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Abstract

In genome-wide association studies (GWAS) for thousands of phenotypes in large biobanks, most
binary traits have substantially fewer cases than controls. Both of the widely used approaches,
linear mixed model and the recently proposed logistic mixed model, perform poorly - producing
large type | error rates - in the analysis of unbalanced case-control phenotypes. Here we propose a
scalable and accurate generalized mixed model association test that uses the saddlepoint
approximation to calibrate the distribution of score test statistics. This method, SAIGE, provides
accurate p-values even when case-control ratios are extremely unbalanced. It utilizes state-of-art
optimization strategies to reduce computational cost, and hence is applicable to GWAS for
thousands of phenotypes by large biobanks. Through the analysis of UK Biobank data of 408,961
white British European-ancestry samples for >1400 binary phenotypes, we show that SAIGE can
efficiently analyze large sample data, controlling for unbalanced case-control ratios and sample
relatedness.

Introduction

Decreases in genotyping cost allow for large biobanks to genotype all participants, enabling
genome-wide scale phenome-wide association studies (PheWAS) in hundreds of thousands
of samples. In a typical genome-wide PheWAS, GWAS for tens of million variants are
performed for thousands of phenotypes constructed from Electronic Health Records (EHR)
and/or survey questionnaires from participants in large cdtfof®r binary traits based on
disease/condition status in PheWAS, cases are typically defined as individuals with specific
International Classification of Disease (ICD) codes within the EHR. Controls are usually all
participants without the same or other related conditi@rBue to the low prevalence of

many conditions/diseases, case-control ratios are often unbalanced (case:control=1:10) or
extremely unbalanced (case:control<1:100). The scale of data and the unbalanced nature of
binary traits pose substantial challenges for genome-wide PheWAS in biobanks.

Population structure and relatedness are major confounders in genetic association studies
and also need to be controlled in PheWAS. Linear mixed models (LMM) are widely used to
account for these issues in GWAS for both binary and quantitativétPaltowever, since

LMM is not designed to analyze binary traits, it can have inflated type | error rates,
especially in the presence of unbalanced case-control ratios. Recently, Cbaea/ kave
proposed to use logistic mixed models and developed a score test called the generalized
mixed model association test (GMMATGMMAT assumes that score test statistics
asymptotically follow a Gaussian distribution to estimate asymptotic p-values. Although
GMMAT test statistics are more robust than the LMM based approaches, it can also suffer
type | error rate inflation when case-control ratios are unbalanced, because unbalanced case-
control ratios invalidate asymptotic assumptions of logistic regré€sionaddition, since
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GMMAT requires O/ computation and Q¢) memory space, whe is the number
of genetic variants to be tested akds the number of individuals, it cannot handle data with
hundreds of thousands of samples.

Here, we propose a novel method to allow for analysis of very large samples, for binary
traits with unbalanced case-control ratios, which also infers and accounts for sample
relatedness. Our method, Scalable and Accurate Implementation of GEneralized mixed
model (SAIGE), uses the saddlepoint approximation (5P%Yo calibrate unbalanced
case-control ratios in score tests based on logistic mixed models. Since SPA uses all the
cumulants, and hence all the moments, it is more accurate than using the Gaussian
distribution, which uses only the first two moments. Similar to BOLT-L{IMe large

sample size method for linear mixed models, our method utilizes state-of-art optimization
strategies, such as the preconditioned conjugate gradient (PCG) appfomshblving

linear systems for large cohorts without requiring a pre-computed genetic relationship
matrix (GRM). The overall computation cost of this proposed methodlig\Q (which is
substantially lower than the computation cost of GMMARd many popular LMM

methods, such as GEMMAIn addition, we reduce the memory use by compactly storing
raw genotypes instead of calculating and storing the GRM.

We have demonstrated that SAIGE controls for the inflated type | error rates for binary traits
with unbalanced case-control ratios in related samples through simulation and the UK
Biobank data of 408,961 white British sampfeX> By evaluating its computation

performance, we demonstrate the feasibility of SAIGE for large-scale PheWAS.

Overview of Methods

The SAIGE method contains two main steps: 1. Fitting the null logistic mixed model to
estimate variance component and other model parameters. 2. Testing for association between
each genetic variant and phenotypes by applying SPA to the score test statistics. Step 1
iteratively estimates the model parameters using the computational efficient average
information restricted maximum likelihood (AI-REML) algoritAfawhich is also used in
GMMAT 9. Several optimization strategies have been applied in step 1 to make fitting the

null logistic mixed model practical for large data sets, such as the UK BitfbtnKirst,

the spectral decomposition has been replaced by the PCG to solve linear systems without
inversing thev x N GRM!23 (as in BOLT-LMMP). The PCG method iteratively finds

solutions of the linear system in a computation and memory-efficient way. Thus, instead of
requiring a pre-computed GRM, which costs a significant amount of time to calculate when
sample sizes are large, SAIGE uses the raw genotypes as input. The computation time is
about O/;N) times the number of iterations for the conjugate gradient to converge, where
Mis a number of variants to be used for constructing GRM. Second, to further reduce the
memory usage during the model fitting, the raw genotypes are stored in a binary vector and
elements of GRM are calculated when needed rather than being stored, so the memory usage
is M;N/4bytes (as in BOLT-LMM and GenABELY). For example, for the UK Biobank

data withA/; = 93,511 andV = 408,961 (white British participants), the memory usage
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drops from 669 Gigabytes(Gb) for storing the GRM with float numbers to 9.56 Gb for the
raw genotypes in a binary vector.

After fitting the null logistic mixed model, the estimate of the random effects for each
individual is obtained. The ratio of the variances of the score statistics with and without
incorporating the variance components for the random effects is calculated using a subset of
randomly selected genetic variants, similar to BOLT-LRhd GRAMMAR-Gamm#8,

This ratio has been previously suggested to be constant for score tests based & LMMs

We have shown that the ratio is also approximately constant for all genetic variants with
MAC 220 in the scenario of the logistic mixed models through analytic derivation and
simulations (Supplementary Note and Supplementary Figure 1).

In step 2, for each variant, the variance ratio is used to calibrate the score statistic variance
that does not incorporate variance components for random effects. Since GRM is no longer
needed for this step, the computation time to obtain the score statistic for each variant is
O(N). SAIGE next approximates the score test statistics using the SPA to obtain more
accurate p-values than the normal distribution. A faster version of the SPA test, similar to the
fastSPA method in the SPAtest R package that we recently devEloisagsed to further

improve the computation time, which exploits the sparsity in low frequency or rare variants
to reduce the computation cost.

Computation and Memory Cost

The key features of SAIGE compared to other existing methods are presented in Table 1,
showing that SAIGE is the only mixed-model association method that is able to account for
the unbalanced case-control ratios while remaining computationally practical for large data
sets. To further evaluate the computational performance of SAIGE, we randomly sampled
subsets from the 408,458 white British UK Biobank participants who are defined as either
coronary artery disease (CAD) cases (31,355) or controls (377,103) based on the PheWAS
Code 41%14.15followed by benchmarking association tests using SAIGE and other existing
methods on 200,000 genetic markers randomly selected out of the 71 million with
imputation info> 0.3. The non-genetic covariates sex, birth year, and principal components
1 to 4 were adjusted in all tests. The log10 of the memory usage and projected computation
time for testing the full set of 71 million genetic variants are plotted against the sample size
as shown in Supplementary Figure 2 and Supplementary Table 1. Although SAIGE and
BOLT-LMM have the same order of computational complexity (Table 1), SAIGE was slower
than BOLT-LMM across all sample sizes (ex. 517 vs 360 CPU hours 408,458).

This is due to the fact that fitting logistic mixed model requires more iterative steps than
linear mixed model, and applying SPA requires additional computation. SAIGE requires
slightly less memory than BOLT-LMM (10 to 11 Gb wh&h408,458) and the low memory
usage makes both methods feasible for the large data set. In contrast, GMMAT and
GEMMA requires substantially more computation time and memory usage. For example,
whenA=400,000, projected memory usages of both GMMAT and GEMMA are more than
600 Gbh. The actual computation time and memory usage of association tests for the full UK
Biobank data for CAD are given in Table 1. SAIGE required 517 CPU hours and 10.3 Gb
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memory to analyze 71 million variants that have imputationn@o3 for 408,458 samples,
which indicates that the analysis will be done in ~26 hours with 20 CPU cores.

analysis of binary traits in UK Biobank data

We applied SAIGE to several randomly selected binary traits defined by the PheWAS Codes
(PheCode) of UK Biobarfkd#15and compared the association results with those obtained
from the method based on linear mixed models, BOLT-Lahd SAIGE without the
saddlepoint approximation (SAIGE-NoSPA), which is asymptotically equivalent to

GMMAT . Due to computation and memory cost, the current GMMAT method cannot
analyze the UK Biobank data. We restrict our analysis to markers directly genotyped or
imputed by the Haplotype Reference Consortium (HR@anel due to quality control

issues of non-HRC markers reported by the UK BioBank. Approximately 28 million

markers with minor allele counts (MAC) 20 and imputation info scer@.3 were used in

the analysis. Among 408,961 white British participants in the UK Biobank, 132,179 have at
least one up to the third degree relative among the genotyped inditfehPale used

93,511 high quality genotyped variants to construct the GRM. In the UK Biobank data, most
binary phenotypes based on PheCodes (1,431 out of 1,688; 84.8%) have case-control ratio
lower than 1:100 (Supplementary Figure 3) and would likely demonstrate problematic
inflation of association test statistics without SPA.

Association results of four exemplary binary traits that have various case-control ratios are
plotted in Manhattan plots shown in Figure 1 and in the quantile-quantile (QQ) plots
stratified by minor allele frequency (MAF) shown in Figure 2. The four binary traits are
coronary artery disease (PheCode 411) with 31,355 cases and 377,103 controls (1:12),
colorectal cancer (PheCode 153) with 4,562 cases and 382,756 controls (1:84), glaucoma
(PheCode 365) with 4,462 cases and 397,761 controls (1:89), and thyroid cancer (PheCode
193) with 358 cases and 407,399 controls (1:1138). In the Manhattan plots in Figure 1, each
locus that contains any variant with p-value < 51§ highlighted as blue or green to

indicate whether this locus has been reported by previous studies or not. Supplementary
Table 2 presents the number of all significant loci and those that have not been previously
reported by each method for each trait and Supplementary Table 3 lists all significant loci
identified by SAIGE. A significant locus is defined to be potentially novel if it is located
outside 500kb of any previously reported ones.

Both Manhattan and QQ plots show BOLT-LMM and SAIGE-NoSPA have greatly inflated
type | error rates. The inflation problem is more severe as case-control ratios become more
unbalanced and the MAF of the tested variants decreases. The genomic inflationXactors (
at the 0.001, 0.01 p-value percentiles are shown for several MAF categories in
Supplementary Table 4. For the colorectal cancer GWAS which has case-control ratio 1:84,
A at the 0.001 p-value percentile is 1.68 and 1.71 for variants with ¥A#H by SAIGE-

NoSPA and BOLT-LMM, whilé\ is 0.99 by SAIGE. The inflation is even more severe for

the test results by SAIGE-NoSPA and BOLT-LMM for the thyroid cancer, which has case-
control ratio 1:1138, with th& at the 0.001 p-value percentile around 4 to 5 for variants

with MAF < 0.01 and all variants, respectively. With the unbalanced case-control ratio
accounted for in SAIGE, thk is again very close to 1.
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We have generated summary statistics for all 1,403 PheCode-derived binary traits in 408,961
UK Biobank white British European-ancestry samples using SAIGE software and made
them available in a public repository (see Supplementary Note for URL).

Simulation Studies

We investigated the type | error control and power of two logistic mixed model approaches,
SAIGE and GMMAT, and the linear mixed model method BOLT-LMM that computes mixed
model association statistics under the infinitesimal and non-infinitesimal models through
simulation studies. We followed the steps described in the Online Methods section to
simulate genotypes for 1,000 families, each with 10 family members (N=10,000), based on
the pedigree shown in Supplementary Figure 4.

Type | error rates

The type | error rates for SAIGE, SAIGE-NoSPA, GMMAT, and BOLT-LMM have been
evaluated based on the association tests performed®@ini@lated genetic variants. The

variants were simulated using the same MAF spectrum of the UK Biobank HRC imputation
data with case-control ratio 1:99, 1:9, and 1:1. Two different values of variance component
parametet=1 and 2 were considered, which correspond to the liability scale heritability

0.23 and 0.38, respectively. The empirical type | error rates at thx104 anda =

5x10°8 are shown in the Supplementary Table 5. SAIGE-NoSPA, GMMAT, and BOLT-

LMM have greatly inflated type | error rates when the case-control ratios are moderately or
extremely unbalanced and slightly deflated type | error rates when the case-control ratios are
balanced. This is expected as previous studies have suggested inflation of the score tests in
the presence of the unbalanced case-control ratios and deflation in balance& stéidies

Unlike GMMAT and BOLT-LMM, SAIGE has no inflation when case-control ratios are
unbalanced. When the case-control ratios are balanced, SAIGE has correct type | error rates
whenz =1 and slightly deflated type | error rates whef. We also observed that GMMAT

score test statistics do not follow the normal distribution when MAF is low and case-control

is unbalanced (Supplementary Figure 5).

To further investigate the type | error rates by MAF and case-control ratios, we carried out
additional simulations. Supplementary Figure 6 shows QQ plots of 1,000,000 rare variants
(MAF = 0.005) with various case-control ratios (1:1, 1:9, and 1:99) and Supplementary
Figure 7 shows QQ plots of 1,000,000 variants with different MAF (0.005, 0.01, and 0.3)
when case-control ratio was 1:99. Consistent to what has been observed in the real data
study, GMMAT and SAIGE-NoSPA is more inflated for less frequent variants with more
unbalanced case-control ratios. In contrast, SAIGE has successfully corrected this problem.

To evaluate whether SAIGE can control type | error rates in the presence of population
stratification, we have simulated two subpopulations with Fst 0.013, which corresponds to
the average Fst between Finnish and non-Finnish Eurcffesives assumed that

subpopulations have different disease prevalences (0.01 for subpopulation 1 and 0.02 for
subpopulation 2, 0.1 for subpopulation 1 and 0.2 for subpopulation 2, and 0.5 for
subpopulation 1 and 0.4 for subpopulation 2). Both subpopulations have 1,000 families, each
with 10 family members based on the pedigree shown in Supplementary Figure 4.
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Association tests were performed on 10 million simulated markers and the first four
principle components were included as covariates (Supplementary Figure 8). QQ plots
(Supplementary Figure 9) show that the test statistics were well calibrated regardless of the
variance component parametand prevalence. This simulation result demonstrates that
SAIGE produces well-calibrated p-values in the presence of population stratification.

Next, we evaluated empirical power. Since power simulation requires re-estimating a
variance component parameter for each variant to test, to reduce computational burden, we
used SAIGE-NoSPA instead of the original GMMAT software. Due to the inflated type |
error rates of BOLT-LMM and GMMAT (and SAIGE-NoSPA), for a fair comparison, we
estimated power at the test-specific empiricivels that yield type | error rate = 5x10°8
(Supplementary Table 6). Supplementary Figure 10 shows the power curve by odds ratios
for variants with MAF 0.05, 0.1 and 0.2 whe¥il. When the case-control ratio is balanced,

the power of SAIGE, SAIGE-NoSPA and BOLT-LMM were nearly identical. For studies

with moderately unbalanced case-control ratio (case:control=1:9), SAIGE has higher power
than SAIGE-NoSPA and BOLT-LMM, which is due to very small empiricébr SAIGE-

NoSPA and BOLT-LMM resulted from type | error inflation. The power gap is much larger
when the case-control ratios are extremely unbalanced. Power resut2 faelded the

same conclusion regarding the methods comparison (data not shown).

Overall simulation studies show that SAIGE can control type | error rates even when case-
control ratios are extremely unbalanced and can be more powerful than GMMAT and BOLT-
LMM. In contrast, GMMAT and BOLT-LMM suffer type | error inflation, and the inflation

is especially severe with low MAF and unbalanced case-control ratios.

DISCUSSION

In this paper, we have presented a method to perform the association tests for binary traits in
large cohorts in the presence of sample relatedness, which provides accurate p-value
estimates for even extremely unbalanced case-control settings (with a prevalence < 0.1%).
The dramatic decrease of the genotyping cost over the last decade allows more and more
large biobanks to genotype all of their participants followed by genome-wide PheWAS, in
which GWASs are performed for all thousands of diseases/conditions characterized based on
EHR and/or survey questionnaires to identify genetic risk factors across different
phenotypes2:21 Several challenges exist for PheWAS studies by large cohorts. Statistically,
inflated type | error rates caused by unbalanced case-control ratios and sample relatedness
need to be corrected. Computationally, most of existing mixed model association methods
are not feasible for large sample sizes. Our method, SAIGE, uses logistic mixed model to
account for the sample relatedness and applies the saddlepoint approximation (SPA) to
correct the inflation caused by the unbalanced case-control ratio in the score tests based on
logistic mixed models.

SAIGE successfully corrects the inflation of type | error rates of low-frequency variants with
binary traits that have unbalanced case-control ratios while also accounting for the
relatedness among samples. Furthermore, our method uses several optimization strategies
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that are similar to those used by BOLT-LMM to improve its computational feasibility for

large cohorts. For example, the preconditioned conjugate gradient algorithm is used to solve
linear systems instead of the Cholesky decomposition method so that the time complexity
for fitting the null logistic model is decreased from\&) to approximately Q¥ ;29

whereM; is the number of pruned markers used for estimating the genetic relationship
matrix and the N is the sample size.

In the selection of genetic markew {) for estimating the kinship matrix and the variance
component, trade off exists between computational cost and performance of adjusting for
sample relatedness. Increasing the number of markers used for that step linearly increases
the computation time and memory. On the other hand, using too few markers may not be
sufficient to account for all subtle sample relatedness. For example g¥anbave shown

that using a few thousand markers is not sufficient to yield correct type | error €&ritrol

the UK Biobank data analysis, we used 93,511 independent, high quality genotyped variants,
which were used by the UK Biobank data group to estimate the kinship coefficients between
sampled®. We carried out a sensitivity analysis by increasing the number of markers to
340,447 (Supplementary Note Section 2.3). Using more markers to estimate the kinship
matrix for the UK Biobank data analysis produced generally similar association p-values but
with lambdas closer to 1.

Using genome-wide genetic markers to adjust for sample relatedness tends to have the
proximal contamination problem, which can reduce association test§®#et3 To avoid

it, the leave-one-chromosome-out (LOCO) scheme can be used. We implemented the LOCO
option in SAIGE. A sensitivity analysis (Supplementary Note Section 1.2.5) on the four
exemplary binary phenotypes in the UK Biobank suggested that the proximal contamination
in GWAS for diseases with relatively low prevalence, such as thyroid cancer, glaucoma, and
colorectal cancer, is not as substantial as for more common diseases, e.g. coronary artery
disease.

Given the inflation of type | errors of linear mixed model for rare variants (MAF < 0.5%)
with unbalanced case-control phenotypes, current GWAS studies address the problem by
excluding rare variants from the analysis. However, this practice can lead to false negative
results if associated rare variants are simply excluded rather than analyzed properly. For
example, after using SAIGE to analyze rare variants in the UK Biobank, we identified a
nonsense variant ity YOC (MAF = 0.14%) that was significantly associated with glaucoma.
In our preliminary analysis of UK Biobank data of 1,283 non-sex specific phenotypes, we
observed 1,609 genetic variants, including variants in the same locus, with minor allele
frequency < 0.5% with SAIGE p-values < 5%8@Supplementary Note Section 2.4). The
method as implemented in SAIGE can control for type | error rates regardless of MAF and
case-control ratios and will facilitate identification of rare disease-associated variants.

There are several limitations in SAIGE. First, the time for algorithm convergence may vary
among phenotypes and study samples given different heritability levels and sample
relatedness. Second, SAIGE has been observed to be slightly conservative when case-control
ratios are extremely unbalanced (Supplementary Table 5). Third, the accurate odds ratio
estimation requires fitting the model under the alternative and is not computational efficient.
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Similar to several other mixed model methb#48 SAIGE estimates odds ratios for genetic
markers using the parameter estimates from the null model. Fourth, SAIGE assumes that the
effect sizes of genetic markers are normally distributed with a mean of zero and standard
deviation of one, which follows an infinitesimal architecture. With this assumption, SAIGE
may sacrifice power to detect genetic signals whose genetic architecture is non-infinitesimal.
Last, the variance component estimaté®m SAIGE is biased and hence it should not be
used to estimate the heritability (Supplementary Note Section 2.1). This is because SAIGE
uses penalized quasi-likelihood (PQL) to estinfatdowever, as shown in our simulation
studies and elsewh&ePQL-based approaches works well to adjust for sample relatedness.
In future, we plan to extend the current single variant test to gene- or region-based multiple
variant test to improve power for identifying disease susceptibility rare variants.

With the emergence of large-scale biobank, PheWAS will be an important tool to identify
genetic components of complex traits. Here we describe a scalable and accurate method,
SAIGE, for the analysis of binary phenotypes in genome-wide PheWAS. Currently, SAIGE
is the only available approach to adjust for both case-control imbalance and family
relatedness, which are commonly observed in PheWAS datasets. In addition, the
optimization approaches used in SAIGE make it scalable for the current largest (UK
Biobank) and future much larger datasets. Through simulation and real data analysis, we
have demonstrated that our method can efficiently analyze a dataset with 400,000 samples
and adjust for type | error rates even when the case-control ratios are extremely unbalanced.
Our method will provide an accurate and scalable solution for large scale biobank data
analysis and ultimately contribute to identify genetic mechanism of complex diseases.

ONLINE METHODS

Generalized linear mixed model for binary traits

In a case-control study with sample sizewe denote the status of tlé individual using
y;= 1 or 0 for being a case or a control. Let the (1 + p) vectorX; represenp covariates

including the intercept and. represent the allele counts, (i or 2) for the variant to test.

The logistic mixed model can be written as

logit(/xi) = Xl.a + Giﬂ + bi

whereu; = P(y; = 11X,, G, b) is the probability for theéf/ individual being a case given the
covariates and genotypes as well as the random effect, which is denetethasrandom
effects, is assumed to be distributed as£Qy), wherey is any x N genetic relationship

matrix (GRM) and is the additive genetic variance. Thes a (1 + p) x 1 coefficient vector
of fixed effects ang is a coefficient of the genetic effect.

Estimate variance component and other model parameters (Step 1)

To fit the null modeljogit(u,) = X« + b,, penalized quasi-likelihood (PQL) metHaahd the

Al-REML algorithm2 are used to iteratively estimat a, E). At iterationk, let (%(k), &(k),
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5®) be estimatect, &, 5), i¥) the estimated mean of W® = diag[ﬁl(k)(l - ,25"))], andy®

-1 . . .
= {W(k)} +7®y be anW x N matrix of the variance of working vector

¥, =Xa® 1+ b0 4, - gy { ﬁgk)(l - ﬁgk))}. To obtain log quasi-likelihood and average
information at each iteration, the current GMMAT approach calculates the inve/E\é@.of

Since it is computationally too expensive for lafgave use the preconditioned conjugate
gradient (PCG4, which allows calculating quasi-likelihood and average information

—o1-1
without calculatinq Z(k)] (See Supplementary Note for details). PCG is a humerical

method to find solutions of linear system. It is particularly useful when the system is very
large. BOLT-LMMP successfully used it to estimate variance component in linear mixed
model.

A score test statistics fdt, = 0isT =G/ (Y - ji) = 5T(Y — @) whereGandYareN x 1
genotype and phenotype vectors, respectivelyidaadhe estimated mean of Y under the

null hypothesis, and = G — X(XTVT/X)_IXTVT/G is the covariate adjusted genotype vector.
; ~T o~ P B R (= Bt B S |
The variance of, Var(7) = G" PG, whereP =Y - X(X > X) X'y, . Foreach

variant, giverP, calculation of Var{) requires Of4) computation. In addition, since our
approach does not calcul@e_l, and henc@, obtaining Var{) requires applying PCG for

each variant, which can be computationally very expensive. To reduce computation cost, we

use the same approximation approach used in BOLT-LMM and GRAMMAR-GAMRAR
in which we estimate a variance Bivith assuming that true random effeds given, and
then calculate ratio between these two variance. SupposE’\/an(N;TW& which is a
variance estimate af assuming is given. Letr= Var(7)/Var(7)" ratio of these two

different types of variance estimates. In Supplementary Note, we have shown that the ratio is

approximately constant for all variants. Using this fact, we can estimateg a relatively
small number of variants. In all the numerical studies in this paper, we used 30 variants to
estimater.

Score test with SPA (Step 2)

Suppose is the estimated ratio (i.8.in Step 1. Now the variance adjusted test statistics is

_Gly-p

7T =2 \"H
d ~T ~~
“\meTwe

which has mean zero and varianagnder the null hypothesis. The computatiorruodg.

requires O) computation. The traditional score tests assumeT7tfatd hence )
asymptotically follows a Gaussian distribution unégr g = 0, which is using only the first

two moments (mean and variance). When the case-control ratios are unbalanced and variants

have low MAC, the underlying distribution @f4can be substantially different from
Gaussian distribution. To obtain accurate p-values, we use Saddlepoint approximation
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method (SPAJS, which approximates distribution using the entire cumulant generating
function (CGF). A fast version of SPA (fastSPARs recently been developed and applied
to PheWAS, and provides accurate p-values even when case-control ratios are extremely
unbalanced (ex. case:control=1:600).

To apply fastSPA td ;gwe need to obtain CGF dhgfirst. To do this, we use the fact that
givenb, Tagjis a weighted sum of independent Bernoulli random variables. The
approximated cumulant generating function is

~ N ~ ~
K(t; p,c) = Zi: 1log(l — e

where the constant c=V4T) ~1/2 Letk’(r) andk”'(¢) are first and second derivatives/of
with respect ta. To calculate the probability tha, 4 <D wheregis an observed test

statistic, we use the following formdla

pr(Tadj < t[) ~F(g) = (D[W + %IOg(%)]’

1 1
wherew = sign()[2{q - K(€)}|*, v = £{k"(£)}* and{ = E(g) is the solution of the equation
K'({) = q. As fastSPA, we exploit the sparsity of genotype vector when MAF of variants are
low. In addition, since normal approximation works well when the test statistic is close to
the mean, we use the normal distribution when the test statistic is within two standard
deviation of the mean.

Data simulation

We carried out a series of simulations to evaluate and compare the performance of SAIGE to
GMMAT. We randomly simulated a set of 1,000,000 base-pair “pseudo” sequences, in

which variants are independent to each other. Alleles for each variant were randomly drawn
from Binomial(n = 2, p = MAF). Then we performed the gene-dropping simul&timing

these sequences as founder haplotypes that were propagated through the pedigree of 10
family members shown in Supplementary Figure 4. Binary phenotypes were generated from
the following logistic mixed model

logit(zyy) = ay+b;+ X| + X, +Gp

whereG;is the genotype valug,is the genetic log odds ratig,is the random effect

simulated fromv(0, Tv). Two covariates, Xand X%, were simulated from Bernoulli(0.5)
and N(0,1), respectively. The intercegtwas determined by given prevalence (i.e. case-

control ratios).
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To evaluate the type | error rates at genome-wid®x1078, 10 million markers along with

100 sets of phenotypes with different random seeds for case-control ratios 1:99, 1.9, and 1:1
were simulated witl# = 0. Givent = 1 and 2, the liability scale heritability is 0.23 and 0.38,
respectively! (Supplementary Note Section 2.1). Association tests were performed on the

10 million genetic markers for each of the 100 sets of phenotypes using SAIGE, GMMAT,
and BOLT-LMM, therefore in total Fatests were performed. To have a realistic MAF
spectrum, MAFs were randomly sampled from the MAF spectrum in UK Biobank data
(Supplementary Figure 11). Additional type | error simulations were carried out for five
different MAFs (0.005, 0.01, 0.05, 0.1 and 0.3) to evaluate type | error rates by MAFs and in
the presence of population stratification (Supplementary Note Section 2.2).

For the power simulation, phenotypes were generated under the alternative hypatteesis

For each of the MAF 0.05 and 0.2, we simulated 1,000 datasets, and power was evaluated at
test-specific empiricak, which yields nominak=5x1078. The empiricak. was estimated

from the previous type | error simulations. As the same as type | error simulations, three
different case-control ratios (1:99, 1:9, and 1:1) were considered.

Note that since we evaluated the empirical type | error rates and power based on genetic
variants that were simulated independently, the LD Score regr&&sadiration and the
leave-one-chromosome-out (LOCO) scheme were not applied in BOLT-LMM or SAIGE.

Performance evaluation of approaches used to obtain computational scalability

We evaluated the numerical stability and convergence for numerical and asymptotic
approximations that we use to achieve the computational scalability: PCG (Supplementary
Figure 12), randomized trace estimator (Supplementary Figure 13), variance ratio estimation
(Supplementary Figure 14), LOCO (Supplementary Figure 15), and variance component
parameter estimation (Supplementary Table 7 and Supplementary Figure 16). In addition,
we compared the results of UK Biobank data analysis using a GRM constructed from a
larger number of markers (M 340,447) (Supplementary Table 8 and Supplementary

Figure 17 and 18).

Phenotype definition in UK Biobank

We used a previously published scheme to defined disease-specific binary phenotypes by
combining hospital ICD-9 codes into hierarchical PheCodes, each representing a more or
less specific disease grddp

ICD-10 codes were mapped to PheCodes using a combination of available maps through the
Unified Medical Language Systehi{ps://www.nlm.nih.gov/research/umlgind other

sources, string matching, and manual review. Study participants were labeled a PheCode if
they had one or more of the PheCode-specific ICD codes. Cases were all study participants
with the PheCode of interest and controls were all study participants without the PheCode of
interest or any related PheCodes. Gender checks were performed, so PheCodes specific for
one gender could not mistakenly be assigned to the other gender.
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Genome build
All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Statistical analysis

With the assumption of the additive genetic model, we performed GWAS using SAIGE
(version 0.13) on 28 million genetic markers for 1,403 binary phenotypes of 408,961 white
British participants, who passed the quality control in the UK Biokamk the logistic

mixed model by SAIGE, the first four principal components, sex and birth year were
included as the non-genetic covariates. To evaluate the performance of SAIGE to account for
sample relatedness and unbalanced case-control ratio for binary phenotypes, GWAS results
from SAIGE were compared to those from SAIGE-NoSPA(asymptotically equivalent to
GMMAT version 0.96) and BOLT-LMM (version 2.3) for four exemplary binary phenotypes
with various case-control ratios. The numbers of samples used for analysis are included in
the legend of each Figure. The genomic inflation factoysvere calculated as the ratio of
observed and expected chi-square statistic at the 0.001 and 0.01 p-value percentiles.

Reporting Summary

Further information on study design is available in the Nature Research Reporting Summary
linked to this article.

Code and data availability

SAIGE is implemented as an open-source R package availdtitpsat/github.com/
weizhouUMICH/SAIGE/ The GWAS results for 1403 binary phenotypes with the
PheCode® constructed based on ICD codes in UK Biobank using SAIGE are currently
available for public download &ttps://www.leelabsg.org/resourcdsformation for all
phenotypes can be found in the website above. We also display the results in the Michigan
PheWehhttp://pheweb.sph.umich.edu/UKBiobamnihich consists of Manhattan plots, Q-Q
plots, and regional association plots for each phenotype as well as the PheWAS plots for
every genetic marker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A. Coronary Artery Disease

BOLT-LMM SAIGE-NoSPA (GMMAT)
i, i MR | -

B. Colorectal Cancer
BOLT-LMM SAIGE-NoSPA (GMMAT) SAIGE

C. Glaucoma
BOLT-LMM SAIGE-NoSPA (GMMAT) SAIGE

D. Thyroid Cancer
BOLT-LMM SAIGE-NoSPA (GMMAT) SAIGE

* Known Loci + Potentially Novel Loci

Figure 1.
Manhattan plots of GWAS results for four binary phenotypes with various case-control

ratios in the UK Biobank.

GWAS results from SAIGE, SAIGE-NoSPA(asymptotically equivalent to GMMAT) and
BOLT-LMM are shown for A. coronary artery disease (PheCode 411, case:control #/1:12,
= 408,458), B. colorectal cancer (PheCode 153, case:control =A1:8387,318), C.

glaucoma (PheCode 365, case: control = 1A88,402,223), and D. thyroid cancer

(PheCode 193, case:control=1:11885 407,757) V. sample size. Blue: loci with

association p-value < 5x18) which have been previously reported, Green: loci that have
association p-value < 5x1®and have not been reported before. Since results from SAIGE-
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noSPA and BOLT-LMM contain many false positive signals for colorectal cancer, glaucoma,
and thyroid cancer, the significant loci are not highlighted. The upper dashed line marks the
break point for the different scales of the y axis and the lower dashed line marks the
genome-wide significance (p-value = 5%
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MAF=(0.05,0.5]; N Markers= 5,432,302
MAF=(0.01,0.05]; N Markers= 2,310,282

+ MAF=(0.005,0.01]; N Markers= 1,074,588

* MAF=(0.0001,0.005]; N Markers=13,104,188

© MAF=[2.4e-05,0.0001); N Markers= 6,406,378

MAF={0.05,0.5]; N Markers= 5,432,242
MAF=(0.01,0.05); N Markers= 2,310,328

- MAF=(0.005,0.01); N Markers= 1,074,736

% MAF=(0.0001,0,005]; N Markers=13,107,376

© MAFs=[2.5¢-05,0.0001); N Markers= 6,203,973

MAF={0.05,0.5]; N Markers= 5,432,226
MAF=(0.01,0.05]; N Markers= 2,310,221
+ MAF=(0.005,0.01]; N Markers= 1,074 856
* MAF=(0.0001.0.005); N Markers=13,103 983
< MAF=[2.4e-05,0.0001]; N Markers= 6,348,058

MAF=(0.05,0.5]; N Markers= 5432332
MAF=(0.01,0.05]; N Markers= 2,310,242
+ MAF=(0.005,0.01]; N Markers= 1,074,604
< MAF={0.0001,0.005); N Markers=13,103,952
2 MAF=[2.4e-05,0.0001]; N Markers= 6,400,098

Quantile-quantile plots of GWAS results for four binary phenotypes with various case-

control ratios in the UK Biobank.

GWAS results from SAIGE, SAIGE-NoSPA (asymptotically equivalent to GMMAT) and
BOLT-LMM are shown for A. coronary artery disease (PheCode 411, case: control = 1:12,
N = 408,458), B. colorectal cancer (PheCode 153, case: control 5\1:8387,318), C.
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glaucoma (PheCode 365, case: control = 1A89,402,223), and D. thyroid cancer
(PheCode 193, case: control=1:1188; 407,757)/V: sample size.
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Benchmarks for
UK Biobank Data
Method Features Algorithm Complexity Coronary Artery
Disease
(PheCode 411)
Does not Accounts . : Memory usage
requirepre- | Feasible | Developed for Tests Time complexity (Gbyte)
computed for large for unbalanced P Time
genetic sample binary case- que}[r:ta:jtta;we CPU hrs Memory
relationship sizes traits control Step 1 Step 2 Stepl | Step2
matrix ratio
SAIGE v v v v O(PM;NL9) *| o(mN) MiN/4 | N 517 10.3G
L ogistic mixed model
GMMAT v O(PN) O(MN?) | FN2 F N2 NA NA
BOLT-LMM v v v O(PM;NL9) * | O(MN) MiN/4 | N 360 10.9G
Linear mixed model
GEMMA v O(N\3) O(MN? | FN2 FN2 NA NA

N: number of samples

P: number of iterations required to reach convergence

M1: number of markers used to construct the kinship matrix;

M: total number of markers to be tested

F: Byte for floating number

Number of iterations in PCG is assumed as%@@
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