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Abstract

The genomic complexity of profound copy-number aberration has prevented effective molecular
stratification of ovarian cancers. To decode this complexity, we derived copy-number signatures
from shallow whole genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) cases,
which were validated on 527 independent cases. We show that HGSOC comprises a continuum of
genomes shaped by multiple mutational processes that result in known patterns of genomic
aberration. Copy-number signature exposures at diagnosis predict both overall survival and the
probability of platinum-resistant relapse. Measuring signature exposures provides a rational
framework to choose combination treatments that target multiple mutational processes.

Introduction

The discrete mutational processes that drive copy-number change in human cancers are not
readily identifiable from genome-wide sequence data. This presents a major challenge for
the development of precision medicine for cancers that are strongly dominated by copy-
number changes, including high-grade serous ovarian (HGSOC), esophageal, non-small-cell
lung and triple negative breast cancersl. These tumors have low frequency of recurrent
oncogenic mutations, few recurrent copy humber alterations, and highly complex genomic
profiles2.

HGSOCs are poor prognosis carcinomas with ubiquif@@s3mutation3. Despite efforts to
discover new molecular subtypes and targeted therapies, overall survival has not improved
over two decades4. Current genomic stratification is limited to defining homologous
recombination-deficient (HRD) tumors5—7 with approximately 20% HGSOC cases having a
germline or somatic mutation BRCA1/2with smaller contributions from mutation or
epigenetic silencing of other HR genes8. Classification using gene expression predominantly
reflects the tumor microenvironment and is reliable in only a subset of patients9-11.
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Detailed genomic analysis using whole genome sequencing has shown frequentiBss of
NF1andPTENby gene breakage events12 and enrichment of amplification associated fold-
back inversions in non-HRD tumors13. However, none of these approaches has provided a
broad mechanistic understanding of HGSOC, reflecting the challenges of detecting
classifiers in extreme genomic complexity.

Recent algorithmic advances have enabled interpretation of complex genomic changes by
identifying mutational signatures — genomic patterns that are the imprint of mutagenic
processes accumulated over the lifetime of a cancer cell14. For example, UV exposure or
mismatch repair defects induce distinct, detectable single nucleotide variant (SNV)
signatures14. The clinical utility of these signatures has recently been demonstrated through
a combination of structural variant (SV) and SNV signatures to improve the prediction of
HRD15. Importantly, these studies show that tumor genomes are shaped by multiple
mutational processes and novel computational approaches are needed to identify coexistent
signatures. We hypothesized that specific features of copy-number abnormalities could
represent the imprints of distinct mutational processes, and developed methods to identify
signatures from copy-number features in HGSOC.

Experimental design and data collection

We generated absolute copy number profiles from 253 primary and relapsed HGSOC
samples from 132 patients in the BriTROC-1 cohort16 using low-cost shallow whole-
genome sequencing (SWGS; 0.1x) and targeted amplicon sequen@iR§df

(Supplementary Figure 1). These samples formed the basis of our copy-number signature
identification. A subset of 56 of these cases had deep whole-genome sequencing (dWGS)
performed for mutation analysis and comparison with SWGS data. Independent data sets for
validation included 112 dWGS HGSOC cases from PCAWG17 and 415 HGSOC cases with
SNP array and whole exome sequence from TCGA8. Supplementary Figure 1a shows the
REMARK diagram for selection of BriTROC-1 patients. Supplementary Figure 1b outlines
which samples were used in each analysis across the three cohorts. Clinical data for the
BriTROC-1 cohort are summarized in Supplementary Table 1 and Supplementary Figure 2.
Detailed information on experimental design is provided in the Life Sciences Reporting
Summary.

Identification and validation of copy-number signatures

To identify copy-number (CN) signatures, we computed the genome-wide distributions of

six fundamental CN features for each sample: the breakpoint count per 10MB, the copy-
number of segments, the difference in CN between adjacent segments, the breakpoint count
per chromosome arm, the lengths of oscillating CN segment chains and the size of segments.
These features were selected as hallmarks of previously reported genomic aberrations,
including breakage-fusion-bridge cycles18, chromothripsis19 and tandem duplication20,21.

We applied mixture modelling to separate the copy-number feature distributions from 91
BriTROC-1 samples with high quality CN profiles into mixtures of Poisson or Gaussian
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distributions. This resulted in a total of 36 mixture components (Figure 1a). For each
sample, the posterior probability of copy-number events arising from these components was
computed and summed. These sum-of-posterior vectors were then combined to form a
sample-by-component sum-of-posteriors matrix. To identify copy-number signatures, this
matrix was subjected to non-negative matrix factorization (NMF)22, a method previously
used for deriving SNV signaturesi14.

NMF identified seven CN signatures (Figure 1a), as well as their defining features and
exposures in each sample. The optimal number of signatures was chosen using a consensus
from 1000 initializations of the algorithm and 1000 random permutations of the data
combining four model selection measures (Supplementary Figure 3). We found highly

similar component weights for the signatures in the two independent cohorts (PCAWG-OV
and TCGA), demonstrating the robustness of both the methodology and the copy-number
features (Figure 1b, P<9e-05, median r=0.86. Supplementary Table 2), despite a significant
difference in exposures to CN signatures 2, 3, 4 and 5 between the cohorts (P<0.05, two-
sided Wilcoxon rank sum test, Supplementary Figure 4).

Mutational processes underlying copy-number signatures

The majority of cases analysed exhibited multiple signature exposures suggesting that
HGSOC genomes are shaped by more than one mutational process. As our signature
analysis reduced this genomic complexity into its constituent components, we were able to
link the individual copy-number signatures to their underlying mutational processes. To do
this, we used the component weights identified by NMF to determine which pattern of
global or local copy-number change defined each signature. For example, for CN signature
1, the highest weights were observed for components representing low numbers of
breakpoints per 10MB, long genomic segments and two breaks occurring per chromosome
arm (Figure 2a, Supplementary Figure 5). Two breaks per chromosome arm suggested that
the mutational process underlying this signature might be breakage-fusion-bridge (BFB)
events18.

To test this hypothesis, we correlated CN signature 1 exposures with mutation data, SNV
signatures, and other measures derived from deep WGS and exome sequencing (Figure 2b-e,
Supplementary Figures 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8). CN
signature 1 was anti-correlated with sequencing estimates of telomere length (r=-0.32,
P=0.009), consistent with BFB events. In addition, CN signature 1 was positively correlated
with amplification-associated fold-back inversion structural variants (r=0.36, P=0.02), which
have been strongly implicated in BFB events23 and have also been associated with inferior
survival in HGSOC13. CN signature 1 was also enriched in cases with oncogenic RAS
signaling, includingVF1loss and mutatedRAS (p=5e-06, Mann-Whitney test), which has
previously been shown to induce chromosomal instability as a result of aberrant G2 and
mitotic checkpoint controls and missegregation24,25. Taken together, these data provide
independent evidence for BFB arising as a result of oncogenic RAS signaling and telomere
shortening as the underlying mechanism for CN signature 1.
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We applied these approaches to the remaining signatures to identify statistically significant
genomic associations using a false discovery rate <0.05 (Figure 2b-e, Figure 3,
Supplementary Figures 5, 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8).

CN signature 2 showed frequent breakpoints per 10MB, single changes in copy-number
(resulting in 3 copies), chains of oscillating copy-number, and was significantly correlated
with tandem duplicator phenotype scores (r=0.3, P=0.004) and SNV signature 5 (r=0.26,
P=0.02). In addition, this signature was enriched in patients with mutati@r3Ad.2

(P=0.02, Mann-Whitney test, Supplementary Table 6), in keeping with previous studies that
have demonstrated large tandem duplication in cases with inacti@fiiKg2mutations26.

CN signature 4 was characterised by high copy-number states (4-8 copies) and predominant
copy-number change-points of size 2. This pattern indicates a mutational process of late
whole-genome duplication (WGD)27. Significantly increased signature 4 exposure in cases
with aberrant PI3K/AKT signaling provided further support for late WGD as oncogenic
PIK3CA induces tolerance to genome doubling28 (P=2e-22, Mann-Whitney test, mutation

of PIK3CA or amplification ofAK7, EGFR, MET, FGFR&nd ERBBZ2).Signature 4 was

also seen at higher levels in cases with mutations in genes encoding proteins from Toll-like
receptor signaling cascades (P=2e-07), interleukin signaling pathways (P=3e-24) and
CDK12(P=0.0009), as well as those with amplifi€@NEI(P=2e-10) and/YC

(P=9e-12). It was also significantly correlated with telomere length (r=0.46, P=4e-05).

CN signature 6 showed extremely high copy-number states and high copy-number change-
points for small segments interspersed among larger, lower-copy segments. This suggests a
mutational process resulting in focal amplification. Increased signature 6 exposure was
associated with mutations in genes encoding proteins across diverse pathways, including
aberrant G1/S cell cycle checkpoint control (through either amplificatidPGNE ]

CCND1 CDK2, CDK4or MYC, deletion/inactivation offB1 or mutation inCDK12, Toll-

like receptor signaling cascades and PI3K/AKT signaling (P<0.05). However, as many of
these statistical associations are marked by gene amplification, it is difficult to determine
whether the copy number states represent causal events or are simply a consequence of focal
amplification. Exposure to CN signature 6 was also positively correlated with age at
diagnosis (r=0.31, P=6e-12) and age-related SNV signature 114 (r=0.43, P=3e-06).

CN signature 5 was significantly associated with predicted chromothriptic-like events using
the Shatterproof algorithm29 (r=0.44, P=2e-03). Chromothripsis is considered rare in
HGSO0C12,27,30. However, the key component of this signature—the presence of copy-
number change points centered at 0.5 copies—suggests that the events are subclonal. This
implies that chromothripsis may be an underestimated oncogenic mechanism in HGSOC
that could reflect ongoing formation and rupture of micronuclei31.

CN signature 3 was characterized by an even distribution of breaks across all chromosomes,
and copy number changes from diploid to single copy (LOH). CN signature 3 was
significantly enriched in cases with mutationd8RCAIandBRCAZ, and other HR genes
including BARD1, PALBZandATR (P=0.002, Mann-Whitney test). It was also correlated

with the HRD-related SNV signature 3 (r=0.32, P=0.002) and anti-correlated with age at
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diagnosis and age-related SNV signature 1 (P<0.05). CN signature 3 was also enriched in
cases with loss of function mutationsATEN(P=0.002, Mann-Whitney test). Taken

together, these data suggest that CN signature 3 is driven by BRCA1/2-related HRD
mechanisms.

CN signature 7, like CN signature 3, also demonstrated an even distribution of breaks across
all chromosomes. By contrast with CN signature 3, single copy-number changes were
observed from a tetraploid rather than a diploid state (Figure 3). Although there was
correlation with the HRD-related SNV signature 3, there was no enrichmenBREN 1/2
mutation, suggesting alternative HRD mechanisms as potential mutational processes.

We also investigated relationships between CN signatures. BRCAL dysfunctiGiCarflz
amplification have been shown to be mutually exclusive in HGSOC32, and we observed that
CN signature 3BRCA1/2HRD) and CN signature 6 (marked by aberrant G1/S cell cycle
checkpoint control) showed mutually exclusive associations (Figure 2b-e). LB 1

and BRCAZare early driver events in HGSOC, and to investigate acquisition of additional
mutational processes, we studied four BriTROC-1 cases with deleterious geBRiie2

mutations and confirmed somatic loss of heterozygosiBREAZ (Figure 4). A diverse and
variable number of CN signhatures was seen in these cases, including substantial exposures to
CN signature 1 (RAS signaling) in three of the four cases.

Copy-number signatures predict overall survival

We next explored the association between individual CN signature exposures and overall
survival using a combined dataset of 575 diagnostic samples with clinical outcomes. We
trained a multivariate Cox proportional hazards model on 417 cases and tested this on the
remaining 158 cases (Figure 5, Supplementary Table 9). CN signature exposure was
significantly predictive of survival (Training: P=0.002, log-rank test; stratified by age and
cohort; Test: P=0.05, C-index=0.56, 95% CI:0.50-0.62; Entire cohort: P=0.002, log-rank
test; stratified by age and cohort). Across the entire cohort, poor outcome was significantly
predicted by CN signature 1 (P=0.0008) and CN signature 2 exposures (P=0.03), whilst
good outcome was significantly predicted by exposures to CN signatures 3 (P=0.05) and 7
(P=0.006).

Unsupervised hierarchical clustering of samples by signature exposures identified three
clusters (Figure 5). Despite showing significant survival differences (P=0.004, log-rank test;
stratified by age and cohort), these clusters did not provide any prognostic information in
addition to that identified from the Cox proportional hazards model; cluster 2 was dominated
by patients with high signature 1 exposures (poor prognosis), cluster 3 showed high
signature 3 exposures (good prognosis) and cluster 1 had mixed signature exposures
(Supplementary Figure 10).

Copy-number signatures indicate relapse following chemotherapy

Using a generalised linear model, we investigated whether copy-number signatures could be
used to predict outcome following chemotherapy across 36 patients from the BriTROC-1
study with paired diagnostic and relapse samples16. The model showed CN signature 1
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exposures at the time of diagnosis to be significantly predictive of platinum-resistant relapse
(P=0.02, z-test, Supplementary Table 10).

Using the same 36 sample pairs, we also investigated whether chemotherapy treatment
changed CN signature exposures. No significant effects on exposures were observed
following chemotherapy treatment using a linear model that accounted for signature
exposure at time of diagnosis, number of lines of chemotherapy and patient age (P>0.05, F-
test, Supplementary Table 10). The only variable showing a significant association with
exposure at relapse was signature exposure at diagnosis (P<0.01, F-test, Supplementary
Table 11).

Copy-number signatures provide a framework that is able to rederive the major defining
elements of HGSOC genomes, including defective HR8, amplificatic?CHWED and
amplification-associated fold-back inversions13. In addition, the CN signatures show
significant associations with known driver gene mutations in HGSOC and provide the ability
to detect novel associations with gene mutations. We derived signatures using inexpensive
shallow whole genome sequencing of DNA from core biopsies. These approaches are rapid
and cost effective, thus providing a clear path to clinical implementation. Copy-number
signatures open new avenues for clinical trial design by highlighting contributions from
underlying mutational processes that depend on oncogenic RAS and PI3K/AKT signaling.

We found that almost all patients with HGSOC demonstrated a mixture of signatures
indicative of combinations of mutational processes. These results suggest thaPsaly
mutation, the ubiquitous initiating event in HGSOC, may permit multiple mutational
processes to co-evolve, potentially simultaneously. Although further work is needed to
define the precise timing of signature exposures, early driver events sB&C#?

mutation still permit a diverse and variable number of CN signatures in addition to an HRD
signature (Figure 4). These additional signature exposures may alter the risk of developing
therapeutic resistance, particularly when only a single mutational process such as HRD is
targeted.

High exposure to CN signature 3, characterised by BRCA1/2-related HRD, is associated
with improved overall survival, confirming prior data showing tB&CAZ/Zmutation is
associated with long survival in HGSOC33,34. Conversely, high exposure to signature 1,
which is characterised by oncogenic RAS signaling (includifd, KRASandNRAS

mutation), predicts subsequent platinum-resistant relapse and poor survival. This suggests
that powerful intrinsic resistance mechanisms are present at the time of diagnosis and can be
readily identified using CN signature analysis. This hypothesis is supported by the presence
of exposure to CN signature 1 in germliB&@CA2mutated cases (Figure 4) as well as our
previous work demonstrating the expansion of a resistant sub&Wifadeleted population
following chemotherapy treatment in HGSOC35 and poor outcom®iideleted murine
models of HGSOC36. Our CN signature analysiBRCA2mutated cases also concurs

with PCAWG/ICGC data showing that over half (9/16\¢f¥ Zmutated cases also harboured
mutations inBRCAIor BRCAZ212. These data suggest a complex interplay between RAS
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signaling and HRD. Thus, RAS signaling may be an important target, especially in first line
treatment, to prevent emergence of platinum-resistant disease.

We found that CN signature exposures were not significantly altered between diagnosis and
disease relapse in 36 sample pairs with a median interval of 30.6 months16. This suggests
that the underlying mutational processes in HGSOC are relatively stable and that genome-
wide patterns of copy-number change mainly reflect historic alterations to the genome
acquired during tumorigenesis37. Relative invariant genomic changes were also observed in
the ARIEL2 trial, where genome-wide loss-of-heterozygosity was used to predict HRD, and
only 14.5% (17/117) cases changed LOH status between diagnosis and relapse?.

Larger association studies will be required to further refine CN signature definitions and
interpretation. The application of our approach to other tumour types is likely to extend the
set of signatures beyond the robust core set identified here. Basal-like breast cancers,
squamous cell and small cell lung carcinoma, which all have high raf@@5smutation

and genomic instability2, are promising next targets. Although it is likely that the strong
associations have identified the driver mutational processes for CN signatures 1 and 3,
functional studies will be required to establish causal links for the remaining signatures. For
example, CN signature 6 was significantly associated with multiple mutated pathways, and
this association was primarily driven by amplification of target genes. As this signature
represented focal amplification events, it is difficult to determine whether amplification of
specific genes drives the underlying mutational process or the amplifications emerge as a
consequence of strong selection of advantageous phenotypes. Our data does not provide
timing information for exposures and there is the real possibility that one mutational process
may well drive the emergence of other mutational processes. For example, the association
between signature 6 and PI3K signalling is also shared with signature 4.

Other limitations of this work are technical: we integrated data from three sources, using
three different pre-processing pipelines, and the ploidy determined by different pipelines can
have a significant effect on the derived signatures. For example, high-ploidy CN signature 4
was predominantly found in the sequenced samples that underwent careful manual curation
to identify whole-genome duplication events. When extending to larger sample sets, a
unified processing strategy with correct ploidy determination is likely to produce improved
signature definitions. Another technical limitation is the resolution of copy-number calling
from sWGS (limited to 30kb bins) and future application to large cohorts of deeply
sequenced samples will be needed to improve the resolution of the CN signatures.

Efforts to identify discrete, clinically relevant subtypes of disease have been successful in
many cancer types38-40. However, HGSOC lacks clinically-relevant patient stratification,
which is reflected in continued poor survival. We show that HGSOC genomes are shaped by
multiple mutational processes that preclude simple subtyping. Thus, our results suggest that
HGSOC is a continuum of genomes. By dissecting the mutational forces shaping HGSOC
genomes, our study paves the way to understanding extreme genomic complexity, as well as
revealing the evolution of tumors as they relapse and acquire resistance to chemotherapy.
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Online Methods

Patients and samples

The BriTROC-1 study has been described previously16. Characteristics of the 142 patients
included in this study are given in Supplementary Table 1. The study is sponsored by NHS
Greater Glasgow and Clyde and ethics/IRB approval was given by Cambridge Central
Research Ethics Committee (Reference 12/EE/0349). The study enrolled patients with
recurrent ovarian high-grade serous or grade 3 endometrioid carcinoma who had relapsed
following at least one line of platinum-based chemotherapy and whose disease was
amenable either to image-guided biopsy or secondary debulking surgery. At study entry,
patients were classified as having either platinum-sensitive relapse (i.e. relapse six months or
more following last platinum chemotherapy) or platinum-resistant relapse (i.e. relapse less
than six months following prior platinum chemotherapy) (Supplementary Figure 2). All
patients provided written informed consent. Access to archival diagnostic formalin-fixed
tumor was also required. Survival was calculated from the date of enrolment to the date of
death or the last clinical assessment, with data cutoff at 1 December 2016. At subsequent
relapse or progression after chemotherapy following study entry, patients could optionally
have a second biopsy under separate consent.

DNA was extracted from 300 samples of 142 patients - 158 methanol-fixed relapse biopsies
and 142 FFPE archival diagnostic tissues. Germline DNA was extracted from blood samples
of 137 patients.

Tagged-amplicon sequencing

Mutation screening of P53, PTEN, EGFR, PIK3CA, KRA&dBRAFwas performed on
all 300 samples using tagged-amplicon sequencing as previously described16. DNA
extracted from blood was analyzed by tagged-amplicon sequenciBgAIand BRCAZ
germline mutations.

Shallow whole genome sequencing (SWGS)

Libraries for SWGS were prepared from 100ng DNA using modified TruSeq Nano DNA LT
Sample Prep Kit (lllumina) protocol41. Quality and quantity of the libraries were assessed
with DNA-7500 kit on 2100 Bioanalyzer (Agilent Technologies) and with Kapa Library
Quantification kit (Kapa Biosystems) according to the manufacturer's protocols. Sixteen to
twenty barcoded libraries were pooled together in equimolar amounts and each pool was
sequenced on HiSeg4000 in SE-50bp mode.

Prior to sequencing we estimated the required sequencing depth by adapting calculations
made in previous work that explored the relationship between sequencing depth (reads per
sample) and copy number calling accuracy42. Based on these analyses, we devised a power
calculator for sSWGS copy number analysis @Bé 1 described in 43). We estimated that

with an average ploidy of 3 and purity of 0.65, a sequencing depth of at least 2.7 million
reads is required to detect single, clonal copy-number changes (minimum 60kb) at 90%

1https://gmacintyre.shinyapps.io/sWGS_power/
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power and alpha 0.05. After analysis we determined that BritROC 3-star samples had an
average purity of 0.66, ploidy of 2.7, and were sequenced to an average depth of 8.6 million
reads. This allowed us to detect single copy-number changes with 90% power, and alpha
0.05 down to subclonal frequencies of 55%.

Deep whole genome sequencing

Deep whole-genome sequencing was performed on 56 tumors with confirPded

mutations and matched normal samples, of which 48 passed quality control. Libraries were
constructed with ~350-bp insert length using the TruSeq Nano DNA Library prep kit
(Ilumina) and sequenced on an lllumina HiSeq X Ten System in paired-end 150-bp reads
mode. The average depth was 60x (range 40-101x) in tumors and 40x (range 24-73x) in
matched blood samples.

Variant calling

Read alignment and variant calling of tagged-amplicon sequencing data were processed as
described41. Deep WGS samples were processed with bcbio-nextgen44 using Ensemble
somatic variants called by two methods out of VarDict45, Varscan46 and FreeBayes47.
Somatic SNV calls were further filtered based on mapping quality, base quality, position in
read, and strand bias as described40. In addition, the blacklisted SNVs from the Sanger
Cancer Genomics Project pipeline derived from a panel of unmatched normal samples were
used for filtering48.

Data download

PCAWG-OV—Consensus SNVs and INDELs (October 2016 release), consensus structural
variants (v 1.6), consensus copy-number calls (January 2017 release), donor clinical (August
2016 v7-2) and donor histology information (August 2016 v7) for 112 ovarian cancer
samples were downloaded from the PCAWG data portal. ABSOLUTE49 copy-number calls
were used for analysis.

TCGA—ABSOLUTEA49 copy-number profiles from Zack et al27 for 415 ovarian cancer
TCGA samples were downloaded from Synapse50. SNVs for these samples were
downloaded from the Broad Institute TCGA Genome Data Analysis Center (Broad Institute
TCGA Genome Data Analysis Center: Firehose stddata__2016_01_28 run. doi:10.7908/
C11GOKM9, Broad Institute of MIT and Harvard). Donor clinical data were downloaded
from the TCGA data portal.

Absolute copy-number calling from sSWGS

Segmentation— sWGS reads were aligned and relative copy-number called as

described41. After inspection of tli@53mutation status and relative copy-number profiles

of the 300 sequenced BriTROC-1 samples, 47 were excluded from downstream analysis for
the following reasons: low purity (24), mislabeled (7), pathology re-review revealed sample
was not HGSOC (3), no detectabi®53mutation (13). Of the 253 BriTROC-1 samples
analysed, 111 were FFPE-fixed. Fifty seven out of 253 showed an over segmentation artefact
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(likely due to fixation). A more strict segmentation was subsequently applied to these
samples to yield a usable copy-number profile.

Absolute copy number— We combined relative copy-number profiles generated by
QDNAseq42 with mutant allele frequency identified using tagged amplicon sequencing in a
probabilistic graphical modelling approach to infer absolute copy-number profiles. Using
Expectation-Maximisation, the model generated a posterior over a raifg®8topy-

number states, using thé@P53mutant allele frequency to estimate purity for each state. The
TP53copy-number state that provided the highest likelihood of generating a clonal absolute
copy-number profile was used to determine the final absolute copy-number profile. To test
the validity of this approach, we compared purity and ploidy estimates derived from sWGS
to those derived from 60x WGS using the Battenberg algorithm for copy-number calling51.
Pearson correlation coefficients were computed for both ploidy and purity estimates using
34 3-star (see Quality rating) BriTROC-1 samples with matched sWGS and WGS
(Supplementary Figure 11).

Quality rating— Following absolute copy-number fitting, samples were rated using a 1-3
star system. 1-star samples (n=54) showed a noisy copy-number profile and were considered
likely to have incorrect segments and missing calls. These were excluded from further

analysis. 2-star samples (n=52) showed a reasonable copy-number profile with only a small

number of miscalled segments. These samples were used (with caution) for some subsequent

analyses. 3-star samples (n=147) showed a high-quality copy-number profile that was used
in all downstream analyses. The maximum star rating observed per patient was 1-star in 15
patients, 2-star in 26, and 3-star in 91 patients. Seventy-two out of 111 FFPE-fixed samples
(64%) were amenable to signature analysis. This is consistent with typical sequencing
success rates for archival material52.

Copy-number signature identification

Preprocessing— 91 3-star BriTROC-1 absolute copy-number profiles were summarized
using the genome-wide distribution of six different features (outlined in Figure 1):

1 Segment size - the length of each genome segment;

2. Breakpoint count per 10MB - the number of genome breaks appearing in 10MB
sliding windows across the genome;

3. Change-point copy-number - the absolute difference in CN between adjacent
segments across the genome;

4. Segment copy-number - the observed absolute copy-number state of each
segment;
5. Breakpoint count per chromosome arm - the number of breaks occurring per

chromosome arm;

6. Length of segments with oscillating copy-number - a traversal of the genome
counting the number of contiguous CN segments alternating between two copy-
number states, rounded to the nearest integer copy-number state.
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Mixture modelling— For each of the feature density distributions, we applied mixture
modelling to identify its distinct components. For distributions representing segment-size,
change-point copy-number, and segment copy-number we employed mixtures of Gaussians.
For distributions representing breakpoint count per 10MB, length of segments with
oscillating copy-number, and breakpoint count per chromosome arm we employed mixtures
of Poissons. Mixture modelling was performed using the FlexMix V2 package in R53. The
algorithm was run for each distribution with the number of components ranging from 2-10.
The optimal number of components was selected as the run showing the lowest Bayesian
Information Criterion, resulting in a total of 36 components (see Figure 1 and

Supplementary Table 3 for breakdown). Next, for each copy-number event, we computed the
posterior probability of belonging to a component. For each sample, these posterior event
vectors were summed resulting in a sum-of-posterior probabilities vector. All sum-of-
posterior vectors were combined in a patient-by-component sum-of-posterior probabilities
matrix.

Signature identification— The NMF Package in R54, with the Brunet algorithm
specification55 was used to deconvolute the patient-by-component sum-of-posteriors matrix
into a patient-by-signature matrix and a signature-by-component matrix. A signature search
interval of 3-12 was used, running the NMF 1000 times with different random seeds for each
signature number. As provided by the NMF Package54, the cophenetic, dispersion,
silhouette, and sparseness coefficients were computed for the signature-by-component
matrix (basis), patient-by-signature matrix (coefficients) and connectivity matrix (consensus,
representing patients clustered by their dominant signature across the 1000 runs). 1000
random shuffles of the input matrix were performed to get a null estimate of each of the
scores (Supplementary Figure 3). We sought the minimum signature number that yielded
stability in the cophenetic, dispersion and silhouette coefficients, and that yielded the
maximum sparsity which could be achieved without exceeding that which was observed in
the randomly permuted matrices. As a result, 7 signatures were deemed optimal under these
constraints and were chosen for the remaining analysis.

Signature assignment— For the remaining 26 2-star patient samples, and the 82
secondary patient samples (from patients with 2- or 3-star profiles from additional tumor
samples), the LCD function in the YAPSA package in Bioconductor56 was used to assign
signature exposures.

Copy-number signature validation

The signature identification procedure described above was applied to copy-number profiles
from two independent datasets: 112 whole-genome sequenced (approximately 40x) HGSOC
samples processed as part of ICGC Pan-Cancer Analysis of Whole Genomes Project17,
(denoted here as PCAWG-0V) and 415 SNParray profiling of HGSOC cases as part of
TCGAZ27. The number of signatures was fixed at 7 for matrix decomposition with NMF.
Pearson correlation was computed between the BriTROC-1 signature-by-component weight
matrix and each of the PCAWG-OV and TCGA signature-by-component matrices, signature
by signature (Supplementary Table 2).
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Association of copy-number signature exposures with other features

Association of signature exposures with other features was performed using one of two
procedures: for a continuous association variable, correlation was performed; for a binary
association variable, patients were divided into two groups and a Mann-Whitney test was
performed to test for differences in signature exposure medians between the two groups. A
more detailed explanation of each of these association calculations is given below. (Note: of
the 48 deep WGS BriTROC-1 samples that passed QC, only 44 had matched 2- and 3-star
sWGS copy-number profiles. As signature exposures from sWGS were used for BriTROC-1
sample associations, only these 44 samples could be used).

Age at diagnosis— Patient age at diagnosis for 112 PCAWG-OV samples and 415 TCGA
samples was used to compute Pearson correlation with signature exposures.

Amplification associated fold-back inversions— For 111 PCAWG-OV samples, the

fraction of amplification associated fold-back inversion events per sample was calculated as
the proportion of head-to-head inversions (h2hINVs) within a 100kb window amplified

region (copy number 5) relative to the total number of SV calls per sample. 94 samples had
at least 1 h2hINV event out of which 58 had h2hINV events in amplified regions. On

average they accounted for 4% of SV calls. As these are rare events, only samples showing a
non-zero fraction of fold-back inversions (n=67) were used to compute Pearson correlation
with signature exposures.

Telomere length— Telomere lengths of 44 deep WGS tumor samples from the
BriTROC-1 cohort were estimated using the Telomerecat algorithm57. Telomere length
estimates ranged from 1.5kb - 11kb with an average of 4kb. Correlation between telomere
length and copy-number signature exposures was calculated with age and tumor purity as
covariates using the ppcor package in R58.

Chromothripsis— Copy-number and translocation information from 111 PCAWG-OV
samples were used to detect chromothripsis-like events using the Shatterproof software with
default parameters29. Shatterproof, a state-of-the-art software, incorporates a wide range of
hallmarks of chromothripsis in its detection algorithm as a precise definition of
chromothripsis remains elusive. Govind et al. recommend a threshold of 0.37 based on their
observations that normal samples produced a low humber of calls with low scores
(maximum 0.37) while prostate, colorectal and small cell lung cancer samples that were
known to have chromothriptic events, produced the highest scores 29. Previous studies have
reported a low incidence of chromothriptic events in HGSOC 12,27,30. The number of calls
per sample in the PCAWG-QV samples ranged from 5 to 47 with an average of 23. The
score per call ranged from 0.15-0.62 with a median of 0.38. Therefore, a conservative
threshold was set at the®®Bercentile of our distribution of scores to minimise false

positives and calls with scores greater than 0.48 were used to obtain a count of
chromothriptic events per sample. As chromothriptic events are rare in HGSOC, only
samples showing a non-zero number of events (n=61) were used to compute Pearson
correlation with signature exposures. Of 61 samples with scores above the threshold, 49
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(80.3%) had 1-2 events, 11 samples (18%) had 3-6 events and 1 sample (1.6%) had 10
events.

Tandem duplicator phenotypes— Tandem duplicator phenotype (TDP) scores were
calculated for 111 PCAWG-OV samples using the method described in Menghi et al21. The
number of duplication events per chromosome normalized by chromosome length per
sample was used to calculate a score relative to the expected number of duplication events
per chromosome per sample. The scores ranged from -1.11 to 0.53 with an average score of
0.02.

Mutational signatures— Motif matrices were extracted using the SomaticSignatures R
package59 and the weights of all known COSMIC signatures were determined using the
deconstructSigs R package60 for 44 deep WGS BriTROC-1 samples and 109 PCAWG-0OV
samples. SNV signatures showing an exposure >0 for at least one sample were retained. The
rcorr function in the Hmisc R package61 was used to calculate the correlation matrix

between the remaining SNV and CN signature exposures.

The significance of all observed correlations was estimated from a t-distribution where the
null hypothesis was that the true correlation was 0. All reported p-values have been adjusted
for multiple testing with Benjamini & Hochberg (BH) method62. Comparison plots can be
found in Supplementary Figure 6.

Mutated pathways— A combined set of 479 samples (44 deep WGS BriTROC-1, 112
PCAWG-OV and 323 TCGA) showing at least one driver mutation was used for mutated
pathway enrichment analysis. We focused on 765 driver genes reported by Cancer Genome
Interpreter (CGI)63. SNVs, INDELs, amplifications (CN>5) or deletions (CN<0.4) affecting
these genes were considetreha fidedriver mutations if CGI predicted them as TIERL or
TIER2 (Supplementary Tables 4 and 5, YB& 2 run date: 2018-01-13). 320 of the 765

genes were mutated in a least one case. These genes were used to test for enriched pathways
in the Reactome database using the ReactomePA R package64 with a p-value cutoff of 0.05
and g-value cutoff of 0.05. Pathways mutated in at least 5% of the cohort (n24) were
retained. For each pathway, patients were split into two groups: those with mutated genes in
the pathways, and those with wild-type genes in the pathways. A one-sided Mann-Whitney
was carried out for each signature to determine if the exposure was significantly higher in
mutated cases versus wild-type cases. After multiple testing correction using the Benjamini
& Hochberg method (thresholding the p-value <0.005 and the median difference in
exposures B.1), 186 pathways were significantly enriched. Visual inspection revealed
significant redundancy in the list and 9 representative pathways were manually selected as a
final output (Supplementary Table 6).

Mutated genes— A combined set of 479 samples (44 deep WGS BriTROC-1, 112
PCAWG-OV and 323 TCGA) was used test if signature exposures were significantly higher
in cases with mutated driver genes, includMgz PTEN BRCA1L BRCAZ PIK3CA,

MYC andCDK12 Patients were split into two groups: those with the mutated gene and

2https://www.cancergenomeinterpreter.org/home
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those with wild-type genes. A one-sided Mann-Whitney was carried out for each signature
to determine if the exposure was significantly higher in mutated cases versus wild-type
cases. After multiple testing correction using the Benjamini & Hochberg method
(thresholding the p-value <0.05 and the median difference in exposures 8.0.08), 10 gene/
signature combinations were significantly enriched (Supplementary Table 6).

Survival analysis

Censoring and truncation— Overall survival in BriTROC-1 patients was calculated

from the date of enrolment to the date of death or the last documented clinical assessment,
with data cutoff at 1 December 2016. As the BriTROC-1 study only enrolled patients with
relapsed disease, left truncation was used in the survival analysis. In addition, cases where
the patient was not deceased were right censored. Survival data for the PCAWG-OV and
TCGA cohorts were right censored as required (left truncation was not necessary). The
combined samples were split into training (100% BriTROC-1, 70% PCAWG-OV and 70%
TCGA = 417) and test (30% PCAWG-OV and 30% TCGA = 158) cohorts. All of the
BriTROC-1 samples were used in the training set to avoid issues calculating prediction
performance on left-truncated data.

Cox regression— As the signature exposures for a given sample summed to 1, it was
necessary to select one normalizing signature to perform regression. Signature 5 was chosen
as it showed the lowest variability across the cohorts. To avoid division errors all 0 signature
exposures were converted to 0.02. The remaining signature exposures were normalized
taking the log ratio of their exposure to signature 5’s exposure. A Cox proportional hazards
model was fitted on the training set, with the signature exposures as covariates, stratified by
cohort (BriTROC-1, PCAWG-OV:AU, PCAWG-0OV:US, TCGA) and age (<39; 40:44;

45:49; 50:54; 55:59; 60:64; 65:69; 70:74; 75:79; >80), using the survival package in
Bioconductor65. After fitting, the model was used to predict risk in the test set and
performance was assessed using the concordance index calculation in the survcomp package
in Bioconductor47. A final Cox regression was performed using all data for reporting of
hazard ratios and p-values.

Unsupervised clustering of patients using signature exposures

Hierarchical clustering of the exposure vectors of the 575 samples used in the survival
analysis was performed using the NbClust66 package in R. The optimal number of clusters
was 3 as determined by a consensus voting approach across 23 metrics for choosing the
optimal numbers of clusters. 12/23 metrics reported 3 clusters as the optimal number. A Cox
proportional hazards model was fitted using the cluster labels as covariates, stratified by
cohort (BriTROC-1, PCAWG-0OV:AU, PCAWG-0OV:US, TCGA) and age (<39; 40:44;

45:49; 50:54; 55:59; 60:64; 65:69; 70:74; 75:79; >80), using the survival package in
Bioconductor65.

Analysis of copy-number signature changes during treatment

Thirty-six BriTROC-1 cases with matched diagnosis and relapse samples were used to
investigate the effects of treatment on signature exposures. A linear model was fitted to test
for treatment effects with exposure at relapse as the dependent variable and exposure at
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diagnosis, age at diagnosis, number of lines of chemotherapy, and days between diagnosis
and relapse as independent variables. Prior to fitting, age at diagnosis was centered and
exposures transformed Wyg(x+0.1)to ensure normality. Fitting was done using Aing)

function in R.

To test whether signature exposures at diagnosis were predictive of platinum sensitivity, a
generalized linear model with Binomial error was fitted using type of relapse (platinum-
sensitive or platinum-resistant) as the dependent variable and exposure at diagnosis and age
at diagnosis as independent variables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Copy-number signature identification from shallow whole genome sequence data and
validation in independent cohorts

a. Step 1: Absolute copy-numbers are derived from sWGS data; Step 2: genome-wide

distributions of six fundamental copy-number features are computed; Step 3: Gaussian or

Poisson mixture models (depending on data type) are fitted to each distribution and the
optimal number of components is determined (ranging from 3-10) ; Step 4: the data are
represented as a matrix with 36 mixture component counts per tumor. Step 5: Non-negative
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matrix factorization is applied to the components-by-tumor matrix to derive the tumor-by-
signature matrix and the signature-by-components matrix.

b. Heat maps show component weights for copy number signatures in two independent
cohorts of HGSOC samples profiled using WGS and SNP array. Correlation coefficients are
provided in Supplementary Table 2.
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Figure 2. Linking copy-number signatureswith mutational processes
a Component weights for copy number signature 1. Barplots (upper panel) are grouped by

copy number feature and show weights for each of the 36 components. The middle panel
shows the mixture model distributions which are shaded by the component weight - solid
colours have a high weight and transparent have low weight (contrasting colours are
randomly assigned). Lower panel shows genome-wide distribution (histogram or density) of
each copy number feature, across the BriTROC-1 cohort, with coloured plots indicating
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important distributions (> 0.1 component weight). (Note: similar plots for other CN
signatures are shown in Figure 3 and Supplementary Figure 5).

b Associations between CN signature exposures and other features. Purple indicates positive
correlation and orange negative correlation (see also Supplementary Figure 6). Numbers at
the right of the panel indicate cases included in each analysis. Only significant correlations
are shown (P<0.05).

¢ Associations between CN signature exposures and SNV signatures. Purple indicates
positive correlation and orange negative correlation (see also Supplementary Figure 6). The
number at the right of the panel indicates cases included in the analysis.

d and e Difference in CN signature exposures between cases with mutations in specific
genes @) and mutated/wildtype reactome pathwag)s The absolute difference in mean
signature exposures was calculated for cases with and without mutations. Colors in filled
circles indicate extent of difference. Only differences with FDR P<0.05 (Mann-Whitney

test) are shown (see also Supplementary Figure 7).

Numbers at the right of the panel indicate cases with mutations (SNVs, amplifications or
deletions) in each gene/pathway.
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6 and 7 are shown (the list of all significant genes is provided in Supplementary Tables 7 and
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Figure 4. CN signature exposures of four BriTROC-1 patients with germline BRCA2 mutations
and somatic loss of heterozygosity

Stacked bar plots show copy-number signature exposures for four BriTROC-1 cases with
pathogenic germlinBRCAZmutations and confirmed somatic loss of heterozygosity
(LOH) at theBRCAZlocus.
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Figure 5. Association of survival with copy-number signatures
Upper panel: Stacked barplots show CN signature exposures for each patient. Patients were

ranked by risk of death estimated by a multivariate Cox proportional hazards model
stratified by age and cohort, with CN signature exposures as covariates.

Middle panel: The matrix indicates group for each patient assigned by unsupervised
clustering of CN signature 1, 2, 3 and 7 exposures (see also Supplementary Figure 10).
Lower panel: Linear fit of signature exposures ordered by risk predicted by the Cox
proportional hazards model.
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