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Abstract

Genome-, transcriptome- and proteome-wide measurements

provide insights into how biological systems are regulated.

However, fundamental aspects relating to which human proteins

exist, where they are expressed and in which quantities are not

fully understood. Therefore, we generated a quantitative proteome

and transcriptome abundance atlas of 29 paired healthy human

tissues from the Human Protein Atlas project representing human

genes by 18,072 transcripts and 13,640 proteins including 37 with-

out prior protein-level evidence. The analysis revealed that

hundreds of proteins, particularly in testis, could not be detected

even for highly expressed mRNAs, that few proteins show tissue-

specific expression, that strong differences between mRNA and

protein quantities within and across tissues exist and that protein

expression is often more stable across tissues than that of tran-

scripts. Only 238 of 9,848 amino acid variants found by exome

sequencing could be confidently detected at the protein level

showing that proteogenomics remains challenging, needs better

computational methods and requires rigorous validation. Many

uses of this resource can be envisaged including the study of gene/

protein expression regulation and biomarker specificity evaluation.
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Introduction

Delineating the factors that govern protein expression and activity

in cells is among the most fundamental research topics in biology.

Although the number of potential protein-coding genes in the

human genome is stabilizing at about 20,000, high-quality evidence

for their physical existence has not yet been found for all and

intense efforts are ongoing to identify these currently ~13% “miss-

ing proteins” (Omenn et al, 2017). While it is also generally

accepted that the quantities of proteins vary greatly within and

across different cell types, tissues and body fluids (Kim et al, 2014;

Wilhelm et al, 2014), this has not been analysed systematically for

many human tissues. Furthermore, it is not very clear yet how the

many anabolic and catabolic processes are coordinated to give rise

to the often vast differences in the levels of proteins. Messenger

RNA levels are important determinants for protein abundance

(Vogel et al, 2010; Schwanhäusser et al, 2011), and extensive

mRNA expression maps of human cell types and tissues have been

generated as proxies for estimating protein abundance (GTEx

Consortium, 2013; Uhlén et al, 2015; Thul et al, 2017). However,

other studies have also highlighted the much higher dynamic range

of protein than transcript abundance as well as a rather poor

correlation of mRNA and protein levels suggesting that further and

possibly diverse regulatory elements play important roles

(Schwanhäusser et al, 2011; Liu et al, 2016; Franks et al, 2017).

Decades of careful research revealed numerous mRNA elements

affecting translation or mRNA stability such as codon usage, start
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codon context or secondary structure to name a few. However, most

of these studies focussed on single or few genes or single cell types

or were performed in model organisms distinct from human systems

and often did not cover a lot of proteins. Broader scale analyses

have more recently become possible owing to advances in proteome

and transcriptome profiling technologies, but these have mostly

focussed on a single (disease) tissue or the cell-type resolved analy-

sis of protein expression in single tissues (Zhang et al, 2014; Mertins

et al, 2016). To the best of our knowledge, no broad-scale quantita-

tive and integrative analysis of transcriptomes and proteomes across

many healthy human tissues has been performed yet that would

enable a comprehensive analysis of factors explaining the experi-

mentally observed differences between mRNA and protein expres-

sion. Therefore, the purpose of this study was to generate a

resource of molecular profiling data at the mRNA and protein level

to facilitate the study of protein expression control and proteoge-

nomics in humans. To this end, we analysed 29 major histologically

healthy human tissues from the Human Protein Atlas (HPA) project

(Uhlén et al, 2015) to provide a comprehensive baseline map of

protein expression across the human body. As we show below as

well as in Eraslan et al, 2019, these data can be used in many ways

to explore protein expression and its regulation in humans. To facili-

tate further research on this fundamentally important topic and the

many further uses that can be envisaged, all data are available in

ArrayExpress (Kolesnikov et al, 2015) and proteomeXchange

(Vizcaı́no et al, 2014).

Results and Discussion

Comprehensive transcriptomic and proteomic analysis of 29

human tissues

We analysed 29 histologically healthy tissue specimen representing

major human organs by label-free quantitative proteomics and

RNA-Seq (Fig 1A; see Appendix Figs S1–S6 for the assessment of

data quality). Tissues were collected by the HPA project (Fagerberg

et al, 2014), and adjacent cryosections were used for paired (allele-

specific) transcriptome and proteome analysis. RNA-Seq profiling

detected and quantified in total 18,072 protein-coding genes with an

average of 12,262 (� 1,007 standard deviation, SD) genes per tissue

(Fig 1B) when using a cut-off of 1 fragment per kilobase million

(FPKM; Uhlén et al, 2015). Proteomic profiling by mass spectrome-

try resulted in the identification and intensity-based absolute quan-

tification (iBAQ; Schwanhäusser et al, 2011) of a total of 15,210

protein groups with an average of 11,005 (� 680 SD) protein groups

per tissue at a false discovery rate (FDR) of < 1% at the protein,

peptide and peptide-spectrum match (PSM) level (Fig EV1A).

Protein identification was based on 277,698 non-redundant tryptic

peptides, representing a total of 13,640 genes and, on average,

10,541 (� 512 SD) genes per tissue covering, on average, 86% of

the expressed genome in every tissue. While the total number of

confidently identified proteins in this study is smaller than that of

other (community-based) resources such as ProteomicsDB (Schmidt

et al, 2018) and neXtProt (Gaudet et al, 2017; coverage of 15,721

and 17,470 protein-coding genes, respectively), it provides a highly

consistent collection of tissue proteomes including the deepest

proteomes to date for many of the tissues analysed. It also provides

protein-level evidence for 37 proteins (represented by at least one

unique peptide) that are not yet covered by neXtProt (release 2018-

01-17; Table EV1). These proteins were validated by synthetic

peptides (see PRIDE submission for mirror spectra). Eighteen of

these 37 have antibody staining in the current release of the HPA

project and all of them show signal in the same tissue they were

detected in by MS. This corroborates the detection of these new

proteins by an independent method. Eight of these proteins also

meet the guidelines of the Human Proteome Project that require ≥ 2

peptides for a new protein each with ≥ 9 amino acids in length

(Deutsch et al, 2016). We note that the HPP guidelines use reason-

able but ad hoc criteria which are likely too conservative and there-

fore likely discriminate against further genuine cases. Comparing

spectra of endogenous to synthetic peptides is likely the more objec-

tive criterion which is why we added mirror plots of all evaluated

cases to PRIDE (Zolg et al, 2017). The expression levels of the

“new” proteins were about a factor 10 below median (iBAQ at log10

scale, 7.4 versus 8.3) which explains why they may have been

missed before. Interestingly, 15 of these proteins were detected in

the fallopian tube, an organ that has not yet been extensively pro-

filed by proteomics.

Overall, 13,413 protein-coding genes were detected on both tran-

script and protein levels, and the detected proteins spanned almost

the entire range of mRNA expression again indicating very substan-

tial coverage of the expressed proteome (Fig 1C). However, some

proteins could not be detected even for highly expressed mRNAs

(i.e. higher than the mean mRNA abundance). About 1/3 of these

mRNAs were found in testis (478 of 1,408) and no other tissue

contained nearly as many highly expressed mRNAs without protein

evidence (Fig EV1B). The “missing” proteins in the testis were

statistically significantly enriched for processes related to spermato-

genesis by gene ontology analysis (clusterProfiler; n = 82 genes;

BH-adjusted P = 8 × 10�14). Although the rich expression of mRNAs

in testis has been known for a long time and exploited for, e.g., the

cloning of many genes from cDNAs, the apparent absence of so

many testis proteins with high mRNA expression is surprising. This

was not due to, e.g., poor coverage of the testis proteome (11,024

detected protein-coding genes) or other obvious technical factors

(such as inefficient extraction of membrane proteins or difficulties

with identifying small proteins) that would prevent detection of

these proteins. Interestingly, almost 300 of these “missing” proteins

have also not been detected by antibodies in testis (according to

HPA) and nearly 200 have no ascribed molecular function. The

inability to detect these proteins by mass spectrometry or antibodies

despite high levels of mRNA poses a number of questions. For

example, are these proteins rapidly degraded implying specialized

(and perhaps transient) functions in testis or sperm functionality?

Are they perhaps stabilized in response to egg fertilization? Proteins

missing at the lower end of the mRNA expression range (less than

mean mRNA abundance) are overrepresented in G-protein-coupled

receptor activity (n = 173; BH-adjusted P = 8.3 × 10�50), ion chan-

nels (n = 109; BH-adjusted P = 7 × 10�10) and cytokine-related biol-

ogy (n = 76; BH-adjusted P = 6 × 10�9). The abundance of these

proteins may simply have been below the mass spectrometric detec-

tion limit or, as described many times, can be difficult to extract

from cells owing to the presence of multi-pass transmembrane

domains giving rise to few if any MS-compatible tryptic peptides

after digestion.
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To explore which and how many proteins show a tissue-specific

expression profile, we applied the classification scheme of Uhlén

et al (2015, 2016) previously developed for mRNA profiling and

which stratifies genes into the five classes “tissue-enriched”

(fivefold above any other tissue), “group enriched” (fivefold above

any group of 2–7 tissues), “enhanced” (fivefold above the average

of all other tissues), “expressed in all” (expressed in all tissues) as

well as “mixed” genes (which do not match the other categories).
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Figure 1. Comprehensive proteomic and transcriptomic analysis of 29 human tissues from healthy donors.

A Body map of analysed tissues.

B Number of genes detected on protein and mRNA level in each tissue. The colouring of the bars indicates the fractions of transcripts and proteins that are expressed

everywhere or enriched in certain tissues. The full classification is provided in the text.

C Abundance distribution of all transcripts detected in all tissues (grey); the fraction of detected proteins is shown in blue and the fraction of transcripts for which no

protein was detected is shown in orange.

D Relative distribution and absolute numbers of transcripts and proteins in selected functional classes across the expression categories shown in panel (B). Colours are

the same as in panel (B).
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Overall, a large fraction of all represented genes was expressed in

all tissues: 37% (6,725) at the transcript level and 39% (5,400) at

the protein level. However, 43% (7,866) of all transcripts and 53%

(7,244) of all proteins showed elevated expression in one or more

tissues (“tissue-enriched”, “group-enriched” or “tissue-enhanced”).

Only 0.73% (on average) of all transcripts and 0.65% of all proteins

showed a tissue-enriched profile. Two notable exceptions are brain

and testis which exhibit a higher percentage of tissue-enriched

proteins and transcripts in line with a recent analysis of RNA-Seq

data from the HPA and GTEx projects (GTEx Consortium, 2013).

Proteins with more tissue-restricted expression tended to be of

slightly lower abundance (Fig EV1C).

For 1,270 of the total 1,998 tissue-enriched proteins detected in

our study, antibody staining was available in the HPA. In the 29

tissues that are common between HPA and the current study, 775

proteins were detected in the same tissue lending support to the

mass spectrometry-based data presented here. In addition, we

compared our tissue-enriched expression data to the targeted MS

(PRM) data acquired for about 52 proteins by Edfors et al (2016)

and 10 tissues that overlapped with our tissue panel (see

Appendix Figs S7–S9). Incidentally, the Edfors’ study had data on

three tissue-enriched proteins. First, myoglobin (MB) was highly

tissue-enriched in our data in the heart which was confirmed by the

PRM analysis as well as antibody staining in HPA. Second, the

protein PDK1 (3-phosphoinositide-dependent protein kinase-1) was

also found to be a heart-enriched protein and the PRM data con-

firmed this. This protein was detected in all tissues by antibody

staining but we note that immunohistochemistry (IHC) stains are

not quantitative so it is difficult to conclude if broad detection of this

protein was due to overstaining or poor antibody specificity. The

third example is the protein CANT1 (soluble calcium-activated

nucleotidase 1) which we detected as a prostate-enriched protein.

Again, this was confirmed by the PRM measurement but was again

detected in most tissues by IHC.

The above global trends in transcript and protein tissue expres-

sion distributions were also mirrored by functional categories of

genes but with some interesting detail (Fig 1D, Table EV4). For

example, while the tissue distribution of expression of disease-asso-

ciated genes followed that of all genes, the expression of drug

targets in general and GPCRs in particular was much more tissue-

restricted speaking to the notion that proteins may make for better

drug targets if they are not ubiquitously expressed (Hao & Tatonetti,

2016). In this context, we point out that our baseline map of protein

expression across the human body may be of general value for drug

discovery as one can, e.g., quickly examine the expression profile of

a particular target of interest, to help better understand adverse clin-

ical effects and off-target mechanisms of action of drugs. For

instance, a recent study revealed phenylalanine hydroxylase (PAH)

as an off-target of the pan-HDAC inhibitor panobinostat (Becher

et al, 2016). Our map of protein expression shows that PAH is abun-

dantly expressed in liver (and kidney) which is also the major site

of hydroxylation in the human body (Matthews, 2007), indicating

that the liver is the major site where panobinostat exerts its detri-

mental effects, i.e. leading to decreased tyrosine levels, and eventu-

ally hypothyroidism in affected patients. In contrast, essential genes

(Blomen et al, 2015; Hart et al, 2015; Wang et al, 2015) as well as

mitochondrial genes were found in the vast majority of all tissues in

line with their central roles for maintaining cellular homeostasis.

Despite the differences in detail, our dataset confirms, at the protein

level, that there is a core set of ubiquitously expressed genes/

proteins and that individual tissues are not strongly characterized

by the categorical presence or absence of mRNAs or proteins but

rather by quantitative differences (Geiger et al, 2013). This is also

evident from an analysis of the most divergently expressed proteins

or transcripts that shows enrichment of proteins related to the func-

tional specialization of the respective tissue (Fig EV1D, Table EV3).

mRNA and protein expression

The relationship between mRNA and protein expression has been

studied extensively over the past years and there continues to be

debate in terms of how the various correlations that can be

computed may be interpreted in terms of technical artefacts or

biological meaning (Liu et al, 2016; Fortelny et al, 2017; Franks

et al, 2017; Wilhelm et al, 2017). While it is beyond the scope of the

current study to attempt to reconcile the different views, the exten-

sive data on both mRNA and protein expression provided in this

resource should help to eventually bring clarity. Therefore, in the

following, we confine our analysis of the expression data to a few

basic points we nonetheless deem important.

The dynamic range of transcripts detected by RNA-Seq spanned

about four orders of magnitude and that of proteins detected by

mass spectrometry spanned eight orders of magnitude (Fig 2A; see

Appendix Fig 10 for the corresponding plot using copy numbers that

show essentially the same characteristics; Table EV5). This dif-

ference alone explains (at least in part) the overall higher coverage

of the expressed proteome by RNA-Seq compared to that of LC-MS/

MS. This is because there is limited “sequencing capacity” particu-

larly in mass spectrometry. Thus, detecting very low-abundance

molecules will be harder, the wider the dynamic range of expression

and the lower the sampling depth is. For example, the (paired-end)

RNA data provided (on average) 18 M reads per tissue. Those 18 M

reads are distributed across 4 orders of magnitude of abundance

with an inevitable bias to the higher abundant transcripts. The MS

data only provided (on average) ~76,000 peptides and ~284,000

identified tandem mass spectra (peptide to spectrum matches;

PSMs) per tissue and these are distributed over eight orders of

magnitude also with a bias for the more abundant proteins. As a

result, it is currently much easier to cover many genes by RNA-Seq

than it is to cover the same number by LC-MS/MS.

As noted before, the much wider dynamic range at the protein

level implies that protein synthesis and protein stability play an

important role in determining protein levels beyond mRNA levels

(Schwanhäusser et al, 2011; Vogel & Marcotte, 2012). Similarly, the

number of protein molecules produced per molecule of mRNA

appears to be much larger for high- than for low-abundance tran-

scripts, leading to a nearly quadratic relationship between mRNA

levels and protein levels in every tissue (slope of 2.6 in Fig 2B for

brain and between 1.8 and 2.7 for all 29 tissues, Fig EV2A;

Appendix Fig S11). While this observation has been made before in

yeast (Csárdi et al, 2015), this study shows that it is a general

phenomenon. The effect may be rationalized by cellular economics

such that genes encoding highly abundant proteins not only express

high mRNAs levels, but also encode regulatory elements that favour

high translation efficiency and high protein stability (Vogel et al,

2010). The often vast differences in mRNA and protein expression
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Figure 2. Analysis of protein and transcript expression levels within and across tissues.

A Distribution of global transcript and protein abundance in all tissues. It is apparent that the dynamic range of protein expression (iBAQ scale) exceeds that of mRNA

expression (FPKM scale; see Appendix Fig S10 for the corresponding plot for RNA and protein copy numbers).

B Protein-to-mRNA abundance plot for brain tissue. The slope of the regression line indicates that high-abundance mRNAs give rise to more protein copies per mRNA

than low-abundance mRNAs.

C Ranked abundance plot of proteins and transcripts in human heart. While the 10 most abundant transcripts cover almost 70% of all transcripts in this tissue, the

corresponding proteins only represent about 20% of the total protein.

D Analysis of the number of genes that are shared among the 100 most abundant transcripts and proteins. Regardless of the tissue, the fraction of shared genes rarely

exceeds 20%.

E Correlation analysis of protein-to-RNA abundance (in log10 scale) across tissues, resulting in almost 90% positive correlations. The proteins highlighted in the next

panel are marked.

F Examples for proteins that show high (SYK, left panel) or no (EIF4A3, right panel) correlation of protein/RNA ratios across tissues. While the former indicates that

different tissues express different quantities of SYK, EIF4A3 expression appears to be similar in all tissues.
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within a tissue can also be visualized by plotting the ranked order

of relative intensities of transcripts and proteins (Fig 2C,

Appendix Fig S12). For example, in the heart (an extreme case),

41% of the total mRNA quantity (by FPKM) represents a single

protein (MT-ATP8) and nearly 60% of the total mRNA covers just

five transcripts (all coding for mitochondrial proteins). In contrast,

about 13% of the total protein quantity (by iBAQ) is contributed by

five proteins (four of which are myosins and one represents a

“contamination” from blood present in the tissue). One would

expect the heart to be rich in both protein families owing to the

contractile function of the organ which requires a lot of energy.

While it is possible that some of the mitochondrial proteins are

underrepresented in quantitative terms (because, e.g., MT-ATP8 is a

very small protein (7 kDa) and its iBAQ value may therefore not

reflect its true quantity or because our lysis conditions may not have

solubilized this organelle with high efficiency), it is surprising that

even among the 100 most highly expressed mRNAs and proteins,

only about 20% are the same (Fig 2D). This overlap only increases

to about 60% for the 5,000 most abundant proteins and transcripts

(Fig EV2B). The above reflects why RNA–protein abundance plots

generally show only modest correlation. The above rank order lists

of transcripts and proteins are also quite different between tissues

with the spleen showing the opposite characteristics compared to

the heart, and the lung showing a more even distribution of tran-

script and protein levels (Fig EV2C and D).

We find that many proteins are often expressed at broadly simi-

lar levels across human tissues (say within a factor 10; Fig EV2E). It

is, therefore, not very surprising that the correlation of mRNA/

protein ratios across tissues is generally not very strong (Fig 2E;

median 0.35). Still, there is positive correlation in ~90% of all cases

and almost half are also statistically significant. This distribution is

not affected by requiring detection of a protein in 10, 20 or all 29

tissues (see Appendix Figs S13–S15). However, great care has to be

taken when interpreting such distributions. As shown in Fig 2F, the

transcript and protein levels of the tyrosine kinase SYK span an

expression range of 45-fold and 39-fold, respectively (natural scale),

and are highly correlated across tissues reflecting the specialized

function of the protein in T- and B-cell biology. In contrast, RNA

and protein expression of EIF4A3 (a DEAD-box RNA helicase

involved in translation initiation) only spanned sixfold and 11-fold

between tissues and showed no correlation. We note that cases such

as the latter are merely the result of technical variation in the

measurement or genuinely similar expression levels in most tissues

reflecting the roles of these proteins in central biological processes

in all tissues (Appendix Fig S16; Wilhelm et al, 2017).

It is noteworthy that proteomes correlate stronger between

tissues (median of 0.77) than transcriptomes (median of 0.67;

Fig 3A; see Appendix Fig S17). It is possible that, because of the fact

that the dynamic range of protein levels is larger than that of RNA,

small biological or technical variations of individual genes may or

may not have impact on the overall rankings (Fortelny et al, 2017;

Franks et al, 2017). It might, however, also imply that there are

(hitherto not very clear) mechanisms in cells that “buffer” the

protein quantities against changes in mRNA abundance (Liu et al,

2016; Kustatscher et al, 2017). The strongest correlations for both

transcripts and proteins were found for the anatomically adjacent

small intestine and duodenum. At the proteome level, the brain

showed clear differences to other proteomes and gastrointestinal

organs appear to be more similar to each other. Visualizing the tran-

scriptome and proteome profiles in a plane using co-inertia analysis

(CIA; Culhane et al, 2005) indicate that mRNA and protein levels

are more similar to each other within tissues than between tissues

(Fig 3B) also reflected by an RV coefficient of 0.77 (a multivariate

generalization of the squared Pearson correlation coefficient). More-

over, the CIA grouped several tissues according to similarities in

their physiological function with tissues of the immune system and

of the gastrointestinal tract representing the largest groups. It is

interesting to note that this clustering appears to be driven by the

cellular composition of individual tissues (Table EV6). For instance,

the appendix co-clusters with the spleen, lymph node and tonsil and

all four tissues contain a large fraction of lymphocytes (Fig 3C, blue

panel). Similarly, the duodenum and small intestine comprise a

large proportion of (intestinal) glandular cells, which are important

determinants of the molecular make-up of those tissues (Fig 3C,

grey panel). All the above illustrates that there must be multiple

molecular factors and mechanisms determining the quantitative

expression of proteins. This particular aspect of the present mRNA/

protein expression resource may be particularly useful for the

community as it provides a rich data source for the study of protein

expression control (see also Eraslan et al, 2019).

Proteogenomic characterization of human tissues

One aspect of the data we cover in more detail in this study is the

considerable interest in the community to use proteomics data to

annotate genomes, often referred to as proteogenomics. With

matched RNA-Seq and proteomics data at hand, we set out to assess

the merits of proteogenomics at several levels. First, we investigated

the identification of protein isoforms. Based on RNA-Seq data, it has

been suggested that human cell types typically express one domi-

nant isoform (Gonzàlez-Porta et al, 2013; Ezkurdia et al, 2015). In

proteomics, isoforms are often more difficult to distinguish because

the identification of proteins is inferred from the underlying peptide

data. Given that many proteins contain conserved stretches of

amino acids and the fact that the median sequence coverage

achieved for each protein is limited (here between 14 and 25%;

Fig EV3A), many potential isoforms may not be covered by unique

peptides and some peptides may also match to multiple entries in

comprehensive sequence collections such as Ensembl (102,450

entries). This often leads to the identification of a so-called protein

group rather than one specific protein or isoform thereof. Illustrated

by the proteomic data obtained from trypsin-digested tonsil

(Fig 4A), only 14% of all protein groups contained one single

protein when searching the MS data against Ensembl. However,

when searching the same data against a protein sequence database

constructed from the tissue-specific RNA-Seq data, the proportion of

single entry protein groups increased to 53% (see Appendix Fig S18

for all tissues). In this way, we were able to identify 60,519 non-

redundant isoforms by RNA-Seq for 18,072 genes and confirm

15,257 by proteomics for 11,833 genes across the 29 tissues

(Fig EV3B, Tables EV2 and EV8). The same analysis also showed

that there were rather few proteins that were detected with more

than one isoform in the tonsil tissue (see Appendix Fig S19).

One way to improve the detection of isoforms is to increase the

sequence coverage in the proteomic data. To this end, we performed

an ultra-deep proteomic analysis of tonsil tissue by applying seven
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different proteases (trypsin, LysC, LysN, GluC, ArgC, AspN and

chymotrypsin) and three peptide fragmentation techniques (HCD,

CID and EThcD/ETD). This resulted in the identification of 11,569

protein groups (10,288 genes), represented by 421,073 non-redun-

dant peptides leading to a median protein sequence coverage of

54% (Fig EV3C–E; Table EV7) when searched against Ensembl. Of

these protein groups, 2,201 could be unambiguously linked to a

single isoform. When searched against protein sequences derived

from the tonsil-specific RNA-Seq data, we identified 10,592 protein

groups, among which 6,293 represented a particular isoform

identified by unique peptides (Fig 4A; Table EV7). The above shows

that isoform calling on the protein level is indeed quite successful

particularly when matched RNA-Seq data are available. We note

though that because most isoforms were detected by very few

isoform-unique peptides, confident quantification of the different

isoforms of the same gene found in the same tissue can be difficult

and may require targeted MS assays rather than shotgun approaches

to be accurate. In this context, it is also worth mentioning that there

is no clear consensus in the proteomics and transcriptomics commu-

nities as to how quantitative values should be allocated to particular

C

A B

Figure 3. Correlation analysis of protein and transcript expression levels.

A Global correlation analysis of proteomes versus proteomes and transcriptomes versus transcriptomes across human tissues. It is apparent that proteomes correlate

stronger across tissues than transcriptomes.

B Co-inertia analysis of transcriptome and proteome levels of all 29 tissues (arrow base: transcriptome; arrow head: proteome) showing that the information carried by

transcriptomes and proteomes was closer to each other in the same than across different tissues. Grey lines are used to aid identifying tissue names for the

respective arrows. Shaded areas highlight tissues that are related by their molecular profiles.

C Average cellular compositions of tissues highlighted in panel (B) showing that the molecular similarities in their transcriptomes and proteomes are driven by

similarities in cell types.
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proteins or transcripts. While it is custom in proteomics to use the

parsimonious approach (i.e. allocate all iBAQ intensity to the

protein with the highest overall evidence), it is custom to distribute

RNA-Seq reads covering shared sequences across multiple tran-

scripts containing that sequence (Trapnell et al, 2010). Unfortu-

nately, there is currently no software available that would enable

the systematic analysis of using either approach for both types of

data. This should be attempted in the future because it would not be

surprising if these differences in quantification approaches would

add substantially to the poor correlation of mRNA and protein levels

(or their ratios). In addition, there is currently no tractable way to

determine which allele of a gene gave rise to a detected protein or

isoform thereof.

To assess the ability of proteomics to detect genetic variants such

as single amino acid variants (SAAV), we generated whole exome

sequencing (WES), RNA-Seq and ultra-deep proteomics data for

tonsil tissue. In the WES data, the average exon coverage was 98×

and 97% of the exons were covered > 20× providing a sound basis

for the identification of SAAVs. Variant calling and filtering of WES

data resulted in 9,848 high-quality, non-synonymous point muta-

tions (i.e. nonsense and missense variants excluding I > L and L > I

variants that cannot be distinguished by mass spectrometry), repre-

senting 5,527 human genes and including 6,112 heterozygous and

3,736 homozygous variants (Fig 4B, Table EV8). In the RNA-Seq

data, 3,524 of the 9,848 genomic variants (36%; 2,171 heterozygous

and 1,353 homozygous cases; representing 2,428 genes) were

covered sufficiently (≥ 10×) to assess their genotype. The reason for

the substantial loss of coverage in the RNA-Seq versus exome data

is because (i) not all genes are expressed from both alleles in a given

tissue and (ii) even at a sequencing depth of 18 million reads, the

dynamic range of mRNA abundance is too high to cover all tran-

scripts and variants many times over.

It has been noted before that the identification of SAAVs by

proteomics is challenging and plagued by false positives in standard

database searching regimen because (i) the tandem mass spectra

used for database searching are often not of very high quality, (ii)

these spectra often do not contain the complete amino acid

sequence information of the underlying peptide and (iii) the current

FDR statistics for peptide/protein identification do not translate well

to variant calling on the peptide level. As a result, random matches

can and will frequently occur raising substantial concern about the

quality of part of the current proteogenomic literature (Nesvizhskii,

2014). When searching our proteomic data against concatenated

sequences obtained from the WES data, Ensembl and UniProt and

requiring an identification by both Mascot and Andromeda as well

as a number of further criteria (for details, see methods), we identi-

fied 1,942 candidate peptides mapping to 724 of the 9,848 (non-

canonical) exome variants (7.4% of total; 400 heterozygous and 324

homozygous cases). These peptide variants are all missense muta-

tions (Table EV8). For 41% of the heterozygous cases (165 out of

400), we obtained peptide-level evidence for the canonical and alter-

native variant, while for the remaining cases, we only identified the

alternative variant (235).

For validation, candidate peptide spectra were compared to those

of synthetic reference standards (Zolg et al, 2017). To this end, we

attempted the synthesis of reference peptides for all 724 alternative

variants and obtained such peptides for 574 cases. Automated spec-

tral angle analysis (Toprak et al, 2014) provided evidence for 238

variants (SA ≥ 0.7, Mascot ion score ≥ 50) including 109 heterozy-

gous and 129 homozygous cases (Fig 4B; Table EV8; see PRIDE for

mirror plots). Manual inspection of the above 724 candidate

peptides identified 204 unique alternative variant sites of which 158

were also found in the SA analysis. The variants that passed our

(conservative) filtering criteria merely represent 2.4% of all variants

detected at the exome level, 6.7% of the variants detected at the

mRNA level and 32% of the candidates suggested by database

searching. When tracing the confidently identified peptide variants

back to the proteomic workflow, it became clear that the vast major-

ity of all variants are represented by peptides generated by trypsin,

LysC and ArgC cleavage and using the standard HCD fragmentation

technique. In addition, the confirmation rate (using the synthetic

peptide reference standards) for tryptic peptides was also much

higher than that of the other enzymes (Fig 4C; synthetic peptides

were not measured by EThcD/ETD). This can be attributed to the

fact that trypsin-like peptides generally show well-predictable frag-

mentation behaviour and that most bioinformatic tools are opti-

mized for use with data generated from tryptic digestion of

proteomes.

While the above shows that some of the variants detected on the

nucleotide level could be confirmed at the protein level, the overall

success rate was low. We note here that this was mainly not due to

lack of expression of the underlying gene because the proteomic

data cover 76% of all expressed tonsil genes (9,287 of 12,203

mRNA-Seq genes), 48% (2,633 of 5,527) of all the genes for which

variants were detected by exome sequencing and 76% (1,836 of

2,428) by RNA-Seq, respectively (further discussed below). Instead,

the main reasons for poor coverage of SAAVs at the proteome level

are the still limited sensitivity and dynamic range of detection,

limited peptide coverage of a protein and the insufficient coverage

of amino acids in peptide mass spectra along with shortcomings in

peptide identification algorithms. Further reasons include that anno-

tated variants may actually not exist at the protein level (e.g.

because of sequencing/calling errors), they may not be translated,

they may be rapidly degraded to an extent that they are not detect-

able at steady state etc. Even for the successful cases, the analysis

clearly shows that SAAV detection by proteomics requires very

rigorous validation in order to be credible.

Recent research showed that there is more heterogeneity in gene

models than previously anticipated, as a result of, e.g., alternative

translation initiation sites (aTIS; Na et al, 2018) and there is an

ongoing debate in the community whether or not long non-coding

RNAs (lncRNAs) can be translated into proteins (Chen et al, 2017).

Ribosomal profiling showed that thousands of potential aTIS may

exist and that ~40% of all lncRNAs can at least engage the ribosome

(Kearse & Wilusz, 2017). In order to explore if our resource can

provide protein evidence for such cases, we used a database search

strategy (Marx et al, 2017) in which we queried all LC-MS/MS files

against combined sequences from(i) a curated lncRNA database

(GENCODE v.25), (ii) a database containing protein sequences

derived from alternative translation initiation sites (see Materials

and Methods), (iii) GENCODE, (iv) UniProt and (v) the tissue-

specific RNA-Seq data. Any potential lncRNA or aTIS peptide was

required to originate from one single sequence collection only (i.e.

lncRNA or aTIS and no other database), be identified by both

Mascot and Andromeda, to fulfil stringent score cut-offs (see Materi-

als and Methods), to be backed up by the expression of the
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underlying transcript in at least one of the tissues (FPKM > 1) and

to fail a BLAST search against UniProt to exclude obvious alterna-

tive explanations. This approach yielded 5 lncRNA and 344 aTIS

peptides, respectively. Because of the size of the searched database

(aTIS: 474,991 entries; lncRNA: 29,524 entries), there was still

ample opportunity to generate false positives. Interestingly, not a

single lncRNA peptide could be substantiated by synthetic peptides

indicating that lncRNA is rarely if at all translated (Bánfai et al,

2012).

To validate the candidate aTIS peptides, we compared spectra of

endogenous and synthetic peptide reference standards as described

above. Only 66 aTIS peptides (including 8 N-terminally acetylated

peptides) covering 53 genes and 57 alternative translation start sites

could be confirmed in this way (Table EV8). Manual spectrum

interpretation yielded 96 aTIS peptides (overlap of 45 to the SA

analysis) mapping to 76 genes and 81 alternative translation start

sites. In total, we confirmed 117 aTIS peptides mapping to 89 genes

and 99 alternative translation start sites, which included 14 peptides

from 12 genes reported in previous studies, for example FXR2,

RPA1 and CDV3 (Table EV8; Branca et al, 2014; Kim et al, 2014).

Fifty-five of the above aTIS peptides represent 50 N-terminal exten-

sions of the original gene, 32 peptides represent novel (acetylated)

N-termini downstream of the canonical start site, 17 represent

frame-shifts potentially leading to an entirely new sequence, five

peptides likely represent upstream ORFs (uORF) with a stop codon

before the canonical start site and 8 peptides with mixed annotation

(Fig 4D, left panel). The mirror mass spectra in Fig 4E for the

endogenous (top) and synthetic (bottom) peptide (ac)ATTQISKDEL-

DELKEAFAK from the actin-binding protein plastin-3 (PLS3)

provide an example for the detection of a novel N-terminal

sequence. For 36 of the peptides representing aTIS, we identified

the exact start site as the peptide was N-terminally acetylated

(Fig 4D, right panel). Among these, 18 contained an AUG start

codon (Met), 8 contained a GUG start codon (Val), 5 a UUG and 4 a

CUG start site (both Leu), and one GCG start site (Ala). This con-

firms the emerging notion that non-AUG translation initiation

events are not as infrequent as previously thought and may repre-

sent a mechanism to regulate protein expression (Kearse & Wilusz,

2017). This study only identified a relatively small number of aTIS

events compared to others (Na et al, 2018) implying that enrich-

ment of N-terminal peptides (Gevaert et al, 2003; Kleifeld et al,

2010) is a more efficient way to detect such events systematically

but also pointing out that the previous literature may not be free of

a substantial number of mistakes.

An important learning from the present systematic analysis of

transcriptomes and proteomes of human tissues is that identifying

protein SAAVs or novel coding sequences using proteomics is possi-

ble but remains challenging. There were large discrepancies

between the results of the two database search engines used (Mas-

cot and Andromeda; Fig EV3F and G; Appendix Figs S20 and S21)

implying that the underlying scoring schemes are not optimized yet

for the detection of variants and novel coding regions. At present,

synthetic peptide reference spectra appear to be mandatory for vali-

dation and manual spectra comparisons still have a role to play (Lee

et al, 2018). Neither approach has been followed systematically in

the literature so far and, obviously, they are also not without error

but clearly more powerful than purely relying on statistical criteria

with largely arbitrary cut-offs alone (Nesvizhskii, 2014;

Dimitrakopoulos et al, 2016; Lee et al, 2018). It appears that even

with the latest proteomic technology, proteogenomics currently

offers rather small returns on very significant efforts in data genera-

tion, analysis and validation and that large improvements will be

required to change this situation substantially in the future. It is

possible that our filtering criteria were perhaps too strong so that

further variants may be present in the data (see Table EV8).

However, no convincing false discovery rate estimation has been

published yet for spectral angle analysis (let alone for manual data

analysis); hence, we decided to be conservative. Still, the resource

presented in this work should be of considerable value for scientists

wishing to develop more sophisticated approaches for proteoge-

nomics in the future and the authors think that there is considerable

future potential in the use of synthetic peptide references in

conjunction with spectral angle analysis particularly for the many

chimeric spectra present in classical data-dependent proteomic

datasets but even more so for the increasing application of data-

independent data acquisition regimes.

Materials and Methods

Human tissue specimen

The 29 human tissue samples used for mRNA and protein expression

analysis were obtained from the Department of Pathology, Uppsala

University Hospital, Uppsala, Sweden, as part of the sample collec-

tion governed by the Uppsala Biobank (www.uppsalabiobank.uu.

se/en/). All tissue samples were collected and handled using stan-

dards developed in the Human Protein Atlas (www.proteinatlas.org)

◀
Figure 4. Proteogenomics exploration for protein-level detection of isoforms, single amino acid variants and alternative translation sites.

A Searching the tonsil proteomic data (trypsin alone or all enzymes) against a tissue-specific sequence database constructed from RNA-Seq data drastically reduces the

number of individual protein sequences in protein groups compared to searches against Ensembl, allowing for the more efficient detection of protein isoforms.

B Number of single amino acid variants detected by whole exome sequencing and DNA, by RNA-Seq at the mRNA and by mass spectrometry at the protein level as

well as confirmed candidates by validation using synthetic peptide spectra comparisons. It is apparent that only a very small fraction of all variants detected at the

DNA or RNA level can be detected at the proteome level using current technology.

C Analysis of which proteomic workflow contributed to the detection and confirmation of single amino acid variants.

D Results of the detection of non-canonical coding regions using proteomics data (left panel) and different alternative start codons identified by acetylated N-terminal

peptides (right panel). The majority of cases are N-terminal extensions of annotated genes. All but one of the detected alternative translation start sites correspond to

point mutations of the first base of the classical AUG codon.

E Validation of a novel translation start site for the protein PLS3. The upper panel shows the novel translation site position within the amino acid sequence context,

and the lower panel shows a mirror plot of the tandem mass spectra of the endogenous N-terminally acetylated peptide (peaks pointing upwards) and the

corresponding synthetic peptide spectrum (peaks pointing downwards). Y-type sequence ions are coloured in red, b-type ions in blue, and the intact peptide as well

as neutral losses thereof are marked in yellow.
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and in accordance with Swedish laws and regulations. Tissue

samples were anonymized in agreement with approval and advisory

reports from the Uppsala Ethical Review Board (References # 2002-

577, 2005-338 and 2007-159 (protein) and # 2011-473 (RNA)). The

need for informed consent was waived by the ethics committee. The

list of all tissues along with corresponding donor information,

sample preparation and measurement information is provided in

Table EV1.

RNA sequencing

Procedures for RNA extraction from tissues, library preparation

and sequencing have already been described (Uhlén et al, 2015).

Briefly, pieces of frozen human tissue were embedded in optimal

cutting temperature (OCT) compound and stored at �80°C.

Cryosections were cut and stained with haematoxylin-eosin for

microscopical confirmation of tissue quality and proper representa-

tivity. 5–10 cryosections (10 lm) were transferred to RNAse-free

tubes for extraction of total RNA using the RNeasy Mini Kit (Qia-

gen). RNA quality was analysed with an Agilent 2100 Bioanalyzer

system with the RNA 6000 Nano LabChip Kit (Agilent Biotechnolo-

gies). Only samples of high-quality RNA (RNA integrity number

≥ 7.5) were used for mRNA sample preparation and sequencing.

The mRNA strands were fragmented using Fragmentation Buffer

(Illumina), and the templates were used to construct cDNA

libraries using a TruSeq RNA Sample Prep Kit (Illumina). Gene

expression was assessed by deep sequencing of cDNA on Illumina

HiSeq 2000/2500 system (Illumina) for paired-end reads with a

read length of 2 × 100 bases. RNA sequencing data were aligned

against the human reference genome (GRCh38, v83) using

Tophat2.0.8b. FPKM (fragments per kilobase of exon model per

million mapped reads) values were calculated using Cufflinks

v2.1.1 as a proxy for transcript expression level. The FPKM values

of each gene were summed up in an individual sample, and

median normalization was applied to evaluate genes expression

levels between tissues. A cut-off value of 1 FPKM was used as a

lower limit for detection across all tissues.

Sample preparation and off-line hydrophilic strong anion

chromatography (hSAX)

Fresh frozen human tissue samples (parallel cryosections cut simul-

taneously as those used for RNA extraction, described above) were

prepared for LC-MS/MS as described previously (Ruprecht et al,

2017). Briefly, tissue slices were homogenized in lysis buffer

(50 mM Tris/HCl, pH 7.6, 8 M urea, 10 mM tris(2-carboxyethyl)

phosphin hydrochloride, 40 mM chloroacetamide, protease and

phosphatase inhibitors) by bead milling (Precellys 24, Bertin Instru-

ments, France; 5,500 rpm, 2 × 20 s, 10 s pause). Protein content

was determined using the Bradford method (Coomassie (Bradford)

Protein Assay Kit, Thermo Scientific), and 300 lg of the protein

extract was used for in-solution digestion with trypsin. For this, the

sample was diluted with 50 mM Tris/HCl to a final urea concentra-

tion of 1.6 M, and trypsin was added at a 50:1 (w/w) protein-to-

protease ratio. After 4 h of digestion at 37°C, another aliquot of

trypsin was added to reach a final 25:1 (w/w) protein-to-protease

ratio and the sample was incubated overnight at 37°C. In addition,

the tonsil sample was subjected to digestion using LysC, ArgC,

GluC, AspN, LysN and chymotrypsin (LysC was from Wako, Japan;

the other proteases were from Promega, USA). 300 lg of the protein

extract prepared as described above was applied in each digestion.

The buffers were prepared according to the manufacturer’s proto-

cols. The resulting peptides were desalted and concentrated on C18

StageTips (Rappsilber et al, 2007) and fractionated via hSAX off-line

chromatography exactly as described previously (Ruprecht et al,

2017). The details of digestion for each tissue are given in the

Appendix Table S1.

On-line liquid chromatography–tandem mass

spectrometry (LC-MS/MS)

Quantitative label-free LC-MS/MS analysis was performed using a

Q Exactive Plus mass spectrometer (Thermo Fisher Scientific,

Bremen, Germany) coupled on-line to a nanoflow LC system

(NanoLC-Ultra 1D+, Eksigent, USA). Peptides were delivered to a

trap column (0.1 × 2 cm, packed with 5 lm ReproSil-Pur AQ, Dr.

Maisch GmbH, Germany) at a flow rate of 5 ll/min for 10 min in

100% solvent A (0.1% formic acid, FA, in HPLC-grade water).

After 10 min of loading and washing, peptides were transferred to

a 40 cm (75-lm inner diameter) analytical column, packed with

3 lm, ReproSil-Pur C18-AQ, Dr. Maisch GmbH, Germany) and

separated using a 110-min gradient from 2% to 32% solvent B

(0.1% FA, 5% dimethyl sulfoxide in acetonitrile, ACN) at a flow

rate of 300 nL/min. Full scans (m/z 360–1,300) were acquired at a

resolution of 70,000 using an AGC target value of 3e6 and a maxi-

mum ion injection time of 100 ms. Internal calibration was

performed using the signal of a DMSO cluster as lock mass (Hahne

et al, 2013). Tandem mass spectra were generated for up to 20

precursors by higher-energy collisional dissociation (HCD) using a

normalized collision energy of 25%. The dynamic exclusion was

set to 35 s. Fragment ions were detected at a resolution of 17,500

using an AGC target value of 1e5 and a maximum ion injection

time of 50 ms.

LysC-, ArgC-, GluC-, AspN-, LysN- and chymotrypsin-digested

samples were measured on a Q Exactive HF mass spectrometer

(Thermo Fisher Scientific, Bremen, Germany) coupled on-line to a

nanoflow LC system (NanoLC-Ultra 1D+, Eksigent, USA). Full scan

MS spectra were acquired at 60,000 resolution and a maximum ion

injection time of 25 ms. Tandem mass spectra were generated for

up to 15 peptide precursors and fragments detected at a resolution

of 15,000. The MS2 AGC target value was set to 2e5 with a maxi-

mum ion injection time of 100 ms. The other settings were the same

as for the Q Exactive Plus.

Tryptic peptides from the tonsil sample were also analysed on an

Orbitrap Fusion Lumos Mass Spectrometer (Thermo Fisher Scien-

tific, Bremen, Germany) coupled on-line to a nanoflow LC system

(UltiMateTM 3000 RSLC Nano System, Thermo Fisher Scientific)

using CID, and EThcD/ETD fragmentation. Full MS scans were

performed at a resolution of 60,000, a maximum injection time of

50 ms and an AGC target value is 5e5, followed by MS2 events with

a duty cycle of 2 s for the most intense precursors and a dynamic

exclusion set to 60 s. CID scans were acquired with 35% normalized

collision energy and Orbitrap readout (1e5 AGC target, 0.25 activa-

tion Q, 20 ms maximum injection time, inject ions for all available

parallelizable time enabled, 1.3 m/z isolation width). EThcD/ETD

scans used charge-dependent parameters: 2+ precursor ions were
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fragmented by EThcD with 28% normalized collision energy and 3+

to 7+ precursor ions were fragmented by ETD. The MS2 scans were

read out in the Orbitrap (1e5 AGC target, 0.25 activation Q and

100 ms maximum injection time).

MS data processing and database searching

For peptide and protein identification and label-free quantification,

the MaxQuant suite of tools version 1.5.3.30 was used. The spectra

were searched against the Ensembl human proteome database (re-

lease-83, GRCh38) with carbamidomethyl (C) specified as a fixed

modification. Oxidation (M) and acetylation (protein N-Term) were

considered as variable modifications. Trypsin/P was specified as the

proteolytic enzyme with 2 maximum missed cleavages. The match

between runs function was enabled, with match time window set to

0.7 min and an alignment time window of 20 min. The FDR was set

to 1% at both PSM and protein level. LysC/P, ArgC and LysN were

specified with two maximum missed cleavages. Searches for GluC

and AspN peptides allowed three missed cleavages. Chymotrypsin

(C terminal of F, Y, L, W or M) was allowed with at most 4 missed

cleavages. Label-free quantification was performed using the iBAQ

approach (Schwanhäusser et al, 2011). For non-tryptic peptides and

single tissue analysis, matching data between fractions were

disabled.

Quantitative analysis of transcriptomes and proteomes

The quantitative analyses of proteomic and transcriptomic data

were performed at the gene level. Since some genes have alternative

Ensembl gene IDs with identical sequences, redundant protein

sequences derived from these genes exist in protein sequence data-

bases. These alternative gene IDs were not part of the reference

sequences for the analysis of RNA-Seq data. To improve compara-

bility between RNA and protein measurements, such identifiers

were removed from the MaxQuant output files an updated protein

ID and gene ID column was added to Table EV1. To evaluate gene

expression level, the total abundance of each gene in all individual

sample was used. The data were log-transformed (base 10) and

normalized using median centring across tissues.

The genes were classified into “Tissue enriched”, “Group

enriched”, “Tissue enhanced”, “Expressed in all” and “Mixed” as

described by Uhlén et al (2015, 2016). Gene ontology analysis of

genes only identified in transcriptomes and proteomes, and the

elevated proteins expressed in each tissue were performed using the

R package “clusterProfiler” and P-values were adjusted according to

the method by Benjamini–Hochberg (BH; Yu et al, 2012). The

resulting (redundant) gene ontology terms (biology process) of

elevated genes were removed using the “simplify” function in clus-

terProfiler based on GOSemSim (Yu et al, 2010). The list of 1,158

mitochondrial genes was obtained from MitoCarta 2.0 (Calvo et al,

2016). Essential genes (n = 583) were assembled from three human

essential gene studies using CRISPR-Cas9 and retroviral gene-trap

genetic screens (Blomen et al, 2015; Hart et al, 2015; Wang et al,

2015). Diseases-related genes (n = 3,896) and kinase genes

(n = 504) were obtained from UniProt. Cancer genes (n = 719) were

downloaded from Cosmic (Futreal et al, 2004). Drug target genes

(n = 784) were obtained from DrugBank (Wishart et al, 2018) and

restricted to proteins directly related to the mechanism of action for

at least one of the associated drugs. GPCR genes (n = 1,410) were

obtained from HGNC, and phosphatase genes (n = 238) were from

DEPOD (Duan et al, 2015). Transcription factor genes (IF,

n = 1,639) were obtained from the HumanTFs collection (Lambert

et al, 2018).

The Spearman correlation coefficient was used for correlating

transcriptome and proteome levels in single tissues. The slopes were

estimated by ranged major-axis (RMA) regression, which allows

errors in both variables and is symmetric, using the R package

“lmodel2” (Csárdi et al, 2015). The protein–mRNA Spearman corre-

lation coefficients of 9,870 genes which were at least expressed in

10 (20, 29) tissues at both mRNA and protein levels were calculated.

The co-inertia analysis (CIA) was performed using the “cia” func-

tion in the “made4” R package (Culhane et al, 2005). A total of

9,870 genes which were expressed in at least 10 tissues at both

mRNA and protein levels were considered, and the remaining miss-

ing values were replaced with a positive value 1 × 104 times smaller

than the lowest expression value in each dataset.

Protein copy numbers were calculated from intensity values

according to the “proteomic ruler” approach (Wi�sniewski et al,

2014). Transcript copy numbers were calculated from FPKM values

based on the estimated total cellular RNA amount using the total

intensity of ribosomal proteins (Wi�sniewski et al, 2014) and the

assumption that the cellular mRNA mass represents about 2% of

the total cellular RNA mass (Melnikov et al, 2012).

Construction of sample-specific protein sequence databases from

RNA-Seq data

RNA sequencing data were aligned to the human reference genome

(GRCh38, v83) using Tophat2.0.8b. FPKM values were calculated

using Cufflinks v2.1.1 as a proxy for transcript expression level.

Rvboost was used for variant calling. All transcripts with FPKM > 1

were translated into protein sequences and included in the search

database. Each tissue was searched against its matched RNA-Seq

database using MaxQuant as described above. The match between

runs function was disabled. The MaxQuant output data were used

for the isoform analysis.

Exome sequencing and variant calling

The exome of tonsil tissue was enriched using the Agilent

SureSelectXT Kit (v5) and sequenced on an Illumina HiSeq 4000

sequencer. The raw data were aligned to the human reference

genome (hg38) using bwa (v0.7.12), and duplicate reads were

marked using Picard Tools (v2.4.1). Genomic variants were called

and filtered using the GATK (v.3.6) HaplotypeCaller and VariantFil-

tration modules, respectively, according to the best practice guide

(https://software.broadinstitute.org/gatk/best-practices/). Further-

more, variants at sites with a read depth < 10× were removed. We

also removed any I/L variation as these cannot be distinguished by

mass spectrometry. The resulting variants were annotated using the

Ensembl Variant Effect Predictor (v85). The RNA sequencing data

were aligned to the human reference genome (hg38) using STAR

aligner (v2.5.2), and duplicate reads were marked using Picard Tools

(v2.4.1). Variants were called using the GATK (v.3.6) Haplo-

typeCaller module, according to the aforementioned best practice

guide.
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A variant fasta formatted database was created by the “custom-

ProDB” package from the exomic variants (Wang & Zhang, 2013).

Mascot searching of the ultra-deep mass spectrometry data was

performed against this database together with protein databases

from UniProt and Ensembl using the following parameters: peptide

mass tolerance set at 10 ppm, MS/MS tolerance set at 0.05 Da,

carbamidomethylation of cysteine defined as fixed modification,

oxidation of methionine and acetylation defined as variable modifi-

cation. Trypsin-, LysC-, ArgC- and LysN-digested peptides allowed

up to two missed cleavages. AspN- and GluC (V8-DE in Mascot

search engine)-digested peptides with up to three cleavages were

considered. Chymotrypsin-digested peptides were allowed to have a

maximum of four missed cleavages. Resulting PSMs were analysed

using Percolator (v3.01), and an overall FDR cut-off of 1% was

applied.

A custom python script was used to identify PSMs covering vari-

ant sites and showing either the variant or the canonical genotype.

All initial candidate variant peptides had met the following criteria:

(i) Mascot ion scores of at least 25; (ii) a Mascot delta score of at

least 10; (iii) the peptide must only map to the variant database; (iv)

the peptide must map to a single genomic position only; (v) for

missense variants, the peptide must either show the variant amino

acid or it must be cleaved according to a novel protease cleavage

site arising from the variant; and (vi) for nonsense variants, the

peptide must end at the novel C-terminus. For canonical genotypes,

the same criteria were applied except: (i) at least one protein the

peptide maps to must not be from the variant database; (ii) for

missense variants, the peptide must show the wild-type amino acid;

and (iii) for nonsense variants, the end of the peptide must be after

the novel C-terminus (after nonsense variant sites). The resulting

candidate peptides were mapped against UniProt using BLAST to

exclude other obvious explanations. To further consolidate the vari-

ants peptides and to reduce false positives, peptide identification by

MaxQuant was performed in parallel. The customized exomic vari-

ant database was searched using the same parameters used for

Ensembl database searches described above. The list of candidate

variant peptides for the spectra angle analysis required the identifi-

cation by both Mascot and MaxQuant.

Identification of peptides translated from non-coding regions

A database of products from possible alternative translation initia-

tion sites (aTIS) was constructed by searching the 50 UTR of

GENCODE transcripts (v25) for putative alternative start codons

and in silico translating these “novel coding sequences”. This

resulted in 474,991 aTIS “proteins” > 6 amino acids. The lncRNA

protein databases were generated by three-frame-translating the

GENCODE (v25) lncRNA database, resulting in 29,524 sequences.

The standard 29 tissue proteomics datasets were supplemented

with two tissues for which only proteome data were available

(bone marrow, pituitary gland); in total, 50 samples (including

replicates of some organs) were searched against concatenated

sequence collections comprising the aTIS and lncRNA databases,

GENCODE (v25), UniProt (downloaded on 03 February 2017) and

sample-specific RNA-Seq-based databases using Mascot to identify

peptides from known proteins. The search parameters were the

same as described for the exome variant peptide identification.

The resulting PSMs were processed using Percolator, and an

overall FDR cut-off of 1% was applied. A custom python script

was used to identify PSMs from putative-translated lncRNAs or

aTIS the database. Candidate peptides had to meet the following

criteria: (i) the PSM must map to a single database only, i.e. aTIS

or lncRNA but no any other; (ii) the Mascot score must be at least

25; (iii) the Mascot delta score must be at least 10; and (iv) the

original underlying transcript must be expressed in at least one of

the tissues (RNA-Seq FPKM > 1). The resulting PSMs were then

mapped against UniProt using BLAST to exclude other explana-

tions for the novel peptide (e.g. peptides arising from a novel tryp-

tic cleavage site due to a genomic variant). To consolidate the list

of candidate aTIS and lncRNA peptides and to reduce false posi-

tives, the raw MS data were also searched by MaxQuant (using

the same parameters as described for searches using Ensembl).

Only those peptides were allowed to pass to the stage of spectral

contrast angle analysis if they were identified by both Mascot and

MaxQuant.

Validation of variant and non-coding peptides by synthetic

reference peptides

All peptides which passed the filter criteria for Mascot described

above were synthesized at JPT Berlin using Fmoc-based solid-phase

synthesis. The details of peptide synthesis, sample preparation and

MS measurement were as described (Zolg et al, 2017). Normalized

spectral contrast angle (SA) analysis was performed to compare

endogenous and synthetic peptides using in-house Python scripts

(Toprak et al, 2014). Candidates passed if (i) they showed SA values

of ≥ 0.7 (Pearson of ~0.9), (ii) the endogenous peptide had a Mascot

score of 50 or higher or (iii) manual spectrum inspection substanti-

ated the candidate peptide sequence assignment. In parallel, the

tandem MS spectra of all candidate peptides were also inspected

manually. For the identification of “missing proteins”, we required

an Andromeda score of ≥ 100. The other criteria were the same as

above.

Data availability

Transcriptome sequencing and quantification data are available in

following database: RNA-Seq data: ArrayExpress E-MTAB-2836

(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/).

The raw mass spectrometric data and the MaxQuant result files have

been deposited to the ProteomeXchange Consortium via the PRIDE

partner repository (Vizcaı́no et al, 2016; https://www.ebi.ac.uk/

pride/archive/projects/PXD010154) with the dataset identifier:

project accession: PXD010154.

Expanded View for this article is available online.
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