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Abstract

Target identification (determining the correct drug targets for a disease) and target validation
(demonstrating an effect of target perturbation on disease biomarkers and disease end-points) are
important steps in drug development. Clinically relevant associations of variants in genes encoding
drug targets model the effect of modifying the same targets pharmacologically. To delineate drug
development (including repurposing) opportunities arising from this paradigm, we connected
complex disease- and biomarker-associated loci from genome-wide association studies (GWAS) to
an updated set of genes encoding druggable human proteins, to agents with bioactivity against
these targets and, where there were licensed drugs, to clinical indications. We used this set of
genes to inform the design of a new genotyping array, which will enable association studies of
druggable genes for drug target selection and validation in human disease.
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Introduction

Only 4% of drug development programs yield licensed drugs (1, 2), largely because of two
unresolved systemic flaws: (1) preclinical experiments in cells, tissues, and animal models
and early phase clinical testing to support drug target identification and validation are poorly
predictive of eventual therapeutic efficacy; and (2) definitive evidence of the validity of a
new drug target for a disease is not obtained until late phase development (in phase 2 or 3
randomized controlled trials; RCTs). Reasons for poor reliability of preclinical studies
include suboptimal experimental design with infrequent use of randomization and blinding
(3); species differences; inaccuracy of animal models of human disease (4, 5); and over-
interpretation of nominally significant experimental results (6—8). Human observational
studies can mislead for reasons of confounding and reverse causation. Evidence of target
validity from phase 1 clinical studies can also be inadequate (because phase 1 studies
primarily investigate pharmacokinetics and tolerability, are typically small in size, of short
duration and measure a narrow range of surrogate outcomes, often of uncertain relevance to
perturbation of the target of interest) (9). Because the target hypothesis advanced by
preclinical and early phase clinical studies is all too frequently false, expensive late-stage
failure in RCTs from lack of efficacy is a common problem affecting many therapeutic areas
(10), posing a threat to the economic sustainability of the current model of drug
development.

Genetic studies in human populations can imitate the design of an RCT without requiring a
drug intervention (11-13). This is because genotype is determined by a random allocation at
conception according to Mendel's second law (Mendelian randomization - MR) (12, 14).
Single nucleotide polymorphisms (SNPs) acting/s(variants in or near a gene that

associate with the activity or expression of the encoded protein) can therefore be used as a
tool to deduce the effect of pharmacological action on the same protein in an RCT.
Numerous proof of concept examples have now been reported (15, 16, 11, 17, 13, 18, 19),
including the striking correlation between 80 circulating metabolites’ association with a SNP
in the HMGCR gene that encodes the target for statin drugs and the effect of statin treatment
on the same set of metabolites (20). SNPs actingsizre a general feature of the human
genome (21); and population and patient datasets with stored DNA and genotypes linked to
biological phenotypes and disease outcome measures are now widely available for this type
of study.

By extension, disease-associated SNPs identified by GWAS could be explicitly interpreted
as an under-used source of randomised human evidence to aid drug target identification and
validation. For illustration, loci for type 2 diabetes identified by GWAS include genes
encoding targets for the glitazone and sulphonylurea drug classes already used to treat
diabetes (22, 23). Apparently sporadic observations such as this suggest that numerous,
currently unexploited disease-specific drug targets should exist among the thousands of
other loci identified by GWAS and similar high quality genetic association studies. Recent
studies of advanced or completed drug development programs (mostly based on established
approaches to target identification) have also indicated that those with incidental genomic
support had a higher rate of developmental success (24-27).
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Fulfilling the potential of GWAS (and studies using disease-focused genotyping arrays) for
drug development requires mapping disease- or biomarker-associated SNPs to genes
encoding druggable proteins and to their cognate drugs and drug-like compounds. The set of
proteins with potential to be modulated by a drug-like small molecule has been predicted on
the basis of sequence and structural similarity to the targets of existing drugs, the set of
encoding genes being referred to as the druggable genome. Hopkins and Groom identified
130 protein families and domains found in targets of drug-like small molecules known at the
time, and over 3000 potentially druggable proteins containing these domains (28). A similar
estimate was made by Russ and Lampel, using a later human genome build (29)eKumar

al used these protein families (plus other families of particular relevance to cancer) to
manually curate lists of druggable proteins for inclusion in the dGene data set (30). More
recently, the Drug-Gene Interaction database (DGIdb) has been developed (31), which
integrates data from each of the previous efforts together with a recently compiled list of
drug candidates and targets in clinical development (32) as well as information from the
PharmGKB (33), Therapeutic Target Database (TTD) (34), and DrugBank (35) databases,
and others.

However, earlier estimates of the druggable genome predated contemporary genome builds
and gene annotations and also did not explicitly include the targets of bio-therapeutics,
which formed more than a quarter of the 45 new drugs approved by the FDA'’s Center for
Drug Evaluation and Research in 2015 (36), reflecting their increasing importance in
pharmaceutical development. We therefore updated the set of genes comprising the
druggable genome. We then linked GWAS findings curated by the National Human Genome
Research Institute (NHGRI) and European Molecular Biology Laboratory—European
Bioinformatics Institute (EMBL-EBI) GWAS catalog (37) to this updated gene set, and also
to encoded proteins and associated drugs or drug-like compounds curated in the ChEMBL
(38) and First Databank (39) databases. We used the connection to explore the potential for
genetic associations with complex diseases and traits for informing drug target identification
and validation, as well as to repurpose drugs from one indication for another. Additionally,
to better support future genetic studies for disease-specific drug target identification and
validation, we assembled the marker content of a new genotyping array designed for high-
density coverage of the druggable genome and compared this focused array with genotyping
arrays previously used in GWAS.

Re-defining the druggable genome

We estimated 4,479 (22%) of the 20,300 protein coding genes annotated in Ensembl v.73 to
be drugged or druggable. This adds 2,282 genes to previous estimates made by Hopkins and
Groom, Russ and Lampel, or Kumar, by inclusion of targets of first-in-class drugs licensed
since 2005; the targets of drugs currently in late phase clinical development; information on
the growing number of pre-clinical phase small molecules with protein binding

measurements reported in the ChEMBL database; as well as genes encoding secreted or
plasma membrane proteins that form potential targets of monoclonal antibodies and other
bio-therapeutics. A set of 432 genes that was included in all other proposed druggable gene

Sci Trans/ MedAuthor manuscript; available in PMC 2019 January 06.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Finan et al.

Page 4

sets but not the DrugDev set consists mainly of olfactory receptors and phosphatases; both
protein families have major limitations for future exploitation as drug targets (40, 41) (Fig.
1). We stratified the druggable gene set into 3 tiers corresponding to position in the drug-
development pipeline. Tier 1 (1,427 genes) included efficacy targets of approved small
molecules and biotherapeutic drugs as well as clinical-phase drug candidates. Tier 2 was
comprised of 682 genes encoding targets with known bioactive drug-like small molecule
binding partners as well as those with 50% identity (over 5% of the sequence) with
approved drug targets. Tier 3 contained 2,370 genes encoding secreted or extracellular
proteins, proteins with more distant similarity to approved drug targets, and members of key
druggable gene families not already included in Tiers 1 or 2 (GPCRSs, nuclear hormone
receptors, ion channels, kinases, and phosphodiesterases). A full list of genes is provided in
table S1. An overview of the 15 most frequently occurring protein domain types for each tier
can be found in table S2, based on the Pfam-A database of protein families.

Connecting loci identified by GWAS to the druggable genome

We retrieved 21,406 associations from 2,155 GWAS, of which 9,178 surpassed the
significance threshold of p5x1. The retrieved associations spanned 315 Medical Subject
Heading (MeSH) disease terms, which can be stratified into twenty-four MeSH root disease
areas and three MeSH Psychiatry and Psychology areas (Table 1). Variants associated with
common diseases and biomarkers had median minor allele frequency 0.29 (interquartile
range, IQR 0.21) based on a subset of 7,387 records with risk allele frequency data),
reflecting the preponderance of common variants on widely used genotyping arrays. The
median odds ratio (OR) for studies of disease end-points was 1.24 (IQR 0.31) (based on the
3,367 results with effect size data). We examined sequence ontology consequence types (42)
of disease and biomarker-associated variants and found most to be non-coding, mainly
intronic, presumably altering or marking variants that alter mRNA expression or availability,
or marking variants that alter structure or activity of encoded proteins (fig. S1).

Of the 9,178 GWAS significant associations (p8x#)) 8,879 mapped to 5,084 unique

intervals defined as containing all SNPs in linkage disequilibrium (LD) (witd zb5)

with the SNP exhibiting the most significant association, applying an upper physical bound
of 1 Mbp on either side of this variant. The remaining 299 associations were either not in LD
with any other variants, or not present in the 1000 genomes reference panel (phase 3
version). Such associations were assigned a nominal interval of 2.5 kbp on either side of the
variant. The frequency distribution of genes and druggable genes in such LD intervals were
right skewed (Fig. 2), and there was a correlation between LD interval size and the number
of resident genes (fig. S2).

Of the 5,084 unique LD intervals, 1,533 (30.2%) contained a single gene. Of these, 532
contained a gene from the druggable set: 233 from Tier 1, 76 from Tier 2, and 223 from Tier
3. Of the remaining genomic intervals, 17.3% (880) mapped to intervals containing two
genes, 10.1% (511) contained three genes, 6.7% (343) contained four genes, and 25.2%
(1281) contained five or more genes. Additionally, 536 (10.5%) regions had no gene in the
LD interval. For the 1624 LD intervals containing two or more genes, of which at least one
was druggable, the median distance of the closest druggable gene to the reported GWAS
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variant was 4.98 kbp (IQR 37.7 kbp), where the distance was set to 0 bp for GWAS variants
lying within a gene, and a druggable gene was among the two most proximal genes in

67.1 % of these LD intervals (1089) (Fig. 3). We identified a total of 3,052 genes in the
druggable set that were not represented in any of the LD intervals corresponding to a GWAS
association; 62.7%, 69.2%, and 71.6% of Tier 1, 2, and 3 genes, respectively.

Linking GWAS associations to licensed drug targets

We found that 1,291 GWAS associations defined 1,072 LD intervals containing 532
druggable genes from Tier 1, which includes the targets of licensed drugs. 479 of the
intervals contained a single drug target, and 593 contained two or more targets. For the set of
LD intervals containing genes encoding the targets of licensed drugs, two clinically qualified
curators blinded to the identity of the genes independently evaluated the correspondence
between the disease association from the GWAS and the treatment indication(s) for drug(s)
acting on the target(s) encoded by a druggable gene in the interval (Table 2). Our curators
identified 56 unique associations (30 unique drug targets) where the treatment indication and
genetic association were precisely concordant and 13 associations (9 targets) where the
indication and association came from the same disease area (for example a GWAS in one
form of epilepsy identifying a drug target for a different form of epilepsy). 97 associations
(mapping to 37 licensed drug targets) corresponded to biomarkers known to be altered by
treatment with the corresponding drug (for example, an LD interval containing the gene
encoding the interleukin-6 receptor was identified in a GWAS of C-reactive protein, a
biomarker altered by the action of the interleukin-6 receptor blocker, tocilizumab (43). A
further 76 associations (27 licensed drug targets) were identified through a genetic
association with a mechanism-based adverse effect, such as in a GWAS of heart rate, where
the SNP rs3143709 defined an LD interval containing the g&ités

(acetylcholinesterase), encoding the target of cholinesterase inhibitors used in the treatment
of myasthenia gravis, which have the side effect of lowering heart rate (44). A further 32
genetic associations (corresponding to 8 targets) were with a quantitative trait that could be
either a marker of therapeutic efficacy or a mechanism-based side effect, as in the case of
QT interval in the context of anti-arrhythmic drug therapy. In all, GWAS ‘rediscovered’ 74
licensed drug targets through disease indications, mechanism of action, or mechanism-based
adverse effects (the numbers for the categories above are non-additive because some targets
overlap categories). lllustrative examples of the curation are shown in table S3.

Manual curation identified 1,523 discordant pairings of drug indications and disease
associations, corresponding to 144 drug targets that were interpreted as plausible
repurposing opportunities (Fig. 4). After manual curation, uncertainty remained for 108
associations (52 targets) as to whether discordance represented a repurposing opportunity, or
an unrecognized mechanism-based side effect. The remaining targets of licensed drugs
mapped to LD intervals corresponding to GWAS traits unlikely to be of therapeutic interest
(for example, hair color) or to a genetic association with a new biomarker of uncertain
biological function (such as a metabolite measured by a new metabolomics platform).
Curators disagreed on the coding for GWAS associations corresponding to 4 licensed

targets. For LD intervals corresponding to GWAS rediscoveries, the interval length was
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smaller, contained fewer genes, and the druggable gene was closer to the lead SNP than for
those LD intervals where the indication and genetic association were discordant (table S4).

Translational opportunities unveiled by the data linkage

Fig. 5 and fig. S3 and S4 illustrate the result of mapping disease associations in the GWAS
catalog to the full set of druggable genes, the encoded proteins, and compounds exhibiting
binding affinity to these targets, regardless of development phase. For example, 84 studies in
the GWAS catalog reported findings pertaining to cardiovascular system diseases (39 disease
subcategories), reporting 388 GWAS associations, mapping to 228 unique LD intervals
containing 670 genes, of which 135 were in the druggable set. Of these, 29 genes were either
the solitary occupant or one of only a pair of genes in the LD interval. We linked all 135
druggable genes identified in the cardiovascular category to 19,844 compounds with
measured activities in ChEMBL, 512 of which had a United States Adopted Name (USAN)
International Non-Proprietary Name (INN) or were in late phase development, and 168 of
which were previously licensed drugs. Based on comparisons between GWAS phenotype
terms and treatment indications in the cardiovascular category, 8 drug target indications and
genetic associations were concordant (target ‘rediscovery’) and 19 were discordant. Fig. 6
illustrates the results of a similar mapping exercise for seven specific diseases (type 2
diabetes, hypertension, inflammatory bowel disease, asthma, coronary heart disease,
schizophrenia, and Alzheimer’s disease).

The proportion of druggable genes in LD intervals defined by GWAS SNPs for digestive
system diseases (0.20, 95% CI. 0.12-0.27), neoplasms (0.15, 95%ClI: 0.10-0.20), nervous
system diseases (0.17, 95%CI: 0.10-0.24), cardiovascular diseases (0.20, 95%ClI: 0.12-0.29),
respiratory diseases (0.19, 95%CI: 0.08-0.31), skin and connective tissue diseases (0.17,
95%CIl: 0.10-0.24), immune system diseases (0.19, 95%CI: 0.12-0.26), and mental health
(0.16, 95%CI: 0.08-0.24) was similar to the proportion of druggable genes in the genome
overall (4479/20,300 = 0.22).

Coverage of the druggable genome by lllumina DrugDev and other widely used genotyping

arrays

Capture of variation in druggable genes by the widely used genotyping arrays is illustrated

in Fig. 7, with reference to the 1000 genome European super population ancestry panels
(45). Disease-focused genotyping arrays and whole genome arrays with fewer than 600,000
SNPs used for many of the discoveries curated in the GWAS catalogue provided less
comprehensive capture of variation in the druggable genome than the more recently
developed arrays with several million SNPs (such as the Illlumina Human Omni 2.5 Exome 8
and Illlumina Omni 5). However, because no array to date has been designed specifically to
ensure capture of variation in genes encoding druggable targets, we designed the content for
an array (the lllumina DrugDev array) using the Illumina Infinium platform, which

combines genome-wide tag SNP content of the lllumina Human Core array with 182,375
bespoke markers in 4479 druggable genes. The median number of variants captured per kbp
of the druggable genome was very similar to that of the lllumina Human Omni 2.5 Exome 8
and Illlumina Omni 5 (Fig. 7 and fig. S5 and S6) with an average of around 2.5 SNPs per kbp
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of the druggable genome, at an average of nearly 50 variants per gene array wide, with even
denser coverage of Tier 1 and 2 genes.

With the exception of lllumina Omni products, all available genotyping arrays captured
druggable genome variation most efficiently among populations of European descent and
most poorly among populations of African descent (Fig. 7 and fig. S5 and S6). Outside of
the European populations, the high density lllumina Omni arrays gave superior coverage (for
both directly genotyped variants and tagged variants) to all other genotyping arrays. The
Affymetrix UK Biobank array displayed similar coverage to the lllumina DrugDev array in
European populations but less complete coverage in non-European populations. A heat map
summarizing the coverage for each druggable gene, stratified by tier and 1000 genomes
population groups, is shown in Fig. 8. Results for directly typed and tagged variants in 1000
genomes sub-populations are shown in fig. S7 and fig. S8, respectively.

By first re-estimating the boundaries of the druggable genome and then mapping biomarker
and disease-associated loci from GWAS to genes encoding druggable targets, we have
demonstrated the extent to which GWAS have already rediscovered target-disease
indications or mechanism-based adverse effects of licensed drugs. These findings indicate
the potential of genetic association studies to systematically and accurately identify disease-
specific drug targets across the spectrum of human diseases, addressing one of the key
productivity-limiting steps in drug development.

For example, we found substantial potential for repurposing of drugs with licensed
indications from one disease area to another (Fig. 4), in keeping with previous analyses from
the GWAS catalog that indicated that 17% of genes exhibit associations with more than one
phenotype (46). We also mapped genetic associations to drug target and compound
annotations in ChEMBL to evaluate the potential for progressing or repositioning
compounds at earlier developmental stages (Fig. 5)

Estimating the expected number of licensed drug target rediscoveries by GWAS is not
straightforward. It involves an estimate of the extent to which GWAS have already been

done for diseases and biomarkers that have at least one licensed drug target available for
rediscovery; enumerating the total number of licensed drug targets represented across these
conditions, since some diseases have multiple licensed drug targets; and estimating the
number of GWAS that have been completed for diseases and biomarkers that reflect the
mechanism-based adverse effects of licensed drugs. It also requires an assumption about the
average power of eligible GWAS to detect a true association at a gene encoding a licensed
drug target in a relevant disease. This effort is hindered by inconsistent vocabularies of
disease terms in GWAS and drug indications in licensing documents and product

information leaflets. Separating the important mechanism-based (often rare) and

idiosyncratic adverse effects listed in product information and other relevant sources is also
challenging. Nevertheless, the rediscovery of 70 of the 600 or so known licensed targets (32,
47) by GWAS, suggests that this approach shows promise as a means to more systematically
identify target-disease indication pairings in the future.
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Despite the many therapeutic opportunities already arising from the mapping of existing
genetic association findings to drug targets and compounds, there are strong reasons to
suspect that the potential of this approach has yet to be maximized. Our analysis identified
target-disease indication pairings (defined as a gene encoding a druggable target mapping to
an LD interval containing a lead SNP from a GWAS) for 1,427 of the 4,479 druggable genes
and 240 of the 652 genes encoding targets of licensed drugs. We might not have discovered
associations for all genes in our druggable set because targets of drugs in development may
truly play no role in any disease. However, alternative explanations are that only a fraction of
diseases have been subjected to GWAS [451 out of 3022 conditions (the denominator is
based on the number of bottom level MeSH disease areas)]; that for many of the diseases
that have been investigated by GWAS the sample sizes have been too small to detect all the
responsible genes; or that there may have been incomplete coverage of certain druggable
genes by the arrays most widely deployed in GWAS.

Genome wide association analyses continue to be published in new disease areas and in new
ethnic groups. Additional genetic discoveries are also being made with other types of arrays,
such as the dense, locus-centric SNP arrays following up on GWAS findings that are
currently not systematically captured by the GWAS catalog, including Cardiochip (48),
CardioMetabochip (49), and Immunochip (50), and by increases in sample size. Exome-
array analyses are also unveiling rare, disease-associated variants under-represented in
whole-genome arrays. Therefore, we anticipate that the current gap between druggable
genes and GWAS findings will be reduced over time, particularly if such studies are
extended to electronic health record datasets, which form rich repositories of phenotypic
traits and diagnostic codes. In the future, as cost falls and the pipelines for interpreting
individual sequence variation are streamlined, whole genome sequencing may replace
genotyping arrays as the major of source of information on genetic variation used for drug
target identification and validation.

Genetic profiling of a promising target against a range of outcomes can help evaluate the
efficacy and safety of a target for the primary indication as well as the identification of
additional disease indications to help plan drug development priorities. To stimulate the
wider use of genetic association studies in drug development and to ensure that such studies
have comprehensive coverage of the druggable genome, we designed the content of a new
array that combines focused coverage of the druggable genome with a whole genome
scaffold. This array could be deployed to boost sample size and power in diseases already
studied by GWAS to identify additional susceptibility loci and druggable targets. The
lllumina list price for the array DrugDev ($56/sample) is lower than that of the Omni 2.5
Exome array ($177/sample) and Omni 5 array ($273/sample), thus allowing a 3-5 fold
increase in sample size under a fixed budget. It could also help stimulate new druggable
GWAS prioritized according to unmet therapeutic need. This would automatically result in
an abundance of target profiling information encompassing both efficacy and safety
outcomes. This will need to be captured systematically and curated consistently to help
develop a repository of human drug targets linked to the predicted consequences of their
pharmacological modification.
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Some limitations of our analysis are noteworthy. The identification of repurposing
opportunities in the current dataset relied on detecting discordance between a gene-disease
association and the corresponding target-disease indication for a licensed drug, and
excluding instances where this was likely to be due to a mechanism-based adverse effect.
However, the lack of standardized vocabulary in licensing agency approval documents and
the scientific literature currently hampers this effort. We therefore used a combination of
EFO and MeSH terms to harmonize nomenclature. Two qualified physicians then compared
the annotations using a pre-specified classification system developed in a pilot study
involving one fifth of the dataset. Greater efforts to harmonize terms from the different
ontologies [EFO, MeSH terms, the Disease Ontology (DO), and the Human Phenotype
Ontology (HPO)] (51-53), as well as from vocabularies for drug indications from the
Anatomical Therapeutic Chemical (ATC) classification, electronic BNF, and eMC+ terms
would help generate standardized terminology to improve the efficiency of similar efforts in
the future.

In general, antagonist or inhibitor drugs are easier to develop than agonists or activators.
However, it was not straightforward to establish a single workflow that would allow
recommendation of agonist or antagonist development in the light of a GWAS finding. This

is because alleles reported in GWAS sometimes associate with increased, and sometimes
with reduced disease risk. Moreover, alleles reported for their association with a disease
biomarker could have an opposite (yet unreported) association with disease outcome if the
biomarker and disease risk are inversely correlated. We recommend that this issue should be
considered on a case-by-case basis whenever a specific drug development program is
predicated on a genetic association at a locus encoding a druggable target

Where several genes occupy the same LD interval as a GWAS SNP, it may be difficult to
determine which is responsible for the disease or biomarker association. We took a
pragmatic approach to this problem by classifying LD intervals containing druggable genes
according to the total number of genes in the interval and the number and proximity of any
druggable gene to the associated SNP. Approximately 529 unique LD intervals containing a
variant with a significant association from a GWAS (p $x9contained a single

druggable gene. Such genes are strong positional candidates for the association. For the
remainder, the LD interval included 2-146 genes (median 4 genes; excluding the 536 regions
containing O genes,Fig. 3), but a druggable gene was first or next most proximal gene to the
association signal in 36.1% of these cases. The rediscovery of 183 target-indication or
mechanism-based adverse pairings for licensed drugs using this information supports the
validity of this approach. Previous Mendelian randomization studies also provide
reassurance that associations of SNPs in proximity to genes encoding druggable targets
recapitulate the effects of drugs modifying the encoded proteins pharmacologically (13, 43,
18). Nevertheless, we recognize that some misclassification is possible, for example a causal
signal arising from a gene encoding a non-druggable protein that occupies the same LD
interval as a gene encoding a druggable target (confounding by linkage disequilibrium).
Integrating information from feature annotation databases such as ENCODE (54), NIH
Roadmap (55), and the Single Amino Acid Polymorphism Database (SAAP) (56) could help
reduce misclassification. Localization of causal genes could also be aided by evidence on the
effect of genetic variants on RNA transcription or on the activity or concentration of proteins
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and metabolites, combining new proteomic and metabolomics technologies that are scalable
to large population studies (57, 58) with statistical approaches to assess whether association
signals from the same region are consistent with the same causal variant (59). It should be
noted, also, that even where GWAS identify a gene outside the druggable set, the findings
also have the potential to inform drug development indirectly, by highlighting pathways and
processes involved in disease pathogenesis that may contain other druggable targets.

The Mendelian randomization paradigm that underpins this strategy validates targets (within
a defined disease context) and not compounds, although comparing the profile of effects of a
genetic variant with those of a drug or developmental compound can help distinguish on-
from off-target effects (13, 18). For this reason, RCTs will not be superseded by the
approach we describe, because any new molecule developed for a target of interest could
have off-target actions that cannot be modelled genetically. Additionally, the effect of

altering the expression or function of a target may only be seen beyond some lower
threshold, so that a weak genetic effect may not adequately model the effect of modifying
the target pharmacologically (26). Genetic evidence of a causal mechanism also does not
guarantee its reversibility through pharmacological modification. For example, immune
system-related genetic variants associate with the risk of developing type | diabetes, but
useful therapies arising from this knowledge may be difficult to realize, because by the time
the disease is diagnosed, immune-mediated damage to the pancreatic beta cells may be too
advanced (26). Despite these theoretical limitations, evidence is emerging that Mendelian
randomisation studies have wide-ranging potential to improve the efficiency of drug
development and reduce the risk of expensive late-stage failure.

In summary, we have shown an approach to focus and catalyze the use of genomic
information to support drug target validation, accurately match targets to disease indications,
and identify rational repurposing opportunities for licensed drugs. The approach aligns well
with proposals to ‘re-engineer’ translational science (60). It could help address the efficiency
and innovation problem and serve as a basis for reinvigorating drug development.

Materials and Methods

Study design

Work in this paper extended the concept of Mendelian randomization studies for drug
development from individual targets to the whole genome. The study (1) defined a set of
genes that encode actual (or potential) drug targets and are likely to be responsible for
genetic associations with complex diseases from earlier genome wide association studies
(GWAS); (2) allowed us to design a genotyping array with enriched SNP coverage of these
genes; and (3) linked the proteins encoded by this gene set to licensed drugs or to
compounds with bioactivities against these targets. A variety of bioinformatics resources and
other in silico tools were used to achieve these aims. The integrity of the analysis was
evaluated through a comparison of the consistency between licensed drug indications and
GWAS associations through manual curation and blinded clinical expert review. This
analysis showed that GWAS have already ‘rediscovered’ around 70 or so of the
approximately 600 targets of licensed drugs through associations with disease indications,
disease-related biomarkers, or mechanism-based adverse effects. The dataset was then used
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to draw inferences about the potential for drug repositioning and the more systematic
application of genomics for drug target-disease indication mapping in the future.

Assembly of a druggable gene set

The reference set of genes used to redefine the druggable genome was comprised of gene
annotations from Ensembl v.73 with a biotype of ‘protein coding’. To this, we added T cell
receptor and immunoglobulin genes, polymorphic pseudogenes, and a number of additional
genes that were annotated in Ensembl v.73 as non-protein coding but which were
nevertheless believed to encode important proteins (for exaSWibAZ CYP4F§. Data

were extracted via Biomartitp://www.ensembl.org/biomd)t The content was assembled

in three tiers:

Tier 1—This tier incorporated the targets of approved drugs and drugs in clinical
development. Proteins that are targets of approved small molecule and biotherapeutic drugs
were identified using manually curated efficacy target information from release 17 of the
ChEMBL database (61). An efficacy target was defined as the target for the intended drug
indication as opposed to any other potential targets for which the drug shows high affinity
binding. Where binding site information was available in ChEMBL, a non-drug-binding
subunit of a protein complex was assigned to Tier 3, whereas the drug-binding subunit was
included in Tier 1. Drugs in clinical development were identified from a number of sources:
investor pipeline information from a number of large pharmaceutical companies [including
Pfizer, Roche, GlaxoSmithKline, Novartis (oncology only), AstraZeneca, Sanofi, Lilly,
Merck, Bayer, and Johnson & Johnson — accessed June-August 2013] monoclonal antibody
candidates and USAN applications from the ChEMBL database (release 17), and drugs in
active clinical trials from clinicaltrials.gov (62). Targets for these drug candidates were
assigned from company pipeline information and scientific literature, where available.
Where no reported target information could be found, a potential target was assigned
through analysis of bioactivity data in ChEMBL, with the target having the highest dose-
response measurement <100 nM for the compound being assigned. All other human targets
having an IC50/EC50/G150/XC50/AC50/Kd/Ki/potency 400 nM for an approved drug or
USAN compound were also included in Tier 1. Genes involved in ADME/drug disposition
(phase | and Il metabolic enzymes, transporters, and modifiers) were identified from the
PharmaADME.org extended set (63).

Tier 2—This tier incorporated proteins closely related to drug targets or with associated
drug-like compounds. Proteins closely related to targets of approved drugs were identified
through a BLAST search (blastp) of Ensembl peptide sequences against the set of approved
drug efficacy targets identified from ChEMBL previously (38). Any genes where one or

more Ensembl peptide sequences shared 50% identity (over 5% of the sequence) with an
approved drug target were included. Putative targets with drug-like (Lipinski rule-of-five
compliant) compounds having an IC50/EC50/GI50/XC50/AC50/Kd/Ki/potency 4 uM were
identified from ChEMBL and were also included in Tier 2.

Tier 3—This tier incorporated extracellular proteins and members of key drug-target
families. Proteins distantly related to drug targets were identified through a BLAST search
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against the set of approved drug targets (as above), with any proteins sharing 25% identity
over 5% of the sequence and with E-value €.001 being included in the set. Members of
five major ‘druggable’ protein families (GPCRs, kinases, ion channels, nuclear hormone
receptors, and phosphodiesterases) were extracted from KinaseSarfari (64), GPCRSarfari
(65), and IUPHARdb (66) and included in the Tier 3. Extracellular proteins were identified
using annotation in UniProt (67) and Gene Ontology (GO) (68). Because the potential size
of the secreted/extracellular portion of the proteome (potential targets for monoclonal
antibodies) is large, and the number of markers available for inclusion on the array was
limited, this dataset was restricted to those proteins for which higher confidence annotations
of extracellular localization were available (not solely prediction of a signal peptide).
Proteins annotated in UniProt as having a ‘secreted’ subcellular location, those containing a
signal peptide, or those annotated as ‘Extracellular’ (where these annotations were supported
by the following evidence types: experimental, probable, by_similarity) were included in

Tier 3. Proteins annotated in GO with Cellular Component terms: GO:0005576 :
extracellular region, GO:0005615 : extracellular space, GO:0005578 : proteinaceous
extracellular matrix, GO:0031233 : intrinsic to external side of plasma membrane, GO:
0031232 : extrinsic to external side of plasma membrane, GO:0071575 : integral to external
side of plasma membrane, GO:0031362 : anchored to external side of plasma membrane,
G0:0009897 : external side of plasma membrane, GO:0044214 : fully spanning plasma
membrane, and supported by strong evidence (EXP, IDA, TAS), were also included in the
tier. Finally, proteins known to be cluster of differentiation antigens (CD antigens) according
to UniProt were also added to Tier 3. Because the final set of genes included in Tier 3 was
large (2370 genes), this Tier was further subdivided to prioritize those genes that were in
proximity (+/- 50 kbp) to a GWAS SNP and had an extracellular location (Tier 3A). The
remainder of the genes was assigned to Tier 3B.

Pfam-A domain content

To evaluate the Pfam-A domain content for druggable genes, gene identifiers were converted
to UniProt accession keys using the UniProt web services (67). Only UniProt accessions
matching the regular expression pattern ‘[OPQ][0-9][A-Z0-91{3}[0-9]' were retained for
further analysis. Pfam-A domains were extracted using the Xfam API (69). For genes
mapping to multiple UniProt accessions, we retained domain annotations for the UniProt
accession mapping to the highest number of uniqgue Pfam-A domains.

Comparison of druggable gene sets

For comparison with genes covered on the lllumina DrugDev array, sets of druggable genes
defined by Hopkins and Groom in 2002 (28), Russ and Lampel in 2005 (29), and Kumar
(30) were obtained from DGIdb (31). Gene names were converted to Ensembl gene
identifiers using the Ensembl REST API (70). The overlap between the three sets was
determined and visualized using the Python module matplotlib_venn.

Compilation of GWAS results

The GWAS catalog was downloaded fromttif://www.ebi.ac.uk/gwas/api/search/
downloads/alternatiyeon 21/07/2015. Several quality control and further post processing
steps were then taken. The identifiers of associated variants were validated against Ensembl
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(version 79, build 37) using the perl API. This step returned the latest identifier and the
human genome build 37 chromosome coordinates; 707 associated variants could not be
validated and were excluded. The GWAS catalog provides numerical effect estimates but
does not specify the type of effect, such as odds ratio (OR) or beta co-efficient. We

attempted to resolve the effect type by using data in other fields (such as the presence of case
or control in the discovery population fields) to classify the effect type as OR, beta, or
unknown. The discovery population field was also processed using a set of regular
expressions to determine the sample size and populations used. The populations were then
mapped to an appropriate 1000 genomes super population. Where no population name could
be identified, EUR was used as a default because the majority of studies in the GWAS
catalog were performed on Europeans. The pubmed identifier field was used to search
Pubmed using the Biopython API. MeSH terms for the publications were mapped to the
association to provide structured phenotype descriptions. However, these study level
descriptions may not apply to every association reported by the study, therefore the MeSH
terms were manually curated for each association. These supplemented the experimental
factor ontology terms (EFO) that are already present in the GWAS catalog. Finally, the
associations were filtered for those that are <5380 all data used in this study exceeded
genome-wide significance.

Assignment of LD intervals

The complete 1000 genomes phase 3 data (release 5) was downloadiol fiftm
1000genomes.ebi.ac.uk/voll/ftp/release/20130BTFTools (v1.2 using HTSIib 1.2.1) and
used to subset the vcf files into sub- and super- population files (71). For each population
group, Plink v1.90b3d (72) was used to perform pairwise £Dcélculations between all
variants in the processed GWAS catalog and bi-allelic 1000 genomes variants within a 1
Mbp flank on either side of the GWAS variant having a maf 0.005. To reduce file size,
only /2 values 0.2 were output. The boundaries of the LD region surrounding each GWAS
SNP were defined by the positions of the variants furthest upstream and downstream of this
SNP with anv? value 0.5. Associated variants that were not present in the 1000 genomes
panel that were not in LD with any other variants were given a nominal flank of 2.5 kbp on
either size of the association.

Linking GWAS and drug target data

Gene annotations were extracted from Ensembl version 79. After filtering out pseudogenes,
38,352 genes remained. The set of genes was further reduced to those that overlapped an LD
region surrounding an association. Within each associated LD region, the absolute base pair
distance of the closest point of a gene from the associated variant was calculated. Variants
located within a gene were given a distance of 0 bp. Genes were given a distance rank value
according to their base pair distance. In the event of a distance rank tie, the gene with the
oldest annotation date was assigned the lower rank.

Drug targets in ChEMBL 20 are annotated with UniProt accessions. The accessions were
converted to Ensembl gene identifiers using the UniProt ID mapfipr/fwww.uniprot.org/
uploadlists). Drug target Ensembl gene IDs were then intersected with the IDs of genes
within LD regions to give a set of drug targets in the proximity of associated variants.
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Evaluation of consistency between licensed drug indications and GWAS disease/
biomarker traits

We evaluated the concordance between drug indication and disease association for those LD
intervals defined by a GWAS SNP containing one or more genes encoding the target or
targets of licensed drugs (fig. S9). Two experienced clinicians used a pre-specified
classification system developed in a pilot study of one-fifth of the total data set. Each
physician was blinded to the identity of the gene encoding the druggable target within each
LD interval. The outputs from the two physician-curators were then compared, any coding
errors corrected, and inconsistencies between curators resolved by consensus where
agreement could be reached. Category O referred to a situation where coding could not be
completed because of missing data; 1 to a precise drug indication-target gene-disease
association match; 2 to a drug indication-target gene-disease area association match; and 3
to a drug indication-target gene-mechanism-of-action association match. Categories 1 to 3
were defined as ‘concordant’. Category 4 referred to a drug mechanism based adverse effect-
target gene-disease-association match; 5 to a drug indication-target gene-disease association
mismatch with prior biological plausibility, and 6 without prior biological plausibility; 7 to a

trait unlikely to be of therapeutic interest (such as hair color); and 8 to a genetic association
with a new biomarker of uncertain biological function (such as a metabolite measured by a
metabolomics platform). For certain drug targets/genes, a 34 code was used to indicate that
the genetic association finding could reflect both a mechanism of action and mechanism-
based adverse effect rediscovery. For example, the modification of certain
electrocardiographic parameters by variants in the targets of certain antiarrhythmic drugs
could reflect both their mechanism of action and the mechanism by which such drugs
produce their adverse effects. A 54 code was used when there was uncertainty about the
direction of effect. A 9 code was assigned to the four cases where consensus could not be
reached between the two curators. Categories 4, 5, 54, and 6 were referred to as discordant.
Categories 1-4 and 34 were referred to collectively as ‘GWAS rediscoveries’ of known drug
effects.

Design of the lllumina DrugDev Array and comparative analysis of coverage of variation in
the druggable genome

Selection of custom SNP content— The design was based on three tiers, corresponding

to the level of evidence for druggability of the encoded proteins, with highest priority given

to genes in Tiers 1 and 2. Tag SNPs were selected from the 1000 genomes European
ancestry populations (CEU/GBR/FIN/TSI). Associations (tagging) between SNPs were
identified based on linkage disequilibrium (r2 >0.8). SNPs already covered, or tagged by the
Human Core base content were not duplicated. Only SNPs with a minor allele frequency
2.5% were considered for inclusion. The tagging threshold was defined as the number of
variants a SNP tags (including itself) and was varied according to the tier. For Tiers 1 and 2,

a tagging threshold of 1 was applied, meaning that all SNPs were considered for inclusion,
even if they only tag themselves. For Tier 3A, we used a tagging threshold of 3, and for Tier
3B, a threshold of 4. SNPs were selected only if they were positioned within +/-2.5 kbp of

the druggable genes selected in the three tiers (defined as a region of 2.5 kbp upstream of the
Ensembl gene start position to 2.5 kbp downstream of the Ensembl gene end position). SNPs
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from the lllumina Exome array were also included in the custom content where these were
found within genes in Tiers 1, 2, and 3A. Again, any redundancy with the Human Core and
selected tag SNP content was eliminated. A collection of mitochondrial tag SNPs from the
Broad Institute, designed to capture common variation within the mitochondrial genome,
was also included in the custom contehtt({(://www.broadinstitute.org/mpg/tagger/

mito.html). This set is comprised of 64 SNPs, but only 56 of these loci were designable and
included in the array. Finally, remaining space was filled with lead SNPs for any disease or
trait association from the GWAS catalog, prioritizing SNPs located within 50 kbp of a
druggable gene, or within the boundaries of any protein-coding gene.

For Tier 1 genes, 99,102 custom markers were selected, including tag SNPs and
HumanExome content. A further 17,944 of the HumanCore markers also fell within Tier 1
gene regions, giving 117,046 markers in total. Tier 2 included 40,943 custom markers, and
an additional 6,270 markers from the HumanCore fell within Tier 2 gene regions, resulting

in a total of 47,213 markers. Genes in Tier 3 were represented by 38,858 custom markers. A
further 21,626 HumanCore markers fell within Tier 3 gene regions, yielding 60,484 markers
in total. In addition to coverage of genes encoding druggable targets, 6,400 SNPs associated
with complex diseases or traits identified from the GWAS catalog and from selected gene-
centric studies were also incorporated in the array content. Of these SNPs, 2,996 were
already covered in the Human Core or previously included in the custom content, leaving
3,410 variants to be added (of which 1,395 were within Tier 1-3 gene regions). Finally, 53
mitochondrial genome tag SNPs were also included, along with 9 mitochondrial genome
exome SNPs. Considering all content, 226,138 markers were located in, or within +/-2.5 kbp
of, genes in the selected drugged, druggable, and ADME sets. For the array as a whole,
78,175 markers were exonic, 286,577 intronic, and 27,393 located in 5'-, and 41,171 in 3'-
untranslated regions.

We used variants in the 1000 genomes phase 3 reference panel populations to compare
coverage of the druggable genome by the new array and other commonly used genotyping
arrays (see previous section). For this analysis, the variants in each array were first mapped
to the 1000 genomes phase 3 reference panel, and coverage was then compared using two
metrics: variant density (per kbp of the druggable gene) and the proportion of the variants in
the druggable genome that were captured. We defined complete coverage of druggable
genome as capture of all the bi-alleilic variants in a 1000 genomes phase 3 reference panel
population with a minor allele frequency =0.005 (representing low-frequency to common
variants). Because of differences in variant content reported in successive genome builds, not
all the content of the genotyping arrays could be mapped back to the 1000 genomes phase 3
reference set. However, the proportion of variants captured by each array that could be
mapped to the 1000 genomes reference panel was very similar (fig. S10).

Evaluating genotyping array coverage of the DrugDev array— The build 37

genotyping array content for the lllumina arrays was downloaded from Will Rayner's array
strand websiteh{tp://www.well.ox.ac.uk/~wrayner/strapdVhere multiple versions of an

array exist, the latest version number was downloaded. The Affymetrix array annotations
were downloaded as SQLite databases from the Affymetrix website. 1000 genomes data
were processed as described in the method for creating LD regions. Variants present on the
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genotyping arrays were mapped to 1000 genomes phase 3 using the following sequence:
variants with rs identifiers were searched against the 1000 genomes sites file, and if no
match was obtained, then synonyms of the rs identifier (obtained from Ensembl version 79
build 37) were searched. Variants not mapping by rs identifier were then mapped by
chromosome, position, and alleles (flipping the strand of the alleles where appropriate).
Allele frequencies and variant tagging for each sub-population group were calculated using
Plink(v1.90b3d (73)). Tagging was restricted to bi-allelic low-frequency and common
variants (maf =0.005) within 1 Mbp of the source SNP. Baseline 1000 genomes coverage of
the druggable genome in the different sub-populations was ascertained using Bedtools
(v2.22.1) to intersect 1000 genomes variants with a maf =0.005 against the druggable gene
list (including 2.5 kbp up/down stream). Proportional coverage of the druggable genome by
the different genotyping arrays was then ascertained by intersecting the baseline coverage
with the 1000 genomes mapped array content.

Indications and adverse effects of licensed therapies— Drug indication data were
obtained from several sources. The primary source was the First Databank database (FDB,
http://www.fdbhealth.co.ul/ This is a commercial database used by University College
London Hospitals (UCLH), and a one off single release was kindly provided for research
purposes by First Databank Europe Ltd. Because FDB is used clinically, this was regarded
as the “gold standard” indication set used for the manual categorization of concordant/
discordant drug/GWAS links (see above). FDB drug indications are tagged with Universal
Medical Language System concept identifiers (CUIs) and could be mapped into MeSH and
other ontologies within the UMLS meta-thesaurus (51, 74). Drug indication data were
obtained from ChEMBL 21 by manual curation and mapping of data from FDA drug labels
(https://dailymed.nim.nih.gov/dailymedMWHO ATC classificationt{ttp://www.whocc.no/
atc_ddd_indey/ and ClinicalTrials.govhttps://clinicaltrials.go). This was used to

supplement the FDB data and fill in indication data for drugs that were not present in the
FDB release.

Side effect data were obtained from the Side Effect Resource (SIDER) database (75). The
drug identifiers used in SIDER were mapped back to ChEMBL identifiers using a mapping
file provided by SIDER. The side effects are provided as MedRA terms and UMLS CUIs
and were mapped to MeSH terms using the UMLS.

Statistical analysis

The proportion of druggable genes in LD intervals specified by GWAS associations in each
MeSH disease or MeSH psychiatry category was calculated by dividing the number of
druggable genes by the number of all genes with 95% confidence intervals calculated
assuming a binomial distribution, on the assumption that each study was independent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

The druggable genome and genome-wide association study data reveal new drug
development and repurposing opportunities.
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DrugDev Arra . .
9 y Intersection of previously

published gene sets

Union of previously
published gene sets

Fig. 1.

Oserlap between targets on the DrugDev array and three previously published sets. The
Venn diagram shows the overlap of targets on the DrugDev array with the union (circle
composed of blue, purple, gray, and turquoise segments), as well as the intersection (circle
composed of gray, and turquoise segments) of the druggable gene sets defined by Hopkins
and Groom (28), Russ and Lampel (29), and Kumar (30).
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Fig. 2.

ng region summary. A shows the numbers of unique GWAS significant associations
(p5x10 -8) in the GWAS catalog that have 0 or more genes in their LD regions. Note that
there are 299 associations that had no LD region or were not present in the 1000 genomes,
which are not shown in this figure. B shows the number of unique genes that occupy LD
regions with at least 1 gene. The counts are partitioned into genes that are not predicted
(ND) to be druggable or the various druggable tiers (T1: Tier 1, T2: Tier2, T3: Tier 3A and
Tier 3B combined)

Sci Trans/ MedAuthor manuscript; available in PMC 2019 January 06.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyiny siapund ONd adoin3 g

Finan et al.

Density (dist. from gene)

Distance Rank

Page 25

o | Tier I Tier 1 [[] Tier 3A

& Tier2|_| Tier 3B

E LD regi

% region

S size ‘ ‘ ‘

o | (Mbp) 05 10 15

2 # of genes in LD region
Q1 3@5

© 02040 >5

25

24 7 UPSTREAM DOWNSTREAM

23 —

22

21 O

20 O @

1.9 =

9 —

8 -

5
-
3
2
-

1 @
1@

I T

T T | | ! !

200 180 160 140 120 100 80 60 40 20 O 20 40 60 80 100 120 140 160 180 200 O 500 1000 1500 20002500

Distance of variant from drug gene (kbp)

Fig. 3.

# of drug genes

Proximity and distance rank of druggable genes to GWAS SNPs. Each point in the
scatterplot corresponds to a GWAS signal located in an interval containing a druggable gene.
The position on the x-axis indicates the distance of the SNP from the druggable gene.
Position in the y-axis indicates the number of genes in the same interval that are closer to the
signal than the druggable gene. The top panel indicates the signal density for all such SNPs,
and the side panel provides the counts of signals by the distance rank of the druggable gene

divided by Tier.
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Fig. 4.

Pc?tential repurposing opportunities from the discordant GWAS phenotype/drug indication
matches. The disease categories on the circumference are MeSH root disease terms. The
directional chords represent a connection from an indication class of drug to a GWAS
phenotype. This connection is determined by a drug target gene occurring within 50 kbp of a
GWAS association (a fixed distance was used to reduce the possibility of discordance due to
confounding by linkage disequilibrium). The width of the chords is proportional to the
number of genes connecting two therapeutic classes.
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Fig. 5.
Translational potential for the top 4 most studied MeSH root disease areas. For each disease

area, the figure illustrates the estimated number of GWAS (Studies Row), the number of
associations (p&x1@) (Assocs), the number of LD regions corresponding to those
associations (LD Regions), the number of genes in those regions (Genes), and the number of
those genes that encode druggable targets (Drug Genes). Subsequent rows quantify the
number of druggable genes by priority tier (Drug Gene Priority) and by distance rank of the
druggable gene from the GWAS SNP (Dist Rank). The total numbers of compounds
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(Compounds), compounds with an USAN/INN (USAN Compounds), and drugs
corresponding to the drugged targets are also listed (Drugs). In the penultimate row, the
numbers of drugs with an indication that is concordant (C) or discordant (D) with the GWAS
phenotype are displayed (Drug I/Disease P Comparison). In the final row, the numbers of
cognate targets for the concordant or discordant drugs are shown (Targets). Note that for the
purposes of the figure, a drug target is a single gene even if it is part of a complex that is
targeted by the drug. Within each cell, the values represent the number of unique entities, for
example the cells in the Assocs row represent the number of unique associations (rsids).
However, some values can be replicated across the figure because a GWAS study may have
researched several of the disease areas. Additionally, there is some non-additivity between
consecutive rows, namely Druggable Gene Priority (Drug Gene Priority) - Distance Rank
(Dist Rank) and Drugs - Drug indication/Disease Phenotypes Comparison (Drug I/Disease P
Comparison). In the case of the former, this is due to the same gene being further away from
the associated variant in different studies, such that it falls into a different partition. For the
latter, this is due to missing indications for some of the drugs, such that concordance or
discordance could not be assigned. The estimated number of samples (Est. N) is the sum of
all the cases involved in the respective studies.

Sci Trans/ MedAuthor manuscript; available in PMC 2019 January 06.



syduosnue Joyiny sispung DN @doin3 ¢

syduosnue Joyiny siepung O edoin3 ¢

Finan et al.

Fig. 6.

Diseases | Diabetes Mellitus, Type 2 Hypertension

Studies 35 (Est. N=98523) 9 (Est. N=118286)

Assocs
LD

Regions

Genes

Drug Genes

Drug Gene
Priority

Dist

Rank
Compounds

USAN
Compounds

Drugs
Drug I|4 C

Disease
Comparison ¥4

Diseases Schizophrenia Alzheimer Disease

Studies 18 (Est. N=156135) 27 (Est. N=69527)

Assocs

LD
Regions

Genes

Drug Genes 123

Drug Gene
Priority

Rank | 15 | 22 | 24 | 68
Compounds ‘
USAN

Drugs ’
pisencd ¥ INHIRAES |
Comparison EZINEINE
(0]

Targets RS

Page 29

Translational potential for 4 specific diseases. Refer to Fig. 5 legend for detailed
explanation.
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Fig. 8.

Tagged coverage of druggable genes in the 1000 genomes super populations. Coverage of
the druggable gene set is represented as a proportion of 1000 genomes phase 3 variants (bi-
allelic with maf >0.005) that are either directly typed or in LD with=0.8 (tagged). Each

column represents a genotyping array and each row a druggable gene. The druggable genes
are grouped according to their druggability tier, which is indicated by the bar at the left side
of each plot. To aid visualization, the druggable genes are further sorted within each tier on
their median coverage across all the arrays, and the genotyping arrays are sorted based on
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their median coverage of the druggable genome across all the 1000 genomes super
populations. Note that all of the arrays contained some content that could not be mapped to
the 1000 genomes phase 3 (see fig. S10). Note also that when deployed in real datasets,
additional variation could be captured by all arrays through imputation.
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Table 1
Count of GWAS published per disease area.

MeSH term Count
neoplasms 187
immune system diseases 130
skin and connective tissue diseases 107
digestive system diseases 106
nervous system diseases 104
mental disorders 85
cardiovascular diseases 84
nutritional and metabolic diseases 83
endocrine diseases 7
musculoskeletal diseases 57
male urogenital disorders 52
eye diseases 50
respiratory diseases 47
hematological diseases 43

female urogenital diseases and pregnancy complicajons 4

|

pathological signs and symptoms 34
congenital disorders 29
viral diseases 19
oral diseases 17
substance-related disorders 11
diseases of the ear, nose or throat 8
parasitic diseases 4
bacterial and fungal infections 2
behavioral disorders 1
wounds and injuries 1
psychological phenomena and processes 1
occupational diseases 1
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Table 2

Number of unique GWAS associations mapping to drug targetsfor licensed drugs curated

Page 34

accor ding to the correspondence between the GWAS association and drug indication.

Category # Associations | #drug targets
Disease association and treatment indication precisely concordant 56 30
Disease association and treatment indication concordant within the same disease area 13 9
Disease association concordant with a biomarker of therapeutic efficacy 97

Disease association corresponding to a mechanism-based adverse effect

Disease association with a known biomarker of therapeutic efficacy that can also be responsible fof a 32 8
mechanism-based side efféct

Discordant disease association and target indication considered to imply a potential repurposing 1523 144
opportunity

Discordant disease association and target indication considered to imply either a repurposing oppdrtunity 108 52

or mechanism-based side effect depending on the direction

Curators unable to agree

*
Refers to a target effect rediscovery (see text)
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