it is also possible that there are significantly
more EAC copy number drivers yet to discovered, possibly already identified as candidates
here.

While a number of previous reports have attempted to detect EAC drivers, they have had a
limited yield per case. The first such study19 used methods that, despite being well regarded
at the time, were subsequently discredited8. Since then, a number of reports, including our
own, on medium and large cohort sizes using MutSigCV9,10,17 were only able to detect a
small number of mutational driver genes (7, 5 and 15 in each study). By using both a large
cohort and more comprehensive methodologies, we have significantly increased this figure
to 66 mutational driver genes (excluding copy number drivers). Detection of driver CNAs
has previously relied on GISTIC to detect recurrently copy number aberrant regions9,14-17,
but no analyses have been performed to determine which genes in these large regions are
true drivers. Many of the genes annotated by such papers are unlikely to be copy number
drivers due to their lack of expression modulation with CNAs (£A7S4andMCL 1), the

role of recurrent heterozygous losses to drive LOH in some mutational déVet81A and
CDH11) or their association with fragile siteBRE4DQ WWOX, FHIT). Conversely, we

have been able to identify novel EAC copy number drivers QD3 AXIN1, PPM1D
andAPQO.

We have noted a three-way association between hyper-mutation, Wnt activation and loss of
immune signalling genes such 88M. MSI-driven hyper-mutation has been previously
associated with higher immune activity45,46. However, Wnt dysregulation and mutation of
immune pathway genes such228V/33 have been previously linked to immune escape47,
suggesting this may be an acquired mechanism to prevent immune surveillance caused by
hyper-mutation.

Functional characterization of many of the driver genes described is needed to understand
why they are advantageous to EAC tumors and how they modify EAC biology. Biological
pathways and processes that are selectively dysregulated deserve particular attention in this
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regard, as do the gene pairs or groups with mutually exclusive or co-occurring relationships
such asWYC and 7TP53or SWI/SNF factors, suggestive of particular functional

relationships. Prospective clinical work to verify and implen@mAD4 and GATA4

biomarkers in this study would be worthwhile. While EAC is a poor prognosis cancer type,
significant heterogeneity of survival outcome makes triaging patients in treatment groups an
important part of clinic practice, which could be improved using better prognostication. A
number of targeted therapeutics may provide clinic benefit to EAC cases based on their
individual genomic profile. In particular, CDK4/6 inhibitors deserve considerable attention
as an option for EAC treatment as they are, by a significant margin, the treatment to which
the most EACs harbor sensitivity-causing driver events, excluding TP53 as an unlikely
therapeutic biomarker. Previous work has noted activity of the CDK4/6 inhibitor Palbociclib
in a small number of EAC cell lines48, but biomarkers were not investigated. The extensive
/n vitro validation of identified biomarkers for CDK4/6 inhibitors in EAC across 16 cell

lines and organoids is persuasive of possible clinical benefit using a targeted approach.

In summary, this work provides a detailed compendium of mutations and copy number
alterations undergoing selection in EAC, which have clinically relevant impact on tumor
behaviour. This comprehensive study provides us with useful insights into the nature of EAC
tumors and should pave the way for evidence based clinical trials in this poor prognosis
disease.

Cohort, sequencing and calling of genomic events

379 cases (69%) of our EAC cohort were derived from the esophageal adenocarcinoma
WGS ICGC study, for which samples are collected through the UK wide OCCAMS
(Oesophageal Cancer Classification and Molecular Stratification) consortium. The
procedures for obtaining the samples, quality control processes, extractions and whole
genome sequencing are as previously described17. Strict pathology consensus review was
observed for these samples with a 70% cellularity requirement before inclusion.
Comprehensive clinical information was available for the ICGC-OCCAMS cases
(Supplementary Table 13). In addition, previously published samples were included in the
analysis from Dulak et al.19 (149 WES; 27%) and Nones et al.20 (22 WGS samples; 4%) to
total 551 genome characterized EACs. RNA-seq data was available from our ICGC WGS
samples (116/379). BAM files for all samples (include those from Dulak et al.19 and Nones
et al.20) were run through our alignment (BWA-MEM), mutation (Strelka), copy number
(ASCAT) and structural variant (Manta) calling pipelines, as previously described17. Our
methods were benchmarked against various other available methods and have among the
best sensitivity and specificity for variant calling (ICGC benchmarking exercise49,50). Cell
lines were whole genome sequenced at 30X coverage with 150bp paired end reads on an
lllumina Hiseq4000. Copy number calling was performed by Freec as previously
described41. Mutations were called by GATK as previously described41, filtered for
germline variants in the 1000 genomes project and any known oncogenic hotspots32 were
recovered. Amplifications were defined as genes with 2x the median copy number of the
host chromosome or greater.

Nat GenetAuthor manuscript; available in PMC 2019 August 04.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Frankell et al.

Page 11

Total RNA was extracted using All Prep DNA/RNA kit from Qiagen, and the quality was
checked on Agilent 2100 Bioanalyzer using RNA 6000 nano kit (Agilent). Qubit High
sensitivity RNA assay kit from Thermo Fisher was used for quantification. Libraries were
prepared from 250 ng RNA, using TruSeq Stranded Total RNA Library Prep Gold (Ribo-
zero) kit, and ribosomal RNA (nuclear, cytoplasmic and mitochondrial rRNA) was depleted,
whereby biotinylated probes selectively bind to ribosomal RNA molecules forming probe-
rRNA hybrids. These hybrids were pulled down using magnetic beads and rRNA depleted
total RNA was reverse transcribed. The libraries were prepared according to lllumina
protocol51. Paired end 75-bp sequencing on HiSeq4000 generated the paired end reads. For
normal expression controls, we chose gastric cardia tissue, from which some hypothesize
Barrett's esophagus may arise, and duodenum which contains intestinal histology, including
goblet cells, which mimics that of Barrett's esophagus. We did not use Barrett’'s esophagus
tissue itself as a normal control given the heterogeneous and plentiful phenotypic and
genomic changes that it undergoes early in its pathogenesis.

Analyzing EAC mutations for selection

To detect positively selected mutations in our EAC cohort, a multi-tool approach across
various selection related ‘features’ (recurrence, functional impact, clustering) was
implemented in order to provide a comprehensive analysis. This is broadly similar to several
previous approaches7,11. dNdScv21, MutSigCV8, e-Driver25, ActivedriverWGS22 and e-
Driver3D26 were run using the default parameters. To run OncodriverFM23, Polyphen52
and SIFT53 were used to score the functional impact of each missense non-synonymous
mutation (from 0 non-impactful to 1 highly impactful); synonymous mutations were given a
score of 0 impact, and truncating mutations (nonsense and frameshift mutations) were given
a score of 1. Any gene with less than 7 mutations, unlikely to contain detectable drivers
using this method, was not considered to decrease the false discovery rate (FDR).
OncodriveClust was run using a minimum cluster distance of 3, minimum number of
mutations for a gene to be considered of 7 and with a stringent probability cut off to find
cluster seeds oP= 1 x 1013 to prevent infiltration of large numbers of, likely, false positive
genes. For all tool outputs, we undertook quality control including Q-Q plots to ensure no
tool produces inflatedrvalues and each tool produced at least 30% known cancer genes.
Two tools were removed from the analysis due to failure for both of these parameters at
quality control in our hands (Activedriver54 and Hotspot32). For three of the QC-approved
tools (dNdScv, OncodriveFM, MutSigCV) where this was possible, we also undertook an
additional FDR reducing analysis by re-calculatgnplues based on analysis of known

cancer genes only21,27,28 as has been previously implemented21,55. Significance cut offs
were set afy< 0.1 for coding genes. Tool outputs were then put through various filters to
remove any further possible false positive genes. Specifically, genes where <50% of EAC
cases had no expression (TPM<0.1) in our matched RNA-seq cohort were removed and,
using dNdScyv, genes with no or only a small mutation excess (observed: expected ratio >
1.5:1) of any single mutation type were also removed. We also removed mitochondrial genes
two (MT-MD2, MT-MD4) that were highly enriched for truncating mutations and were
frequently called in OncodriveFM as well as other tools. This is may be due to the different
mutational dynamics caused by ROS from the mitochondrial electron transport chain and the
high number of mitochondrial genomes per cell, which enables significantly more
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heterogeneity. These factors prevent the tools used from calculating an accurate null model
for these genes, but they may be worthy of functional investigation. ActiveDriverWGS
calculates an expected background mutation rate based on mutation rates of local, adjacent
sequence for each tested element while correcting for the differential mutation rates within
each trinucleotide context. It thus tests observed mutation rates against this predicted
background for each element. ActiveDriverWGS also detects elements with mutations
enriched in binding site regions (high impact). For non-coding elements called by
ActivedriverWGS, filtering for expression or dN/dS was not possible, and despite recent
benchmarking29, such methods are not so well established. Hence we took a more cautious
approach with general significance cut offgyef 0.001 andy< 0.1 for previously identified
elements in other cancer types#@¥alues were not recalculated for previously identified
elements alone like with coding genes, butgke0.1 cut off was calculated based/n

values for all assessed elements. To calculate exome-wide mutational excess, hyper-mutated
cases (>500 exonic mutations) were removed and the global non-synonymous dN/dS ratios
were applied to all dNdScv annotated mutations excluding “synonymous” and “no SNV”
annotations as described in Martincorena et al.21.

Detecting selection in CNVs

ASCAT raw copy number values were used to detected frequently deleted or amplified
regions of the genome using GISTIC2.014. To determine which genes in these regions
confer a selective advantage, CNVs from each gene within GISTIC identified loci were
correlated with TPM from matched RNA-seq in a sub-cohort of 116 samples and with
mutations across all 551 samples. To call copy number in genes that spanned multiple copy
number segments in ASCAT, we considered the total number of full copies of the gene (i.e.
the lowest total copy number). Occasionally ASCAT is unable to confidently call the copy
number in highly aberrant genomic regions. We found that the expression of genes in such
regions matched well what we would expect given the surrounding copy number, and hence
we used the mean of the two adjacent copy number fragments to call copy number in the
gene in question. We found amplification peak regions identified by GISTIC2.0 varied
significantly in precise location both in analysis of different sub-cohorts and when
comparing to published GISTIC data from EACs9,15,16. A peak would often sit next to but
not overlapping a well-characterized oncogene or tumor suppressor. To account for this, we
widened the amplification peak sizes upstream and downstream by twice the size of each
peak to ensure we captured all possible drivers. Our expression analysis allows us to then
remove false positives from this wider region, and called drivers were still highly enriched
for genes closer to the centre of GISTIC peak regions.

To detect genes in which amplification correlated with increased expression, we compared
expression of samples with a high copy number for that gene (abByeeidentile CN/

ploidy) with those that have a normal copy number (median +/- 1) using the Wilcoxon rank-
sum test and using the specific alternative hypothesis that high copy number would lead to
increased expressiogrvalues were then generated based on the Benjamini and Hochberg
method, not considering genes without significant expression in amplified samples (at least
75% amplified samples with TPM > 0.1) and considerg0.001 as significant. We also
included an additional known driver gene only FDR reduction analysis as previously
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described for mutational drivers, with< 0.1 considered as significant given the additional
evidence for these genes in other cancer types. We also inddid€dlespite itsP= 0.11

for expression correlation. This is due to frequent non-amplification associated
overexpression ol/YC when compared to normal controls, and otherWi8€C is well

evidenced by a very close proximity to the peak centre (top 4 genes) and its high rate of
amplification (19%). We took the same approach to detect genes in which homozygous
deletion correlated with expression loss, comparing cases with copy number = 0 to all
others. Large expression modulation was a highly specific marker for known copy number
driver genes and was not a widespread feature in most recurrently copy number variant
genes. However, while expression modulation is a requirement for selection of CNV only
drivers, it is not sufficient evidence alone, and hence we grouped such genes into those
which have been characterized as drivers previously in other cancer types (high confidence
EAC copy number drivers) and other genes (candidate EAC copy number drivers), which
await functional validation. We used fragile site regions detected in Wala et al.56. We also
defined regions that may be recurrently heterozygous deleted, without any significant
expression modulations, to allow LOH of tumor suppressor gene mutations. To do this, we
analyzed genes with at least 5 mutations for association between LOH (ASCAT minor allele
= 0) and mutation using Fisher’'s exact test and genegatellies using the Benjamini and
Hochberg method. The analysis was repeated on known cancer genes only for reduced FDR
andg< 0.1 considered significant for both analyses. For those high confidence drivers, we
chose to define amplification as total copy number/ploidy (referred to as ploidy adjusted
copy number) because this produces superior correlation with expression. We chose a cut off
for amplification at ploidy adjusted copy number = 2 as has been previously used, and
causes a highly significant increase in expression in our copy number-driver genes when
amplified.

Pathways and relative distributions of genomic events

The relative distribution of driver events in each pathway was analysed using a Fisher’'s
exact test in the case of pair-wise comparisons including wild-type cases. In the case of
multi-gene comparisons such as cyclins, we calculat@#aéue and odds ratio for gene in

the group using a two-sided Fisher’s exact test, corrected by Benjamini and Hochberg, and
combine resultingy values using the Fisher method; genes without odds ratios > 2 for co-
occurrence and < 0.5 for mutual exclusivity were removed. For this analysis, we also remove
highly mutated cases (>500 exonic mutations, 41/551) as they bias distribution of genes
towards co-occurrence. To ensure that a non-random distribution of mutations across
samples was still not affecting the strong co-occurrence of SWI/SNF genes (albgenes

0.05 before combining values), we repeated the analysis randomly iterating 30,000 times
over other driver gene eight combinations (excluding SWI/SNF genes) and found only
0.01% (4/30,000) of random combinations had all gere$.05 as found in SWI/SNF

genes. We then performed this analyses across all pairs of driver genes using two sided
Fisher's exact tests and Benjamini and Hochberg multiple hypothesis correotamlogs <

0.1 are shown in Fig. 4b). We validated these relationships in independent TGCA cohorts of
other GI cancers where we could find cohorts with reasonable numbers of the genomic
events in question (not possible I8A7A4/ GATAG, for instance) using the cBioportal web
interface tool57.
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Correlating genomics with the clinical phenotype

Therapeutics

To find genomic markers for prognosis, we undertook univariate Cox regression for those
driver genes present in >5% of cases (L6) along with Benjamini and Hochberg false
discovery correction. We considered only these genes to reduce our false discovery rate and
because other genes were unlikely to impact on clinical practice given their low frequency in
EAC. We validatedSMAD4 in the TCGA gastroesophageal cohort, which had a comparable
frequency of these events, but notably is composed mainly of gastric canceBA&hlin

the TCGA pancreatic cohort using the cBioportal web interface tool. We also validated these
markers as independent predictors of survival both in respect of each other and stage using a
multivariate Cox regression in our 379 clinical annotated ICGC cohort. When assessing for
genomic correlates with differentiation phenotypes, we found only very few cases with well
differentiated phenotypes (<5% cases), and hence for statistical analyses, we collapse these
cases with moderate differentiation to allow a binary Fisher’s exact test to compare poorly
differentiated with well-moderate differentiated phenotypes.

The cancer biomarker database was filtered for drugs linked to biomarkers found in EAC
drivers, and Supplementary Table 8 was constructed using the cohort frequencies of EAC
biomarkers. Ten EAC cell lines (SKGT4, OACP4C, OACMb5.1, ESO26, ESO51, OE33,
MFD, OE19, Flo-1 and JHesoAD) and three Barrett's esophagus high grade dysplasia cell
lines (CP-B, CP-C and CP-D) with WGS data41 were used in proliferation assays to
determine drug sensitivity to CDK4/6 inhibitors, Palbociclib (Biovision) and Ribociclib
(Selleckchem). Cell lines were grown in their normal growth media. Proliferation was
measured using the Incucyte live cell analysis system (Incucyte ZOOM Essen biosciences).
Each cell line was plated at a starting confluency of 10% and growth rate measured across
4-7 days depending on basal proliferation rate (until 90% confluent). For each cell-line drug
combination, concentrations of 16, 64, 250, 1,000 and 4,000 nM were used each in 0.3%
DMSO and compared to 0.3% DMSO only. Each condition was performed in at least
triplicate (technical replicates) and 12/12 randomly chosen cell line; drug combinations were
successfully replicated with biological replicates (independent experiments). The time
period of treatment to growth cessation in the control (0.3% DMSO) condition was used to
calculate G150 and AUC. Accurate GI50s could not be calculated in cases where a cell line
had >50% proliferation inhibition even with the highest drug concentration, and hence AUC

was used to compare cell line sensitivity. T47D had a highly similar GI50 for Palbociclib to

that previously calculated in other studies (112 nM vs. 127 nM)58. Primary organoid
cultures were derived from EAC cases included in the OCCAMS/ICGC sequencing study.
Detailed organoid culture and derivation method have been previously described44.
Regarding the drug treatment, the seeding density for each organoid line was optimized to
ensure cell growth in the logarithmic growth phase. Cells were seeded in complete medium
for 24 hours then treated with compounds at 5-point 4-fold serial dilutions for 6 days or 12
days. Cell viability was assessed using CellTiter-Glo (Promega) after drug incubation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Genomic analysis of 551 esophageal adenocarcinomas identifies new driver mutatio
and biomarkers associated with poor prognosis. Over 50% of esophageal
adenocarcinomas contain sensitizing events for CDK4/6 inhibitors, providing an evid
base for targeted therapeutics.
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Figure 1. Detection of EAC driver genes.

a, Types of driver-associated features used to detect positive selection in mutations and copy
number events with examples of genes containing such fediu@sding driver genes
identified and their driver-associated featudon-coding driver elements detected and

their element types.
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Figure 2. Copy number variation under positive selection.
a, Recurrent copy number changes across the genome identified by GISTIC in 551 EACs.

Frequency of different CNV types are indicated (dark blue, homozygous deletion; light blue,
heterozygous deletion; dark red, extrachromosomal-like amplification; light red,
amplification) as well as the position of CNV high confidence driver genes and candidate
driver genes. Thegvalue for expression correlation with amplification and homozygous
deletion is shown for each gene within each amplification (wilcox test, one sided, expression
compared above and below 90th percentile of pliody-adjusted CN) and deletion peak
(wilcox test, one sided, expression compared between homozygous deleted and all other
cases) respectively and occasions of significant association between LOH and mutation are
indicated in green (fisher's exact test, one sided). Benjamini & Hochberg false discovery
correction was applied in each of these cases. Purple deletion peaks indicate fragile sites. b,
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Examples of extrachromosomal-like amplifications suggested by very high read support SVs
at the boundaries of highly amplified regions produced from a single copy number step. In
the first example two populations of extrachromosomal DNA are apparent, one amplifying
only MYC and the second also incorporating ERBB2 from a different chromosome. In the
second example an inversion has occurred before circularization and amplification around
KRAS. c, Relationship between copy number and expression in copy humber driver genes in
RNA matched sub-cohort (n=116). A 2D kernel density estimation and a leoss regression
curve with 95% Cls (grey) are shown to describe the data.
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Figure 3. Thedriver genelandscape of EAC.
a, Driver mutations or CNVs are shown for each patient of 551 EACs. Amplification is

defined as >2 copy number adjusted ploidy (2x ploidy of that case) and extrachromosomal
amplification as >10 copy number adjusted ploidy (10x ploidy for that case). Driver
associated features for each driver gene are displayed to the left. On the right, the
percentages of different mutation and copy number changes are displayed, differentiating
between driver and passenger mutations using dNdScv, and the % of predicted drivers by
mutation type is shown. Above the plot are the number of driver mutations per sample with
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an indication of the mean (red line = B).Mean driver events per case in 551 EACsand
comparison to exome-wide excess of mutations generated by dNdBgpression changes
in EAC driver genes in comparison to normal intestinal tissues in RNA matched samples
(n=116). Only genes with expression changes of note are shown.
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Figure 4. Biological pathways undergoing selective dysregulation in EAC.
a, Biological pathways dysregulated by driver gene mutation and/or CNVs in 551 cases.

Wild-type cases for a pathway are not shown. Inter and intra-pathway interactions are
described, and mutual exclusivities and/or associations between genes in a pathway are
annotatedGATA4 and GATA6 amplifications have a mutually exclusive relationship,
although this does not reach statistical significance (Fisher’s exact test, twofsded)7,

OR = 0.52) b, Pairwise assessment of mutual exclusivity and association in EAC driver
genes and pathways. Two sided Fisher's exact test were used and hyper-mutated (>500
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exonic mutations) cases were removed to avoid bias towards co-occurrence, hence n = 510.
RTK; Receptor Tyrosine Kinase pathway.
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Figure5. Clinical significance of driver eventsin 379 clinically annotated EACs.
a, Hazard ratios and 95% confidence intervals for Cox regression analysis across all driver

genes with at least a 5% frequency of driver alteratiogs. 3.05 after BH adjustment,
Kaplan-Meier curves for EACs with different status of significant prognostic indicators
(GATA4 and SMAD4). c, Kaplan-Meier curves for different alterations in the TGF-
pathwayd, Kaplan-Meier curves showing verificati@®4744 prognostic value in Gl

cancers using a pancreatic TCGA coharKaplan-Meier curves showing verification
SMAD4 prognostic value in gastroesophageal cancers using a gastroesophageal TCGA
cohort.f, Differentiation bias in tumors containing events in Wnt pathway driver ggnes.
Relative frequency oKRAS mutations and’/P53mutations driver gene events in females
vs. males (Fisher’s exact test, two sided).
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Figure 6. CDK4/6 inhibitorsin EAC.
a, Drug classes for which sensitivity is indicated by EAC driver genes with data from the

Cancer Biomarkers databaseBfArea under the curve (AUC) of sensitivity is shown in a
panel of 13 EAC and Barrett's esophagus high grade dysplasia cell lines with associated
WGS and their corresponding driver events, based on primary tumor analysis. AUC is also
shown for two control lines: T47D, an ER-positive breast cancer line (positive control), and
MDA-MB-468, an Rb negative breast cancer (negative contr6IL/VEZis a known marker

of resistance to CDK4/6 inhibitors due to its regulation of Rb downstream of CDK4/6, hence
bypassing the need for CDK4/6 activity (see FigcdResponse of organoid cultures to

three FDA approved CDK4/6 inhibitors and corresponding driver events. RTK; Receptor
tyrosine kinase pathway, BC; Breast Cancer.
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