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Abstract

Genome-, transcriptome- and proteome-wide measurements
provide insights into how biological systems are regulated.
However, fundamental aspects relating to which human proteins
exist, where they are expressed and in which quantities are not
fully understood. Therefore, we generated a quantitative proteome
and transcriptome abundance atlas of 29 paired healthy human
tissues from the Human Protein Atlas project representing human
genes by 18,072 transcripts and 13,640 proteins including 37 with-
out prior protein-level evidence. The analysis revealed that
hundreds of proteins, particularly in testis, could not be detected
even for highly expressed mRNAs, that few proteins show tissue-
specific expression, that strong differences between mRNA and
protein quantities within and across tissues exist and that protein
expression is often more stable across tissues than that of tran-
scripts. Only 238 of 9,848 amino acid variants found by exome
sequencing could be confidently detected at the protein level
showing that proteogenomics remains challenging, needs better
computational methods and requires rigorous validation. Many
uses of this resource can be envisaged including the study of gene/
protein expression regulation and biomarker specificity evaluation.
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Introduction

Delineating the factors that govern protein expression and activity
in cells is among the most fundamental research topics in biology.
Although the number of potential protein-coding genes in the
human genome is stabilizing at about 20,000, high-quality evidence
for their physical existence has not yet been found for all and
intense efforts are ongoing to identify these currently ~13% “miss-
ing proteins” (Omenn et al, 2017). While it is also generally
accepted that the quantities of proteins vary greatly within and
across different cell types, tissues and body fluids (Kim et al, 2014;
Wilhelm et al, 2014), this has not been analysed systematically for
many human tissues. Furthermore, it is not very clear yet how the
many anabolic and catabolic processes are coordinated to give rise
to the often vast differences in the levels of proteins. Messenger
RNA levels are important determinants for protein abundance
(Vogel et al, 2010; Schwanhdusser et al, 2011), and extensive
mRNA expression maps of human cell types and tissues have been
generated as proxies for estimating protein abundance (GTEx
Consortium, 2013; Uhlén et al, 2015; Thul et al, 2017). However,
other studies have also highlighted the much higher dynamic range
of protein than transcript abundance as well as a rather poor
correlation of mRNA and protein levels suggesting that further and
possibly diverse regulatory elements play important roles
(Schwanhausser et al, 2011; Liu et al, 2016; Franks et al, 2017).
Decades of careful research revealed numerous mRNA elements
affecting translation or mRNA stability such as codon usage, start
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codon context or secondary structure to name a few. However, most
of these studies focussed on single or few genes or single cell types
or were performed in model organisms distinct from human systems
and often did not cover a lot of proteins. Broader scale analyses
have more recently become possible owing to advances in proteome
and transcriptome profiling technologies, but these have mostly
focussed on a single (disease) tissue or the cell-type resolved analy-
sis of protein expression in single tissues (Zhang et al, 2014; Mertins
et al, 2016). To the best of our knowledge, no broad-scale quantita-
tive and integrative analysis of transcriptomes and proteomes across
many healthy human tissues has been performed yet that would
enable a comprehensive analysis of factors explaining the experi-
mentally observed differences between mRNA and protein expres-
sion. Therefore, the purpose of this study was to generate a
resource of molecular profiling data at the mRNA and protein level
to facilitate the study of protein expression control and proteoge-
nomics in humans. To this end, we analysed 29 major histologically
healthy human tissues from the Human Protein Atlas (HPA) project
(Uhlén et al, 2015) to provide a comprehensive baseline map of
protein expression across the human body. As we show below as
well as in Eraslan et al, 2019, these data can be used in many ways
to explore protein expression and its regulation in humans. To facili-
tate further research on this fundamentally important topic and the
many further uses that can be envisaged, all data are available in
ArrayExpress (Kolesnikov et al, 2015) and proteomeXchange
(Vizcaino et al, 2014).

Results and Discussion

Comprehensive transcriptomic and proteomic analysis of 29
human tissues

We analysed 29 histologically healthy tissue specimen representing
major human organs by label-free quantitative proteomics and
RNA-Seq (Fig 1A; see Appendix Figs S1-S6 for the assessment of
data quality). Tissues were collected by the HPA project (Fagerberg
et al, 2014), and adjacent cryosections were used for paired (allele-
specific) transcriptome and proteome analysis. RNA-Seq profiling
detected and quantified in total 18,072 protein-coding genes with an
average of 12,262 (+ 1,007 standard deviation, SD) genes per tissue
(Fig 1B) when using a cut-off of 1 fragment per kilobase million
(FPKM; Uhlén et al, 2015). Proteomic profiling by mass spectrome-
try resulted in the identification and intensity-based absolute quan-
tification (iBAQ; Schwanhdusser et al, 2011) of a total of 15,210
protein groups with an average of 11,005 (+ 680 SD) protein groups
per tissue at a false discovery rate (FDR) of < 1% at the protein,
peptide and peptide-spectrum match (PSM) level (Fig EV1A).
Protein identification was based on 277,698 non-redundant tryptic
peptides, representing a total of 13,640 genes and, on average,
10,541 (+ 512 SD) genes per tissue covering, on average, 86% of
the expressed genome in every tissue. While the total number of
confidently identified proteins in this study is smaller than that of
other (community-based) resources such as ProteomicsDB (Schmidt
et al, 2018) and neXtProt (Gaudet et al, 2017; coverage of 15,721
and 17,470 protein-coding genes, respectively), it provides a highly
consistent collection of tissue proteomes including the deepest
proteomes to date for many of the tissues analysed. It also provides
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protein-level evidence for 37 proteins (represented by at least one
unique peptide) that are not yet covered by neXtProt (release 2018-
01-17; Table EV1). These proteins were validated by synthetic
peptides (see PRIDE submission for mirror spectra). Eighteen of
these 37 have antibody staining in the current release of the HPA
project and all of them show signal in the same tissue they were
detected in by MS. This corroborates the detection of these new
proteins by an independent method. Eight of these proteins also
meet the guidelines of the Human Proteome Project that require > 2
peptides for a new protein each with >9 amino acids in length
(Deutsch et al, 2016). We note that the HPP guidelines use reason-
able but ad hoc criteria which are likely too conservative and there-
fore likely discriminate against further genuine cases. Comparing
spectra of endogenous to synthetic peptides is likely the more objec-
tive criterion which is why we added mirror plots of all evaluated
cases to PRIDE (Zolg et al, 2017). The expression levels of the
“new” proteins were about a factor 10 below median (iBAQ at log10
scale, 7.4 versus 8.3) which explains why they may have been
missed before. Interestingly, 15 of these proteins were detected in
the fallopian tube, an organ that has not yet been extensively pro-
filed by proteomics.

Overall, 13,413 protein-coding genes were detected on both tran-
script and protein levels, and the detected proteins spanned almost
the entire range of mRNA expression again indicating very substan-
tial coverage of the expressed proteome (Fig 1C). However, some
proteins could not be detected even for highly expressed mRNAs
(i.e. higher than the mean mRNA abundance). About 1/3 of these
mRNAs were found in testis (478 of 1,408) and no other tissue
contained nearly as many highly expressed mRNAs without protein
evidence (Fig EVIB). The “missing” proteins in the testis were
statistically significantly enriched for processes related to spermato-
genesis by gene ontology analysis (clusterProfiler; n = 82 genes;
BH-adjusted P = 8 x 10~'%). Although the rich expression of mRNAs
in testis has been known for a long time and exploited for, e.g., the
cloning of many genes from cDNAs, the apparent absence of so
many testis proteins with high mRNA expression is surprising. This
was not due to, e.g., poor coverage of the testis proteome (11,024
detected protein-coding genes) or other obvious technical factors
(such as inefficient extraction of membrane proteins or difficulties
with identifying small proteins) that would prevent detection of
these proteins. Interestingly, almost 300 of these “missing” proteins
have also not been detected by antibodies in testis (according to
HPA) and nearly 200 have no ascribed molecular function. The
inability to detect these proteins by mass spectrometry or antibodies
despite high levels of mRNA poses a number of questions. For
example, are these proteins rapidly degraded implying specialized
(and perhaps transient) functions in testis or sperm functionality?
Are they perhaps stabilized in response to egg fertilization? Proteins
missing at the lower end of the mRNA expression range (less than
mean mRNA abundance) are overrepresented in G-protein-coupled
receptor activity (n = 173; BH-adjusted P = 8.3 x 107°%), ion chan-
nels (n = 109; BH-adjusted P = 7 x 107'°) and cytokine-related biol-
ogy (n = 76; BH-adjusted P = 6 x 107°). The abundance of these
proteins may simply have been below the mass spectrometric detec-
tion limit or, as described many times, can be difficult to extract
from cells owing to the presence of multi-pass transmembrane
domains giving rise to few if any MS-compatible tryptic peptides
after digestion.

© 2019 The Authors
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Figure 1. Comprehensive proteomic and transcriptomic analysis of 29 human tissues from healthy donors.

A Body map of analysed tissues.

B Number of genes detected on protein and mRNA level in each tissue. The colouring of the bars indicates the fractions of transcripts and proteins that are expressed
everywhere or enriched in certain tissues. The full classification is provided in the text.

C Abundance distribution of all transcripts detected in all tissues (grey); the fraction of detected proteins is shown in blue and the fraction of transcripts for which no

protein was detected is shown in orange.

D Relative distribution and absolute numbers of transcripts and proteins in selected functional classes across the expression categories shown in panel (B). Colours are

the same as in panel (B).

To explore which and how many proteins show a tissue-specific
expression profile, we applied the classification scheme of Uhlén
et al (2015, 2016) previously developed for mRNA profiling and
which stratifies genes into the five classes “tissue-enriched”

© 2019 The Authors

(fivefold above any other tissue),
any group of 2-7 tissues), “enhanced” (fivefold above the average
of all other tissues), “expressed in all” (expressed in all tissues) as
well as “mixed” genes (which do not match the other categories).

“group enriched” (fivefold above
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Overall, a large fraction of all represented genes was expressed in
all tissues: 37% (6,725) at the transcript level and 39% (5,400) at
the protein level. However, 43% (7,866) of all transcripts and 53 %
(7,244) of all proteins showed elevated expression in one or more
tissues (“tissue-enriched”, “group-enriched” or “tissue-enhanced”).
Only 0.73% (on average) of all transcripts and 0.65% of all proteins
showed a tissue-enriched profile. Two notable exceptions are brain
and testis which exhibit a higher percentage of tissue-enriched
proteins and transcripts in line with a recent analysis of RNA-Seq
data from the HPA and GTEx projects (GTEx Consortium, 2013).
Proteins with more tissue-restricted expression tended to be of
slightly lower abundance (Fig EV1C).

For 1,270 of the total 1,998 tissue-enriched proteins detected in
our study, antibody staining was available in the HPA. In the 29
tissues that are common between HPA and the current study, 775
proteins were detected in the same tissue lending support to the
mass spectrometry-based data presented here. In addition, we
compared our tissue-enriched expression data to the targeted MS
(PRM) data acquired for about 52 proteins by Edfors et al (2016)
and 10 tissues that overlapped with our tissue panel (see
Appendix Figs S7-S9). Incidentally, the Edfors’ study had data on
three tissue-enriched proteins. First, myoglobin (MB) was highly
tissue-enriched in our data in the heart which was confirmed by the
PRM analysis as well as antibody staining in HPA. Second, the
protein PDK1 (3-phosphoinositide-dependent protein kinase-1) was
also found to be a heart-enriched protein and the PRM data con-
firmed this. This protein was detected in all tissues by antibody
staining but we note that immunohistochemistry (IHC) stains are
not quantitative so it is difficult to conclude if broad detection of this
protein was due to overstaining or poor antibody specificity. The
third example is the protein CANTI1 (soluble calcium-activated
nucleotidase 1) which we detected as a prostate-enriched protein.
Again, this was confirmed by the PRM measurement but was again
detected in most tissues by IHC.

The above global trends in transcript and protein tissue expres-
sion distributions were also mirrored by functional categories of
genes but with some interesting detail (Fig 1D, Table EV4). For
example, while the tissue distribution of expression of disease-asso-
ciated genes followed that of all genes, the expression of drug
targets in general and GPCRs in particular was much more tissue-
restricted speaking to the notion that proteins may make for better
drug targets if they are not ubiquitously expressed (Hao & Tatonetti,
2016). In this context, we point out that our baseline map of protein
expression across the human body may be of general value for drug
discovery as one can, e.g., quickly examine the expression profile of
a particular target of interest, to help better understand adverse clin-
ical effects and off-target mechanisms of action of drugs. For
instance, a recent study revealed phenylalanine hydroxylase (PAH)
as an off-target of the pan-HDAC inhibitor panobinostat (Becher
et al, 2016). Our map of protein expression shows that PAH is abun-
dantly expressed in liver (and kidney) which is also the major site
of hydroxylation in the human body (Matthews, 2007), indicating
that the liver is the major site where panobinostat exerts its detri-
mental effects, i.e. leading to decreased tyrosine levels, and eventu-
ally hypothyroidism in affected patients. In contrast, essential genes
(Blomen et al, 2015; Hart et al, 2015; Wang et al, 2015) as well as
mitochondrial genes were found in the vast majority of all tissues in
line with their central roles for maintaining cellular homeostasis.
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Despite the differences in detail, our dataset confirms, at the protein
level, that there is a core set of ubiquitously expressed genes/
proteins and that individual tissues are not strongly characterized
by the categorical presence or absence of mRNAs or proteins but
rather by quantitative differences (Geiger et al, 2013). This is also
evident from an analysis of the most divergently expressed proteins
or transcripts that shows enrichment of proteins related to the func-
tional specialization of the respective tissue (Fig EV1D, Table EV3).

mRNA and protein expression

The relationship between mRNA and protein expression has been
studied extensively over the past years and there continues to be
debate in terms of how the various correlations that can be
computed may be interpreted in terms of technical artefacts or
biological meaning (Liu et al, 2016; Fortelny et al, 2017; Franks
et al, 2017; Wilhelm et al, 2017). While it is beyond the scope of the
current study to attempt to reconcile the different views, the exten-
sive data on both mRNA and protein expression provided in this
resource should help to eventually bring clarity. Therefore, in the
following, we confine our analysis of the expression data to a few
basic points we nonetheless deem important.

The dynamic range of transcripts detected by RNA-Seq spanned
about four orders of magnitude and that of proteins detected by
mass spectrometry spanned eight orders of magnitude (Fig 2A; see
Appendix Fig 10 for the corresponding plot using copy numbers that
show essentially the same characteristics; Table EVS5). This dif-
ference alone explains (at least in part) the overall higher coverage
of the expressed proteome by RNA-Seq compared to that of LC-MS/
MS. This is because there is limited “sequencing capacity” particu-
larly in mass spectrometry. Thus, detecting very low-abundance
molecules will be harder, the wider the dynamic range of expression
and the lower the sampling depth is. For example, the (paired-end)
RNA data provided (on average) 18 M reads per tissue. Those 18 M
reads are distributed across 4 orders of magnitude of abundance
with an inevitable bias to the higher abundant transcripts. The MS
data only provided (on average) ~76,000 peptides and ~284,000
identified tandem mass spectra (peptide to spectrum matches;
PSMs) per tissue and these are distributed over eight orders of
magnitude also with a bias for the more abundant proteins. As a
result, it is currently much easier to cover many genes by RNA-Seq
than it is to cover the same number by LC-MS/MS.

As noted before, the much wider dynamic range at the protein
level implies that protein synthesis and protein stability play an
important role in determining protein levels beyond mRNA levels
(Schwanhdusser et al, 2011; Vogel & Marcotte, 2012). Similarly, the
number of protein molecules produced per molecule of mRNA
appears to be much larger for high- than for low-abundance tran-
scripts, leading to a nearly quadratic relationship between mRNA
levels and protein levels in every tissue (slope of 2.6 in Fig 2B for
brain and between 1.8 and 2.7 for all 29 tissues, Fig EV2A;
Appendix Fig S11). While this observation has been made before in
yeast (Csardi et al, 2015), this study shows that it is a general
phenomenon. The effect may be rationalized by cellular economics
such that genes encoding highly abundant proteins not only express
high mRNAs levels, but also encode regulatory elements that favour
high translation efficiency and high protein stability (Vogel et al,
2010). The often vast differences in mRNA and protein expression

© 2019 The Authors
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Figure 2. Analysis of protein and transcript expression levels within and across tissues.

A Distribution of global transcript and protein abundance in all tissues. It is apparent that the dynamic range of protein expression (iBAQ scale) exceeds that of mRNA
expression (FPKM scale; see Appendix Fig S10 for the corresponding plot for RNA and protein copy numbers).

B Protein-to-mRNA abundance plot for brain tissue. The slope of the regression line indicates that high-abundance mRNAs give rise to more protein copies per mRNA
than low-abundance mRNAs.

C Ranked abundance plot of proteins and transcripts in human heart. While the 10 most abundant transcripts cover almost 70% of all transcripts in this tissue, the
corresponding proteins only represent about 20% of the total protein.

D Analysis of the number of genes that are shared among the 100 most abundant transcripts and proteins. Regardless of the tissue, the fraction of shared genes rarely
exceeds 20%.

E Correlation analysis of protein-to-RNA abundance (in log10 scale) across tissues, resulting in almost 90% positive correlations. The proteins highlighted in the next
panel are marked.

F  Examples for proteins that show high (SYK, left panel) or no (EIF4A3, right panel) correlation of protein/RNA ratios across tissues. While the former indicates that
different tissues express different quantities of SYK, EIF4A3 expression appears to be similar in all tissues.
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within a tissue can also be visualized by plotting the ranked order
of relative intensities of transcripts and proteins (Fig 2C,
Appendix Fig S12). For example, in the heart (an extreme case),
41% of the total mRNA quantity (by FPKM) represents a single
protein (MT-ATP8) and nearly 60% of the total mRNA covers just
five transcripts (all coding for mitochondrial proteins). In contrast,
about 13% of the total protein quantity (by iBAQ) is contributed by
five proteins (four of which are myosins and one represents a
“contamination” from blood present in the tissue). One would
expect the heart to be rich in both protein families owing to the
contractile function of the organ which requires a lot of energy.
While it is possible that some of the mitochondrial proteins are
underrepresented in quantitative terms (because, e.g., MT-ATP8 is a
very small protein (7 kDa) and its iBAQ value may therefore not
reflect its true quantity or because our lysis conditions may not have
solubilized this organelle with high efficiency), it is surprising that
even among the 100 most highly expressed mRNAs and proteins,
only about 20% are the same (Fig 2D). This overlap only increases
to about 60% for the 5,000 most abundant proteins and transcripts
(Fig EV2B). The above reflects why RNA-protein abundance plots
generally show only modest correlation. The above rank order lists
of transcripts and proteins are also quite different between tissues
with the spleen showing the opposite characteristics compared to
the heart, and the lung showing a more even distribution of tran-
script and protein levels (Fig EV2C and D).

We find that many proteins are often expressed at broadly simi-
lar levels across human tissues (say within a factor 10; Fig EV2E). It
is, therefore, not very surprising that the correlation of mRNA/
protein ratios across tissues is generally not very strong (Fig 2E;
median 0.35). Still, there is positive correlation in ~90% of all cases
and almost half are also statistically significant. This distribution is
not affected by requiring detection of a protein in 10, 20 or all 29
tissues (see Appendix Figs S13-S15). However, great care has to be
taken when interpreting such distributions. As shown in Fig 2F, the
transcript and protein levels of the tyrosine kinase SYK span an
expression range of 45-fold and 39-fold, respectively (natural scale),
and are highly correlated across tissues reflecting the specialized
function of the protein in T- and B-cell biology. In contrast, RNA
and protein expression of EIF4A3 (a DEAD-box RNA helicase
involved in translation initiation) only spanned sixfold and 11-fold
between tissues and showed no correlation. We note that cases such
as the latter are merely the result of technical variation in the
measurement or genuinely similar expression levels in most tissues
reflecting the roles of these proteins in central biological processes
in all tissues (Appendix Fig S16; Wilhelm et al, 2017).

It is noteworthy that proteomes correlate stronger between
tissues (median of 0.77) than transcriptomes (median of 0.67;
Fig 3A; see Appendix Fig S17). It is possible that, because of the fact
that the dynamic range of protein levels is larger than that of RNA,
small biological or technical variations of individual genes may or
may not have impact on the overall rankings (Fortelny et al, 2017;
Franks et al, 2017). It might, however, also imply that there are
(hitherto not very clear) mechanisms in cells that “buffer” the
protein quantities against changes in mRNA abundance (Liu et al,
2016; Kustatscher et al, 2017). The strongest correlations for both
transcripts and proteins were found for the anatomically adjacent
small intestine and duodenum. At the proteome level, the brain
showed clear differences to other proteomes and gastrointestinal
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organs appear to be more similar to each other. Visualizing the tran-
scriptome and proteome profiles in a plane using co-inertia analysis
(CIA; Culhane et al, 2005) indicate that mRNA and protein levels
are more similar to each other within tissues than between tissues
(Fig 3B) also reflected by an RV coefficient of 0.77 (a multivariate
generalization of the squared Pearson correlation coefficient). More-
over, the CIA grouped several tissues according to similarities in
their physiological function with tissues of the immune system and
of the gastrointestinal tract representing the largest groups. It is
interesting to note that this clustering appears to be driven by the
cellular composition of individual tissues (Table EV6). For instance,
the appendix co-clusters with the spleen, lymph node and tonsil and
all four tissues contain a large fraction of lymphocytes (Fig 3C, blue
panel). Similarly, the duodenum and small intestine comprise a
large proportion of (intestinal) glandular cells, which are important
determinants of the molecular make-up of those tissues (Fig 3C,
grey panel). All the above illustrates that there must be multiple
molecular factors and mechanisms determining the quantitative
expression of proteins. This particular aspect of the present mRNA/
protein expression resource may be particularly useful for the
community as it provides a rich data source for the study of protein
expression control (see also Eraslan et al, 2019).

Proteogenomic characterization of human tissues

One aspect of the data we cover in more detail in this study is the
considerable interest in the community to use proteomics data to
annotate genomes, often referred to as proteogenomics. With
matched RNA-Seq and proteomics data at hand, we set out to assess
the merits of proteogenomics at several levels. First, we investigated
the identification of protein isoforms. Based on RNA-Seq data, it has
been suggested that human cell types typically express one domi-
nant isoform (Gonzalez-Porta et al, 2013; Ezkurdia et al, 2015). In
proteomics, isoforms are often more difficult to distinguish because
the identification of proteins is inferred from the underlying peptide
data. Given that many proteins contain conserved stretches of
amino acids and the fact that the median sequence coverage
achieved for each protein is limited (here between 14 and 25%;
Fig EV3A), many potential isoforms may not be covered by unique
peptides and some peptides may also match to multiple entries in
comprehensive sequence collections such as Ensembl (102,450
entries). This often leads to the identification of a so-called protein
group rather than one specific protein or isoform thereof. Illustrated
by the proteomic data obtained from trypsin-digested tonsil
(Fig 4A), only 14% of all protein groups contained one single
protein when searching the MS data against Ensembl. However,
when searching the same data against a protein sequence database
constructed from the tissue-specific RNA-Seq data, the proportion of
single entry protein groups increased to 53% (see Appendix Fig S18
for all tissues). In this way, we were able to identify 60,519 non-
redundant isoforms by RNA-Seq for 18,072 genes and confirm
15,257 by proteomics for 11,833 genes across the 29 tissues
(Fig EV3B, Tables EV2 and EV8). The same analysis also showed
that there were rather few proteins that were detected with more
than one isoform in the tonsil tissue (see Appendix Fig S19).

One way to improve the detection of isoforms is to increase the
sequence coverage in the proteomic data. To this end, we performed
an ultra-deep proteomic analysis of tonsil tissue by applying seven

© 2019 The Authors
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Figure 3. Correlation analysis of protein and transcript expression levels.

A Global correlation analysis of proteomes versus proteomes and transcriptomes versus transcriptomes across human tissues. It is apparent that proteomes correlate

stronger across tissues than transcriptomes.

B Co-inertia analysis of transcriptome and proteome levels of all 29 tissues (arrow base: transcriptome; arrow head: proteome) showing that the information carried by
transcriptomes and proteomes was closer to each other in the same than across different tissues. Grey lines are used to aid identifying tissue names for the
respective arrows. Shaded areas highlight tissues that are related by their molecular profiles.

C Average cellular compositions of tissues highlighted in panel (B) showing that the molecular similarities in their transcriptomes and proteomes are driven by

similarities in cell types.

different proteases (trypsin, LysC, LysN, GluC, ArgC, AspN and
chymotrypsin) and three peptide fragmentation techniques (HCD,
CID and EThcD/ETD). This resulted in the identification of 11,569
protein groups (10,288 genes), represented by 421,073 non-redun-
dant peptides leading to a median protein sequence coverage of
54% (Fig EV3C-E; Table EV7) when searched against Ensembl. Of
these protein groups, 2,201 could be unambiguously linked to a
single isoform. When searched against protein sequences derived
from the tonsil-specific RNA-Seq data, we identified 10,592 protein
groups, among which 6,293 represented a particular isoform

© 2019 The Authors

identified by unique peptides (Fig 4A; Table EV7). The above shows
that isoform calling on the protein level is indeed quite successful
particularly when matched RNA-Seq data are available. We note
though that because most isoforms were detected by very few
isoform-unique peptides, confident quantification of the different
isoforms of the same gene found in the same tissue can be difficult
and may require targeted MS assays rather than shotgun approaches
to be accurate. In this context, it is also worth mentioning that there
is no clear consensus in the proteomics and transcriptomics commu-
nities as to how quantitative values should be allocated to particular
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proteins or transcripts. While it is custom in proteomics to use the
parsimonious approach (i.e. allocate all iBAQ intensity to the
protein with the highest overall evidence), it is custom to distribute
RNA-Seq reads covering shared sequences across multiple tran-
scripts containing that sequence (Trapnell et al, 2010). Unfortu-
nately, there is currently no software available that would enable
the systematic analysis of using either approach for both types of
data. This should be attempted in the future because it would not be
surprising if these differences in quantification approaches would
add substantially to the poor correlation of mRNA and protein levels
(or their ratios). In addition, there is currently no tractable way to
determine which allele of a gene gave rise to a detected protein or
isoform thereof.

To assess the ability of proteomics to detect genetic variants such
as single amino acid variants (SAAV), we generated whole exome
sequencing (WES), RNA-Seq and ultra-deep proteomics data for
tonsil tissue. In the WES data, the average exon coverage was 98x
and 97% of the exons were covered > 20x providing a sound basis
for the identification of SAAVs. Variant calling and filtering of WES
data resulted in 9,848 high-quality, non-synonymous point muta-
tions (i.e. nonsense and missense variants excluding I > L and L > I
variants that cannot be distinguished by mass spectrometry), repre-
senting 5,527 human genes and including 6,112 heterozygous and
3,736 homozygous variants (Fig 4B, Table EV8). In the RNA-Seq
data, 3,524 of the 9,848 genomic variants (36%; 2,171 heterozygous
and 1,353 homozygous cases; representing 2,428 genes) were
covered sufficiently (> 10x) to assess their genotype. The reason for
the substantial loss of coverage in the RNA-Seq versus exome data
is because (i) not all genes are expressed from both alleles in a given
tissue and (ii) even at a sequencing depth of 18 million reads, the
dynamic range of mRNA abundance is too high to cover all tran-
scripts and variants many times over.

It has been noted before that the identification of SAAVs by
proteomics is challenging and plagued by false positives in standard
database searching regimen because (i) the tandem mass spectra
used for database searching are often not of very high quality, (ii)
these spectra often do not contain the complete amino acid
sequence information of the underlying peptide and (iii) the current
FDR statistics for peptide/protein identification do not translate well
to variant calling on the peptide level. As a result, random matches
can and will frequently occur raising substantial concern about the
quality of part of the current proteogenomic literature (Nesvizhskii,
2014). When searching our proteomic data against concatenated
sequences obtained from the WES data, Ensembl and UniProt and
requiring an identification by both Mascot and Andromeda as well
as a number of further criteria (for details, see methods), we identi-
fied 1,942 candidate peptides mapping to 724 of the 9,848 (non-
canonical) exome variants (7.4% of total; 400 heterozygous and 324
homozygous cases). These peptide variants are all missense muta-
tions (Table EV8). For 41% of the heterozygous cases (165 out of
400), we obtained peptide-level evidence for the canonical and alter-
native variant, while for the remaining cases, we only identified the
alternative variant (235).

For validation, candidate peptide spectra were compared to those
of synthetic reference standards (Zolg et al, 2017). To this end, we
attempted the synthesis of reference peptides for all 724 alternative
variants and obtained such peptides for 574 cases. Automated spec-
tral angle analysis (Toprak et al, 2014) provided evidence for 238
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variants (SA > 0.7, Mascot ion score > 50) including 109 heterozy-
gous and 129 homozygous cases (Fig 4B; Table EVS8; see PRIDE for
mirror plots). Manual inspection of the above 724 candidate
peptides identified 204 unique alternative variant sites of which 158
were also found in the SA analysis. The variants that passed our
(conservative) filtering criteria merely represent 2.4 % of all variants
detected at the exome level, 6.7% of the variants detected at the
mRNA level and 32% of the candidates suggested by database
searching. When tracing the confidently identified peptide variants
back to the proteomic workflow, it became clear that the vast major-
ity of all variants are represented by peptides generated by trypsin,
LysC and ArgC cleavage and using the standard HCD fragmentation
technique. In addition, the confirmation rate (using the synthetic
peptide reference standards) for tryptic peptides was also much
higher than that of the other enzymes (Fig 4C; synthetic peptides
were not measured by EThcD/ETD). This can be attributed to the
fact that trypsin-like peptides generally show well-predictable frag-
mentation behaviour and that most bioinformatic tools are opti-
mized for use with data generated from tryptic digestion of
proteomes.

While the above shows that some of the variants detected on the
nucleotide level could be confirmed at the protein level, the overall
success rate was low. We note here that this was mainly not due to
lack of expression of the underlying gene because the proteomic
data cover 76% of all expressed tonsil genes (9,287 of 12,203
mRNA-Seq genes), 48% (2,633 of 5,527) of all the genes for which
variants were detected by exome sequencing and 76% (1,836 of
2,428) by RNA-Seq, respectively (further discussed below). Instead,
the main reasons for poor coverage of SAAVs at the proteome level
are the still limited sensitivity and dynamic range of detection,
limited peptide coverage of a protein and the insufficient coverage
of amino acids in peptide mass spectra along with shortcomings in
peptide identification algorithms. Further reasons include that anno-
tated variants may actually not exist at the protein level (e.g.
because of sequencing/calling errors), they may not be translated,
they may be rapidly degraded to an extent that they are not detect-
able at steady state etc. Even for the successful cases, the analysis
clearly shows that SAAV detection by proteomics requires very
rigorous validation in order to be credible.

Recent research showed that there is more heterogeneity in gene
models than previously anticipated, as a result of, e.g., alternative
translation initiation sites (aTIS; Na et al, 2018) and there is an
ongoing debate in the community whether or not long non-coding
RNAs (IncRNAs) can be translated into proteins (Chen et al, 2017).
Ribosomal profiling showed that thousands of potential aTIS may
exist and that ~40% of all IncRNAs can at least engage the ribosome
(Kearse & Wilusz, 2017). In order to explore if our resource can
provide protein evidence for such cases, we used a database search
strategy (Marx et al, 2017) in which we queried all LC-MS/MS files
against combined sequences from(i) a curated IncRNA database
(GENCODE v.25), (ii) a database containing protein sequences
derived from alternative translation initiation sites (see Materials
and Methods), (iii) GENCODE, (iv) UniProt and (v) the tissue-
specific RNA-Seq data. Any potential IncRNA or aTIS peptide was
required to originate from one single sequence collection only (i.e.
IncRNA or aTIS and no other database), be identified by both
Mascot and Andromeda, to fulfil stringent score cut-offs (see Materi-
als and Methods), to be backed up by the expression of the

© 2019 The Authors
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Figure 4. Proteogenomics exploration for protein-level detection of isoforms, single amino acid variants and alternative translation sites.

A Searching the tonsil proteomic data (trypsin alone or all enzymes) against a tissue-specific sequence database constructed from RNA-Seq data drastically reduces the
number of individual protein sequences in protein groups compared to searches against Ensembl, allowing for the more efficient detection of protein isoforms.

B Number of single amino acid variants detected by whole exome sequencing and DNA, by RNA-Seq at the mRNA and by mass spectrometry at the protein level as
well as confirmed candidates by validation using synthetic peptide spectra comparisons. It is apparent that only a very small fraction of all variants detected at the

DNA or RNA level can be detected at the proteome level using current technology.

C Analysis of which proteomic workflow contributed to the detection and confirmation of single amino acid variants.
D Results of the detection of non-canonical coding regions using proteomics data (left panel) and different alternative start codons identified by acetylated N-terminal
peptides (right panel). The majority of cases are N-terminal extensions of annotated genes. All but one of the detected alternative translation start sites correspond to

point mutations of the first base of the classical AUG codon.

E Validation of a novel translation start site for the protein PLS3. The upper panel shows the novel translation site position within the amino acid sequence context,
and the lower panel shows a mirror plot of the tandem mass spectra of the endogenous N-terminally acetylated peptide (peaks pointing upwards) and the
corresponding synthetic peptide spectrum (peaks pointing downwards). Y-type sequence ions are coloured in red, b-type ions in blue, and the intact peptide as well

as neutral losses thereof are marked in yellow.

underlying transcript in at least one of the tissues (FPKM > 1) and
to fail a BLAST search against UniProt to exclude obvious alterna-
tive explanations. This approach yielded 5 IncRNA and 344 aTIS
peptides, respectively. Because of the size of the searched database
(aTIS: 474,991 entries; IncRNA: 29,524 entries), there was still
ample opportunity to generate false positives. Interestingly, not a
single IncRNA peptide could be substantiated by synthetic peptides
indicating that IncRNA is rarely if at all translated (Banfai et al,
2012).

To validate the candidate aTIS peptides, we compared spectra of
endogenous and synthetic peptide reference standards as described
above. Only 66 aTIS peptides (including 8 N-terminally acetylated
peptides) covering 53 genes and 57 alternative translation start sites
could be confirmed in this way (Table EV8). Manual spectrum
interpretation yielded 96 aTIS peptides (overlap of 45 to the SA
analysis) mapping to 76 genes and 81 alternative translation start
sites. In total, we confirmed 117 aTIS peptides mapping to 89 genes
and 99 alternative translation start sites, which included 14 peptides
from 12 genes reported in previous studies, for example FXR2,
RPA1 and CDV3 (Table EVS8; Branca et al, 2014; Kim et al, 2014).
Fifty-five of the above aTIS peptides represent 5 N-terminal exten-
sions of the original gene, 32 peptides represent novel (acetylated)
N-termini downstream of the canonical start site, 17 represent
frame-shifts potentially leading to an entirely new sequence, five
peptides likely represent upstream ORFs (UuORF) with a stop codon
before the canonical start site and 8 peptides with mixed annotation
(Fig 4D, left panel). The mirror mass spectra in Fig 4E for the
endogenous (top) and synthetic (bottom) peptide (ac) ATTQISKDEL-
DELKEAFAK from the actin-binding protein plastin-3 (PLS3)
provide an example for the detection of a novel N-terminal
sequence. For 36 of the peptides representing aTIS, we identified
the exact start site as the peptide was N-terminally acetylated
(Fig 4D, right panel). Among these, 18 contained an AUG start
codon (Met), 8 contained a GUG start codon (Val), 5 a UUG and 4 a
CUG start site (both Leu), and one GCG start site (Ala). This con-
firms the emerging notion that non-AUG translation initiation
events are not as infrequent as previously thought and may repre-
sent a mechanism to regulate protein expression (Kearse & Wilusz,
2017). This study only identified a relatively small number of aTIS
events compared to others (Na et al, 2018) implying that enrich-
ment of N-terminal peptides (Gevaert et al, 2003; Kleifeld et al,
2010) is a more efficient way to detect such events systematically
but also pointing out that the previous literature may not be free of
a substantial number of mistakes.
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An important learning from the present systematic analysis of
transcriptomes and proteomes of human tissues is that identifying
protein SAAVs or novel coding sequences using proteomics is possi-
ble but remains challenging. There were large discrepancies
between the results of the two database search engines used (Mas-
cot and Andromeda; Fig EV3F and G; Appendix Figs S20 and S21)
implying that the underlying scoring schemes are not optimized yet
for the detection of variants and novel coding regions. At present,
synthetic peptide reference spectra appear to be mandatory for vali-
dation and manual spectra comparisons still have a role to play (Lee
et al, 2018). Neither approach has been followed systematically in
the literature so far and, obviously, they are also not without error
but clearly more powerful than purely relying on statistical criteria
with largely arbitrary cut-offs alone (Nesvizhskii, 2014;
Dimitrakopoulos et al, 2016; Lee et al, 2018). It appears that even
with the latest proteomic technology, proteogenomics currently
offers rather small returns on very significant efforts in data genera-
tion, analysis and validation and that large improvements will be
required to change this situation substantially in the future. It is
possible that our filtering criteria were perhaps too strong so that
further variants may be present in the data (see Table EVS).
However, no convincing false discovery rate estimation has been
published yet for spectral angle analysis (let alone for manual data
analysis); hence, we decided to be conservative. Still, the resource
presented in this work should be of considerable value for scientists
wishing to develop more sophisticated approaches for proteoge-
nomics in the future and the authors think that there is considerable
future potential in the use of synthetic peptide references in
conjunction with spectral angle analysis particularly for the many
chimeric spectra present in classical data-dependent proteomic
datasets but even more so for the increasing application of data-
independent data acquisition regimes.

Materials and Methods
Human tissue specimen

The 29 human tissue samples used for mRNA and protein expression
analysis were obtained from the Department of Pathology, Uppsala
University Hospital, Uppsala, Sweden, as part of the sample collec-
tion governed by the Uppsala Biobank (www.uppsalabiobank.uu.
se/en/). All tissue samples were collected and handled using stan-
dards developed in the Human Protein Atlas (www.proteinatlas.org)
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and in accordance with Swedish laws and regulations. Tissue
samples were anonymized in agreement with approval and advisory
reports from the Uppsala Ethical Review Board (References # 2002-
577, 2005-338 and 2007-159 (protein) and # 2011-473 (RNA)). The
need for informed consent was waived by the ethics committee. The
list of all tissues along with corresponding donor information,
sample preparation and measurement information is provided in
Table EV1.

RNA sequencing

Procedures for RNA extraction from tissues, library preparation
and sequencing have already been described (Uhlén et al, 2015).
Briefly, pieces of frozen human tissue were embedded in optimal
cutting temperature (OCT) compound and stored at —80°C.
Cryosections were cut and stained with haematoxylin-eosin for
microscopical confirmation of tissue quality and proper representa-
tivity. 5-10 cryosections (10 pm) were transferred to RNAse-free
tubes for extraction of total RNA using the RNeasy Mini Kit (Qia-
gen). RNA quality was analysed with an Agilent 2100 Bioanalyzer
system with the RNA 6000 Nano LabChip Kit (Agilent Biotechnolo-
gies). Only samples of high-quality RNA (RNA integrity number
>7.5) were used for mRNA sample preparation and sequencing.
The mRNA strands were fragmented using Fragmentation Buffer
(Ilumina), and the templates were used to construct cDNA
libraries using a TruSeq RNA Sample Prep Kit (Illumina). Gene
expression was assessed by deep sequencing of cDNA on Illumina
HiSeq 2000/2500 system (Illumina) for paired-end reads with a
read length of 2 x 100 bases. RNA sequencing data were aligned
against the human reference genome (GRCh38, v83) using
Tophat2.0.8b. FPKM (fragments per kilobase of exon model per
million mapped reads) values were calculated using Cufflinks
v2.1.1 as a proxy for transcript expression level. The FPKM values
of each gene were summed up in an individual sample, and
median normalization was applied to evaluate genes expression
levels between tissues. A cut-off value of 1 FPKM was used as a
lower limit for detection across all tissues.

Sample preparation and off-line hydrophilic strong anion
chromatography (hSAX)

Fresh frozen human tissue samples (parallel cryosections cut simul-
taneously as those used for RNA extraction, described above) were
prepared for LC-MS/MS as described previously (Ruprecht et al,
2017). Briefly, tissue slices were homogenized in lysis buffer
(50 mM Tris/HCl, pH 7.6, 8 M urea, 10 mM tris(2-carboxyethyl)
phosphin hydrochloride, 40 mM chloroacetamide, protease and
phosphatase inhibitors) by bead milling (Precellys 24, Bertin Instru-
ments, France; 5,500 rpm, 2 x 20 s, 10 s pause). Protein content
was determined using the Bradford method (Coomassie (Bradford)
Protein Assay Kit, Thermo Scientific), and 300 pg of the protein
extract was used for in-solution digestion with trypsin. For this, the
sample was diluted with 50 mM Tris/HCI to a final urea concentra-
tion of 1.6 M, and trypsin was added at a 50:1 (w/w) protein-to-
protease ratio. After 4 h of digestion at 37°C, another aliquot of
trypsin was added to reach a final 25:1 (w/w) protein-to-protease
ratio and the sample was incubated overnight at 37°C. In addition,
the tonsil sample was subjected to digestion using LysC, ArgC,
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GluC, AspN, LysN and chymotrypsin (LysC was from Wako, Japan;
the other proteases were from Promega, USA). 300 pg of the protein
extract prepared as described above was applied in each digestion.
The buffers were prepared according to the manufacturer’s proto-
cols. The resulting peptides were desalted and concentrated on C18
StageTips (Rappsilber et al, 2007) and fractionated via hSAX off-line
chromatography exactly as described previously (Ruprecht et al,
2017). The details of digestion for each tissue are given in the
Appendix Table S1.

On-line liquid chromatography-tandem mass
spectrometry (LC-MS/MS)

Quantitative label-free LC-MS/MS analysis was performed using a
Q Exactive Plus mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) coupled on-line to a nanoflow LC system
(NanoLC-Ultra 1D+, Eksigent, USA). Peptides were delivered to a
trap column (0.1 x 2 cm, packed with 5 pum ReproSil-Pur AQ, Dr.
Maisch GmbH, Germany) at a flow rate of 5 pl/min for 10 min in
100% solvent A (0.1% formic acid, FA, in HPLC-grade water).
After 10 min of loading and washing, peptides were transferred to
a 40 cm (75-pm inner diameter) analytical column, packed with
3 um, ReproSil-Pur C18-AQ, Dr. Maisch GmbH, Germany) and
separated using a 110-min gradient from 2% to 32% solvent B
(0.1% FA, 5% dimethyl sulfoxide in acetonitrile, ACN) at a flow
rate of 300 nL/min. Full scans (m/z 360-1,300) were acquired at a
resolution of 70,000 using an AGC target value of 3e6 and a maxi-
mum ion injection time of 100 ms. Internal calibration was
performed using the signal of a DMSO cluster as lock mass (Hahne
et al, 2013). Tandem mass spectra were generated for up to 20
precursors by higher-energy collisional dissociation (HCD) using a
normalized collision energy of 25%. The dynamic exclusion was
set to 35 s. Fragment ions were detected at a resolution of 17,500
using an AGC target value of 1e5 and a maximum ion injection
time of 50 ms.

LysC-, ArgC-, GluC-, AspN-, LysN- and chymotrypsin-digested
samples were measured on a Q Exactive HF mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) coupled on-line to a
nanoflow LC system (NanoLC-Ultra 1D+, Eksigent, USA). Full scan
MS spectra were acquired at 60,000 resolution and a maximum ion
injection time of 25 ms. Tandem mass spectra were generated for
up to 15 peptide precursors and fragments detected at a resolution
of 15,000. The MS2 AGC target value was set to 2e5 with a maxi-
mum ion injection time of 100 ms. The other settings were the same
as for the Q Exactive Plus.

Tryptic peptides from the tonsil sample were also analysed on an
Orbitrap Fusion Lumos Mass Spectrometer (Thermo Fisher Scien-
tific, Bremen, Germany) coupled on-line to a nanoflow LC system
(UltiMate™ 3000 RSLC Nano System, Thermo Fisher Scientific)
using CID, and EThcD/ETD fragmentation. Full MS scans were
performed at a resolution of 60,000, a maximum injection time of
50 ms and an AGC target value is 5e5, followed by MS2 events with
a duty cycle of 2 s for the most intense precursors and a dynamic
exclusion set to 60 s. CID scans were acquired with 35% normalized
collision energy and Orbitrap readout (1e5 AGC target, 0.25 activa-
tion Q, 20 ms maximum injection time, inject ions for all available
parallelizable time enabled, 1.3 m/z isolation width). EThcD/ETD
scans used charge-dependent parameters: 2+ precursor ions were
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fragmented by EThcD with 28% normalized collision energy and 3+
to 7+ precursor ions were fragmented by ETD. The MS2 scans were
read out in the Orbitrap (1e5 AGC target, 0.25 activation Q and
100 ms maximum injection time).

MS data processing and database searching

For peptide and protein identification and label-free quantification,
the MaxQuant suite of tools version 1.5.3.30 was used. The spectra
were searched against the Ensembl human proteome database (re-
lease-83, GRCh38) with carbamidomethyl (C) specified as a fixed
modification. Oxidation (M) and acetylation (protein N-Term) were
considered as variable modifications. Trypsin/P was specified as the
proteolytic enzyme with 2 maximum missed cleavages. The match
between runs function was enabled, with match time window set to
0.7 min and an alignment time window of 20 min. The FDR was set
to 1% at both PSM and protein level. LysC/P, ArgC and LysN were
specified with two maximum missed cleavages. Searches for GluC
and AspN peptides allowed three missed cleavages. Chymotrypsin
(C terminal of F, Y, L, W or M) was allowed with at most 4 missed
cleavages. Label-free quantification was performed using the iBAQ
approach (Schwanhdusser et al, 2011). For non-tryptic peptides and
single tissue analysis, matching data between fractions were
disabled.

Quantitative analysis of transcriptomes and proteomes

The quantitative analyses of proteomic and transcriptomic data
were performed at the gene level. Since some genes have alternative
Ensembl gene IDs with identical sequences, redundant protein
sequences derived from these genes exist in protein sequence data-
bases. These alternative gene IDs were not part of the reference
sequences for the analysis of RNA-Seq data. To improve compara-
bility between RNA and protein measurements, such identifiers
were removed from the MaxQuant output files an updated protein
ID and gene ID column was added to Table EV1. To evaluate gene
expression level, the total abundance of each gene in all individual
sample was used. The data were log-transformed (base 10) and
normalized using median centring across tissues.

The genes were classified into “Tissue enriched”, “Group
enriched”, “Tissue enhanced”, “Expressed in all” and “Mixed” as
described by Uhlén et al (2015, 2016). Gene ontology analysis of
genes only identified in transcriptomes and proteomes, and the
elevated proteins expressed in each tissue were performed using the
R package “clusterProfiler” and P-values were adjusted according to
the method by Benjamini-Hochberg (BH; Yu et al, 2012). The
resulting (redundant) gene ontology terms (biology process) of
elevated genes were removed using the “simplify” function in clus-
terProfiler based on GOSemSim (Yu et al, 2010). The list of 1,158
mitochondrial genes was obtained from MitoCarta 2.0 (Calvo et al,
2016). Essential genes (n = 583) were assembled from three human
essential gene studies using CRISPR-Cas9 and retroviral gene-trap
genetic screens (Blomen et al, 2015; Hart et al, 2015; Wang et al,
2015). Diseases-related genes (n =3,896) and kinase genes
(n = 504) were obtained from UniProt. Cancer genes (n = 719) were
downloaded from Cosmic (Futreal et al, 2004). Drug target genes
(n = 784) were obtained from DrugBank (Wishart et al, 2018) and
restricted to proteins directly related to the mechanism of action for
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at least one of the associated drugs. GPCR genes (n = 1,410) were
obtained from HGNC, and phosphatase genes (n = 238) were from
DEPOD (Duan et al, 2015). Transcription factor genes (IF,
n = 1,639) were obtained from the HumanTFs collection (Lambert
et al, 2018).

The Spearman correlation coefficient was used for correlating
transcriptome and proteome levels in single tissues. The slopes were
estimated by ranged major-axis (RMA) regression, which allows
errors in both variables and is symmetric, using the R package
“Imodel2” (Csardi et al, 2015). The protein-mRNA Spearman corre-
lation coefficients of 9,870 genes which were at least expressed in
10 (20, 29) tissues at both mRNA and protein levels were calculated.
The co-inertia analysis (CIA) was performed using the “cia” func-
tion in the “made4” R package (Culhane et al, 2005). A total of
9,870 genes which were expressed in at least 10 tissues at both
mRNA and protein levels were considered, and the remaining miss-
ing values were replaced with a positive value 1 x 10* times smaller
than the lowest expression value in each dataset.

Protein copy numbers were calculated from intensity values
according to the “proteomic ruler” approach (Wisniewski et al,
2014). Transcript copy numbers were calculated from FPKM values
based on the estimated total cellular RNA amount using the total
intensity of ribosomal proteins (Wisniewski et al, 2014) and the
assumption that the cellular mRNA mass represents about 2% of
the total cellular RNA mass (Melnikov et al, 2012).

Construction of sample-specific protein sequence databases from
RNA-Seq data

RNA sequencing data were aligned to the human reference genome
(GRCh38, v83) using Tophat2.0.8b. FPKM values were calculated
using Cufflinks v2.1.1 as a proxy for transcript expression level.
Rvboost was used for variant calling. All transcripts with FPKM > 1
were translated into protein sequences and included in the search
database. Each tissue was searched against its matched RNA-Seq
database using MaxQuant as described above. The match between
runs function was disabled. The MaxQuant output data were used
for the isoform analysis.

Exome sequencing and variant calling

The exome of tonsil tissue was enriched using the Agilent
SureSelectXT Kit (v5) and sequenced on an Illumina HiSeq 4000
sequencer. The raw data were aligned to the human reference
genome (hg38) using bwa (v0.7.12), and duplicate reads were
marked using Picard Tools (v2.4.1). Genomic variants were called
and filtered using the GATK (v.3.6) HaplotypeCaller and VariantFil-
tration modules, respectively, according to the best practice guide
(https://software.broadinstitute.org/gatk/best-practices/).  Further-
more, variants at sites with a read depth < 10x were removed. We
also removed any I/L variation as these cannot be distinguished by
mass spectrometry. The resulting variants were annotated using the
Ensembl Variant Effect Predictor (v85). The RNA sequencing data
were aligned to the human reference genome (hg38) using STAR
aligner (v2.5.2), and duplicate reads were marked using Picard Tools
(v2.4.1). Variants were called using the GATK (v.3.6) Haplo-
typeCaller module, according to the aforementioned best practice
guide.
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A variant fasta formatted database was created by the “custom-
ProDB” package from the exomic variants (Wang & Zhang, 2013).
Mascot searching of the ultra-deep mass spectrometry data was
performed against this database together with protein databases
from UniProt and Ensembl using the following parameters: peptide
mass tolerance set at 10 ppm, MS/MS tolerance set at 0.05 Da,
carbamidomethylation of cysteine defined as fixed modification,
oxidation of methionine and acetylation defined as variable modifi-
cation. Trypsin-, LysC-, ArgC- and LysN-digested peptides allowed
up to two missed cleavages. AspN- and GluC (V8-DE in Mascot
search engine)-digested peptides with up to three cleavages were
considered. Chymotrypsin-digested peptides were allowed to have a
maximum of four missed cleavages. Resulting PSMs were analysed
using Percolator (v3.01), and an overall FDR cut-off of 1% was
applied.

A custom python script was used to identify PSMs covering vari-
ant sites and showing either the variant or the canonical genotype.
All initial candidate variant peptides had met the following criteria:
(i) Mascot ion scores of at least 25; (ii) a Mascot delta score of at
least 10; (iii) the peptide must only map to the variant database; (iv)
the peptide must map to a single genomic position only; (v) for
missense variants, the peptide must either show the variant amino
acid or it must be cleaved according to a novel protease cleavage
site arising from the variant; and (vi) for nonsense variants, the
peptide must end at the novel C-terminus. For canonical genotypes,
the same criteria were applied except: (i) at least one protein the
peptide maps to must not be from the variant database; (ii) for
missense variants, the peptide must show the wild-type amino acid;
and (iii) for nonsense variants, the end of the peptide must be after
the novel C-terminus (after nonsense variant sites). The resulting
candidate peptides were mapped against UniProt using BLAST to
exclude other obvious explanations. To further consolidate the vari-
ants peptides and to reduce false positives, peptide identification by
MaxQuant was performed in parallel. The customized exomic vari-
ant database was searched using the same parameters used for
Ensembl database searches described above. The list of candidate
variant peptides for the spectra angle analysis required the identifi-
cation by both Mascot and MaxQuant.

Identification of peptides translated from non-coding regions

A database of products from possible alternative translation initia-
tion sites (aTIS) was constructed by searching the 5 UTR of
GENCODE transcripts (v25) for putative alternative start codons
and in silico translating these “novel coding sequences”. This
resulted in 474,991 aTIS “proteins” > 6 amino acids. The IncRNA
protein databases were generated by three-frame-translating the
GENCODE (v25) IncRNA database, resulting in 29,524 sequences.
The standard 29 tissue proteomics datasets were supplemented
with two tissues for which only proteome data were available
(bone marrow, pituitary gland); in total, 50 samples (including
replicates of some organs) were searched against concatenated
sequence collections comprising the aTIS and IncRNA databases,
GENCODE (v25), UniProt (downloaded on 03 February 2017) and
sample-specific RNA-Seq-based databases using Mascot to identify
peptides from known proteins. The search parameters were the
same as described for the exome variant peptide identification.
The resulting PSMs were processed using Percolator, and an
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overall FDR cut-off of 1% was applied. A custom python script
was used to identify PSMs from putative-translated IncRNAs or
aTIS the database. Candidate peptides had to meet the following
criteria: (i) the PSM must map to a single database only, i.e. aTIS
or IncRNA but no any other; (ii) the Mascot score must be at least
25; (iii) the Mascot delta score must be at least 10; and (iv) the
original underlying transcript must be expressed in at least one of
the tissues (RNA-Seq FPKM > 1). The resulting PSMs were then
mapped against UniProt using BLAST to exclude other explana-
tions for the novel peptide (e.g. peptides arising from a novel tryp-
tic cleavage site due to a genomic variant). To consolidate the list
of candidate aTIS and IncRNA peptides and to reduce false posi-
tives, the raw MS data were also searched by MaxQuant (using
the same parameters as described for searches using Ensembl).
Only those peptides were allowed to pass to the stage of spectral
contrast angle analysis if they were identified by both Mascot and
MaxQuant.

Validation of variant and non-coding peptides by synthetic
reference peptides

All peptides which passed the filter criteria for Mascot described
above were synthesized at JPT Berlin using Fmoc-based solid-phase
synthesis. The details of peptide synthesis, sample preparation and
MS measurement were as described (Zolg et al, 2017). Normalized
spectral contrast angle (SA) analysis was performed to compare
endogenous and synthetic peptides using in-house Python scripts
(Toprak et al, 2014). Candidates passed if (i) they showed SA values
of > 0.7 (Pearson of ~0.9), (ii) the endogenous peptide had a Mascot
score of 50 or higher or (iii) manual spectrum inspection substanti-
ated the candidate peptide sequence assignment. In parallel, the
tandem MS spectra of all candidate peptides were also inspected
manually. For the identification of “missing proteins”, we required
an Andromeda score of > 100. The other criteria were the same as
above.

Data availability

Transcriptome sequencing and quantification data are available in
following database: RNA-Seq data: ArrayExpress E-MTAB-2836
(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/).
The raw mass spectrometric data and the MaxQuant result files have
been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository (Vizcaino et al, 2016; https://www.ebi.ac.uk/
pride/archive/projects/PXD010154) with the dataset identifier:
project accession: PXD010154.

Expanded View for this article is available online.
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