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Abstract

In genome-wide association studies (GWAS) for thousands of phenotypes in large biobanks, most 

binary traits have substantially fewer cases than controls. Both of the widely used approaches, 

linear mixed model and the recently proposed logistic mixed model, perform poorly - producing 

large type I error rates - in the analysis of unbalanced case-control phenotypes. Here we propose a 

scalable and accurate generalized mixed model association test that uses the saddlepoint 

approximation to calibrate the distribution of score test statistics. This method, SAIGE, provides 

accurate p-values even when case-control ratios are extremely unbalanced. It utilizes state-of-art 

optimization strategies to reduce computational cost, and hence is applicable to GWAS for 

thousands of phenotypes by large biobanks. Through the analysis of UK Biobank data of 408,961 

white British European-ancestry samples for >1400 binary phenotypes, we show that SAIGE can 

efficiently analyze large sample data, controlling for unbalanced case-control ratios and sample 

relatedness.

Introduction

Decreases in genotyping cost allow for large biobanks to genotype all participants, enabling 

genome-wide scale phenome-wide association studies (PheWAS) in hundreds of thousands 

of samples. In a typical genome-wide PheWAS, GWAS for tens of million variants are 

performed for thousands of phenotypes constructed from Electronic Health Records (EHR) 

and/or survey questionnaires from participants in large cohorts1,2. For binary traits based on 

disease/condition status in PheWAS, cases are typically defined as individuals with specific 

International Classification of Disease (ICD) codes within the EHR. Controls are usually all 

participants without the same or other related conditions1,2. Due to the low prevalence of 

many conditions/diseases, case-control ratios are often unbalanced (case:control=1:10) or 

extremely unbalanced (case:control<1:100). The scale of data and the unbalanced nature of 

binary traits pose substantial challenges for genome-wide PheWAS in biobanks.

Population structure and relatedness are major confounders in genetic association studies 

and also need to be controlled in PheWAS. Linear mixed models (LMM) are widely used to 

account for these issues in GWAS for both binary and quantitative traits3–8. However, since 

LMM is not designed to analyze binary traits, it can have inflated type I error rates, 

especially in the presence of unbalanced case-control ratios. Recently, Chen, H. et al. have 

proposed to use logistic mixed models and developed a score test called the generalized 

mixed model association test (GMMAT)9. GMMAT assumes that score test statistics 

asymptotically follow a Gaussian distribution to estimate asymptotic p-values. Although 

GMMAT test statistics are more robust than the LMM based approaches, it can also suffer 

type I error rate inflation when case-control ratios are unbalanced, because unbalanced case-

control ratios invalidate asymptotic assumptions of logistic regression10. In addition, since 
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GMMAT requires O(MN2) computation and O(N2) memory space, where M is the number 

of genetic variants to be tested and N is the number of individuals, it cannot handle data with 

hundreds of thousands of samples.

Here, we propose a novel method to allow for analysis of very large samples, for binary 

traits with unbalanced case-control ratios, which also infers and accounts for sample 

relatedness. Our method, Scalable and Accurate Implementation of GEneralized mixed 

model (SAIGE), uses the saddlepoint approximation (SPA)11,12 to calibrate unbalanced 

case-control ratios in score tests based on logistic mixed models. Since SPA uses all the 

cumulants, and hence all the moments, it is more accurate than using the Gaussian 

distribution, which uses only the first two moments. Similar to BOLT-LMM8, the large 

sample size method for linear mixed models, our method utilizes state-of-art optimization 

strategies, such as the preconditioned conjugate gradient (PCG) approach13 for solving 

linear systems for large cohorts without requiring a pre-computed genetic relationship 

matrix (GRM). The overall computation cost of this proposed method is O(MN), which is 

substantially lower than the computation cost of GMMAT9 and many popular LMM 

methods, such as GEMMA7. In addition, we reduce the memory use by compactly storing 

raw genotypes instead of calculating and storing the GRM.

We have demonstrated that SAIGE controls for the inflated type I error rates for binary traits 

with unbalanced case-control ratios in related samples through simulation and the UK 

Biobank data of 408,961 white British samples14,15. By evaluating its computation 

performance, we demonstrate the feasibility of SAIGE for large-scale PheWAS.

RESULTS

Overview of Methods

The SAIGE method contains two main steps: 1. Fitting the null logistic mixed model to 

estimate variance component and other model parameters. 2. Testing for association between 

each genetic variant and phenotypes by applying SPA to the score test statistics. Step 1 

iteratively estimates the model parameters using the computational efficient average 

information restricted maximum likelihood (AI-REML) algorithm16, which is also used in 

GMMAT9. Several optimization strategies have been applied in step 1 to make fitting the 

null logistic mixed model practical for large data sets, such as the UK Biobank14,15. First, 

the spectral decomposition has been replaced by the PCG to solve linear systems without 

inversing the N × N GRM13 (as in BOLT-LMM8). The PCG method iteratively finds 

solutions of the linear system in a computation and memory-efficient way. Thus, instead of 

requiring a pre-computed GRM, which costs a significant amount of time to calculate when 

sample sizes are large, SAIGE uses the raw genotypes as input. The computation time is 

about O(M1N) times the number of iterations for the conjugate gradient to converge, where 

M1 is a number of variants to be used for constructing GRM. Second, to further reduce the 

memory usage during the model fitting, the raw genotypes are stored in a binary vector and 

elements of GRM are calculated when needed rather than being stored, so the memory usage 

is M1N/4 bytes (as in BOLT-LMM8 and GenABEL17). For example, for the UK Biobank 

data with M1 = 93,511 and N = 408,961 (white British participants), the memory usage 
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drops from 669 Gigabytes(Gb) for storing the GRM with float numbers to 9.56 Gb for the 

raw genotypes in a binary vector.

After fitting the null logistic mixed model, the estimate of the random effects for each 

individual is obtained. The ratio of the variances of the score statistics with and without 

incorporating the variance components for the random effects is calculated using a subset of 

randomly selected genetic variants, similar to BOLT-LMM8 and GRAMMAR-Gamma18. 

This ratio has been previously suggested to be constant for score tests based on LMMs18. 

We have shown that the ratio is also approximately constant for all genetic variants with 

MAC ≥ 20 in the scenario of the logistic mixed models through analytic derivation and 

simulations (Supplementary Note and Supplementary Figure 1).

In step 2, for each variant, the variance ratio is used to calibrate the score statistic variance 

that does not incorporate variance components for random effects. Since GRM is no longer 

needed for this step, the computation time to obtain the score statistic for each variant is 

O(N). SAIGE next approximates the score test statistics using the SPA to obtain more 

accurate p-values than the normal distribution. A faster version of the SPA test, similar to the 

fastSPA method in the SPAtest R package that we recently developed12, is used to further 

improve the computation time, which exploits the sparsity in low frequency or rare variants 

to reduce the computation cost.

Computation and Memory Cost

The key features of SAIGE compared to other existing methods are presented in Table 1, 

showing that SAIGE is the only mixed-model association method that is able to account for 

the unbalanced case-control ratios while remaining computationally practical for large data 

sets. To further evaluate the computational performance of SAIGE, we randomly sampled 

subsets from the 408,458 white British UK Biobank participants who are defined as either 

coronary artery disease (CAD) cases (31,355) or controls (377,103) based on the PheWAS 

Code 4112,14,15 followed by benchmarking association tests using SAIGE and other existing 

methods on 200,000 genetic markers randomly selected out of the 71 million with 

imputation info ≥ 0.3. The non-genetic covariates sex, birth year, and principal components 

1 to 4 were adjusted in all tests. The log10 of the memory usage and projected computation 

time for testing the full set of 71 million genetic variants are plotted against the sample size 

as shown in Supplementary Figure 2 and Supplementary Table 1. Although SAIGE and 

BOLT-LMM have the same order of computational complexity (Table 1), SAIGE was slower 

than BOLT-LMM across all sample sizes (ex. 517 vs 360 CPU hours when N=408,458). 

This is due to the fact that fitting logistic mixed model requires more iterative steps than 

linear mixed model, and applying SPA requires additional computation. SAIGE requires 

slightly less memory than BOLT-LMM (10 to 11 Gb when N=408,458) and the low memory 

usage makes both methods feasible for the large data set. In contrast, GMMAT and 

GEMMA requires substantially more computation time and memory usage. For example, 

when N=400,000, projected memory usages of both GMMAT and GEMMA are more than 

600 Gb. The actual computation time and memory usage of association tests for the full UK 

Biobank data for CAD are given in Table 1. SAIGE required 517 CPU hours and 10.3 Gb 
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memory to analyze 71 million variants that have imputation info ≥ 0.3 for 408,458 samples, 

which indicates that the analysis will be done in ~26 hours with 20 CPU cores.

Association analysis of binary traits in UK Biobank data

We applied SAIGE to several randomly selected binary traits defined by the PheWAS Codes 

(PheCode) of UK Biobank2,14,15 and compared the association results with those obtained 

from the method based on linear mixed models, BOLT-LMM8, and SAIGE without the 

saddlepoint approximation (SAIGE-NoSPA), which is asymptotically equivalent to 

GMMAT9. Due to computation and memory cost, the current GMMAT method cannot 

analyze the UK Biobank data. We restrict our analysis to markers directly genotyped or 

imputed by the Haplotype Reference Consortium (HRC)19 panel due to quality control 

issues of non-HRC markers reported by the UK BioBank. Approximately 28 million 

markers with minor allele counts (MAC) ≥ 20 and imputation info score ≥ 0.3 were used in 

the analysis. Among 408,961 white British participants in the UK Biobank, 132,179 have at 

least one up to the third degree relative among the genotyped individuals14,15. We used 

93,511 high quality genotyped variants to construct the GRM. In the UK Biobank data, most 

binary phenotypes based on PheCodes (1,431 out of 1,688; 84.8%) have case-control ratio 

lower than 1:100 (Supplementary Figure 3) and would likely demonstrate problematic 

inflation of association test statistics without SPA.

Association results of four exemplary binary traits that have various case-control ratios are 

plotted in Manhattan plots shown in Figure 1 and in the quantile-quantile (QQ) plots 

stratified by minor allele frequency (MAF) shown in Figure 2. The four binary traits are 

coronary artery disease (PheCode 411) with 31,355 cases and 377,103 controls (1:12), 

colorectal cancer (PheCode 153) with 4,562 cases and 382,756 controls (1:84), glaucoma 

(PheCode 365) with 4,462 cases and 397,761 controls (1:89), and thyroid cancer (PheCode 

193) with 358 cases and 407,399 controls (1:1138). In the Manhattan plots in Figure 1, each 

locus that contains any variant with p-value < 5×10−8 is highlighted as blue or green to 

indicate whether this locus has been reported by previous studies or not. Supplementary 

Table 2 presents the number of all significant loci and those that have not been previously 

reported by each method for each trait and Supplementary Table 3 lists all significant loci 

identified by SAIGE. A significant locus is defined to be potentially novel if it is located 

outside 500kb of any previously reported ones.

Both Manhattan and QQ plots show BOLT-LMM and SAIGE-NoSPA have greatly inflated 

type I error rates. The inflation problem is more severe as case-control ratios become more 

unbalanced and the MAF of the tested variants decreases. The genomic inflation factors (λ) 

at the 0.001, 0.01 p-value percentiles are shown for several MAF categories in 

Supplementary Table 4. For the colorectal cancer GWAS which has case-control ratio 1:84, 

λ at the 0.001 p-value percentile is 1.68 and 1.71 for variants with MAF < 0.01 by SAIGE-

NoSPA and BOLT-LMM, while λ is 0.99 by SAIGE. The inflation is even more severe for 

the test results by SAIGE-NoSPA and BOLT-LMM for the thyroid cancer, which has case-

control ratio 1:1138, with the λ at the 0.001 p-value percentile around 4 to 5 for variants 

with MAF < 0.01 and all variants, respectively. With the unbalanced case-control ratio 

accounted for in SAIGE, the λ is again very close to 1.
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We have generated summary statistics for all 1,403 PheCode-derived binary traits in 408,961 

UK Biobank white British European-ancestry samples using SAIGE software and made 

them available in a public repository (see Supplementary Note for URL).

Simulation Studies

We investigated the type I error control and power of two logistic mixed model approaches, 

SAIGE and GMMAT, and the linear mixed model method BOLT-LMM that computes mixed 

model association statistics under the infinitesimal and non-infinitesimal models through 

simulation studies. We followed the steps described in the Online Methods section to 

simulate genotypes for 1,000 families, each with 10 family members (N=10,000), based on 

the pedigree shown in Supplementary Figure 4.

Type I error rates

The type I error rates for SAIGE, SAIGE-NoSPA, GMMAT, and BOLT-LMM have been 

evaluated based on the association tests performed on 109 simulated genetic variants. The 

variants were simulated using the same MAF spectrum of the UK Biobank HRC imputation 

data with case-control ratio 1:99, 1:9, and 1:1. Two different values of variance component 

parameter τ=1 and 2 were considered, which correspond to the liability scale heritability 

0.23 and 0.38, respectively. The empirical type I error rates at the α = 5×10−4 and α = 

5×10−8 are shown in the Supplementary Table 5. SAIGE-NoSPA, GMMAT, and BOLT-

LMM have greatly inflated type I error rates when the case-control ratios are moderately or 

extremely unbalanced and slightly deflated type I error rates when the case-control ratios are 

balanced. This is expected as previous studies have suggested inflation of the score tests in 

the presence of the unbalanced case-control ratios and deflation in balanced studies10,12. 

Unlike GMMAT and BOLT-LMM, SAIGE has no inflation when case-control ratios are 

unbalanced. When the case-control ratios are balanced, SAIGE has correct type I error rates 

when τ =1 and slightly deflated type I error rates when τ=2. We also observed that GMMAT 

score test statistics do not follow the normal distribution when MAF is low and case-control 

is unbalanced (Supplementary Figure 5).

To further investigate the type I error rates by MAF and case-control ratios, we carried out 

additional simulations. Supplementary Figure 6 shows QQ plots of 1,000,000 rare variants 

(MAF = 0.005) with various case-control ratios (1:1, 1:9, and 1:99) and Supplementary 

Figure 7 shows QQ plots of 1,000,000 variants with different MAF (0.005, 0.01, and 0.3) 

when case-control ratio was 1:99. Consistent to what has been observed in the real data 

study, GMMAT and SAIGE-NoSPA is more inflated for less frequent variants with more 

unbalanced case-control ratios. In contrast, SAIGE has successfully corrected this problem.

To evaluate whether SAIGE can control type I error rates in the presence of population 

stratification, we have simulated two subpopulations with Fst 0.013, which corresponds to 

the average Fst between Finnish and non-Finnish Europeans20. We assumed that 

subpopulations have different disease prevalences (0.01 for subpopulation 1 and 0.02 for 

subpopulation 2, 0.1 for subpopulation 1 and 0.2 for subpopulation 2, and 0.5 for 

subpopulation 1 and 0.4 for subpopulation 2). Both subpopulations have 1,000 families, each 

with 10 family members based on the pedigree shown in Supplementary Figure 4. 
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Association tests were performed on 10 million simulated markers and the first four 

principle components were included as covariates (Supplementary Figure 8). QQ plots 

(Supplementary Figure 9) show that the test statistics were well calibrated regardless of the 

variance component parameter τ and prevalence. This simulation result demonstrates that 

SAIGE produces well-calibrated p-values in the presence of population stratification.

Power

Next, we evaluated empirical power. Since power simulation requires re-estimating a 

variance component parameter for each variant to test, to reduce computational burden, we 

used SAIGE-NoSPA instead of the original GMMAT software. Due to the inflated type I 

error rates of BOLT-LMM and GMMAT (and SAIGE-NoSPA), for a fair comparison, we 

estimated power at the test-specific empirical α levels that yield type I error rate α = 5×10−8 

(Supplementary Table 6). Supplementary Figure 10 shows the power curve by odds ratios 

for variants with MAF 0.05, 0.1 and 0.2 when τ=1. When the case-control ratio is balanced, 

the power of SAIGE, SAIGE-NoSPA and BOLT-LMM were nearly identical. For studies 

with moderately unbalanced case-control ratio (case:control=1:9), SAIGE has higher power 

than SAIGE-NoSPA and BOLT-LMM, which is due to very small empirical α for SAIGE-

NoSPA and BOLT-LMM resulted from type I error inflation. The power gap is much larger 

when the case-control ratios are extremely unbalanced. Power results for τ=2 yielded the 

same conclusion regarding the methods comparison (data not shown).

Overall simulation studies show that SAIGE can control type I error rates even when case-

control ratios are extremely unbalanced and can be more powerful than GMMAT and BOLT-

LMM. In contrast, GMMAT and BOLT-LMM suffer type I error inflation, and the inflation 

is especially severe with low MAF and unbalanced case-control ratios.

DISCUSSION

In this paper, we have presented a method to perform the association tests for binary traits in 

large cohorts in the presence of sample relatedness, which provides accurate p-value 

estimates for even extremely unbalanced case-control settings (with a prevalence < 0.1%). 

The dramatic decrease of the genotyping cost over the last decade allows more and more 

large biobanks to genotype all of their participants followed by genome-wide PheWAS, in 

which GWASs are performed for all thousands of diseases/conditions characterized based on 

EHR and/or survey questionnaires to identify genetic risk factors across different 

phenotypes1,2,21. Several challenges exist for PheWAS studies by large cohorts. Statistically, 

inflated type I error rates caused by unbalanced case-control ratios and sample relatedness 

need to be corrected. Computationally, most of existing mixed model association methods 

are not feasible for large sample sizes. Our method, SAIGE, uses logistic mixed model to 

account for the sample relatedness and applies the saddlepoint approximation (SPA) to 

correct the inflation caused by the unbalanced case-control ratio in the score tests based on 

logistic mixed models.

SAIGE successfully corrects the inflation of type I error rates of low-frequency variants with 

binary traits that have unbalanced case-control ratios while also accounting for the 

relatedness among samples. Furthermore, our method uses several optimization strategies 
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that are similar to those used by BOLT-LMM to improve its computational feasibility for 

large cohorts. For example, the preconditioned conjugate gradient algorithm is used to solve 

linear systems instead of the Cholesky decomposition method so that the time complexity 

for fitting the null logistic model is decreased from O(N3) to approximately O(M1N1.5), 

where M1 is the number of pruned markers used for estimating the genetic relationship 

matrix and the N is the sample size.

In the selection of genetic markers (M1) for estimating the kinship matrix and the variance 

component, trade off exists between computational cost and performance of adjusting for 

sample relatedness. Increasing the number of markers used for that step linearly increases 

the computation time and memory. On the other hand, using too few markers may not be 

sufficient to account for all subtle sample relatedness. For example, Yang et al. have shown 

that using a few thousand markers is not sufficient to yield correct type I error control22. In 

the UK Biobank data analysis, we used 93,511 independent, high quality genotyped variants, 

which were used by the UK Biobank data group to estimate the kinship coefficients between 

samples15. We carried out a sensitivity analysis by increasing the number of markers to 

340,447 (Supplementary Note Section 2.3). Using more markers to estimate the kinship 

matrix for the UK Biobank data analysis produced generally similar association p-values but 

with lambdas closer to 1.

Using genome-wide genetic markers to adjust for sample relatedness tends to have the 

proximal contamination problem, which can reduce association test power6,8,22,23. To avoid 

it, the leave-one-chromosome-out (LOCO) scheme can be used. We implemented the LOCO 

option in SAIGE. A sensitivity analysis (Supplementary Note Section 1.2.5) on the four 

exemplary binary phenotypes in the UK Biobank suggested that the proximal contamination 

in GWAS for diseases with relatively low prevalence, such as thyroid cancer, glaucoma, and 

colorectal cancer, is not as substantial as for more common diseases, e.g. coronary artery 

disease.

Given the inflation of type I errors of linear mixed model for rare variants (MAF < 0.5%) 

with unbalanced case-control phenotypes, current GWAS studies address the problem by 

excluding rare variants from the analysis. However, this practice can lead to false negative 

results if associated rare variants are simply excluded rather than analyzed properly. For 

example, after using SAIGE to analyze rare variants in the UK Biobank, we identified a 

nonsense variant in MYOC (MAF = 0.14%) that was significantly associated with glaucoma. 

In our preliminary analysis of UK Biobank data of 1,283 non-sex specific phenotypes, we 

observed 1,609 genetic variants, including variants in the same locus, with minor allele 

frequency < 0.5% with SAIGE p-values < 5×10−8 (Supplementary Note Section 2.4). The 

method as implemented in SAIGE can control for type I error rates regardless of MAF and 

case-control ratios and will facilitate identification of rare disease-associated variants.

There are several limitations in SAIGE. First, the time for algorithm convergence may vary 

among phenotypes and study samples given different heritability levels and sample 

relatedness. Second, SAIGE has been observed to be slightly conservative when case-control 

ratios are extremely unbalanced (Supplementary Table 5). Third, the accurate odds ratio 

estimation requires fitting the model under the alternative and is not computational efficient. 
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Similar to several other mixed model methods3,8,18, SAIGE estimates odds ratios for genetic 

markers using the parameter estimates from the null model. Fourth, SAIGE assumes that the 

effect sizes of genetic markers are normally distributed with a mean of zero and standard 

deviation of one, which follows an infinitesimal architecture. With this assumption, SAIGE 

may sacrifice power to detect genetic signals whose genetic architecture is non-infinitesimal. 

Last, the variance component estimates τ  from SAIGE is biased and hence it should not be 

used to estimate the heritability (Supplementary Note Section 2.1). This is because SAIGE 

uses penalized quasi-likelihood (PQL) to estimate τ . However, as shown in our simulation 

studies and elsewhere9, PQL-based approaches works well to adjust for sample relatedness. 

In future, we plan to extend the current single variant test to gene- or region-based multiple 

variant test to improve power for identifying disease susceptibility rare variants.

With the emergence of large-scale biobank, PheWAS will be an important tool to identify 

genetic components of complex traits. Here we describe a scalable and accurate method, 

SAIGE, for the analysis of binary phenotypes in genome-wide PheWAS. Currently, SAIGE 

is the only available approach to adjust for both case-control imbalance and family 

relatedness, which are commonly observed in PheWAS datasets. In addition, the 

optimization approaches used in SAIGE make it scalable for the current largest (UK 

Biobank) and future much larger datasets. Through simulation and real data analysis, we 

have demonstrated that our method can efficiently analyze a dataset with 400,000 samples 

and adjust for type I error rates even when the case-control ratios are extremely unbalanced. 

Our method will provide an accurate and scalable solution for large scale biobank data 

analysis and ultimately contribute to identify genetic mechanism of complex diseases.

ONLINE METHODS

Generalized linear mixed model for binary traits

In a case-control study with sample size N, we denote the status of the ith individual using 

y
i

= 1 or 0 for being a case or a control. Let the 1 × 1 + p vector X
i
 represent p covariates 

including the intercept and G
i
 represent the allele counts ( 0, 1 or 2) for the variant to test. 

The logistic mixed model can be written as

logit μ
i

= X
i
³ + G

i
´ + b

i

where μ
i

= P(y
i

= 1 | X
i
, G

i
, b

i
) is the probability for the ith individual being a case given the 

covariates and genotypes as well as the random effect, which is denoted as b
i
. The random 

effect b
i
 is assumed to be distributed as (0, τ ψ), where ψ is an N × N genetic relationship 

matrix (GRM) and τ is the additive genetic variance. The ³ is a 1 + p × 1 coefficient vector 

of fixed effects and ́ is a coefficient of the genetic effect.

Estimate variance component and other model parameters (Step 1)

To fit the null model, logit μ
i0 = X

i
³ + b

i
, penalized quasi-likelihood (PQL) method1 and the 

AI-REML algorithm2 are used to iteratively estimate (τ , ³, b). At iteration k, let (τ k , ³
k , 

Zhou et al. Page 9

Nat Genet. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b
k ) be estimated (τ , ³, b), μ

i
k  the estimated mean of y

i
, W k

= diag μ
i
k 1 − μ

i
k , and ∑

k

= W
k −1

+ τ
k

ψ be an N × N matrix of the variance of working vector 

y∼
i

= X
i
³

k + b
i
k + (y

i
− μ

i
k )/ μ

i
k 1 − μ

i
k . To obtain log quasi-likelihood and average 

information at each iteration, the current GMMAT approach calculates the inverse of ∑
k

. 

Since it is computationally too expensive for large N, we use the preconditioned conjugate 

gradient (PCG)3,4, which allows calculating quasi-likelihood and average information 

without calculating ∑
k −1

 (See Supplementary Note for details). PCG is a numerical 

method to find solutions of linear system. It is particularly useful when the system is very 

large. BOLT-LMM5 successfully used it to estimate variance component in linear mixed 

model.

A score test statistics for Ho: ´ = 0 is T = G
T

Y − μ = G
∼T

Y − μ  where G and Y are N × 1

genotype and phenotype vectors, respectively, and μ is the estimated mean of Y under the 

null hypothesis, and G
∼

= G − X X
T

WX
−1

X
T

WG is the covariate adjusted genotype vector. 

The variance of T, Var(T) = G
∼T

PG
∼

, where P = ∑
−1

− ∑
−1

X X
T∑

−1
X

−1
X

T∑
−1

. For each 

variant, given P, calculation of Var(T) requires O(N2) computation. In addition, since our 

approach does not calculate ∑  −1, and hence P, obtaining Var(T) requires applying PCG for 

each variant, which can be computationally very expensive. To reduce computation cost, we 

use the same approximation approach used in BOLT-LMM and GRAMMAR-GAMMAR6, 

in which we estimate a variance of T with assuming that true random effect b is given, and 

then calculate ratio between these two variance. Suppose Var(T)*  = G
∼T

WG
∼

, which is a 

variance estimate of T assuming b is given. Let r = Var(T)/Var(T)*  ratio of these two 

different types of variance estimates. In Supplementary Note, we have shown that the ratio is 

approximately constant for all variants. Using this fact, we can estimate r using a relatively 

small number of variants. In all the numerical studies in this paper, we used 30 variants to 

estimate r.

Score test with SPA (Step 2)

Suppose r  is the estimated ratio (i.e. r) in Step 1. Now the variance adjusted test statistics is

T
adj

=
G
∼T

Y − μ

rG
∼T

WG
∼

,

which has mean zero and variance 1 under the null hypothesis. The computation of T
adj

requires O(N) computation. The traditional score tests assume that T (and hence Tadj) 

asymptotically follows a Gaussian distribution under Ho: ´ = 0, which is using only the first 

two moments (mean and variance). When the case-control ratios are unbalanced and variants 

have low MAC, the underlying distribution of Tadj can be substantially different from 

Gaussian distribution. To obtain accurate p-values, we use Saddlepoint approximation 
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method (SPA)7–9, which approximates distribution using the entire cumulant generating 

function (CGF). A fast version of SPA (fastSPA)9 has recently been developed and applied 

to PheWAS, and provides accurate p-values even when case-control ratios are extremely 

unbalanced (ex. case:control=1:600).

To apply fastSPA to Tadj we need to obtain CGF of Tadj first. To do this, we use the fact that 

given b, Tadj is a weighted sum of independent Bernoulli random variables. The 

approximated cumulant generating function is

K t;  μ, c = ∑i = 1
N log 1 − μ

i
+ μ

i
e
ctG

∼
i − ct∑i = 1

N
G
∼

i
μ

i

where the constant c=Var*(T) −1/2. Let K′ t  and K′′ t  are first and second derivatives of K 
with respect to t. To calculate the probability that T

adj
< q, where q is an observed test 

statistic, we use the following formula7

pr T
adj

< q ≃ F q = Φ w +
1
w

log
v

w
,

where w = sign ζ 2 ζq − K ζ

1
2 , v = ζ K″ ζ

1
2  and ζ = ζ q  is the solution of the equation 

K′ ζ = q. As fastSPA9, we exploit the sparsity of genotype vector when MAF of variants are 

low. In addition, since normal approximation works well when the test statistic is close to 

the mean, we use the normal distribution when the test statistic is within two standard 

deviation of the mean.

Data simulation

We carried out a series of simulations to evaluate and compare the performance of SAIGE to 

GMMAT. We randomly simulated a set of 1,000,000 base-pair “pseudo” sequences, in 

which variants are independent to each other. Alleles for each variant were randomly drawn 

from Binomial(n = 2, p = MAF). Then we performed the gene-dropping simulation10 using 

these sequences as founder haplotypes that were propagated through the pedigree of 10 

family members shown in Supplementary Figure 4. Binary phenotypes were generated from 

the following logistic mixed model

logit π
i0 = ³0 + b

i
+ X1 + X2 + G

i
´

where Gi is the genotype value, ´ is the genetic log odds ratio, b
i
 is the random effect 

simulated from N 0, τ ψ . Two covariates, X1 and X2, were simulated from Bernoulli(0.5) 

and N(0,1), respectively. The intercept ³0 was determined by given prevalence (i.e. case-

control ratios).
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To evaluate the type I error rates at genome-wide α=5×10−8, 10 million markers along with 

100 sets of phenotypes with different random seeds for case-control ratios 1:99, 1:9, and 1:1 

were simulated with ́= 0. Given τ = 1 and 2, the liability scale heritability is 0.23 and 0.38, 

respectively11 (Supplementary Note Section 2.1). Association tests were performed on the 

10 million genetic markers for each of the 100 sets of phenotypes using SAIGE, GMMAT, 

and BOLT-LMM, therefore in total 109 tests were performed. To have a realistic MAF 

spectrum, MAFs were randomly sampled from the MAF spectrum in UK Biobank data 

(Supplementary Figure 11). Additional type I error simulations were carried out for five 

different MAFs (0.005, 0.01, 0.05, 0.1 and 0.3) to evaluate type I error rates by MAFs and in 

the presence of population stratification (Supplementary Note Section 2.2).

For the power simulation, phenotypes were generated under the alternative hypothesis ´ ≠ 0. 

For each of the MAF 0.05 and 0.2, we simulated 1,000 datasets, and power was evaluated at 

test-specific empirical α, which yields nominal α=5×10−8. The empirical α was estimated 

from the previous type I error simulations. As the same as type I error simulations, three 

different case-control ratios (1:99, 1:9, and 1:1) were considered.

Note that since we evaluated the empirical type I error rates and power based on genetic 

variants that were simulated independently, the LD Score regression12 calibration and the 

leave-one-chromosome-out (LOCO) scheme were not applied in BOLT-LMM or SAIGE.

Performance evaluation of approaches used to obtain computational scalability

We evaluated the numerical stability and convergence for numerical and asymptotic 

approximations that we use to achieve the computational scalability: PCG (Supplementary 

Figure 12), randomized trace estimator (Supplementary Figure 13), variance ratio estimation 

(Supplementary Figure 14), LOCO (Supplementary Figure 15), and variance component 

parameter estimation (Supplementary Table 7 and Supplementary Figure 16). In addition, 

we compared the results of UK Biobank data analysis using a GRM constructed from a 

larger number of markers (M1 = 340,447) (Supplementary Table 8 and Supplementary 

Figure 17 and 18).

Phenotype definition in UK Biobank

We used a previously published scheme to defined disease-specific binary phenotypes by 

combining hospital ICD-9 codes into hierarchical PheCodes, each representing a more or 

less specific disease group13.

ICD-10 codes were mapped to PheCodes using a combination of available maps through the 

Unified Medical Language System(https://www.nlm.nih.gov/research/umls/) and other 

sources, string matching, and manual review. Study participants were labeled a PheCode if 

they had one or more of the PheCode-specific ICD codes. Cases were all study participants 

with the PheCode of interest and controls were all study participants without the PheCode of 

interest or any related PheCodes. Gender checks were performed, so PheCodes specific for 

one gender could not mistakenly be assigned to the other gender.
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Genome build

All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Statistical analysis

With the assumption of the additive genetic model, we performed GWAS using SAIGE 

(version 0.13) on 28 million genetic markers for 1,403 binary phenotypes of 408,961 white 

British participants, who passed the quality control in the UK Biobank14. In the logistic 

mixed model by SAIGE, the first four principal components, sex and birth year were 

included as the non-genetic covariates. To evaluate the performance of SAIGE to account for 

sample relatedness and unbalanced case-control ratio for binary phenotypes, GWAS results 

from SAIGE were compared to those from SAIGE-NoSPA(asymptotically equivalent to 

GMMAT version 0.96) and BOLT-LMM (version 2.3) for four exemplary binary phenotypes 

with various case-control ratios. The numbers of samples used for analysis are included in 

the legend of each Figure. The genomic inflation factors (λ) were calculated as the ratio of 

observed and expected chi-square statistic at the 0.001 and 0.01 p-value percentiles.

Reporting Summary

Further information on study design is available in the Nature Research Reporting Summary 

linked to this article.

Code and data availability

SAIGE is implemented as an open-source R package available at https://github.com/

weizhouUMICH/SAIGE/. The GWAS results for 1403 binary phenotypes with the 

PheCodes13 constructed based on ICD codes in UK Biobank using SAIGE are currently 

available for public download at https://www.leelabsg.org/resources. Information for all 

phenotypes can be found in the website above. We also display the results in the Michigan 

PheWeb http://pheweb.sph.umich.edu/UKBiobank, which consists of Manhattan plots, Q-Q 

plots, and regional association plots for each phenotype as well as the PheWAS plots for 

every genetic marker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plots of GWAS results for four binary phenotypes with various case-control 

ratios in the UK Biobank.

GWAS results from SAIGE, SAIGE-NoSPA(asymptotically equivalent to GMMAT) and 

BOLT-LMM are shown for A. coronary artery disease (PheCode 411, case:control = 1:12, N 
= 408,458), B. colorectal cancer (PheCode 153, case:control = 1:84, N = 387,318), C. 

glaucoma (PheCode 365, case: control = 1:89, N = 402,223), and D. thyroid cancer 

(PheCode 193, case:control=1:1138, N = 407,757). N: sample size. Blue: loci with 

association p-value < 5×10−8, which have been previously reported, Green: loci that have 

association p-value < 5×10−8 and have not been reported before. Since results from SAIGE-
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noSPA and BOLT-LMM contain many false positive signals for colorectal cancer, glaucoma, 

and thyroid cancer, the significant loci are not highlighted. The upper dashed line marks the 

break point for the different scales of the y axis and the lower dashed line marks the 

genome-wide significance (p-value = 5×10−8).
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Figure 2. 
Quantile-quantile plots of GWAS results for four binary phenotypes with various case-

control ratios in the UK Biobank.

GWAS results from SAIGE, SAIGE-NoSPA (asymptotically equivalent to GMMAT) and 

BOLT-LMM are shown for A. coronary artery disease (PheCode 411, case: control = 1:12, 

N = 408,458), B. colorectal cancer (PheCode 153, case: control = 1:84, N = 387,318), C. 
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glaucoma (PheCode 365, case: control = 1:89, N = 402,223), and D. thyroid cancer 

(PheCode 193, case: control=1:1138, N = 407,757). N: sample size.
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Table 1

Comparison of different methods for GWAS with mixed effect models

Method Features Algorithm Complexity

Benchmarks for
UK Biobank Data
Coronary Artery

Disease
(PheCode 411)

Does not
require pre-
computed

genetic
relationship

matrix

Feasible
for large
sample

sizes

Developed
for

binary
traits

Accounts
for

unbalanced
case-

control
ratio

Tests
quantitative

traits

Time complexity Memory usage
(Gbyte)

Time
CPU hrs Memory

Step 1 Step 2 Step 1 Step 2

Logistic mixed model
SAIGE ✓ ✓ ✓ ✓ ✓ O(PM1N1.5) * O(MN） M1N/4 N 517 10.3G

GMMAT ✓ ✓ O(PN3) O(MN2) F N2 F N2 NA NA

Linear mixed model
BOLT-LMM ✓ ✓ ✓ O(PM1N1.5)* O(MN） M1N/4 N 360 10.9G

GEMMA ✓ O(N3) O(MN2) F N2 FN2 NA NA

N: number of samples

P: number of iterations required to reach convergence

M1: number of markers used to construct the kinship matrix;

M: total number of markers to be tested

F: Byte for floating number

*
Number of iterations in PCG is assumed as O(N0.5)8
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