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Abstract

Neuroscience is experiencing a revolution in which simultaneous recording of many thousands of
neurons is revealing population dynamics that are not apparent from single-neuron responses. This
structure is typically extracted from trial-averaged data, but deeper understanding requires
studying single-trial phenomena, which is challenging due to incomplete sampling of the neural
population, trial-to-trial variability, and fluctuations in action potential timing. We introduce

Latent Factor Analysis via Dynamical Systems (LFADS), a deep learning method to infer latent
dynamics from single-trial neural spiking data. LFADS uses a nonlinear dynamical system to infer
the dynamics underlying observed spiking activity and to extract ‘de-noised’ single-trial firing

rates. When applied to a variety of monkey and human motor cortical datasets, LFADS predicts
observed behavioral variables with unprecedented accuracy, extracts precise estimates of neural
dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral
choices, and combines data from non-overlapping recording sessions spanning months to improve
inference of underlying dynamics.

Introduction

Increasing evidence suggests that in many brain areas, the activity of large populations of
neurons is often well-described by low-dimensional dynamicsX&)g These findings

suggest that one can begin to understand the computations of brain areas without observing
all their neurons because these computations can be described by the time-varying activity
and interactions (i.e., dynamics) of a modest number of underlying ‘latent f&&tors’
Recovering these dynamics on single trials is essential for illuminating the relationship
between neural population activity and behavior, and for advancing therapeutic
neurotechnologies such as closed-loop deep brain stimulation and brain-machine interfaces.
However, recovering population dynamics on single trials is difficult due to trial-to-trial
variability (e.g. behavior or arousal state) and fluctuations in the spiking of individual
neurons. Standard analyses sacrifice single-trial information for the sake of better estimates
of trial-averaged neural stafeé8’-11 Current techniques for extracting neural population

states from single trials typically make simplifying assumptions by modeling the underlying
population dynamics as having independent underlying fdétbtsas being linedf—17or

as being switched linek#19

Here we introduce a novel machine learning method based on nonlinear artificial recurrent
neural networks (RNNs), termed Latent Factor Analysis via Dynamical Systems (LFADS,
“ell-fad$). LFADS is based on the simple conceptual idea that neural data can be generated
by a dynamical system. LFADS models the following generic dynamical system,

x(1) =F (x(),u®). (1)
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The state of the dynamical syste(t) is updated by the vector-valued functief), which is
nonlinear and potentially complicated, accepts optional infiytand is seeded by an initial
condition,x(0). LFADS modeld=(), x(0), and optionally(t). By modeling equation (1)

LFADS assumes that the underlying process that produces the observed spiking activity can
be modeled as a dynamical system. The input, if it is used, is constrained to be considerably
less dynamically complex thatt). Without such a condition, equation (1) does not

constrain the data.

The applicability of equation (1) to neural data relies on four assumptions, namely, that
spiking activity on a single trial of a task depends on: 1) underlying dynamics (i.e., rules by
which neural activity evolves in time) that govern the brain area(s) being recorded; 2) trial-
specific initial conditions that reflect the state of the neural population at a specific point in
time; 3) effects of unmeasured inputs from other brain areas, including those arising from
unexpected changes in the task, contextual inputs, or sensory inputs, and 4) Poisson spiking
variability.

We now move towards a concrete implementation that can take observed neural data as an
input and provide estimates of these data’s governing neural dynamics, specifically, its latent
neural state, initial conditions, inputs, and de-noised firing rates (rates). In LFADS, the
underlying dynamics (assumption 1) are generated by an RNN (the "generator"). A core
assumption is that the dynamics of neural data generated by a biological network can be
described by a continuous valued dynamical system. Dynamic "factors" are extracted from
this system (an RNN) and used to generate (and thereby infer) rates for the recorded
neurons. Observed action potentials are modeled as samples from an inhomogenous Poisson
process whose rate corresponds to the inferred firing rate for the given neuron (assumption
4). Initial conditions and input for the generator (assumptions 2 and 3) are extracted from the
observed spiking data for each trial by additional RNNs (the "encoder" and "controller").

Yet, beyond binned spike sequences, no other trial-specific information is supplied (i.e., no
condition or behavioral information).

The strength of this approach lies in the ability of nonlinear RNNs to reproduce the complex
temporal activity patterns that underlie the neural data. In addition, LFADS can find low-
dimensional dynamics that explain the recorded data because the number of factors in the
model may be deliberately constrained. This is consistent with repeated empirical
observations that the dimensionality of neural population activity in areas like motor and
prefrontal cortices is, in many cases, much lower than the number of recorded
neurons:”-20.21(discussed iR?).

Here we apply LFADS to a variety of datasets from rhesus macaque motor (M1) and pre-
motor (PMd) cortices, as well as human M1 (datasets are outlined in Online Methods Table
2; macaque data were previously recorded at Stanford University). We show that rates
extracted by LFADS can be used to estimate behavioral variables (e.g., reaching kinematics)
significantly more accurately than other techniques. We also show in single trials that the
dynamics inferred by LFADS capture previously-uncovered rotational dynamics found in
condition-averaged data, and that the learned dynamical system is predictive of behavioral
conditions (e.g., reach types) that it was not trained to model. Further, we demonstrate that
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LFADS can combine data from non-overlapping recording sessions, each sampling from
separate neural populations and spanning 5 months of recording, to improve its performance
on the individual trials from each recording session. Finally, we demonstrate the ability of
LFADS to infer inputs to a neural circuit by analyzing data from an arm-reaching task
involving a mid-trial perturbation, and by testing whether it can uncover high-frequency
oscillations in the underlying rates associated with local field potentials.

Overview of LFADS

To begin (Figs. 1-4 and Supp. Figs. 1-6), we use a simplified conceptual dynamical systems
model that ignores the input in equation (1), yielding

X)) =Fx@®). (2

This means that beyond Poisson spiking variability, all trial-to-trial variability is captured by
the initial conditionx(0), for that trial. We transition to concrete language to properly
describe the LFADS architecture.

LFADS is a sequential adaptation of a variational auto-enédéeconstructed by

maximizing a lower bound on the likelihood of the observed spiking activity given the rates
produced by the generator network, across all model training trials. Parameters are learned
using backpropagation (full model details and training procedures are gi/arid Online
Methods, and associated source code is available).

Working from output (right) to input (left) in (Fig. 1a), LFADS models the single-trial

spiking observations at tinteas stochastic (Poisson) spike counts generated from a vector of
underlying firing rates;. For neuron, the LFADS-inferred rate; ; provides a de-noised rate

for its observed spiking activity on a trial-by-trial basis. The rates are obtained by
multiplying a vector of dynamic factofgby a readout matrixv'@€ and exponentiating the
resulting quantity. These factors are determined by multiplying the vector of actiyities

the generator by a matri&fa. The activities of the generator’s units depend on two
elements: a trial-specific initial state vectr(one for each trial), and the parameters

defining the connections of the network (fixed across trials after training). The units of the
generator are not meant to correspond directly to any recorded channels, but rather, the
generator is meant to model the dynamics underlying the observed data. The inferred initial
stateg0 is provided by a linear readout of the activity of the encoder. To corgptice a

given trial, the encoder receives a temporal sequence of the vectors of recorded (binned)
spike counts for that trial. To better model the trials, the encoder runs through the trial both
backwards and forwards to compgt: meaning that when generating the trial at any fime
LFADS has access to data before and dfter

Once the model has been trained, spike counts from a specific trial are fed into the encoder,
which infers initial conditions for that trial (Fig. 1a). The encoder compresses the temporal
sequence of spiking data for each trial into a single vector - the "latent code" - which is the
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initial condition to the generator. From this compressed code, the generator infers the factors
and rates of all the recorded neurons across time for the encoded trial (in Supp. Fig. 1 we
apply LFADS to a 1-D pendulum to show how LFADS operates for a simple dynamical
system). Thus, LFADS turns time series of single-trial recorded spike counts into low-
dimensional dynamic factors and underlying rates which generated the observed spikes.

We begin by training LFADS on multielectrode array data (single-trial spiking activity) from
M1 and PMd, recorded while a monkey made reaching movements (for model training
details, see Online methods, and Online Methods Table 1 for all model hyperparameters).
The analyzed trials were 800 ms long and aligned to movement onset (i.e., the time when
arm movement was first detectable). Inferred rates and factors for seven example trials are
shown (Fig. 1b).

We first assessed the validity and accuracy of rates and factors inferred by LFADS from
simulated data for which the ground-truth is known (summarized in Online Methods, section
2.1). These simulations show LFADS outperforms a number of state-of-the-art machine-
learning techniques (GPRA PfLDS!® and vLGB3). Assessing the quality and validity of
results on real data (e.g., Fig. 1b) is difficult because the ground-truth is either unknown or
non-existent (e.g., because single-trial "instantaneous" firing rates are abstractions rather
than experimentally measurable phenomena). Thus, by “validation”, our intent is to
demonstrate that applying LFADS, i.e., applying a nonlinear dynamical systems model to
the data, provides an informative description of the observed data by leading to superior
correlation with behavior such as kinematics, or reproducing on single trials phenomena
previously reported using condition-averaging.

We next tested the validity of LFADS-inferred factors and rates by verifying that they:
reproduce features seen in common neuroscientific analyses (PSTHSs, cross-correlations; Fig.
2, Supp. Data 1-3); are predictive of held-out, simultaneously-recorded neurons (Fig. 2);
predict details of behavior (Figs. 2, 4, 5, Supp. Fig. 6); exhibit single-trial features

previously demonstrated in trial-averaged analysis (Fig. 3); predict held-out conditions (Fig.
3); and correlate with local field potentials (LFPs) (Fig. 6).

Validation of LFADS inferences using a complex reaching task

We applied LFADS to 202 neurons simultaneously recorded from M1/PMd during a “Maze”
task (see Online Methods) in which a monkey made a variety of straight and curved reaches
(Fig. 2a; dataset consisted of ~2300 individual reach trials spanning 108 reach types). In all
examples we show, LFADS was trained to model observed spiking data from individual

trials withoutany information about task conditions or behavioral parameters (e.g. reach
kinematics or EMG).

We first compared LFADS-inferred rates to smoothed spikes and to Gaussian Process Factor
Analysis (GPFA?)-inferred rates (Fig. 2b). Condition-averaged smoothed spikes are
commonly known as the peri-stimulus time histogram (PSTH); these assume that rates are
smooth in time and consistent across repetitions of an individual condition, while GPFA
assumes that population activity is low dimensional and smooth in time on several
characteristic timescales. Finally, LFADS assumes that rates are predictable, i.e., they evolve
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from an initial condition of a dynamical system, and also potentially low-dimensional. These
differing assumptions lead to different condition-averaged and single-trial rates.

Qualitatively, the condition-averaged LFADS-inferred rates were similar to the PSTHs
calculated from the observed spiking data. We also compared single-trial LFADS-inferred
rates to single-trial rates constructed by smoothing spikes or using GPFA. The single-trial
LFADS-inferred rates show far more structure than those from smoothing spikes or GPFA.
When compared to GPFA, the LFADS-inferred rates preserved many of the faster timescale
features of the neurons’ PSTHs (4 neurons shown; all PSTHSs are included as Supp. Data 1).
Finally, we showed that LFADS-inferred rates reproduce patterns of correlations across time
(Supp. Data 2) and neurons (Supp. Data 3) for different behavioral conditions. As with the
PSTHs, the cross-correlograms inferred by LFADS reproduced the structure of the empirical
cross-correlograms, and particularly preserved faster timescale temporal features better than
GPFA.

LFADS encodes each individual trial by an initial state vedoy. (To test whether there

was behaviorally-relevant structure in tfizencoding, we applied a widely used nonlinear
dimensionality reduction technique, t-distributed stochastic neighbor embedding (t-SNE;
Fig. 2c). After using t-SNE to reduce the dimensionality to 3, we color coded the ~2300
points based on the angle of the target of the upcoming reach. As shown, t-SNE uncovered
clear structure in the learngl encoding, specifically, trials with similar kinematic structure
are encoded with similar initial conditions (further detail, e.g. separation between curved vs.
straight reaches, can be seen in Supp. Video 1). Critically, this demonstrates that the
generator is not learning arbitrary sequences to model each trial, but instead learning an
organized representation that preserves the relation of the trials in kinematic space.

We also tested whether the LFADS-inferred representations were informative about
behavioral parameters, specifically, the trajectory of the monkey’s hand movements (Fig.
2d). Hand velocities were estimated from LFADS-inferred rates using cross-validated
optimal linear estimation (OL46). Using the full population of 202 neurons, decoding using
LFADS-inferred rates dramatically outperformed results obtained by binning or smoothing
spike trains, or by using GPFA (averagedR0.90 across the dataset, vs. 0.66, 0.69, and

0.34 for smoothing, GPFA, and binning, respectively. Note: for offline analysis, the
smoothing approach is a generalization of common brain-machine interface decoders such
as the Kalman filter; detailed #{ and Online Methods). We also determined performance

as a function of population size by drawing random sub-samples from the neural population
(Fig. 2e). LFADS using 25 (X velocity) or 50 (Y velocity) neurons outperformed the other
techniques applied to the full population of 202 neurons. The bin size and number of factors
used by LFADS (5 ms and 20, respectively) were held constant for all models across all
population sizes, while the bin size and number of factors used for GPFA were chosen to
optimize decoding accuracy.

We also tested whether the LFADS-inferred low-dimensional factors were predictive of
held-out data (Fig. 2f). Because the factors reflect the full neural population dynamics, they
should be predictive for neurons that were not used to train the model (i.e., held-out
neurons). We fit LFADS models to subsets of neurons (25, 50, 100, and 150 neurons were
drawn from the full population of 202 neurons). We then used a standard Generalized Linear
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Model (GLM) to relate the LFADS-inferred factors to the held-out neurons’ spike counts in
a cross-validated manner. For each held-out neuron, a GLM was trained to relate inferred
factors to observed spike counts for a training subset of trials, and rates were predicted for
that neuron for a test subset using the trained GLM. The rates produced by LFADS-inferred
factors were predictive of spiking activity for held-out neurons on held-out trials, providing
improved single-trial likelihood over the factors inferred by GPFA (p&16r all

population sizes, Wilcoxon signed-rank test).

Uncovering rotational dynamics in motor cortex

We next tested whether the population dynamics inferred by LFADS on single trials
exhibited dynamic features that have previously been identified by analyzing trial-averaged
data, specifically, the rotational dynamics underlying M1/PMd firing rates that accompany
the transition from pre- to peri-movement activity in monReysd humaris Rotational

dynamics were consistent across the full range of movements being performed (Fig. 3a,
monkey J, 108 reach conditions of the maze dataset, and Fig. 3c, participant T5, 8 attempted
movement conditions in a “center-out” task). These results were obtained by averaging the
rate of each neuron across all trials corresponding to a particular reach condition (condition-
averaging), and then applying a form of dimensionality reduction (fp@#though
condition-averaging reveals the basic oscillatory dynamics, single trials provide noisy and
unstructured views of the neural trajectories (Figs. 3b & 3d). In contrast, applying jPCA to
the LFADS-inferred rates shows that LFADS not only reproduces the previously-extracted
oscillatory dynamics on a condition-averaged basis (Figs. 3e & 3g), it also demonstrates, for
the first time, the presence of rotational dynamics on single trials (Fig. 3f, Supp. Video 2,
monkey J, 2296 maze reaching trials, and Fig. 3h, participant T5, 114 center-out movement
attempts).

We next tested whether the LFADS generator learns dynamics that generalize to new
conditions (Fig. 3i-k). If the dynamical systems model of M1 is appropriate, then after
learning the population’s underlying dynamics, it should be possible to generate activity
from any novel, unseen reaching condition simply by knowing the proper initial state. After
setting the initial state, the learned dynamics model should then generate the appropriate
time-varying activity for the novel condition. To test whether this is the case, data were split
into training conditions and held-out (validation) conditions based on target angle (Fig. 3i).
(Briefly, the workspace was uniformly divided into angular bins, and conditions were
grouped by the position of their reach target. This resulted in 19 sets of conditions; see
Online Methods.) For each set, an LFADS model was trained solely on the 18 other training
condition sets, and then evaluated on the held-out set. We then collated LFADS-inferred
rates for all the held-out trials (combining data from 19 LFADS models - one model per
held-out condition set), and projected them into the jPCA plane previously found using all
data (Fig. 3j). As shown, even though the generator had not been trained on the held-out
trials, it still modeled them with rotational dynamics, in the same plane as found previously.
Finally, we compared the initial position in the jPCA plane found when a trial is held-in, vs.
held-out, and found a clear correlation (Fig. 3k). This proof-of-principle analysis
demonstrates that LFADS can learn dynamics that generalize to completely novel
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conditions, provided datasets with sufficient trial counts and diverse conditions to capture
the neural population’s dynamics.

Stitching together data from multiple sessions

Thus far, we have demonstrated the application of LFADS to data recorded from single
neural populations. However, experiments are often performed across multiple sessions, with
different neurons recorded on each session (e.g., using acute probes that are placed
independently each session). LFADS provides a new ability to "stitch" such data together to
create a more powerful and comprehensive dynamical model. The aim is similar to previous
efforts to relate separately recorded neural population aéfivi®ybut importantly, LFADS

relates the separate sessions through a learned nonlinear dynamical system, and does not
require any overlap between the populations of recorded neurons.

In experiments where a subject is engaged in the same behavior across recording sessions
and the same brain region is being recorded, a reasonable hypothesis is that separately
recorded neural populations participate in the same underlying dynamics. LFADS is well-
suited to leverage this structure because of its two-step process of inference (Fig. 4a). To
stitch multiple sessions into a common dynamical model, we configure LFADS to use per-
session “read-in” matricas NPt mapping from observed spiking to input factors, and
“read-out” matricedVa€ mapping from factors to neuron rates. The shape of these
matrices can vary to match the number of neural channels recorded in each dataset.
Importantly, a single encoder, generator, and factor mafk are shared across sessions
and learned from all sessions. The per-session read-in and read-out matrices are learned
using data from only the corresponding session (or precomputed; see Online Methods).

We tested this approach using neural activity from monkey M1 and PMd during a center-out
instructed-delay reaching task, recorded using linear multielectrode arrays (monkey P; 24
channel V-probes, Plexon). We trained one stitched multi-session LFADS model on a
combined dataset consisting of 44 recording sessions that spanned 162 days (Fig. 4b shows
locations of the 38 individual penetration sites in the precentral gyrus, and Fig. 4c shows
sample recordings from 6 sessions). We then examined the condition-averaged factor
trajectories inferred for each recording session. These trajectories are highly similar for a
given reach direction regardless of the recording session (Fig. 4d), a key indication that
LFADS found a generator capable of describing all datasets with a consistent set of factors.
Single-trial factor trajectories also exhibited consistency across recording sessions (Fig. 4g,
Supp. Fig. 5, Supp. Video 3).

We then compared the multi-session stitched LFADS model to 44 models trained using data
from individual sessions. This comparison tests whether access to multiple M1 recordings
allows multi-session LFADS to better model the underlying population dynamics. We
assessed the quality of the LFADS models by asking how informative the fdgtassré in
predicting behavioral observations, including reach kinematics and reaction times. In this
case we decoded from the factors because, for the multi-session model, they are common
across all recording sessions and therefore are enriched by the additional sessions.
Consistent with previous analyses, the single-session LFADS models produced factors that
were substantially more predictive of kinematics than Gaussian-smoothed spiking (mean
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improvement of 0.32 in 8 p < 108, Wilcoxon signed-rank test) or GPFA (mean
improvement of 0.27 in 8 p < 108, Wilcoxon signed-rank test; Fig. 4e), indicating that
LFADS identified useful dynamic representations even from the limited observations from
individual recording sessions. Importantly, however, the stitched LFADS model produced
factors that were considerably more informative than the single-session LFADS models,
resulting in significantly improved kinematic predictions, even when using a single decoder
across all sessions (mean increase of 0.22,ipR 108, Wilcoxon signed-rank test; Fig.

4e,f). We note that the lower decoding fidelity in the current experiment, in comparison to
Fig. 2, likely arises from the difference in recording methodologies: the dataset from Fig. 2
consisted of 202 neurons recorded using two 96-channel Utah arrays (192 total channels).
We also predicted reaction time from LFADS factors (Supp. Fig. 6); again, the stitched
model significantly outperformed the single-day models (mean improvement in correlation
coefficient between predicted and measured reaction times: 0.15; 7, \il@zoxon

signed-rank test).

Inferring inputs to a neural circuit

We next adapt LFADS to model the more general dynamical system of equation (1), i.e., we
introduce inputs to allow the neural population activity to be modeled as a non-autonomous
dynamical system. This capacity is critical when a neural population is driven by
unmeasured inputs from other brain areas, including those arising from unexpected changes
in the task, contextual inputs, or sensory inputs. Conceptually, inferring the presence of
inputs requires building an accurate model of the observed population’s internal dynamics.
With such a model, it should be possible to determine when data deviate from the model’s
dynamic predictions. This indicates that an external perturbation to the system occurred,
which can be captured as @aferredinput - inferred because LFADS models the input

which supplies the deviation from the unperturbed dynamics (we outline caveats in the
Discussion). The remainder of the results (Figs. 5-6, Supp. Figs. 7-9) use this more general
LFADS model. For these examples, this means that beyond Poisson spiking, trial-to-trial
variability is captured by both the initial conditiggand the inferred input; for that trial.

To test LFADS's ability to infer inputs, we analyzed data from a “Cursor Jump” task in
which a monkey guided a cursor, controlled by the monkey's hand position, towards upward
or downward targets (monkey J; see Online Methods). The target position was shown to the
monkey starting at the beginning of the trial. On “unperturbed” trials (75%), the cursor
consistently tracked the position of the monkey’s hand, and the monkey made straight
upward or downward reaching movements to acquire targets. On “perturbed” trials (25%),
unpredictable shifts to the left or right between cursor and hand position forced the monkey
to make corrective movements to acquire the target (Fig. 5b). We applied LFADS to spiking
activity from multielectrode arrays implanted in M1/PMd (Fig. 5c), allowing four inferred
inputs (choice of dimensionality detailed in Online Methods). We analyzed the first 800 ms
of each trial, beginning at target onset (jumps occurred ~350-550 ms later).

LFADS used inferred inputs to model information flow into the generator with timing that
was consistent with the trial structure. Prior to the trial, the monkey had no information
about the target position, which was cued at the beginning of the trial (target onset). Around
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this time, the inferred inputs are distinct with respect to target position (Fig. 5d, e.g. Input
dim 1, comparing inputs inferred for Upward vs. Downward trials), but are not distinct with
respect to perturbation type (i.e., red, blue, and grey traces are overlapping), as perturbations
occurred much later in the trial. In contrast, around the time of perturbation, LFADS inferred
different input patterns for right- and left-shift perturbed trials and for unperturbed trials

(Fig. 5d, red, blue, and grey traces, e.g. Input dim 2). Furthermore, the timing of these inputs
is well-aligned to the time of the perturbations (which were variable), and the perturbation
direction specificity of these inputs were similar across downward and upward reaches (Fig.
5d, top and bottom panels). The trends were also visible on single-trials (Supp. Fig. 10). We
applied t-SNE to the inferred single-trial inputs around the time of the perturbation (Fig. 5e),
which revealed that they cluster according to perturbation identity on a single-trial basis. We
note that the exact shape of the inferred inputs may not resemble physiological signals. In
addition, because the LFADS encoding is acausal, the timing of the inputs is not required to
be causal relative to the timing of the perturbations (see Discussion). Nevertheless, this
example demonstrates the ability of LFADS to predict, on average, the presence, identity,
and timing of inputs to motor cortex related to task perturbations.

LFADS rate oscillations correlate with local field potentials

Another known dynamic feature of motor cortical activity is the rhythmic spiking that often
occurs during the pre-movement period, typically phase-locked to accompanying LFP
oscillations (15-40 Hz; e.g?93%. We tested whether LFADS is capable of extracting such
high-frequency dynamic features. Previous work has hypothesized that spike-LFP phase
locking is reflective of communication between brain ateaherefore, we reasoned that

inputs were necessary to model these high-frequency oscillations. Indeed, when LFADS was
allowed to use inputs, high-frequency oscillations were evident in the inferred rates (Fig.

6a). Although the model was not given access to the LFPs, the inferred oscillations aligned
well with LFPs and with structure apparent in the multi-unit spiking activity (Fig. 6a).

We studied the spike-LFP phase locking in monkey and human data using cross-correlation
analysis (Fig. 6b, black traces). Cross-correlations were computed on a single-trial basis,
using data from the first 250 ms (monkey) or 300 ms (human) of each trial, and then
averaged over trials. As shown, this is a single-trial phenomenon: high-frequency
oscillations in the cross-correlograms disappear when they are computed after shuffling trial
identity (Fig. 6b, blue traces).

We also studied the correlation between the LFADS-inferred rates and the LFP on single
trials, which was strikingly similar to the spike-LFP phase locking (Fig. 6b, red traces),
confirming LFADS's ability to uncover high-frequency dynamic features. We note that we
were unable to robustly reproduce the correlations between LFADS-inferred rates and LFP
on held out trials without the use of inferred inputs. This suggests that these fast dynamics
are not dynamical in the sense of being able to be generated with an autonomous dynamical
system using only an initial condition to describe trial-to-trial variability.
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Discussion

The increasing ability to record from large ensembles of neurons has inspired a shift from
emphasizing the properties of individual neurons and their responses to exploring the
emergent properties of neural populations. Such efforts reinforce theoretical work that
suggests that emergent dynamics may serve as one of the brain’s fundamental computational
mechanisms (reviewed #%). LFADS provides a novel approach toward building empirical
models of the dynamics underlying population activity, and leverages these dynamics
models to infer latent representations that are considerably more informative about subjects’
behaviors than the observed population activity itself. The close link between the LFADS-
inferred representations and subjects’ behaviors, especially on a single-trial, moment-by-
moment basis, lends strong evidence to suggest that network states and dynamics, rather
than the properties of individual neurons, are a key factor in understanding the computations
performed by brain areas and how they ultimately mediate behaviors.

How seriously should the structure of the LFADS generator be taken as a model of a brain
region one is studying? More theoretical work is required to answer this question. Artificial
RNNs and biological RNNs provide different substrates for implementing computation
through dynamics, and the LFADS architecture does not resemble the biophysical
architecture of the cortex. Of course, if one desires to study biophysical detail, then it is
critical to build a biophysically detailed network model. We advise against making
inferences about properties of the biological network by studying the structure of the
generator. Instead, we believe that LFADS can identify abstract dynamics that approximate
the progression of neural state changes related to spiking, without modeling the specific
biological components, ultimately producing an abstract model that captures the
computations being performed by the network under study.

LFADS also provides a new avenue toward distinguishing the dynamics internal to a neural
circuit from the influence of unmeasured input from other brain regions, which is a vexing
challenge in neuroscience. Although the nature of the inputs inferred by LFADS is
informative about the presence and identity of perturbations, caution should be used when
interpreting the precise shape and timing of these inputs. In addition to reflecting actual
inputs to a neural ensemble, LFADS-inferred inputs may capture model mismatch (e.g.
biophysical spiking vs. Poisson process) and measurement noise. There is no constraint
requiring the inferred inputs’ shapes to conform to physiological processes. Furthermore,
their timing may be imprecise relative to the timing of the perturbations they describe.
Finally, due to the bidirectional encoders used by LFADS, the generator has access to the
entire data sequence. There is no constraint forcing the inputs to be causal with respect to the
task perturbation. Caveats aside, both the presence, timing, and qualitative shape of the
inferred input in the Cursor Jump task (also two synthetic examples) are reasonable,
providing evidence that inputs inferred by LFADS are useful for thinking about neural
computations by disambiguating internal dynamics from input driven dynamics.

A guiding factor in choosing model hyperparameters is constraining the complexity of the
reduced-dimensional representations. This is especially critical in the case of the inferred
inputs, which provide a potential method for the system to forego modeling dynamics
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altogether when reconstructing the data. In a limit case, one could match the number of
inferred inputs to the dimension of the observed data, allowing a potential identity mapping
that would produce inputs that essentially replicate the observed spike times (a concern
common to all auto-encoders). Such a model might produce an accurate reconstruction of
the observed data without “learning” anything useful. Due to this confound, reconstruction
cost is not an ideal metric for evaluating the performance of a model in inferring the
population’s dynamics, and future work must address this challenge. At present, a
reasonable approach is to use as few inferred inputs as possible to force the LFADS
generator to model the population’s underlying dynamics.

LFADS provides several capabilities that will be critical to understanding the role of
computation through dynamics in many brain areas that have previously been difficult to
study. For example, modeling a populatiomigerna/dynamics may be crucial in studying

neural computations that have no clear, obsenatternabehavioral correlates on a
moment-by-moment basis, such as integration of evidence during decision-making tasks, or
attentional regulation. Additionally, a causal variant of LFADS could improve performance
of therapeutic neurotechnologies that rely on real-time neural state estimation, such as brain-
machine interfaces (BMIs), which decode movement intention in real-time to control
external device¥—37 or closed-loop neuromodulation approaches, which require real-time
neural state estimates to guide stimulatfoft® In addition, the ability of stitching to

improve neural state estimates by combining multiple recordings may improve stability of
these devices. Taken together, the capabilities produced by LFADS have the potential to
yield powerful new approaches to understand neural computation and dynamics in many
new frontiers, and to apply this knowledge towards the treatment of diverse neurological
disorders.

Online Methods
1 The LFADS Model

1.1 Code availability

. Source code for LFADS can be foundtats://github.com/tensorflow/models/
tree/master/research/Ifads

. Source code for interfacing LFADS with MATLAB can be founbtits://
github.com/Ifads/Ifads-run-manager

. Extensive technical documentation for the source code can be fauruc At
Ifads.github.io/lfads-run-manager

1.2 The variational auto-encoder— The LFADS model is an instantiation of a
variational auto-encoder (VAE3*3extended to sequences, ad4or 4°. The VAE consists
of two components, a decoder (also called a generator) and an encoder. The generator
assumes that data, denotedkbgrise from a random process that depends on a vector of
stochastic latent variablessamples of which are drawn from a prior distributigz).
Simulated data points are then drawn from a conditional probability distribé&idm), (we
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have suppressed notation reflecting the dependence on parameters of this and the other
distributions we discuss).

The VAE encoder transforms actual data vectarsito a conditional distribution over

QAz|x). z|x) is a trainable approximation of the posterior distribution of the gene@ibr,

xX)  Rz|x) = AX|z) K2)/ AX). Az|x) can also be thought of as an encoder from the data to a
data-specific latent code which can be decoded using the generator (decoder). Hence the
auto-encoder; the encod@maps the actual data to a latent stochastic “code", and the
decoderPmaps the latent code back to an approximation of the data. Specifically, when the
two parts of the VAE are combined, a particular data point is selected and an associated
latent codez (we usez to denote a sample of the stochastic variapie drawn fromQ(z|x).

A data sample is then drawn frartx|z), on the basis of the sampled latent variable. If the
VAE has been constructed propeRshould resemble the original data point

The loss function that is minimized to construct the VAE involves minimizing the Kullback-
Leibler divergence between the encoding distribugzix) and the prior distribution of the
generatorHz), over all data points. In the VAE framewadfg) is typically defined as a
Gaussian prior whose parameters are independent of the data. The rationale is that even a
simple distribution, such as a Gaussian, can be transformed into a complex distribution by
passing samples of the Gaussian distribution through a powerful nonlinear function. One
optimizes the parameters in order to maximize the likelihood of the data while reducing the
distance betwee@®z|x) and Az|x). In the end, statistically accurate generative samples of
the data can be created by running the generator model seeded with sampkz)frioen
accurate samples of the data can be generated from white noise.

We now translate this general description of the VAE into the specific LFADS

implementation aimed at high-dimensional, simultaneously recorded neural spike trains.
Borrowing some notation from (Gregor et al., 2015), we denote an affine transformation (

W u + b) from a vector-valued variableto a vector-valued variableasv = W(u), we use

[-,] to represent vector concatenation, and we denote a temporal update of a recurrent neural
network receiving an input agate= RNNAstate-1,input), for an RNN named 'a’. Itis
understood that if there are two networks modules, such as RNNs, with different names, e.g.
RNMA.,.) andRNAN.,.), these network modules do not share parameters.

1.3 LFADS Generator— The neural data we considgy; 7; consists of spike trains from

D recorded neurons. Our reference implementation of LFADS also supports continuous
Gaussian distributed data, but as this is not central to the main application, we focus
exclusively on spike trains in what follows. Each instance of a vegtprs referred to as a
trial, and trials may be grouped by experimental conditions, such as stimulus or response
types. The data may also include an additional set of observed vargabiethat may refer

to stimuli being presented or other experimental features of relevance, such as kinematics.
Unlike x1.7; the data described lay.ris not itself being modeled, but it may provide
important conditioning information relevant to the modeling©f. This introduces a slight
complication: we must distinguish between the complete dataxsetaf .7} and the part of

the data set being modeled; . The conditional distribution of the generatgp|z), is only
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overx, whereas the approximate posterior distributigfz|x,a), depends on both types of
data.

LFADS assumes that the observed spikes describgg. pgire samples from a Poisson

process with underlying rates. 7. Based on the dynamical systems hypothesis outlined in

the introduction of the main text, the goal of LFADS is to infer a reduced set of latent
dynamic variabled;; . ; of dimensionF, from which the firing rates can be constructed. The
rates are determined from the factors by an affine transformation followed by an exponential
nonlinearity,r 1-7= expW’@§f1.7)). Note that exp(-) is the inverse canonical link function

for the Poisson distribution, making it a natural choice to keep the Poisson rate variable
positive. The choice of a low-d representation for the factors is based on the observation that
the intrinsic dimensionality of neural recordings tends to be far lower than the number of
neurons recorded, e $7:20 and se&? for a more complete discussion.

The factors are generated by a recurrent nonlinear neural network and are characterized by
an affine transformation of its state vecfqry = W/29g;.7), with g, of dimension\.
Running the network requires an initial conditig which is drawn from a prior

L8 . . :
distributionp O(go). Thus,gg is an element of the set of the stochastic latent variables

discussed above.

There are different options for sources of time-dependent input to the recurrent generator
network. First, as in some of the examples to follow, the network may receive no input at all.
Second, it may receive the information contained in the non-modeled part of theg data,

in the form of a network input. Instead, as a third option, we introduce an inferred{nput
When an inferred input is included, the set of stochastic latent variables is expanded to
include it,z = {gg,u;1.7}. At each time stepy;is drawn from a prior distributiof{uju 1)

u
that is auto-regressive, with l(ul) defining the distribution ovary. (see section 1.8).

The LFADS generator with inferred input is thus described by the following procedure and
equations. First an initial condition for the generator is sampled from the prigr on

g, ~ POg)=,0.D, (1)

with x a hyperparameter. At each time stepl,...,7, an inferred inputi,, is sampled from

its prior and fed into the network, and the network is evolved forward in time,

Pla),  ifr=1
P () e @)

=

P'(u,|u, _,), otherwise
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g = RNNgen(gt -1 ﬁt) ®3)

f, =W“g) @

= ep(WE)

X, ~P0iss0n(xt|rl). (6)

Here “Poisson” indicates that each component of the spike veésogenerated by an
independent Poisson process at a rate given by the corresponding component of the rate
vectorr ;. The prior for botlgy anduq are diagonal Gaussian distributions. The priowufor

with > 1 is an auto-regressive Gaussian prior, with a learnable autocorrelation time and
process variance (see section 1.8 for more details). We chose the Gated Recurrent Unit
(GRUY* as our recurrent function for all the networks we use (see section 1.7 for
equations), including? VA9 We have not included the observed daitathe generator

model defined above, but this can be done simply by incluajiag an additional input to

the recurrent network in equation 3. Note that doing so will make the generation process
necessarily dependent on including an observed input. The generator model is illustrated in
Supp Fig. 11. This diagram and the above equations implement the conditional distribution
RAX|z) = Ax|{go,u1.7}) of the VAE decoder framework.

1.4 LFADS Encoder— The approximate posterior distribution for LFADS is the product
of two conditional distributions, one fgp and one fou, Both of these distributions are
Gaussian with means and diagonal covariance matrices determined by the outputs of the
encoder or controller RNNs (see Supp Fig. 12 and below). We begin by describing the

network that definngo(gO

X, a). Its mean and variance are given in terms of a v&sot

by

80
ugO = WH (Egen) (7)

80

60 =exp(%W" (Ege")). (8)
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E9¢7is obtained by running two recurrent networks over the data, bidirectionally. One RNN
runs forward (front= 1 tof= 7) in time and the other RNN runs backwards (from7 to ¢
= ]_)'

e(tgen, b _ RNNE&™ b(e(tgin,lb’ [Xt’ at]) 9

e/ = RNNS (e [x,a])  (10)

with e§ei’f andegm’f learnable biases. Once this is dd&€"is the concatenation

RS = [efen efend] (1)

Running the encoding network both forward and backward in time alt§ff&o reflect the
entire time history of the daigq.randa;. 7= Finally, we sample initial conditiorg,

according to the following distribution

g8 ~ ng(go|x’a)=/V(g0|"g0’6go) (12)

o . g L8 .
for a normal distribution with meaqo and standard deV|at|(a:|}0 for the/’ element ofy,

The approximate posterior distribution foris defined in a more complex way that involves
both a second set of forward-backward encoder RNNs and another RNN called the
controller. The forward and backward encoder RNNs provide the input to the controller

RNN, and are defined at tinfevith state variableg"-* ande*”"/ that are defined by

equations identical to 9 and 10 (although with different trainable network parameters).
Finally, the time-dependent input to the controller RNN is defined as

E;’on — [econ,b econ,f] ) (13)

t Tt

Rather than feeding directly into a Gaussian distribution, this variable is passed through the
controller RNN, which runs forward in time with the generator RNN and also receives the
latent dynamic factof.4 as input,

¢ = RNNCOH(ct -0 [Efon’ f,_ 1]) - (14
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Thus, the controller is privy to the information abrut-anda;.-encoded in the variable
E*", and it receives information about what the generator network is producing through the

latent dynamic factdk.1. It is necessary for the controller to receive the factors so that it
can correctly decide when to intervene in the generation process. BEcadspends on
bothgg anduy.. 1, these stochastic variables are included in the conditional dependence of
the approximate posterior distributi@{(ujuy..1,90.X1: 7:21:7). The initial state of the
controller networkeg, is defined as a trainable bias initialized to the 0 vector.

Finally, the inferred input);, at each time, is a stochastic variable drawn from a diagonal
Gaussian distribution with mean and log-variance given by an affine transformation of the
controller network state,

u, ~ Q”(ut|x, a) = ‘/V(“t““l?’ qu) (15)

with

u
W =w'e) o

o/ =exp(%W”u(ct)). (17)

We control the information flow out of the controller and into the generator by applying a
regularizer oru; (a KL divergence term, described in Sections 1.6 and 1.10), and also by
explicitly limiting the dimensionality o, the latter of which is controlled by a
hyperparameter.

1.5 The full LFADS inference model— The full LFADS model (Supp Fig. 12) is run
in the following way. First, a data trial is chosen, the initial condition and inferred input
encoders are run, and an initial condition is sampled from the approximate posterior,

8 & . .
gy~ ./V(g0|u 06 0). Then, for each time step from 1 Tpthe generator is updated, as well

as the factors and rates, according to

¢, =RNN“"(c,_[E<"f,_,]) (18)

W =We) (9
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of =ex3W(c)) @0

G, ~Auule!) (@)

t

g = RNNgen(gt— 1 ﬁt) (22)

£, =W*g) (23

t

r, = exp(Wmte(ft)) (24)

t

X, ~Poisson(x|r). (25)

After training, the full model can be run, starting with any single trial or a set of trials
corresponding to a particular experimental condition to determine the associated dynamic
factors, firing rates and inferred inputs for that trial or condition. This is done by averaging
over several runs to marginalize over the stochastic varighkasdu,. 7. Typically, equation

25 is not executed, unless one explicitly desires to generate spikes.

1.6 The loss function— To optimize our model, we would like to maximize the log
likelihood of the data, plog AX;:7), marginalizing over all latent variables. For reasons of
intractability, the VAE framework is based on maximizing a variational lower baandn

the marginal data log-likelihood,

log P(x,.;) > %L =" - FKL - (26)

Z* is the log-likelihood of the reconstruction of the data, given the inferred firing rates, and

KL is a non-negative penalty that restricts the approximate posterior distributions from

3,1{ L

deviating too far from the (uninformative) prior distributicn® and are then defined as
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t=1

T
L = < Z log (Poisson(xtlrl))> (27)
go':T

KL =<DKL(‘/V(go|ugO’“go)|‘Pgo(go)»go + (28)

P))

gy

= (D (w1 0%)

T

22 Dy (M (w i’ o) | [P(u ], _ )
t=

)

gy U:T

where the brackets denote marginalizations over the sub-scripted variables. Evaluafing the

+ 1 KL terms is done analytically for the Gaussian distributions and via sampling for the
auto-regressive prior; the formulae for the Gaussians are found in Appendix B of (Kingma &
Welling, 2013). We minimize the negative bourdz, using the reparameterization trick for
Gaussian distributions to back-propagate low-variance, unbiased gradient estimates (Kingma
& Welling, 2013). These gradients are used to train the system in an end-to-end fashion, as
is typically done in deterministic settings.

1.7 GRU equations— For clarity, we use the common variable symbols associated with
the GRU, with the understanding that the variables represented here by these symbols are
not the same variables as those in the general LFADS model descriptiaptHeoinput and
h;the hidden state at timfethe GRU update equatiom;= GRUX;hx1), is defined as

r, =o(W(x.h,_,]) (29

t ror—1

u = G(W“([xt, h, _ 1])) (30)

¢, =tanh(W[x,r,0h,_])) (31)

t ot

h, =llt®ht_1+(1—llt)OC

(32)

ad

with © denoting element-wise multiplication aadienoting the logistic function.
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1.8 Autogressive prior for inferred input— A zero-mean auto-regressive process
with one time lag (AR(1)) is defined by

s() =asit—1)+e(n), (33)

with 0 <a < 1 and noise variable(? drawn from.s(o, ag) An equivalent formulation for
AR(1) process is to define andag in terms of a process autocorrelati@nand process
variancenf,, asa = exp(-1f) ando? = (ri(l - (12>. To make the process distribution

stationary the correct distribution fs(0) is /V(O, ai) Applying this to LFADS, the prior for

u,with £> 1 is an independent AR(1) process in each dimension, such that #r the
element ofu; an autocorrelatior; and process variane% ; are initialized to user-defined

initial values.

1.9 Modifications to the LFADS algorithm for stitching together data from

multiple recording sessions— To accommodate multiple recordings sessions, as in Fig.

5 of the main text, we make minor modifications to the LFADS architecture. In particular,

we allow each separate recording session to have unique "read-in" and "read-out" adaptor
matrices. The reasons are both practical and conceptual. Practically, a different number of
units are recorded in each recording session; consequently, the number of inputs and outputs
to the LFADS algorithm needs to change accordingly. Conceptually, the hypothesis of most
investigators when recording in the same area across multiple sessions is that they are
recording different measurements of the same underlying (dynamical) system. Therefore,
LFADS allows a different input and output transformation for each recording session to
handle the different measurements, but otherwise LFADS models all the data with the same
generative model, with shared parameters across all recording sessions, to allow different
sessions’ measurements to improve the underlying model. The encoder network, generator
network, and matriV/2¢ mapping from generator units to factors remain shared.

Beginning with the simpler case of the read-out matrices, which map from factors to
recorded units, we modify equation 5, replacing it with equation 12 to change matrices as a
function of recording session, thus introducing a session imdieno the notation

r, =exp(W;aze(f S, [)), (34)

where the dimensions wga’e are now the number of units in the sessi@g by the

number of factors in the LFADS modé, the latter of which is independent of the session.

We now address the read-in matrices. Without multiple recording sessions, we simply feed
the recorded spikes; into the encoders (equations 9 and 10), single trial by single trial. To
handle multiple sessions’ data, we modify this practice by introducing a per-session read-in

matrix,Wi”p“’. These read-in matrices map from recorded units to "input factors". Then, for
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the bidirectional encoding RNN fg0, we modified equations 9 and 10 by inputting the
linearly transformed spikes, yielding

efft"’b =RNNge”’b(efft";rbl,[Wi””"‘(xs’t),at]) (35)

el = RNNSS (@S W (x )a). (36)

>

where the dimensions 8!"”"(.) areFx Ds We modify the bidirectional RNN encoder for

input to the RNN controller in the same way. Otherwise the LFADS architecture is identical
to the standard use case, with the rest of the parameters of the LFADS architecture shared
across all recording sessions.

We computed appropriate initial parameter settings for both the read-in and read-out
matrices using a principal components regression technique. Briefly, we assembled a matrix
of within-condition averaged firing rates for each unit across all sessions, with dimension
equal to the total number of units x number of time poingd®x 7. We performed

principal components analysis on this matrix to reduceAtgancipal components,

equivalent to the number of factors in the model, yieldikgar matrix of principal

component (PC) scores. For each session, we regressed the matrix of PC scores against the
condition-averaged firing rates recorded in that session. The resulting matrix of regression
coefficients, which best reconstructs a set of shared PC scores from each session’s firing

rates, was used as the initial read-in matrix for that sessﬂidﬁf’. The read-out matrix

W;‘”K for the session was initialized to the pseudoinvers&i’éﬂ”t. These read-in and read-

out matrices can be thought of as seeding the multi-session LFADS model with a
correspondence across recording sessions. The read-in and read-out matrices are learned as
parameters from the data from the corresponding session simultaneously with the shared
parameters. Optionally, the read-in matrices can be treated as fixed to encourage that LFADS
to use a consistent representation of similar trials, e.g. trials from the same behavioral
condition. We used this fixed read-in matrix approach in the dynamical stitching example in
the main text.

We train the model by selecting one dataset at a time at random (e.g. the first session), and
the correct read-in and read-out matrices are then used (the matrices associated with the first
session). To generate a mini-batch of gradients, the algorithm then selects a random mini-
batch of data from that session and propagates it forward to evaluate the loss. The relevant
gradients of the loss are then back-propagated. As a result, all shared parameters (e.g. the
encoder and generator RNN parameters and factor read-out Wéifjxare modified with

every mini-batch of data regardless of dataset, while the read-in and read-out matrices are
modified only when data from that session is used for training.
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1.10 Hyper-parameters and further details of LFADS implementation.— A table

of the major hyper-parameters for each model is listed in Methods Table 1. There were a
number of additional standard details that aided in the optimization and generalization of the
LFADS model applied to the datasets in our study.

For all models, the time step of the LFADS RNNs was equal to the data bin size.

To help avoid over-fitting, we added a dropout I4y¢o the inputs and to a few
feed-forward (input) connectioffsin the LFADS model. Specifically, we used
dropout “layers” around equation 11, around the input in equation 18, and
around equation 22.

We added ari, penalty to recurrent portions of the generator (equations 29-32)
and controller networks to encourage simple dynamics. Specifically, we
regularized any matrix parameter by whith; was multiplied, but not those

that multipliedx

As defined in eqn. 28, there is an information limiting regularizer placed oy
virtue of minimizing the KL divergence between the approximate posterior over
u;and the uninformative auto-regressive prior.

Following 49, we added a linearly increasing schedule on the KL divergence
penalty so that the optimization does not quickly (and pathologically) set the KL
divergence to 0. By 2000 training steps, the schedule reached the maximum
value of the KL penalty. An identical schedule was used for linearly increasing
the L, regularizer on the network parameters.

We experimented with the variance of the prior distribution for the initial
condition distribution and settled on a valuexcf 0.1, chosen to avoid
saturating network nonlinearities.

The auto-regressive prior parameters were optimized to reduce the KL
divergence between inferred inputs from the approximate posterior distributions
and those of the prior. In practice, nearly all AR(1) processes optimized to the

uncorrelated, white noise case ¥ 0 andap’i RO N 0.1). We initialized them

with z;= 10 time steps angf , = 0.1.

Unless otherwise specified, all matrices were randomly initialized with a normal
distribution with mean equal to 0, and variance equalA9\hereK is input
dimension of the matrix. All biases were initialized to 0.

We used the ADAM optimizer, with initial learning rate of 0.01, #ae 0.9,5,

= 0.999,¢ = 0.1. During training, the learning rate was decreased whenever the
training error for the current epoch of data was greater than the last 6 training
error values. In this case, the learning rate was decayed by multiplying the rate
by 0.95, and 6 training epochs were required before the learning rate could be
decayed again. The optimization continued until the learning rate was less than
or equal to 1e-5. We routinely saved checkpoints of the model and therefore were
able to capture the model with the lowest validation error.
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. We clipped our hidden state when any of its values went above a set threshold.
This threshold was rarely hit, but was useful to avoid occasional pathological
conditions.

. We used gradient clipping with a value of 200 to avoid occasional pathological
gradients.

. The matrix in thaV/2q.) affine transformation was row-normalized to keep the

factors relatively evenly scaled with respect to each other.

. To monitor overfitting, a portion of the data is set aside as a validation set, and
these data are never used to update the model’s weights. Instead they are simply
used to evaluate reconstruction cost on held-out data. For all analyses in this
manuscript, we used a ratio of 4:1 between training and validation data.

1.11 Computing posterior averages of model variables.—  As the LFADS model

is inherently stochastic, one needs to average over draws of the latent variables to get good
estimates of meaningful quantities within the network (e.g. the rgteBor example, in de-
noising a single trial of spike trains, we run the full LFADS model - both encoder and
decoder on the single trial. For that single trial, we sample the stochastic variables, (egns. 12
and 15) some number of times (e.g. 512) and then evaluate the generative portion of the
model with these sampled variables. Finally, we obtain the mean of the quantity, in this case,
the posterior average, computed by averaging the quantity of interest over the random

samples of the stochastic variables, E'§'<r‘>go’“1-r' It is posterior averages suchras

that are shown in the majority of figures.

1.12 LFADS related work in machine learning literature—  Recurrent neural

networks have been used extensively to model neuroscientific data1€%°3, but the
networks in these studies were all trained in a deterministic setting. An important recent
development in deep learning has been the advent of the variational auto-8A¢dder

which combines a probabilistic framework with the power and ease of optimization of deep
learning methods. VAEs have since been generalized to the recurrent setting, for example
with variational recurrent network$ deep Kalman filtef®, and the RNN DRAW

network,

There is also a line of research applying probabilistic sequential graphical models to neural
data. Recent examples include PASwitching LDS°, GCLDS4, and PfLDS$°. These

models employ a linear Gaussian dynamical system state model with a generalized linear
model (GLM) for the emissions distribution, typically using a Poisson process. In the case of
the switching LDS, the generator includes a discrete variable that allows the model to switch
between linear dynamics. GCLDS employs a generalized count distribution for the
emissions distribution. Finally, in the case of PfLDS, a nonlinear feed-forward function
(neural network) is inserted between the LDS and the GLM.

Gaussian process models have also been explored.}&R$es Gaussian processes (GPs)
to infer a time constant with which to smooth neural data and has seen widespread use in
experimental laboratories. More recently, the authot$ bve used a variational approach
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(VLGP) to learn a GP that then passes through a nonlinear feed-forward function to extract
the single-trial dynamics underlying neural spiking data.

Additional work applying variational auto-encoding ideas to recurrent networks can be

found in®%. The authors of® have defined a very general nonlinear variational sequential
model, which they call the Deep Kalman Filter (DKF). The autho?§ applied recurrent
variational architectures to problems of control from raw images. FiRayplied

dynamical variational ideas to sequences of images. Due to the generality of the equations in
many of these references, LFADS is likely one of many possible instantiations of a
variational recurrent network applied to neural data (in the same sense that a convolutional
network architecture applied to images is also a feed-forward network, for example).

The LFADS model decomposes the latent code into an initial condition and a set of
innovation-like inferred inputs that are then combined via an RNN to generate dynamics that
explain the observed data. Recasting our work in the language of Kalman filters, our
nonlinear generator is analogous to the linear state estimator in a Kalman filter, and we can
loosely think of the inferred inputs in LFADS as innovations in the Kalman filter language.
However, an “LFADS innovation” is not strictly defined as an error between the
measurement and the read-out of the state estimate. Rather, the LFADS innovation may
depend on the observed data and the generation process in extremely complex ways.

2 Synthetic datasets

2.1 Summary of synthetic datasets— We chose a variety of synthetic examples in an
effort to show LFADS'’s ability to infer informative representations for dynamical systems of
varying complexity. We ordered the synthetic examples roughly by complexity to build
intuition. The examples are, in order,

1. The pendulum example (Supp. Fig. 1) - a cartoon (no actual data), simply
intended to impart intuition using a well-known and tangible physical system.

2. The Lorenz model (Supp. Fig. 2, Supp. Table 1) - this simple model is now
becoming standard in the field (e %,18, as it is a simple and well-known
example of a nonlinear, chaotic dynamical system, and easy to understand and
visualize due to its 3D state space.

3. A synthetic RNN example with random connections and without input (Supp.
Fig. 3) - this creates a much more complex high-dimensional dynamical system,
intended to differentiate our method from common methods in the field that have
difficulty modeling high-dimensional, highly nonlinear dynamics. This RNN
does not have the same architecture as that used in LFADS.

4, A synthetic RNN example with simple pulse inputs (Supp. Figs. 7,8) - this
provides a clear demonstration of the ability of LFADS to decompose an
observed time series into both dynamics and inputs. This RNN does not have the
same architecture as that used in LFADS.

5. A synthetic RNN trained to perform an integration-to-bound task, given a noisy
1-D input (Supp. Fig. 9). Integration-to-bound is a common model of decision-
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making in systems neuroscience. This example shows the utility of LFADS not
only in modeling a network that is trained to perform a task, but also shows that
LFADS can infer inputs in networks that are performing meaningful
computations. This RNN does not have the same architecture as that used in
LFADS.

2.2 Lorenz system— The Lorenz system is a set of nonlinear equations for three
dynamic variables. Its limited dimensionality allows its entire state space to be visualized.
The evolution of the system’s state is governed as follows

).’1 = 5()’2 _y1) (37)

}.’2 =yl(/’_}’3)_y2 (38)

)"3 = ylyz_ﬂy3- (39)

We used the standard parameter values known for inducing ehad$),p = 28, and3 =

8/3, and used Euler integration witti= 0.006. As int3, we simulated a population of
neurons with firing rates given by linear read-outs of the Lorenz variables using random
weights, followed by an exponential nonlinearity. Spikes from these firing rates were then
generated by a Poisson process.

Our synthetic dataset consisted of 65 conditions, with 20 trials per condition. Each condition
was obtained by starting the Lorenz system with a random initial state vector and running it
for 1s. Twenty different spike trains were then generated from the firing rates for each
condition. Models were trained using 80% of the data (16 trials/condition) and evaluated
using 20% of the data (4 trials/condition). While this simulation is structurally quite similar

to the Lorenz system used’if)y we purposefully chose parameters that made the dataset
more challenging. Specifically, relative ¥ we limited the number of observations to 30
simulated neurons instead of 50, decreased the baseline firing rate from 15 spikes/sec to 5
spikes/sec, and sped up the dynamics by a factor of 4.

2.3 Chaotic RNNs as data generators— We tested the performance of each method

at inferring the dynamics of a more complex nonlinear dynamical system, a fully recurrent
nonlinear neural network with strong coupling between the units. We generated a synthetic
dataset from an-dimensional continuous time nonlinear, so-called, “vanilla" RNN,

y(t) = —y@®) +yWtanh(y(1)) + B q(r). (40)
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This makes a compelling synthetic case study for our method because many recent studies of
neuroscientific data have used vanilla RNNs as their modeling toof(&>§-53. It should

be stressed that the vanilla RNN used as the data RNN here does not have the same
functional form as the network generator used in the LFADS framework, which is a GRU

(see section 1.7), although both have continuous variables and are not spiking models. For
experiments in Supp. Fig. 3, we 8et g = 0, but we included an input for experiments in

Supp. Fig. 6.

The elements of the matri% were drawn independently from a normal distribution with

zero mean and varianceN.MWe sety to either 1.5 or 2.5, both of which produce chaotic
dynamics at a relatively slow timescale compared (gee>° for more details). The smaller

y value produces “gentler” chaotic activity in the data RNN than the larger value.
Specifically, we sefV =50,z = 0.025 s and used Euler integration wittx 0.01 s. Spikes

were generated by a Poisson process with firing rates obtained by scaling each element of
tanh{y(9) to take values in [0,1], and then used as the rate in a Poisson process to give rates
lying between 0 and 30 spikes/s.

Our dataset consisted of 400 conditions obtained by starting the data RNN at different initial
states with elements drawn from a normal distribution with zero mean and unit variance.
Firing rates were then generated by running the data RNN for 1 s, and 10 spiking trials were
produced for each condition, yielding a total of 4,000 spiking trials. Models were trained
using 80% of the data (8 trials/condition) and evaluated using 20% of the data (2 trials/
condition).

2.4 Inferring pulse inputs to a chaotic RNN—  We tested the ability of LFADS to

infer the input to a chaotic RNN (Supp. Figs. 6,7). In general, the problem of disambiguating
dynamics from inputs is ill-posed, so we encouraged the dynamics to be as simple as
possible by including ah, regularizer in the LFADS network generator (see Methods Table
1). We note that weight regularization is a standard technique that is nearly universally
applied to neural network architectures.

Focusing on Supp. Fig 6, we studied the synthetic example of inferring the timing of a delta
pulse input to a randomly initialized RNN. To introduce an input into the data RNN, the
elements oB were drawn independently from a normal distribution with zero mean and unit
variance. During each trial, we perturbed the network by delivering a delta pulse of
magnitude 50¢(2) = 508(¢ - t,ys9, at a random timé,,sebetween 0.25s and 0.75s (the full
trial length was 1s). This pulse affects the underlying rates produced by the data RNN,
which modulates the spike generation process. To test the ability of the LFADS model to
infer the timing of these input pulses, we included in the LFADS model an inferred input
with dimensionality of 1. We explored the same two valueg & in the synthetic example

to model chaotic RNN dynamics, 1.5 and 2.5. Other than adding the input pulses, the data
for input-pulse perturbations were generated as in the first data RNN example described
above.

After training, which successfully inferred the firing rates, we extracted inferred inputs from
the LFADS model (egn. 15) by running the system 512 times for each trial, and averaging,
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defininga, = <ut>g0’u1.T. To see how the timing of the inferred input was related to the

timing of the actual input pulse, we determined the time at vihickached its maximum

value.

2.5 Inferring white noise input in an RNN trained to integrate to bound— We

tested the ability of LFADS to infer the input to a vanilla RNN trained to integrate a noisy
signal to a +1 or —1 bound. Weight matrices for this "data simulation RNN" were drawn
independently from a Gaussian distribution with zero mean and varianc&/,(a64/ ,
regularization was used during training. The noisy input signal was drawn from a Gaussian
distribution with zero mean and variance 0.0625. 800 conditions were generated with white
noise inputs, and 5 spiking trials were generated per condition. This resulted in 4,000 1s
spiking trials. 3,200 trials were used for training and 800 trials were used for validation.

After training LFADS on the integrate-to-bound data (simulated as above), inferred inputs
(u,) for a given trial were extracted by taking 1024 samples fromifhpdsterior

distribution produced by LFADS, and then averaging. These inferred inputs were then
compared (using®) with the real inputs to the integrate-to-bound model, which were saved
down previously during training.

3 Neural datasets - Research participants with paralysis

Permission for these studies was granted by the US Food and Drug Administration
(Investigational Device Exemption) and Institutional Review Boards of Stanford University
(protocol # 20804), Partners Healthcare/Massachusetts General Hospital (2011P001036),
Providence VA Medical Center (2011-009), and Brown University (0809992560). The
participants in this study were enrolled in a pilot clinical trial of the BrainGate Neural
Interface Systemh(tp://www.clinicaltrials.gov/ct2/show/NCT009120¢ Informed consent,
including consent to publish, was obtained from the participants prior to their enrollment in
the study.

Participant T7 was a right-handed man, 54 years old at the time of the research sessions
reported here, who was diagnosed with ALS and had resultant motor impairment (ALSFRS-
R of 17). In July 2013, participant T7 had two 96-channel intracortical silicon micro-
electrode arrays (1.5 mm electrode length, Blackrock Microsystems, Salt Lake City, UT)
implanted in the hand area of dominant motor cortex. T7 retained very limited and
inconsistent finger movements. Data reported are from T7’s post-implant day 231.

A second study participant, T5, is a right-handed man, 63 years old at the time of the
research sessions reported here, with a C4 ASIA C spinal cord injury that occurred
approximately 9 years prior to study enroliment. He retains the ability to weakly flex his left
(non-dominant) elbow and fingers; these are his only reproducible movements of his
extremities. He also retains some slight residual movement which is inconsistently present in
both the upper and lower extremities, mainly seen at ankle dorsiflexion and plantarflexion,
wrist, fingers and elbow, more consistently present on the left than on the right.
Occasionally, the initial slight voluntary movement triggers involuntary spastic flexion of the
limb. In Aug. 2016, participant T5 had two 96-channel intracortical silicon micro-electrode
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arrays (1.5 mm electrode length, Blackrock Microsystems, Salt Lake City, UT) implanted in
the upper extremity area of dominant motor cortex. Data reported are from T5’s post-
implant day 51.

3.1 Task design and data analysis— Neural data were recorded during "Center-out-
and-back" target acquisition tasks. The data were originally collected for neural prosthetic
decoder calibration, as part of research testing algorithms for closed-loop neural cursor
controP-34:35 |n the Center-out-and-back task, data were collected either in motor-based
control (with T7, who retained limited residual movements), or an attempted movement
paradigm (with T5, who did not retain sufficient movement to reliably measure or physically
control a cursor). In motor-based control, T7 controlled the position of a cursor on a
computer screen by making physical movements with his fingers on a wireless touch-pad
(Magic Trackpad; Apple, Cupertino, CA). The cursor began in the center of the screen, and
targets would appear in one of 8 locations on the periphery. The participant then acquired the
targets by moving the cursor over the target and holding it over the target for 500 ms.
Participant T7’s limited movements spanned a small region on the touch-pad, approximately
1/8"-1/4" wide. In the attempted movement paradigm, the cursor was automatically moved
directly toward the target by the computer, and T5 was asked to attempt movements of his
whole arm that followed the movements of the cursor.

Voltage signals from each of the electrodes were band-pass filtered from 250 to 7500 Hz and
then processed to obtain multi-unit ‘threshold crossings,’ i.e., discrete events that occurred
whenever the voltage crossed below a threshold (choice of threshold was dependent on the
array- T7 lateral array: -80V; T7 medial array: -93V, T5, both arrays: -3.5 times the

r.m.s. voltage on each channel.). For the present analyses, we did not "spike sort" and instead
grouped together threshold crossings on a given electrode. These spikes therefore can
include both single- and multi-unit activity. For both participants, analysis was restricted to
channels known to show significant modulation during movement attempts (T7: 78

channels; T5: 187 channels).

Neural control and task cueing were controlled by custom software run on the Simulink/xPC
real-time platform (The Mathworks, Natick, MA), enabling millisecond-timing precision for

all computations. Neural data collected by the NeuroPort System (Blackrock Microsystems,
Salt Lake City) were available to the real-time system with 5-ms latency. Visual presentation
was provided by a computer via a custom low-latency network software interface to
Psychophysics Toolbox for MatLab and an LCD monitor with a refresh rate of 120 Hz.

Frame updates from the real-time system occurred on screen with a latency of approximately
7+5ms.

4 Neural datasets - Nonhuman primates

All procedures and experiments were approved by the Stanford University Institutional
Animal Care and Use Committee.

4.1 Maze task— An adult male macaque monkey (monkey J) was trained to sit head-
fixed in a primate chair and perform 2D target acquisition tasks in a fronto-parallel plane by
controlling an on-screen cursor with his hand movements. Monkey J was implanted with two
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96-electrode arrays (1 mm electrodes spaceg#@@part, Blackrock Microsystems) using
standard neurosurgical techniques. The arrays were implanted into M1 and dorsal premotor
cortex (PMd) of the hemisphere contralateral to his reaching arm.

The Maze task is a variant of a center-out delayed reach task, whose details have previously
been describetf. Briefly, monkey J made arm movements in a 2-dimensional workspace
while the position of the right index and middle fingertips was tracked optically. This

tracked position controlled the movements of a virtual cursor, and the cursor’s position
floated 2.5 cm above the hand. To initiate a trial, the monkey fixated on a fixation spot for
>400 ms, after which a target appeared. After a delay period (varying from 0 — 900 ms), a go
cue instructed the monkey to begin his movement. A set of virtual barriers in the workspace
facilitated the instruction of curved or straight reach trajectories. Contact with a barrier
resulted in an unrewarded trial. A trial was counted as a success, and reward delivered, if the
monkey held the cursor on the target for 450 ms.

Several de-noising methods were applied to the Maze dataset. For all methods, individual
trials were aligned to movement onset (the point at which movement is first detectable), and
data consisted of 450 ms preceding and following movement onset (for a total of 900 ms per
trial). The dataset consisted of 2296 trials across 108 different reach conditions (target and
barrier locations), and 202 single units were isolated from the recorded activity.

For the temporal and neural cross correlation matrices (Supp. Data 2,3), neural activity was

first condition-averaged such that the data formed a tensoR” <V * ¢ spanning T time

points, N neurons, and C conditions. As before, trials were aligned to movement onset prior
to averaging, and data consisted of the 450 ms preceding and following movement onset (for
a total of 900 ms). For a given condition ¢, temporal cross correlation matrices were
calculated as follows:

Similarly, for a given condition ¢, neural cross correlation matrices were calculated as
follows:

Neural cross correlation matrices were sorted using a MATLAB implementation of the
Bron-Kerbosch maximal clique algorithmt{ps://www.mathworks.com/matlabcentral/
fileexchange/30413-bron-kerbosch-maximal-clique-finding-algonitfirm apply the

algorithm, the cross correlation matrix for each condition was first converted into a sparse
binary matrix by applying a 95% threshold (all values about the 95% percentile were set to
1, and all values below were set to 0). Applying the Bron-Kerbosch algorithm resulted in a
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grouping of neurons by similarity, which was then used to sort the cross correlation matrix
for each condition.

4.2 Center-out and Cursor Jump tasks— These experiments were also performed

with Monkey J. Experiments were controlled using custom MATLAB and Simulink

Realtime software (Mathworks, USA). Arm reaches were made with the display blocking
the monkey’s view of his hand. The task was displayed in virtual reality using a Wheatstone
stereograph with a latency of 7 + 4 ms as describ&® ifhe virtual computer cursor

followed the velocity of a reflective bead taped to the monkey’s hand, which was tracked via
an infrared system at 60 Hz (Polaris, Northern Digital, Canada). The non-reaching arm was
gently restrained. To successfully acquire a target, the monkey had to hold the cursor within
a 4 x 4 cm target acquisition area for a continuous 500 ms. A target color change cued that
the cursor was within the acquisition area. If the cursor left the target area during this hold
period, the 500 ms timer reset. The monkey had to acquire the target within a time limit of 2
seconds to receive a liquid reward and success tone.

\oltage signals from each of the electrodes were band-pass filtered from 250 to 7500 Hz and
then processed to obtain multi-unit ‘threshold crossings’, i.e. discrete events that occurred
whenever the voltage crossed below a threshold (set at the beginning of each day to be -4.5
times r.m.s. voltage). For the "Center-out-and-back" and "Cursor Jump" tasks, we did not
spike sort the data and instead grouped together threshold crossings on a given electrode.
These threshold crossing events therefore can include both single- and multi-unit activity.

For the LFP (Fig. 4 of main text) and Cursor Jump analyses (Fig. 6 of main text), data
analyzed were from dataset 2015-04-15, which occurred 69 months after the implantation of
recording arrays. A single LFADS model was fit to data from two types of reaching tasks - a
standard "Center-out-and-back" task and a Cursor Jump task.

In the Center-out-and-back task, targets alternated between being located at the workspace
center or at a randomly chosen target out of 8 possible target locations, all 12 cm away from
the workspace center and evenly spaced around a circle. In the Cursor Jump task, targets
were located either at the workspace center or one of two radial target locations located 12
cm away from the workspace center, in opposite directions. The three possible targets lay
along the vertical monitor axis.

The ’cursor jump’ manipulation at the heart of the Cursor Jump Task was applied on a
random 25% of trials towards radial targets. On these randomly selected perturbation trials,
during the monkey’s reaching movement, the cursor position jumped, i.e., it was offset by 6
cm perpendicular to the vertical axis. The jump happened after the cursor traveled 6 cm
towards the target along the vertical axis. Only one perturbation occurred per trial. The time
when the cursor jump command was sent to the display computer was recorded with 1 ms
resolution, after which it appeared at the next 120 Hz monitor update. The delivery of cursor
jump position offsets required us to counteract this offset at the end of each perturbed
outward trial so as to not carry a (possibly accumulating) hand-to-cursor offset over multiple
trials. Thus, we applied a second, opposite cursor jump as soon as the center target re-
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appeared, resulting in a consistent hand-to-cursor position relationship at the start of each
outward trial.

To train the LFADS model, spike trains were binned at 10 ms resolution. A single LFADS
model was fit to a combined dataset containing center-out-and-back trials (8 targets),
outward trials without perturbations (2 targets), outward trials with perturbations (2 targets,

2 perturbation directions), and return-to-center trials from the perturbed/unperturbed

outward trials, for a total of 5140 trials. 800 ms of data were taken for each trial, with data
aligned to the start of the trial (target onset). In cases of perturbations, most jumps happened
between 400-550 ms post-target onset. The model was allowed to infer 4 inputs to the
generator in order to fit the data. The choice of 4 inputs reflects three key facts about the
system and task. First, we know that high-frequency oscillatory dynamics are present in the
firing rates (Fig. 6), which require inputs to model. In this particular dataset, we recorded
from electrode arrays in two different brain areas (M1/PMd), which exhibit different
oscillations, and thus we needed two inputs to model these features. Second, there are
specific task-related perturbations that we must model: prior to target onset, the subject does
not know whether an upward or downward target will appear. Thus the arrival of target
position information to motor cortex is a 1-dimensional perturbation (upwards or

downwards) that occurs early in the trial. Third, during the actual reaching movement, a left
or right perturbation may occur with low probability. This provided a separate 1-dimensional
perturbation for the system to model. Thus, we reasoned that 4 inputs was a reasonable
choice for modeling this particular recording configuration and task.

4.3 Multi-session V-probe recordings—  One adult male macaque monkey (P) was
trained in a behavioral task as described below. After initial training, we performed a sterile
surgery during which the macaque was implanted with a head restraint and a recording
cylinder (NAN Instruments), which was located over left, caudal, dorsal premotor cortex
(PMd). The cylinder was placed surface normal to the skull and secured with methyl
methacrylate. A thin layer of methyl was also deposited atop the intact, exposed skull within
the chamber. Before recording sessions began, a miniature craniotomy (3 mm diameter) was
made under ketamine/xylazine anesthesia, targeting an area in PMd which responded during
movements and palpation of the upper arm (17 mm anterior to interaural stereotaxic zero).

In the behavioral task, monkey P was trained to use his right hand to grasp and translate a
custom 3D printed handle (Shapeways, Inc.) attached to a haptic feedback device (Delta.3,
Force Dimension, Inc.). The other arm was comfortably restrained at the monkey’s side. The
haptic device was controlled via a 4-poll position, update force feedback loop implemented
in custom software written in C++ atop Chai3itj://chai3d.or} The weight of the device

was compensated by upward force precisely applied by the device’s motors, such that the
motion of the device felt nearly effortless because the device’'s mechanical components were
lightweight and had low inertia. The device endpoint with the attached monkey handle was
constrained via software control to translate freely in the fronto-parallel plane. The handle
was custom 3D printed and contained a beam break detector which indicated whether the
monkey was gripping the handle. The task was controlled using custom code running on a
dedicated computer running the Simulink Real-Time operating system. Hand position was
recorded at 1 kHz, and the 2D position of the device was used to update the position of a

Nat MethodsAuthor manuscript; available in PMC 2019 March 17.


http://chai3d.org

1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Pandarinath et al.

Page 32

white circular cursor at the refresh rate of 144 Hz with a latency of 4-12 ms (verified via
photodiode) displayed on an LCD screen located in front of the monkey and above the
haptic device, in the same fronto-parallel plane as the device itself. The display was driven
by custom software driven by Psychophysics Toolbox. A plastic visor was used to mask the
monkey'’s visual field such that he could see the screen but not his hand or the haptic device
handle.

The monkey was trained to perform a delayed center-out reaching task by moving the haptic
device cursor towards visual targets displayed on the screen. Monkeys initiated the task by
holding onto the device handle, which was detected by a beam break photodiode built into
the handle. At the start of each trial, the device gently returned the hand to the center
position and supported the weight of the arm from below in that position (by rendering a
narrow virtual shelf just below the haptic cursor).téget onsebne or more reach targets
appeared as hollow circles at one of 8 radial locations located 10 cm from the position. After
a variable delay period (50-800 ms), fecuewas indicated visually by the target outline

filling in with color. A trial was successful if the monkey remained still during the delay
period, initiated the reach within 600 ms after the go cue, and held in the reach target for 50
ms. In some sessions, the monkey performed additional trial conditions with different target
locations or forces applied to the haptic device. These trials were excluded from analysis;
only successful center-out reaches were included. Hand velocities were computed by
applying a smoothing, differentiating filter (Savitzy-Golay, 2nd-order, 3 ms smoothing
widow) to the raw position time series. Reaction time was measured from the visual display
of the go cue detected at the photodiode until the hand speed in the fronto-parallel plane
reached 5% of the peak speed on each trial.

Electrophysiological recordings were performed by slowly lowering a linear multielectrode
array with 24 recording channels (Plexon V-probe or U-probe) to a position where the
channels likely spanned the layers of the cortex based on properties of the neural signals. We
allowed 45-90 minutes to allow the probe to settle before beginning experiments. All 24
channels were amplified and sampled at 30 kHz (Blackrock Microsystems), high-pass

filtered (fourth-order Butterworth filter, 250 Hz corner frequency), and thresholded at —3.5x%
RMS voltage on each channel. Threshold crossings on adjacent channels that occurred
within 0.5 ms of each other were removed from one of the channels to avoid duplicate
detection of spiking along the array. Threshold crossing rates were then binned at 10 ms on
each channel.

Experimental sessions were screened based on minimum trial count (200 trials); one dataset
was manually excluded based on an abrupt discontinuity in the recorded firing rates over the
session. Following this screening, a total of 44 consecutive experimental sessions were
included, comprising recording locations in the upper arm representation of primary motor
cortex and dorsal premotor cortex. A 1200 ms time window beginning 500 ms before the go
cue to 700 ms afterwards was chosen from each successful trial and used to train the LFADS
model.
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5 Analysis Methods by Figure

We used a humber of analysis methods on either smoothed neural data, or the output of
LFADS, typically the rates, factors or inferred inputs. All of these analyses methods are
standard, but we provide references and operating parameters here.

5.1 Figure 2 - Application of LFADS to a "Maze" reaching task

For the PSTHs and single-trial inferred/estimated firing rates in Fig. 2b, each trial was

aligned by movement onset (i.e., the time at which movement of the arm is first detectable),
and data analyzed began 400 ms prior to movement onset and ended 400 ms after movement
onset. Data were pre-processed via one of three techniques: Gaussian smoothif§, GPFA

or LFADS. For Gaussian smoothing, the millisecond-binned spike trains were convolved

with a Gaussian function with standard deviation (s.d.) of 30 ms - this parameter was
optimized to produce PSTHs with visible structure, while preserving some of the fast-
timescale features seen in the neural firing rates. For GPFA, the number of latent factors was
40, and the binsize was 20 ms, optimized as mentioned below. For LFADS, the binsize was 5
ms, and the number of latent factors was fixed at 40.

For the t-SNE analysi${g. 2c, Supp. Video 1) the initial conditions vector inferred by
LFADS (g0) for each trial was mapped onto a low-dimensional subspace using¥-SNE
dimensions were used, and the perplexity parameter was set to 75 (similar results were
obtained with a wide variety of parameters). Points were plotted in the 3-D t-SNE space,
with colors corresponding to the endpoint of the reaching movement (Fig. 2a), and marker
type corresponding to the type of reach (i.e., markers used were circles, squares, and
triangles, for straight, curved counter-clockwise, and curved clockwise reaches,
respectively).

To decode kinematics from neural features (Figs. 2d,e), we used Optimal Linear

Estimatiorf to create decoders that mapped neural features onto the measured x and y
reaching velocities. The inputs to the decoder were the raw or de-noised neural data from
250 ms prior to 450 ms post movement onset. De-noising was achieved via one of three
techniques mentioned previously. For Gaussian smoothing, a 40 ms s.d. was used (optimized
via cross-validated decoding). For GPFA, the number of latent factors and binsize was
optimized to maximize decoding accuracy, with binsize swept from 5-20 ms, and latents
swept from 5-40 factors (see Supp. Fig. 4 for results of the optimization on the full
population of neurons). For LFADS, the binsize was fixed at 5 ms, and the number of latents
was set to 40 for the full population, and 20 for the subsampling analysis (next paragraph).
The neural features from each technigue were the Gaussian-smoothed firing rates, factor
estimates using GPFA, or de-noised firing rates using LFADS. In all cases, to decode
kinematics, the neural features were 'lagged’ by 90 ms to account for delays between neural
activity and measured kinematics (optimized using cross-validated decoding), and the neural
features were binned at 20 ms as a standard for comparison.

Kinematic predictions were generated using 5-fold cross-validation. The subsampling
analyses followed the above, with limited populations achieved via random subsampling
(without replacement) from the full population of 202 neurons. Decoding performance was
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quantified using goodness of i) between the original and reconstructed velocities
(validation trials from the 5-fold cross-validated decoding) for the x and y dimensions. For
the sample reconstructed reach trajectories shown in Fig. 2d, trajectories were seeded with
the true initial position, and subsequent points in the trajectory were calculated by simply
integrating the decoded velocity at each timestep.

Note that for offline decoding analyses, the approach of smoothing neural data and then
linearly regressing against kinematics, outlined here, is a generalization of common brain-
machine interface (BMI) decoding approaches such as the Kalman Filter. This relationship is
outlined in?%; briefly, the Kalman filter can be viewed as a two-step process - first

smoothing the data, and subsequently performing a linear dimensionality reduction step that
maps the smoothed, high-dimensional neural data onto kinematics. In the Kalman Filter the
amount of smoothing is largely determined by the simple linear dynamical system (LDS)
that models state evolution (i.e., models changes in kinematics). This can be especially
problematic in datasets with highly varied kinematics, such as the complex "maze" reaching
dataset, where a simple LDS does not provide a good model of observed kinematics.
Therefore, to avoid having the degree of smoothing influenced by a poorly-fit kinematics
model, we optimized the smoothing parameter using cross-validated decoding as described
above.

Further improvement can be achieved for online (closed-loop) BMI control using an
additional "intention estimation" step, and then regressing neural data against the inferred
intention rather than the measured kinematics. This "intention estimation" step has been
shown to improve closed-loop BMI control when intention is estimated from hand reaching
data (e.qg., the FIT Kalman Fil&) or estimated from closed-loop BMI control (e.g. the Re-
FIT Kalman FilteF4°8. However, to date, these approaches having been applied to simple
datasets (point-to-point movements) to calibrate BMI decoders, and assume that the
subject’s intention was to move in a straight line toward the target. In the complex "maze"
dataset analyzed in Fig. 2, the monkey made curved reaches which violate this assumption -
therefore our decoding approach used regression against measured kinematics rather than
attempting to infer the subject’s intention.

For the held-out neuron analysis (Fig. 2f), we compared the accuracy of LFADS against
GPFA in predicting held-out neurons in the Maze dataset. As in Fig. 2e, we sub-sampled
neurons from the complete neural population (202 neurons total), and used the sub-sampled
populations to estimate latent dynamics (25, 100, or 150 neurons to fit either LFADS or
GPFA latent models; the same populations of neurons for the previous decoding analysis
were used). We used a standard Generalized Linear Model (GLM) framework (Paninski,
2004) to map the latent state estimates produced by LFADS or GPFA onto the binned spike
counts (20 ms bins) for the remaining held-out neurons, e.g., for a model trained with 25
neurons, there are 177=202-25 held out neurons. We then measured the improvement
produced by the LFADS latent estimates over GPFA (evaluated using log likelihood per
spike, (LLP$9). For a given held-out neuron, we predicted the neuron’s firing rate based on
the GLM fit, for all trials that were held out from the GLM fit. We then evaluated the LLPS

of the observed spike trains given the predicted firing rates. For almost all held-out neurons,
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LFADS-inferred latent state estimates were much more predictive about the spike counts of
the held-out neurons than estimates produced by GPFA.

5.2 Figure 3 - Rotations in state space

Rotations in state space were found using the jPCA technique, whose mathematical details
are presented elsewhér&Ve briefly summarize the overall approach here. jPCA was

applied in two ways: first to examine rotations in the condition-averaged responses, and
subsequently for the single-trial responses. For condition-averaged responses, each neuron’s
response was first averaged across all trials of the identical condition to create a set of
condition-averaged firing rates. These firing rates were smoothed via convolution with a
Gaussian kernel, with the width of the kernel chosen to reduce the noise in the firing rates
without smoothing away the rotational content. Smoothed firing rates were then mean-
centered across conditions at every time point by subtracting the average across-condition
response from the response of each individual condition. The mean-centered rates were then
"soft-normalized8 to prevent individual neurons (e.g. high firing rate or potentially noisy
neurons) from dominating the results of the subsequent dimensionality-reduction step. These
high-dimensional neural firing rates were projected into a low-dimensional subspace using
PCA. Within this subspace (neural state space), we then used the jPCA technique to find
planes that are best fit by a linear dynamical system with purely rotatory dynamics.

For the subsequent single-trial responses, the goal was to examine the same rotations in state
space that were found via condition averaging, but examine their consistency at the level of
single trials. Therefore, the single-trial data was projected into jPCA planes via the

projections that were calculated in the condition-averaged analysis.

For monkey J, all trials were aligned to movement onset. We used 250 ms for jPCA analysis,
with the time window starting 60 ms prior to movement onset. Observed neural firing rates
were smoothed with a 40 ms s.d. Gaussian kernel to reduce noise, and soft-normalized with
a value of 0.1. For the de-noised LFADS data, further smoothing and de-noising had little
effect, so the parameters used were a 25 ms s.d. Gaussian kernel with a negligible soft-
normalization value (5e-5). For the initial dimensionality-reduction step (PCA), 10 PCs were
kept and used for jPCA.

As with the monkeys, the rotations in state space for research participants with paralysis are
found by identifying the time period starting just before the rapid change in neural activity
that occurs with a movement attefor participant T5, because no movement was
measurable, data were simply aligned to the start of the trial (i.e., the point at which targets
are displayed). The window taken for jJPCA analysis was 400 ms of data beginning 240 ms
after the start of the trial. As with the monkey data, larger parameters for smoothing and
greater soft-normalization were used to de-noise the observed neural responses, vs. the
LFADS de-noised neural responses. These were a Gaussian kernel s.d. and soft-
normalization parameter of 40 ms and 10 for the observed responses, and 25 ms and 5 for
the LFADS de-noised neural responses.

For the held-out conditions analysis (Fig. 3i-k) - conditions were binned by dividing their
endpoint (reach target) into 32 evenly-spaced angular bins. Because some angular bins did
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not contain any targets, this resulted in 19 sets of reaching conditions. For each reaching
condition set, a separate LFADS model was trained. In the initial training run, trials from all
conditions not in the given angular bin were used to train the full LFADS model. After this
initial training run, all model parameters beginning at the initial conditions vector were fixed
(i.e., all weights that map from the IC vector to the generator, all internal weights of the
generator, all read-out weights to the factors layer, all read-out weights to the individual
neurons, and all bias terms). Fixing these parameters essentially locks the dynamics of the
LFADS model (i.e., the dynamics of the generator) to dynamics that were learned in the
initial training run. Subsequently, a second training run was performed (with the generator’'s
dynamics locked) in which all trials were included (including the held-out trials, i.e., the
trials from the previous held-out conditions). This allowed the initial conditions encoder
RNN to learn a mapping from the new trials to initial conditions for the generator RNN, but
did not allow the generator to learn any new dynamics from the held-out trials.

5.3 Figure 4 - pKinematic predictions of LFADS multi-session and single-session models

We used optimal linear estimation to create decoders to predict x and y reaching velocities.
For decoding from LFADS, we used the factors rather than the predicted firing rates, as the
neurons recorded on an individual session could unevenly represent the full set of reaching
directions well, even if the underlying factors from which the rates are extracted represent all
directions evenly. For single-dataset LFADS models, we fit individual decoders to map from
each model’s factors to x and y velocities. For the stitched multi-session LFADS model, a
single decoder was fit and cross-validated on all datasets simultaneously. We then computed
the goodness of fitR%) and averaged across x and y velocities. Aside from decoding from
LFADS factors rather than LFADS rates, the inputs to the decoder were prepared and the
cross-validated decoding performance evaluated as describet For Gaussian

smoothing, the millisecond-binned spike trains were convolved with a Gaussian function
with standard deviation (s.d.) of 40 ms. For GPFA, we swept the spike bin width and the
number of latent factors to determine the optimal hyperparameters for decoding, which were
20 ms bins and 20 latent factors for these datasets. In all cases, to decode kinematics, the
neural features were 'lagged’ by 90 ms to account for delays between neural activity and
measured kinematics, and the neural features and kinematics were resampled at 20 ms.

For reaction time prediction, we used a largely unsupervised method previously described in
21, Briefly, for each of the single-session models and the multi-session model, we performed
demixed principal components analysis (dPCén the factor outputs. We then projected

the factors along the highest-variance, condition-independent mode, and normalized the
projection to a range of 0 to 1. This projection of the data we refer to as the condition
independent signal (CIS), followirtd. We then took the time at which the CIS crossed a
certain threshold on each trial to be the predicted reaction time, and computed the
correlation coefficient between predicted and actual reaction times. For each model, we then
optimized only the threshold to maximize the correlation coefficient between time of
threshold crossing and reaction time, though the results were not sensitive to the choice of
threshold.
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Factor trajectories were trial-averaged for each reaching direction and each dataset. With
these trial-averaged factor trajectories, we used dPCA to identify the CIS dimension, as well
as 8 dimensions which preferentially explained condition-dependent variance (variation due
to reach direction, and mixtures of reach direction and time). In this 8-dimensional
condition-dependent space, we used jPCA to find a plane where trajectories exhibited
rotational structure We then constructed a 3-dimensional subspace for visualization by
taking the CIS dimension as well as the two dimensions comprising the first jPCA plane.

5.4 Figure 5 - tSNE visualization for CursorJump data

The pattern of inputs inferred by LFADS for individual trials were mapped into a 2-
dimensional space using t-SNE. Data were aligned to the time of perturbation for perturbed
trials or the mean perturbation time for the given target direction for unperturbed trials (407
ms for downward targets, 487 ms for upward targets). t-SNE was performed using the t-SNE
toolbox for MatLab I(ttps://lvdmaaten.github.io/tspelnferred inputs were calculated via
posterior averaging, as described in section 1.11. LFADS inferred the input values at 10 ms
resolution (i.e., the resolution at which the neural data was binned before being passed into
LFADS). These values were then smoothed using a causal Gaussian filter with a 20 ms
standard deviation. Data fed into t-SNE consisted of the inferred input values from 40 ms to
240 ms after the time at which the task perturbation occurred (or after the mean perturbation
time for unperturbed trials, as described above). t-SNE initially pre-processes data by
reducing its dimensionality via PCA, and the dimensionality of the pre-processed data was
chosen to be 30 dimensions. The t-SNE perplexity parameter was set to 30, and sweeping
this parameter between 10 to 50 had little qualitative effect on the discernibility of the three
data clusters.

5.5 Figure 6 - LFP analysis

For both human (participant T7) and monkey (J) data, recorded LFP was originally sampled
with high bandwidth (human: 30 kHz, monkey: 2kHz). Human data was digitally re-
referenced using common-average referencing to remove global noise artifacts. Human and
monkey data were low-pass filtered with a 75 Hz cutoff frequency using a 4th order
Butterworth filter to minimize the contribution of action potentials to the LFP signal. Both a
forwards and backwards pass of the filter (i.e., acausal filtering) were used to minimize
group delay. Data were then filtered again with an anti-aliasing filter (8th order Chebyshev
Type | lowpass filter with cutoff of 0.8 * sampling frequency / 2) and then resampled to 1

kHz for all subsequent analyses. Data analyzed were from a center-out-and-back movement
paradigm. Participant T7 made movements of his index finger on a touchpad to control a
cursor’'s on-screen movements. Monkey J made movements of his hand in free space to
control the movements of a cursor. Data analyzed were from the first 300 ms (participant
T7) or 250 ms (monkey J) after target onset. For each recording channel on the electrode
arrays, cross-correlograms were computed between the measured spiking activity and the
recorded local field potentials on the same electrode, on a single trial basis. Cross-
correlograms were then averaged across all trials. For the shuffle analyses, spiking data from
an individual trial was cross-correlated with LFP data from a random trial, and these
correlograms were averaged across trials.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
LFADS is a generative model that assumes that observed single-trial spiking activity is

generated by an underlying dynamical systethLFADS takes a given recording (far left),
reduces it to a latent code consisting of an inferred initial condition (middle), and then
attempts to infer rates that are consistent with the observed data (right, pink panel) from that
latent code. I.e. LFADS auto-encodes the trial via a sequential auto-encoder. Working from
right to left in the panel, for thé” neuron, LFADS infers rates at timer; , for each of 202
channels, and the observed spike counts (blue panel) are assumed to be Poisson distributed
count observations of these underlying rates. The likelihood of the observed spikes given the
inferred rates serves as the cost function used to optimize the weights of the model. The
rates are linear readouts from a set of low-dimensional fagt@@ in this example) via a

readout matrix\"a€, The factors are defined as linear readouts from a dynamical generator
(an RNN), via a readout matrikfa. Activity of the generator is determined by its per-trial
component, the initial conditiom@), and its recurrent connectivity, which is fixed for all

trials. The initial conditiorg0 is determined for individual trials via an encoder RNY. (

Example spiking activity recorded from M1/PMd as a monkey performed a reaching task, as
well as the corresponding ratesand factord; inferred by LFADS (7 example trials are

shown). Circles denote time of movement onset.
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Figure 2.
Application of LFADS to a “Maze” reaching task) (A monkey was trained to perform arm

reaching movements to guide a cursor in a 2-D plane from a starting location (center of the
workspace) to peripheral targets. Individual reaches are colored by target location. Virtual
barriers in the workspace facilitated instruction of curved (or straight) reaches on a per-
condition basis (seel) for examples).i) Comparison of condition-averaged (left) and
single-trial (right) rates for 4 individual neurons (columns) for three different methods
(rows). Left: Each trace represents a different reach condition (8 selected of 108 total).
Right Each trace represents an individual trial (same color scheme as the condition-
averaged panelsyop row PSTHs created by smoothing observed spikes with a Gaussian
kernel (30 ms s.d. Widdle row: LFADS-inferred ratesBottom row GPFA-inferred firing

rates, created by fitting a generalized linear model (GLM) to map the GPFA-inferred factor
representations onto the true spiking activity. Horizontal scale bar represents 300 ms.
Vertical scale bar denotes rate (spikes/sec). PSTHs for all neurons are shown in Supp. Data
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1. (c) Application of t-SNE to the generator initial conditiog8)( Each point represents the
reduction of the0 vector into a 3-D t-SNE space for an individual trial (2296 trials total), 2-

D projection shown, full 3-D projection shown in Supp. Video 1. Trials are color coded by

the angle of the reach target [same as (d)|Decoding reaching kinematics using optimal

linear estimation. Each row shows an example condition (3 shown, of 108 total). Column 1:
true reach trajectories (black traces, 10 example trials per condition). Columns 2—4:
examples of cross-validated reconstruction of these trajectories using OLE applied to the
neural data, which was first de-noised either via LFADS, by smoothing with a Gaussian

filter (40 ms s.d.), or using GPFA to reduce its dimensionaéinDécoding accuracy was
quantified by measuring variance explained)(®etween the true and decoded velocities for
individual trials across the entire dataset (2296 trials), for all three techniques and
additionally for simple binning of the neural data. Accuracy was also measured for random
sub-samples from the full neural population of 202 neurons. Dotted lines connect the median
R2 values for each population sizé). [FADS-inferred factors are informative about

neurons that are held-out from model training. LFADS models and GPFA were fit to subsets
of the full population of the 202 neurons [same populations as in (e)]. We then used a GLM
to map the latent state estimates produced by LFADS or GPFA onto the binned spike counts
(20 ms bins) for the remaining held-out neurons, e.g., for a model trained with 25 neurons,
there are 177=202-25 held out neurons. We evaluated the cross-validated performance of the
fit GLM models using log likelihood (LL) per spik& Each point represents a given held-

out neuron for a given random sampling of the population.
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Figure 3.
LFADS uncovers known rotational dynamics in monkey and human motor cortical activity

on a single-trial basisa( ¢ Rotational dynamics underlying the neural population state
accompany the transition between pre- and peri-movement activity, and have been
previously described for monk&gnd humafmotor cortical activity by projecting
condition-averaged activity into a low-dimensional plane using jPCA. Each trace shows the
neural population state trajectories for a single task condition (monkey: 108 reaching
conditions; human: 8 intended movement directiots)d When the same low-

dimensional projection is applied to the single-trial data, dynamics are less clear due to the
inherent noise of single-trial neural population activigy.d When LFADS is applied, the
condition-averaged inferred rates exhibit similar underlying dynamic structure for monkey
and human.f( h) Additionally, the same dynamic structure is now clearly present on
individual trials (monkey: 2296 trials; human: 114 trialsk ) Testing generalizability of
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the generator's dynamics to held out conditionsCénditions were binned by the angle of

the reach target (black dashed lines), resulting in 19 sets. 19 LFADS models’ generator
dynamics were then trained, each on 18 subsets of the data with 1 subset held out, and then
evaluated on the held-out subsgtLFADS-inferred rates for held-out conditions were
combined across the 19 models and were projected into the jPCA space found by training an
LFADS model on all conditions (i.e., panel fx) Correspondence between initial position

in jPCA space when a trial is used in the training set for an LFADS model and when it is
held-out (Pearson’s correlation coefficient 0.97, 0.77 for jPg jPG, respectively). Each

dot represents an individual trial (2296 trials).
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Figure 4.
Using “dynamic neural stitching,” LFADS combines data from separately collected, non-

overlapping recordings of the neural population by learning one consistent dynamical model.
(a) Schematic of the LFADS architecture adapted for dynamic neural stitching. Per-session
“readin” matricedV P and “readout” matriced/ @€are used to map from each dataset’s
rates to the input factors and from the factors back out to rates, respectively (pink areas). The
encoder RNN, generator RNN, and factor readout méf# are shared among datasets

(blue area). For this example, eatly@€was learned where&8/7P“'was set using a

principal components regression approach (see Online Methods). A total of 44 individual
recording sessions using 24 channel linear multielectrode arrays wereb)demtagions of
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linear electrode array penetrations in the precentral gyrus from which each dataset was
collected. Dashed lines indicate approximate locations of nearby sulcal features based on
stereotaxic locations. Arc. Sp.: arcuate spur, PCd: precentral dimple, CS: central sulcus. (
Example single-trial rasters for nearly identical upwards reaches performed on a subset of 5
of the 44 recording sessions. Each raster has 24 rows corresponding to the 24 channels of the
linear array, but the neurons recorded on each session are entirely distinct from each other.
(d) After training, the multi-session stitched LFADS model produced consistent factor
trajectories for each behavioral condition across recording sessions. Traces are condition-
averaged factor trajectories for the multi-session stitched LFADS model projected into a
subspace which spans the condition independent signal (CIS) and the first JPCA plane (see
Methods). LFADS factors are averaged over all trials in each reach direction for each
recording session and projected into this subspace to produce a single trajectory; the color of
each trajectory represents the reach direction. The spatial proximity of the trajectories for a
given direction across the sessions (44 trajectories of each color) illustrates the consistency
of the representation across sessicg)sR{ values between arm kinematics and either
smoothing neural data, GPFA, single-session or stitched LFADS factor decodes. A single
shared decoder was fit for the stitched model; a separate decoder was fit for each single-
session model. “***” indicates significant improvement in medi&nR< 108, Wilcoxon
signed-rank testf) Actual recorded hand position traces for center out reaching task (left),
alongside kinematic decodes for a representative single session (session 32), for smoothed
neural data, GPFA, single-session LFADS, and stitched LFADS (left to right). Colors

indicate reach directiong) Single-trial factor trajectories from the stitched LFADS model.

Only the first seven of 44 sessions are shown for ease of presentation (see also Supp. Video
3).
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Figure 5.
LFADS uncovers the presence, identity and timing of unexpected perturbations in the

“Cursor Jump” task.g) Schematic of the LFADS architecture adapted for inferring inputs to

a neural population. As before, LFADS reduces individual trials to the initial state of the
generator RNNd0). However, now the activity of the generator is additionally determined

by a set of time-varying inferred inputg), modeled stochastically likg0d with a mean and
variance, which are inputted to the generator at each time point. The inferred;iisput

output by a controller RNN, which receives time-varying input from the encoding network,
as well as the factors representation at the preceding timdst&zhematic depicting the
“Cursor Jump” task. The position of a monkey’s hand was linked to the position of an on-
screen cursor, and the monkey made reaching movements to steer the cursor toward upward
or downward targets. In unperturbed trials (grey traces), the monkey made straight reaches
to the target. In perturbed trials (orange traces), the cursor’s position was offset to the left or
right during the course of the reaching movement, and the monkey made corrective
movements to acquire the targe). $piking activity from M1/PMd arrays during three

example reach trials to downward targets for the unperturbed (top), perturb right (middle),
and perturb left (bottom) conditions. Squares denote time of target onset, and triangles
denote the time of an unexpected perturbatidnLFADS was allowed 4 inferred inputs to
model the neural activity. For presentation, two trial alignments were used prior to
averaging: the initial portion of the trials was aligned to the time of target onset, while the
latter portion of the trials was aligned by perturbation time (or, for unperturbed trials, the
time at which a perturbation would have occurred based on the cursor’s trajectory). The gap
in the traces denotes the break in alignment. Inferred input values were averaged across trials
for upward (top) and downward (bottom) trials (mean * s.e.m. is shown, grey: unperturbed
trials, blue: perturb left trials, red: perturb right trials). Around the time of target onset, the
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identity of the target (up vs. down) is modeled by the inputs (e.g., dimension 1). Around the
time of the perturbation, LFADS used specific inferred input patterns to model each
perturbation type (e.g., dimensions 1 & 2). Input traces were smoothed with a causal
Gaussian filter (20 ms s.d.¥) (The single-trial input patterns around the time of

perturbation (all downward trials) were projected into a low-dimensional space using t-SNE
and colored by the three perturbation types (unperturbed, left perturbation, right
perturbation). Black boxes denote locations in t-SNE space for the example trials shown in
panelc.
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Figure 6.
When inferred inputs are allowed (Fig. 5a), LFADS uncovers fast oscillatory structure in

neural firing patternsaj Example single-trial spiking activity recorded from human M1 and
monkey M1/PMd, as well as LFADS-inferred rates, and local field potentials. 400 ms of data
are shown, beginning at the time of target presentation during an 8-target center-out-and-
back movement paradigm. For T7, analyses were restricted to channels that showed
significant modulation during movement attempts (78/192 channels). Dashed red lines
overlaid on monkey data segregate the M1 array (upper halves) and PMd array (lower
halves). Squares denote time of target onset. For Monkey J, where movement was
measurable, circle denotes time of movement orseCrpss-correlations between the local
field potentials recorded on each electrode and the observed spiking activity (black traces;
mean * s.e.m.) or the LFADS-inferred rates (red traces) for several example channels
(participant T7: 142 trials; monkey J: 373 trials). LFP were first low-pass filtered (75 Hz
cutoff frequency). Randomly shuffling the trial identity (i.e., correlating spikes from one trial
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with LFP from another) largely removed the fast, oscillatory components in the cross-
correlograms (blue traces).
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Important hyper-parameters of LFADS models. Listed here are the most important LFADS parameters,
relating primarily to model capacity. ‘N’ - number of units in the generator, 'F' - number of factprs, |
number of inferred inputs, 'E’ - encoder, 'C’ - controller, 'G’ - generator, 'KP’ - keep probability in dropout
layers, 'BS’ - bin size (ms).

Model Figure N F | ¢g0OEdm uyEdm Cdm GL, CL, KP BS
Monkey J Maze Main2,3 100 40 0 100 - - 10 - 0.98 5
Participant T5 Center-out  Main 3 64 20 3 64 - - 250 - 095 5
Monkey P Multi-session ~ Main 4 100 16 O 100 - - 500 - 0.98 10
Monkey P Single-session Main 4 100 16 O 100 - - 500 - 098 10
Monkey J CursorJump Main 5 128 50 4 150 100 128 25 25 098 10
Monkey J Center-out Main 6 128 50 4 150 100 128 25 25 0.98 2
Participant T7 Center-out Main 6 64 20 3 64 64 128 250 250 0.95 5
Lorenz attractor Supp. 2 64 3 0 64 - - 250 - 0.95 a.u.
Chaotic RNN Supp. 3 200 20 O 200 - - 2000 - 0.95 a.u.
Input pulses Supp. 6,7 200 20 1 200 128 128 2000 0 0.95 a.u.
RNN Integrator Supp. 8 200 20 1 128 128 128 2000 0 0.95 a.u.
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Signal collection technology and spike detection methods.

Model Figure Electrode type  Signal post-processing

Monkey J Maze Main 1, 2,3  Utah array threshold crossings, spike sorted
Participant T5 Center-out Main 3 Utah array threshold crossing

Monkey P Single-session  Main 4 v-probe threshold crossing

Monkey P Multi-session  Main 4 v-probe threshold crossing

Monkey J CursorJump Main 5 Utah array threshold crossing

Monkey J Center-out Main 6 Utah array threshold crossing

Participant T7 Center-out  Main 6 Utah array threshold crossing
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