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Abstract

True physiological imaging of subcellular dynamics requires studying cells within their parent 

organisms, where all the environmental cues that drive gene expression, and hence the phenotypes 

that we actually observe, are present. A complete understanding also requires volumetric imaging 

of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on 

either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large 

multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including 

endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and 

metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across 

different organisms and developmental stages and may offer insights into how cells harness their 

intrinsic variability to adapt to different physiological environments.

A common tenet, oft repeated in the field of bioimaging, is “seeing is believing.” But when 

can we believe what we see? The question becomes particularly relevant when imaging 

subcellular dynamics by fluorescence microscopy. Traditional imaging tools such as 

confocal microscopy are often too slow to study fast three-dimensional (3D) processes 

across cellular volumes, create out-of-focus photoinduced damage (1, 2) and fluorescence 

photobleaching, and subject the cell at the point of measurement to peak intensities far 

beyond those under which life evolved. In addition, much of what fluorescence microscopy 

has taught us about subcellular processes has come from observing isolated adherent cells on 

glass. True physiological imaging requires studying cells within the organism in which they 

evolved, where all the environmental cues that regulate cell physiology are present (3). 

Although intravital imaging achieves this goal (4, 5) and has contributed pivotally to our 

understanding of cellular and developmental biology, the resolution needed to study minute 

subcellular processes in 3D detail is compromised by the optically challenging multicellular 

environment.

Two imaging tools have recently been developed to address these problems: Lattice light-

sheet microscopy (LLSM) (6) provides a noninvasive alternative for volumetric imaging of 

whole living cells at high spatiotemporal resolution, often over hundreds of time points, and 

adaptive optics (AO) (7) corrects for sample-induced aberrations caused by the 

inhomogeneous refractive index of multicellular specimens and recovers resolution and 
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signal-to-background ratios comparable to those attained for isolated cultured cells. The 

remaining challenge is to combine these technologies in a way that retains their benefits and 

thereby enables the in vivo study of cell biology at high resolution in conditions as close as 

possible to the native physiological state. Here we describe a technique based on an adaptive 

optical lattice light-sheet microscope designed for this purpose (AO-LLSM) and 

demonstrate its utility through high-speed, high-resolution, 3D in vivo imaging of a variety 

of dynamic subcellular processes.

Lattice light-sheet microscope with two-channel adaptive optics

Although several AO methods have been demonstrated in biological systems (7), including 

in the excitation (8) or detection (9) light paths of a light-sheet microscope, we chose an 

approach where the sample-induced aberrations affecting the image of a localized reference 

“guide star” created through two-photon excited fluorescence (TPEF) within the specimen 

are measured and then corrected with a phase modulation element (10). By scanning the 

guide star over the region to be imaged (11), an average correction is measured that is often 

more accurate than single-point correction—which is essential, because a poor AO 

correction is often worse than none at all. Scanning also greatly reduces the photon load 

demanded from any single point. Coupled with correction times as short as 70 ms (11), this 

AO method is compatible with the speed and noninvasiveness of LLSM.

In LLSM, light traverses different regions of the specimen for excitation and detection and 

therefore is subject to different aberrations. Hence, independent AO systems are needed for 

each. This led us to design a system (Fig. 1A, supplementary note 1, and fig. S1) where light 

(red) from a Ti:Sapphire ultrafast laser is ported to either the excitation or detection arm of a 

LLS microscope (left inset, Fig. 1A) by switching galvanometer 1. In the detection case, 

TPEF (green) generated within a specimen by scanning the guide star across the focal plane 

of the detection objective (DO) is descanned (11) and sent to a Shack-Hartmann wavefront 

sensor (DSH) via switching galvanometer 2 (SG2). We then apply the inverse of the 

measured aberration to a deformable mirror (DM) placed conjugate to both the DSH and the 

rear pupil plane of the DO (supplementary note 2). Because the signal (also green) generated 

by the LLS when in imaging mode travels the same path through the specimen as the guide 

star, and reflects from the same DM, the corrective pattern that we apply to the DM produces 

an AO-corrected image of the current excitation plane within the specimen on the camera 

when ported there by the SG2.

Similarly, for excitation correction, we send descanned TPEF generated and collected 

through the excitation objective (EO) to a second Shack-Hartmann sensor. However, because 

LLS excitation is confined to a thin annulus at the rear pupil of the DO (6), a DM placed 

conjugate to this pupil would be ineffective for AO correction over most of its surface. 

Instead, we apply wavefront correction at the same sample-conjugate spatial light modulator 

(SLM) that creates the light sheet itself, thereby enlisting thousands of independently 

corrective pixels. To do so, we subtract the measured phase aberration from the phase of the 

Fourier transform (FT) of the ideal, aberration-free SLM pattern, then inverse-transform the 

result back to the sample-conjugate SLM plane (supplementary note 3 and fig. S2).
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Lastly, optimal resolution requires the LLS to be coincident with the focal plane of the DO 

to less than ~0.46 µm over the entire field of view (FOV), whereas refractive index 

differences between the specimen and the surrounding media lead to tip-tilt alignment or 

axial displacement errors for the light sheet that might exceed this (12). Fortunately, we find 

that only displacement is a concern over FOVs typical of LLSM (supplementary note 4 and 

fig. S3) and that it can be robustly corrected by imaging, edge-on through the EO, the offset 

of the plane of TPEF that we generate when measuring the detection aberration relative to 

the plane of fluorescence generated by the LLS (supplementary note 5 and fig. S4).

As an example (Fig. 1B), after correction for aberrations in the microscope itself, the point 

spread function (PSF) and corresponding optical transfer function (OTF), measured from a 

200-nm bead, indicate nearly diffraction-limited performance (first column). However, when 

a similar bead is placed in 2% low-melt agarose, we observe substantial aberration (second 

column), both laterally (arrowheads 1 and 1') and axially (arrowheads 2 and 2'). Correcting 

only the excitation aberration improves the axial resolution (third column) by returning the 

light sheet to its original width (fig. S2). Conversely, correcting only the detection aberration 

improves primarily the lateral performance (fourth column). However, when we combine the 

excitation and detection corrections, the image of the bead is returned to its diffraction-

limited form (fifth column), with an eightfold recovery to its original peak intensity. 

Furthermore, the same correction proves valid over a 30-µm field of beads in agarose (movie 

S1).

One of the key advantages of complete AO correction is that it enables accurate deconvo-

lution (Fig. 1C), giving the most truthful representation of the specimen possible within the 

limits of diffraction (second column). In contrast, applying deconvolution to an aberrated 

image gives a distorted result, because the OTF can then fall below the noise floor 

asymmetrically and at spatial frequencies well below the diffraction limit (first column), 

after which higher spatial frequencies cannot be recovered by de-convolution. These same 

trends can be seen in densely labeled specimens as well, such as across mitochondria, Golgi, 

and plasma membranes (PMs) of cells near the spinal midline in a living zebrafish embryo 

24 hours postfertilization (hpf) (Fig. 1D, bottom three rows, and movie S2), where the 

greatest information content as seen in the FT of image volume is obtained by combined AO 

and deconvolution.

Next, we imaged organoids differentiated from human stem cells, gene-edited to express 

endogenous levels of red fluorescent protein (tagRFP)–clathrin and enhanced green 

fluorescent protein (EGFP)–dynamin in endocytic pits (clathrin-coated pits; CCPs). Such 

organoids permit the study of human cellular differentiation and tissue morphogenesis in 

vitro at subcellular resolution, with an experimental accessibility that is difficult to achieve 

in vivo. However, the extracellular matrix in which they are grown introduces considerable 

aberrations, and the fast dynamics and limited number of fluorophores in each CCP demand 

high-speed imaging with low photobleaching. The system is therefore well suited to the 

capabilities of AO-LLSM, with the CCPs doubling as distributed puncta of subdiffractive 

size to evaluate imaging performance.
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Without AO or focus correction (upper left of Fig. 1E and Movie 1), no CCPs are visible, 

and the cell boundaries are poorly defined. Autofocus alone (upper right) reveals larger 

patches of clathrin and dynamin but must be combined with complete AO correction 

(excitation and detection, lower left) to identify individual CCPs. At that point, the imaging 

is diffraction-limited, so the data can be deconvolved using the system-corrected PSF to 

compensate for the spatial filtering properties of the microscope. Both dynamin and clathrin 

puncta then stand out clearly above the cytosolic background (lower right), allowing us to 

quantitatively measure their lifetimes and diffusion tracks (Movie 1). The increasing 

recovery of information as we progress through these four cases can also be seen 

quantitatively in their corresponding OTFs (fig. S5).

Clathrin dynamics in zebrafish

For transparent model organisms, we can apply AO-LLSM in vivo, where the complete 

physiological environment is preserved. The zebrafish has become the most widely used 

nonmammalian vertebrate model organism. We took advantage of its small size and 

transparency to visualize the formation of endocytic CCPs and clathrin-coated vesicles 

(CCVs) in the context of the developing organism. We first imaged a volume in the dorsal 

tail region of a fish larva 80 hpf stably expressing dsRed–clathrin light chain A (CLTA) (13) 

(Fig. 2A and Movie 2). We observed a high density of diffraction-limited clathrin spots that, 

after computational separation of all cells, were found to be mostly colocalized with the PM. 

These spots appeared and disappeared with the formation of new CCPs and their eventual 

uncoating. We determined that the areal density of CCPs was similar in muscle fibers (e.g., 

green arrowheads, Fig. 2A) and endothelial cells (magenta arrowheads) lining blood vessels, 

but the distribution of their intensities was broader in the latter (lower inset, Fig. 2A), which 

had a subpopulation of pits that were up to sixfold as bright as the median CCP intensity in 

the former. Because CCP size is proportional to intensity (14), these results indicate the 

presence of larger structures, possibly clusters of CCPs (15), in the vasculature endothelium.

To track CCPs for longer times, we turned to zebrafish embryos mRNA-injected to express 

the brighter and more photostable fluorescent fusion protein mNeonGreen-CLTA. These 

embryos also expressed mCardinal targeted to the PM, facilitating the computational 

separation of cells. Embryos imaged in the tail (Fig. 2B, fig. S6A, and Movie 3) and in the 

hindbrain (fig. S6B) displayed a variety of morphologies, trafficking behaviors (Fig. 2C), 

and lifetime distributions (Fig. 2D). Large, micron-scale intracellular spots of limited 

mobility (arrowheads, Fig. 2B) probably represent clathrin-rich vesicles clustered at the 

trans-Golgi network, whereas mobile diffraction-limited spots (Fig. 2C, arrowhead group 1) 

likely correspond to endosomal carriers similar to those seen in cultured mammalian cells 

(16). Diffraction-limited spots at the PM (Fig. 2C, arrowhead group 2) likely represent 

individual CCPs and CCVs. We also found CCPs at the t-tubules spanning muscle fibers 

(Fig. 2C, top left), in contrast to the diffuse clathrin signal observed using 

immunofluorescence in fixed rat muscle fibers (17). Most of these were pinned, but 

occasionally they would break free from a t-tubule and move rapidly along the fiber axis 

(Fig. 2C, arrowhead group 3, and movie S3), possibly by active transport along myofibrils or 

within the sarcoplasmic reticulum.
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AO allowed us to detect more CCPs (fig. S7) and track all CCPs with higher precision (Fig. 

2C, top right; fig. S8, A to C; and Movie 3). Comparing CCPs in muscle fibers and the brain, 

we found that, although their initiation frequencies and fluorescence intensities were similar, 

brain CCPs tended to internalize faster (Fig. 2E). Assuming that clathrin puncta in muscle 

and brain cells lasting >21 s corresponded to successful coated vesicles, each with an 

assumed membrane diameter of 60 nm, ~0.1% of the PM was internalized through clathrin-

mediated endocytosis every minute (fig. S8D). This is similar to the values derived from 

measurements in cultured SUM-159 (18) or htertRPE-1 (19) mammalian cells at 37°C.

In vivo imaging of organelle morphology and dynamics during 

embryogenesis

A major focus in cell biology is the study of the structure and function of organelles within 

the living cell. To study the dynamics of multiple organelles simultaneously throughout the 

cell cycle across a population of cells in vivo, we imaged brain progenitor cells with markers 

for the trans-Golgi, endoplasmic reticulum (ER), mitochondria, and PM for 200 image 

volumes at 44-s intervals (Fig. 3, A and B, and Movie 4). In interphase, we observed 

multiple trans-Golgi segments in most cells, often appearing as long filaments preferentially 

aligned along the axis of cell polarization (Fig. 3A) that fragmented during mitosis (Fig. 

3B). The ER and mitochondria largely recapitulated the forms that they commonly take in 

cultured cells: The ER established a reticular network in interphase and sheetlike cisternae 

during mitosis (20), whereas mitochondria formed punctate structures near the surface and 

longer tubules in the subset of more deeply buried interphase cells that were well labeled. 

Analyzing one such cell, we found that all three organelles were distributed uniformly 

between the PM and the nucleus in interphase (fig. S9A), but mitochondria were 

preferentially located nearer the PM during mitosis (fig. S9A, 109 min).

The early synchrony of cell division is lost in zebrafish at the midblastula transition (3 hpf). 

Nevertheless, at 14 hpf, we observed instances of cascading cell division, where adjacent 

cells underwent mitosis one after another (fig. S10 and Movie 4). Mitotic cells, as seen 

previously in cell cultures (18, 21), decreased their surface area (fig. S9E) as they assumed a 

spheroidal shape and produced transient blebs before cytokinesis, but then recovered their 

initial area after division. Total cellular volume remained constant throughout mitosis (fig. 

S9E). We also identified instances of asymmetric cytokinesis (Fig. 3B and Movie 4), where 

the two daughter cells differed in surface area by ~50% (fig. S9F). When we quantified 

organelle intensity in one such instance, we also observed asymmetric fractional partitioning 

of the Golgi and mitochondria between the daughter cells during cytokinesis (fig. S9G).

Mitotic cells in the developing eye 30 hpf (white arrowheads in Fig. 3D and Movie 5) also 

produced transient blebs before cytokinesis. We discovered upon labeling with Bodipy–

tetramethylrhodamine (TMR) that these blebs created voids (green arrowheads in Fig. 3D) 

that only slowly filled with endomembranes.

Lastly, we observed considerable variability in the size and morphology of specific 

subcellular features across different organs and developmental stages. Bodipy-TMR negative 

staining (e.g., Fig. 3, C and D) revealed that the nuclei of ear cells 30 hpf were nearly twice 
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as large as those of eye cells when normalized by the total cellular volume (Fig. 3E, left) and 

that nuclear volume and cellular volume were positively correlated (Fig. 3E, right). 

Likewise, we found that the median trans-Golgi volume as a percentage of total cellular 

volume in brain progenitor cells 14 hpf was larger [2.46%; median absolute deviation 

(MAD) = 0.26%] than in ear, brain, or spine cells 24 hpf (2.0%; MAD = 0.66%) (Fig. 3F). 

Golgi took many forms, from the aforementioned narrow polarized filaments in the early 

brain (Fig. 3A) to shorter segments clustered near the midline in the spine and nuclear-

wrapping filaments in skin cells (Fig. 3F).

Tiled acquisition for aberrations varying in space and time

Because the refractive index profile can vary across a specimen and can also vary as the 

specimen develops, the AO corrections required can vary in both space and time. 

Unfortunately, it is difficult to estimate a priori the size or temporal stability of the 

isoplanatic patch (the FOV over which a single AO correction is valid). Empirically, we 

found in zebrafish embryos less than 72 hpf that a single excitation-detection correction pair 

obtained by scanning and descanning over the FOV is usually valid across 30 to 60 µm in 

each direction for at least 1 hour, provided that the light does not intersect the yolk. 

Fortuitously, these dimensions are comparable to those over which a LLS of submicron 

thickness does not deviate substantially in width. The examples shown above largely fall 

within these limits and hence, for them, a single AO correction pair at a single time point 

sufficed.

In other cases, however, we may wish to cover much larger FOVs. To do so, we must stitch 

together data from multiple image subvolume tiles, each with its own independent AO 

correction. To demonstrate the necessity of this, we imaged a 213-µm by 213-µm by 113-µm 

volume (Fig. 4A and movie S4) comprising 7 by 7 by 3 tiles in the tail region of a zebrafish 

embryo 96 hpf expressing membrane-EGFP, using three different protocols: no AO 

correction (Fig. 4B, left column), AO correction from the center tile applied to all tiles 

(middle column), and independent AO correction in each tile (right column). When viewed 

across 3-µm-thick slabs perpendicular (xy; Fig. 4B, top row) or parallel (xz; bottom row) to 

the detection axis, a small volume within the center tile (small orange boxes) showed 

substantial improvement by either center-tile or all-tiles AO correction, in both the xy lateral 

(upper-left orange boxes, top row) and xz axial (upper-left orange boxes, bottom row) 

planes. This is to be expected, because the site of AO correction coincided with the viewing 

area in these two cases. However, in a small volume at the edge of the fish (small blue 

boxes), only the data taken using individual AO corrections in each tile recovered optimal 

resolution in all directions (lower-right blue boxes, right column), because this volume was 

outside the isoplanatic patch over which the center-tile AO correction is valid. Applying the 

center correction across the larger stitched volume often results in greater wavefront errors 

(fig. S11) and poorer resolution (lower-right blue boxes, middle column) than applying no 

correction at all (lower-right blue boxes, left column), highlighting the importance of 

accurate and robust correction, if AO is to be applied.

Empirically, the largest aberrations that we observed in zebrafish embryos occur at regions 

of high curvature between the embryo and the surrounding media or at regions of rapid 

Liu et al. Page 7

Science. Author manuscript; available in PMC 2019 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



refractive index change, such as near the notochord (Fig. 4C and Movie 6). For example, 

when the LLS penetrates the embryo near-perpendicularly to its surface, the excitation 

aberration is initially small (Fig. 4C, red arrowhead, left column, top). However, after the 

light sheet passes through the notochord, it encounters substantial aberration, as seen in both 

the measured wavefront (green arrowhead, left column, top) and the uncorrected image 

(green arrowhead, middle column, bottom). On the detection side, aberrations increase with 

increasing depth in the embryo (left column, bottom, and middle column, top to bottom). In 

addition, substantial aberrations occur when the edge of the embryo is imaged tangentially 

(yellow arrowhead, left column, bottom), so that part of the detection light cone intersects 

the embryo and part does not.

Provided that the specimen does not shift by more than a fraction of the isoplanatic patch 

size during imaging, a given set of tiled AO corrections can remain valid for hours (Movie 

6). However, growth during development can cause an embryo to change its shape, position, 

or refractive index profile so that new corrections are occasionally needed. Fortunately, these 

changes often occur on a time scale that is slow compared with that needed to image even a 

large FOV by LLSM. In such cases, it is sufficient to update the correction at only a subset 

of different tiles at each time point, as long as all subsets together encompass all tiles in the 

FOV before the previous round of corrections becomes inaccurate (Fig. 4D and movie S5). 

Usually, we chose subsets that broadly covered the FOV to monitor where the aberrations 

change the fastest.

One region that involves substantial specimen curvature, large spatial variation of the 

refractive index, and gradual aberration change is the eye of the developing zebrafish. 

Although in vivo optic cup development has been studied at sub-cellular 3D resolution by 

conventional (22, 23) and multiview (24) light-sheet microscopy, tiled AO-LLSM permits a 

more detailed look at cellular morphology and organelle distributions during this process. 

We imaged across 4 by 4 by 3 tiles (Fig. 5A and Movie 7) spanning most of the eye of an 

embryo 24 to 27 hpf at 6-min intervals to study differences in the intracellular organization 

of various organelles (Fig. 5, B and C). Transgenic labeling of the PM allowed us to 

segment, isolate (Fig. 5D), and characterize each cell by type (Fig. 5E). Skin cells exhibited 

mitochondria clustered in the perinuclear region, like mitochondria seen in flat and thin 

cultured cells, to which these skin cells are morphologically similar. In contrast, 

mitochondria in retinal neuroepithelial (RNE) cells were generally longer, distributed across 

the length of the cell, and polarized along the same axis as the cell itself. The ER in RNE 

cells, although broadly distributed, was usually densest around the nucleus and least dense 

near the polarized ends. In mitotic cells, however, we again observed (20) that the ER 

remodeled into sheetlike structures concentrated near the PM (Movie 7).

By imaging over time (Fig. 5F), we could follow the stages of RNE cell division (green 

arrowheads). As reported elsewhere (25), we found that, before mitosis, the nucleus retracts 

to the apical side of the retina (leftmost orange arrowheads), while the cell maintains a thin 

connection to the basal side (rightmost orange arrowheads). Despite its narrowness, 

mitochondria remain in this region. RNE cell divisions then occur at the apical surface 

(white arrowheads). This process has been found to be necessary to maintain the integrity of 

retinal tissue (26).

Liu et al. Page 8

Science. Author manuscript; available in PMC 2019 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3D cell migration in vivo

In vivo 3D migration of a cell in the densely crowded environment of living tissue involves 

forces, constraints, elasticity and adhesion heterogeneity, and chemical cues not found in the 

simple 2D environment on a cover glass. Furthermore, cell migration involves intricate and 

rapid remodeling of membranes, organelles, and the cytoskeleton that requires high 

spatiotemporal resolution to observe. It is therefore a problem well suited to AO-LLSM.

An example of this problem involves the wiring of neuronal circuits during development. To 

help them establish precise connections, axons are tipped with a highly complex and motile 

structure, the growth cone. This structure functions as both a sensor and a motor, driving the 

growth of neurites on the basis of environmental cues (27). Although its dynamics have been 

shown to be important for its proper function (28–30), its 3D dynamics in an intact animal 

have been difficult to study because of the lack of techniques for imaging the structure with 

sufficient resolution in vivo.

To address this, we used AO-LLSM to image growth cones in the spinal cord of a zebrafish 

embryo in which a subset of newly differentiated neurons expressed stochastic combinations 

of three different fluorophores via Autobow (31) (Fig. 6A and fig. S12), so that they could 

be spectrally distinguished from earlier differentiated neurons expressing only mCherry 

[e.g., those within the medial neuropil of the reticulospinal tract (magenta arrowheads, Fig. 

6A)]. The Autobow-labeled neurons included Rohon-Beard sensory neurons in the dorsal 

spinal cord (e.g., yellow arrowheads, Fig. 6A) and interneurons with commissural axons. By 

imaging over more than two spinal segments at 10.4-min intervals from 58 to 70 hpf (Fig. 

6B and Movie 8), we observed that the growth cones of axons migrating in the rostrocaudal 

direction primarily probed in the direction of their motion (Fig. 6C, top, and movie S6), 

whereas the growth cones of dorsoventrally aligned axons probed across a broader 2D fan 

(Fig. 6D, top). Transverse views (Fig. 6, C and D, bottom) revealed that most, if not all, 

growth cones of both types were located close to the surface of the spinal cord, with their 

filopodia preferentially aligned parallel to the surface, even though the dorsoventrally 

projecting axons had to pass through the spinal cord to reach its surface. This is consistent 

with the previous observation that the neurites of late-born V2a ipsilateral projecting 

interneurons are located lateral to the preexisting ones, forming a layer-like organization 

based on the age of neurons (32), and extends this notion to other classes of spinal neurons. 

This also raises an interesting possibility that the shape of the growth cone is actively 

controlled in vivo to keep its exploration within a layer of its own age group.

Cell migration is also a key aspect of the innate immune system. Neutrophils, for example, 

migrate from the vasculature through the endothelium to reach and engulf infectious targets 

(33). To study this process in vivo, we imaged endogenously produced immune cells moving 

through the perilymphatic space of the ear in a transgenic zebrafish larva ~80 hpf expressing 

the fluorescent protein Citrine in the PM of all cells (Fig. 6E and Movie 9). Acquiring 438 

image volumes at 13-s intervals allowed us to accurately measure the 3D position and speed 

(fig. S13, A and B) of the cellular center of mass. Across five trials involving different 

embryos at 22°C, immune cells adopted a halting search pattern involving frequent changes 

in direction and speed (fig. S13, C to G), from nearly motionless to 10 µm/min. In contrast, 
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neutrophilic mammalian HL-60 cells imaged in a collagen matrix at 37°C (6) exhibited peak 

speeds of ~25 µm/min (fig. S13H).

Immune cells next to the ear were remarkable for their rapidly changing and complex 3D 

morphologies (Fig. 6F). Their surface areas changed as much as 25% in 2 min (fig. S13I) as 

they remodeled themselves to exhibit a variety of protrusive features, including lamellar 

sheets, blebs, and short filopodia. Frequently, they also trailed a long filopodium behind 

them as they migrated to new regions (fig. S14). After injecting fluorescent Texas Red 

dextran into the heart, we also observed several immune cells containing granules of dextran 

up to several microns in size (light blue, Fig. 6F, and Movie 9, part 1), presumably ingested 

earlier by phagocytosis. However, these did not noticeably affect the motility of the cells or 

their ability to navigate through tight interstitial spaces.

Apart from immune cells, 3D AO-LLSM movies (e.g., Movie 9, part 2) of the developing 

ear region revealed a wealth of cellular morphologies and behaviors, including filopodial 

oscillations at the dorsal surface of skin cells, gradual inflation of the perilymphatic volume, 

rapid passage of cells through blood vessels, long and active filopodia on endothelial cells, 

and cellular motion in the hindbrain. With AO, the spatiotemporal resolution and 

noninvasiveness that we achieved was comparable to what we obtained when imaging 

cultured cells with our original LLSM approach (6), allowing us, for example, to follow the 

detailed morphological changes in a single endothelial cell lining the hindbrain over the 

entire course of its division (fig. S15 and Movie 9, part 2).

As a final example of 3D migration, during cancer metastasis, circulating tumor cells 

(CTCs) extravasate and seed new tumor formation at sites distant from the primary tumor 

(34). Extravasation has been studied extensively in vitro, but little is known about the 

process in vivo, owing to the highly dynamic nature of cells in circulation and the low 

density of CTCs in the vasculature. A long-standing hypothesis (34) based on in vitro 

studies is that CTCs co-opt a three-step process used by leukocytes to extravasate at sites of 

inflammation (34): Circulating leukocytes initially form tethers to weakly adhere to the 

vascular endothelium, causing them to roll slowly downstream (35); eventually, they attach 

and crawl along the endothelial wall; and finally, they penetrate the endothelium and migrate 

into the tissues beyond.

To determine whether CTCs follow this same pattern in vivo, we used a xenograft model 

(36), where we injected PM-labeled human breast cancer cells (MDA-MB-231) into the 

vasculature of 2-day-old zebrafish embryos that were trans-genic for an endothelial reporter 

(kdrl:gfp). As hypothesized, we observed all three leukocyte migration behaviors in the 

cancer cells. First, we recorded MDA-MB-231 cells rolling through the blood vessels (Fig. 

6G), trailing microvilli that adhered to the endothelium and stretched several microns before 

detaching as the cell continued to move downstream (Fig. 6G and Movie 10, part 1). Second, 

we visualized MDA-MB-231 cells crawling along the endothelium (Fig. 6H and Movie 10, 

part 2). Last, we observed an MDA-MB-231 cell actively engaged in transendothelial 

migration, with the portion of the cell outside the blood vessel projecting actin-rich 

extensions into the surrounding tissue (Fig. 6I and Movie 10, part 3) as the area of the cell 

increased by ~50% over 2 hours (fig. S16).
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Discussion

AO-LLSM enables minimally invasive high-speed 3D imaging of subcellular dynamics 

within optically challenging living specimens while maintaining diffraction-limited 

resolution, even over large FOVs. It corrects not only sample-induced aberrations, but also 

those introduced by mounting and immersion media (e.g., Fig. 1E) or imperfections in the 

optical path through the microscope. It therefore can provide practical 3D resolution 

exceeding that of nominally higher numerical aperture (NA) confocal or spinning disk 

microscopes, even in the comparatively benign optical environment encountered when 

imaging isolated adherent cells on cover slips.

This performance does not come without caveats, however. Because the fluorescence 

induced by the light sheet is captured with wide-field optics, only weakly scattering 

specimens can be imaged. In addition, extremely sparse and/or weakly emitting fluorescent 

targets may require colabeling with a second, brighter color channel to provide a sufficient 

guide star signal for accurate wavefront measurement. Highly absorbing structures such as 

large blood vessels or melanin bodies within the detection light cone can block guide star 

light from reaching enough cells of the sensor for accurate wavefront measurement, although 

wavefront reconstruction algorithms might be made more robust against such missing 

information. Wavefront aberration can vary considerably across the specimen, and at 

present, this variation can only be determined empirically for each specimen type and 

developmental stage to determine how to subdivide the desired image volume into tiled 

isoplanatic subvolumes of relatively uniform aberration. Fortunately, such tile maps tend to 

be consistent between specimens of the same type and age, given similar mounting 

geometries. Lastly, specimens imaged after muscle development must be anesthetized and 

immobilized, or else a new correction must be measured and applied whenever sample 

motion exceeds the size of a given isoplanatic patch.

Another caveat is that all but one of the above described involved imaging subcellular 

dynamics within zebrafish embryos. Although we have shown that we can achieve 

substantial gains in imaging performance in both Caenorhabditis elegans larvae (fig. S17 and 

movie S7) and Arabidopsis thaliana leaves (fig. S18 and movie S8), Danio rerio represents 

an ideal model system in which to study cell and developmental biology in vivo, because it 

is a rapidly developing transparent vertebrate that is amenable to genetic manipulation. 

Furthermore, zebrafish embryos are small enough that most regions are optically accessible 

far into development, yet large enough to exhibit smoothly varying refractive index profiles 

that result in isoplanatic patch sizes that are comparable to imaging fields typical of LLSM. 

In contrast, C. elegans larvae and adults exhibit larger and more rapid spatial variations in 

refractive index, particularly near the gut, that can require a denser mesh of AO corrections, 

despite this organism’s reputation as an optically tractable model.

Conventional light-sheet microscopy using weakly focused Gaussian beams is also 

susceptible to aberrations and would therefore also benefit from AO correction (8, 9). 

However, conventional systems typically cover much wider FOVs and often operate at 

greater depth in larger organisms, such as in applications involving functional imaging of 

whole neural circuits (37) or in toto cellular tracking during development (38). They 
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therefore usually image over regions much larger than a single isoplanatic patch, making it 

difficult to retain even cellular-level resolution at all locations and compromising the 

accuracy and resolution of approaches based on multiview fusion (39–41). A single AO 

correction would provide at best only partial correction, and a tiled AO approach, such as we 

use with LLSM, would negate the high-speed, large-field advantages of the conventional 

light-sheet microscopy. On the other hand, simultaneous full-field AO correction would 

likely require multiconjugate adaptive optics (42), substantially increasing cost and 

complexity.

Perhaps the greatest challenge of AO-LLSM involves mining the immense and complex data 

that it produces to extract as much biological insight as possible. In Fig. 6, for example, 

panels A to D represent a minute fraction of a 0.62-terabyte raw data set which first had to 

be deconvolved, creating a second copy, and then imported into 3D visualization software, 

generating a third. We deconvolve and store data in real time, but importation and 

visualization can take many hours, preventing meaningful real-time feedback on whether the 

biological structure and dynamic process of interest are being optimally recorded. If history 

is any guide, problems of petabyte-scale data storage and visualization at reasonable cost 

will yield to continued advancements in commercial hardware, but problems of image 

analysis and meaningful quantification of data at this scale may prove far less tractable. 

Although we have demonstrated quantification on a smaller scale through single-particle 

(Fig. 2, D and E, and fig. S8) and single-cell (fig. S13) tracking, segmentation (Figs. 2B, 3A, 

and 5D), and measurement of area and volume (Fig. 3, E and F, and figs. S9 and S16), the 

diversity of questions that can be asked when modern genetic and pharmacological tools are 

combined with high-resolution 5D in vivo data spanning hundreds of cells over many hours 

will demand bioinformatics expertise, machine learning, and custom algorithm development 

on an unprecedented level. Nevertheless, such efforts promise to offer insights into how cells 

harness their intrinsic variability to adapt to different physiological environments and have 

the potential to reveal the phenotypic diversity of organelle morphologies, intracellular 

dynamics, extracellular communication, and collective cell behavior across different cell 

types, organisms, and developmental stages.

Materials and methods

Lattice light-sheet subsystem

The lattice light-sheet excitation path of the AO-LLSM was designed as described 

previously (6). Noted here are the changes introduced in the AO-LLSM. The collinear laser 

beams from the combiner were first expanded using a pair of cylindrical lenses and aligned 

such that up to three different wavelengths illuminated three vertically separated thin stripes 

on spatial light modulator SLM, (Holoeye, PLUTO-Vis-014 1920 × 1080 pixels; fig. S1). As 

a grayscale phase modulation device, SLM was introduced to not only create the light sheet 

but to correct sample-induced aberrations as well. The diffraction orders reflected from SLM 

were then filtered using annular mask MSK (Photo Sciences) as before and conjugated to 

galvanometer scanning mirrors G3 and G4 (3 mm mirror, Cambridge Technology, 8315H) to 

scan the light sheet along the x and the z axis. During imaging, different offset voltages were 

applied to the z galvo to sequentially realign the light sheet from each laser to the same 
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plane within the specimen. Sample plane conjugate resonant galvanometer RG (Electro-

Optical Products Corp. 7 × 8 mm, SC-30) was also added prior to the excitation objective 

(Special Optics, 0.65 NA, 3.74 mm WD) to wobble the light sheet in the xy plane and 

thereby minimize stripe artifacts due to localized absorbing or scattering objects in the 

specimen. The fluorescence generated in the excitation plane was collected with detection 

objective DO (Nikon, CFI Apo LWD 25XW, 1.1 NA, 2 mm WD) and reflected off 

deformable mirror DM (ALPAO 97-15) conjugate to the rear focal plane of DO before being 

imaged at sCMOS camera CAM 1 (Hamamatsu Orca Flash 4.0 v2). Complete details of the 

optical design are given in supplementary note 1.

Adaptive optics subsystems

In principle, independent AO corrective systems are needed for excitation and detection in 

LLSM, since light traverses different regions of the specimen in each case and hence is 

subject to different aberrations. However, given that: (i) aberrations decrease quickly with 

decreasing numerical aperture (NA) (7); (ii) we use at most 0.6 NA for excitation, versus 1.1 

NA for detection in LLSM; and (iii) only aberrations within a narrow annulus at the rear 

pupil of the excitation objective will affect a lattice light sheet, it is not obvious that AO 

correction of the light sheet itself is necessary. To check, we simulated the effect of 

aberrations consisting of random combinations of the 55 lowest-order Zernike modes up to a 

root mean square (RMS) amplitude of two wavelengths (λ). We found (fig. S19) that 

aberrations at this level could expand a 0.7-µm-thick lattice light sheet to as much as 20 µm, 

and displace it perpendicular to its plane by up to ±8 µm, indicating that correction of 

excitation as well as detection is essential.

Hence, during aberration measurement, light from Ti:Sapphire ultrafast pulsed laser 2PL 

(Coherent Cameleon Ultra II) was ported to either the excitation or detection arm by 

switching galvanometer SG1 (fig. S1). In either case, TPEF generated within the specimen 

by scanning the guide star focused by EO or DO was collected by the same objective, 

descanned (11) and sent to homebuilt Shack-Hartmann wavefront sensor ESH or DSH, each 

consisting of a square microlens array (Edmund Optics) focused onto an EMCCD camera 

(Andor iXon). Corrective wavefronts were then applied to SLM or DM as described in 

supplementary notes 3 or 2, respectively. Further hardware details are given in 

supplementary note 1.

Autofocus measurement was achieved by viewing, side-on through EO, both the light-sheet 

fluorescence and the plane of fluorescence generated by guide star TPE excitation through 

DO on camera CAM4, and correcting for any displacement between them as outlined in 

supplementary note 5.

Zebrafish immobilization, mounting, and imaging conditions

Zebrafish embryos were paralyzed with ~1 ng of ³-bungarotoxin protein injected prior to 

imaging (43) or anesthetized using tricaine (0.16 mg/ml) for 15 min. 12-mm-diameter glass 

coverslips were precleaned as follows: ~20 coverslips were placed in a 50 ml Falcon tube 

containing 0.1M NaOH and the tube placed in a sonicator for 15 min, followed by at least 5 

consecutives washes with Mili-Q water and then immobilized in the sample holder using 
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superglue. An agarose holder containing narrow groves for mounting the embryos was 

created by solidifying a few drops of 0.5 to 2% (wt/wt) low-melting agarose between the 

coverslip and a mold containing ridges. For the immune cell experiments, larvae were placed 

in 3D-printed volcano-shaped mounts (https://www.shapeways.com/shops/megason-lab). A 

homemade hair-loop was used to position the embryo in the mold, which was then stabilized 

with a thin layer of agarose made by applying on top of the immobilized embryo ~10 to 20 

µl 1% low-melting agarose at 37° to 40°C and then wicking the excess. After solidification, 

the sample holder was bolted onto a three-axis set of sample stages (Attocube, ECS3030 for 

x and y, ECS3050 for z) and submerged in a sample bath containing ~8 ml of 1x Danieau 

buffer. This assembly was then raised by a motorized actuator (Newport, LTA-HS Actuator, 

integrated with CONEX-CC Controller, CONEX-LTA-HS) until EO and DO were immersed 

in the media. The sample stages then positioned the desired FOV to the mutual focal point of 

the objectives. Detailed imaging conditions for each experiment discussed in the paper, 

including excitation power, imaging time, image, tile and voxel sizes, fluorophores, and 

proteins, are in table S1. Additional preparation conditions are discussed in supplementary 

note 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Adaptive optical lattice light-sheet microscopy (AO-LLSM)
(A) Simplified microscope schematic (fig. S1 shows a detailed version). EO, excitation 

objective; DO, detection objective; SH, sample holder. (B) xy and xz maximum intensity 

projections (MIPs) of the point spread function (PSF; top two rows) and corresponding 

optical transfer function (OTF; bottom two rows) of the microscope under five different 

degrees of AO correction (columns), as measured from a 200-nm fluorescent bead in an 

aberrating agarose gel. Insets show the corrective wavefronts applied. Arrowheads indicate 

lateral and axial aberrations. Scale bar, 1 µm. (C) MIPs and corresponding OTFs of the 

uncorrected (left column) and fully corrected (right column) bead images from (B), after 

deconvolution using the aberration-free reference PSF. Scale bar, 1 µm. (D) Cellular trans-

Golgi, mitochondria, and plasma membranes in the spine of a live zebrafish embryo 24 hpf. 

Shown are unprocessed data without AO correction (left column), deconvolved data without 

AO correction (center), and deconvolved data after AO correction (top and right) (movie 

S2). MIP views (bottom two rows) of the Fourier transform (FT) of the data in all three cases 

indicate their respective degrees of information recovery. (E) Four different levels of 

correction, shown for orthoslices of a live human stem cell–derived organoid grown in 

Matrigel and gene-edited to express endogenous levels of clathrin and dynamin in coated 

endocytic pits (Movie 1). Scale bar, 5 µm.
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Fig. 2. Clathrin dynamics in zebrafish
(A) Computationally separated muscle fibers (e.g., green arrowheads) and vascular 

endothelial cells (e.g., magenta arrowheads), both expressing DsRed-CLTA to highlight 

CCPs and CCVs, from muscle tissue in a 75-µm by 99-µm by 41-µm region (upper inset) of 

the tail of a developing zebrafish larva 80 hpf (Movie 2). Brighter clathrin puncta were 

observed in the endothelial cells (lower inset). Scale bars, 10 µm. (B) Computationally 

separated muscle fibers from a region (lower inset) in the tail of a zebrafish embryo 50 hpf 

coexpressing an mCardinal-PM marker (red) and mNeonGreen-CLTA (green). Individual 

CCPs and CCVs and larger clathrin-rich vesicles (arrowheads) are visible (Movie 3). Scale 

bars, 10 µm. (C) Spatial distribution and dynamics of CCPs and CCVs tracked for 12 min at 

7.5-s intervals in one muscle fiber from (B), showing CCPs localized at t-tubules (top left) 

and diffusion and lifetime characteristics for CCPs and CCVs across the cell (top right). A 

MIP through a 2-µm-thick slab at three consecutive time points (bottom) shows examples of 

a pinned CCV (arrowheads 2) and slowly diffusing (arrowheads 1) or rapidly shuttling 

CCVs (arrowheads 3) (movie S3). Scale bar, 10 µm. (D) Effect of AO on the measured 

quantity, intensity, and localization precision of CCPs and CCVs in the organoid in Fig. 1E 

and the zebrafish in (B). (E) Comparative distribution of CCP and CCV lifetimes (left) and 
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intensity cohorts grouped by their lifetimes (right) in the brain and muscle of a developing 

zebrafish embryo 55 hpf.
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Fig. 3. Organelle morphologies and dynamics in zebrafish
(A) Computationally separated neural progenitor cells from a 70-µm by 35-µm by 35-µm 

region (inset) in the brain of a developing zebrafish embryo expressing GalT-mNeonGreen, 

tagRFP-Sec61́, and Citrine as markers of the trans-Golgi, ER, and PM, respectively, with 

additional labeling by MitoTracker Deep Red dye (Movie 4). Scale bars, 10 µm. (B) 

Changing morphologies of the organelles in the specific cell outlined in (A) at three time 

points through mitosis. Arrowheads indicate mitotic blebs. Scale bar, 10 µm. (C) MIP views 

from 1-µm-thick orthogonal slabs within the eye of a zebrafish embryo 30 hpf, showing PM 

(blue) and endomembranes (orange) (Movie 5). Scale bars, 10 µm. (D) Six time points from 

Movie 5, showing PM blebs (white arrowheads) during mitosis and the exclusion of 

endomembranes in early blebs (green arrowheads). (E) Correlation between nuclear volume 

and total cell volume in the eye and ear (Pearson’s coefficient, 0.9 and 0.8, respectively). (F) 

Different morphologies of trans-Golgi (top) near the spine of a zebrafish embryo 24 hpf and 

distribution of trans-Golgi volume in different cell types and at different developmental 

stages (bottom).
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Fig. 4. AO-LLSM over large volumes
(A) Aberration-corrected volume rendering over 213 µm by 213 µm by 113 µm in the tail 

region of a live zebrafish embryo 96 hpf expressing PM-targeted EGFP, assembled from 

independently corrected subvolumes of 7 by 7 by 3 tiles (movie S4). (B) Increasing 

effectiveness of correction, as seen in orthogonal MIPs from 3-µm-thick slabs, under 

different scenarios: no AO (left column), AO correction from the center tile applied globally 

(middle column), and independent AO correction in each tile (right column) (fig. S11). 

Insets compare, at higher magnification, the quality of correction at the center tile (orange 

boxes) versus at the tiles at the periphery of the tail (blue boxes). Tile boundaries are shown 

in white. Scale bar, 30 µm. (C) A 5 by 4 by 7 set of measured excitation (left column, top) 

and detection (left column, bottom) aberrations which, after AO correction, yields 

diffraction-limited imaging over a 170-µm by 185-µm by 135-µm volume (left column, 

center) in the spine of a zebrafish embryo 30 hpf (Movie 6). Red and green arrowheads 

indicate excitation aberrations in specific tiles before and after passage through the notocord, 

respectively. The yellow arrowhead indicates a tile with a large detection aberration deep 

within the specimen. Orthoslices before (middle column) and after (right column) AO 

correction show increased aberration but continued recovery of high resolution at 

progressively greater depth. Scale bar, 30 µm. (D) Aberration-corrected volume renderings 

over 156 µm by 220 µm by 162 µm in the spine of a zebrafish embryo, at three points from a 

time series at 30-min intervals (movie S5), flanked by excitation and detection path 

aberrations at those points. Those tiles whose corrections were updated at a given time point 

are marked in green.
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Fig. 5. Organelle diversity across the zebrafish eye
(A) Tiled array used to provide AO correction across the eye of a developing zebrafish 

embryo 24 hpf (Movie 7). Scale bar, 30 µm. (B and C) Distribution of three different types 

of organelles across the volume assembled from the tiles in (A). Scale bars, 30 µm. (D) 

Computationally separated cells across the eye, with the organelles colored as indicated. 

Scale bar, 30 µm. (E) Organelle morphologies in cells of three different types within the eye. 

Scale bar, 30 µm. (F) Orthoslices at six different time points highlighting cell divisions 

(white and green arrowheads, left panel) at the apical surface of the retinal neuro-epithelium 

and mitochondria (orange arrowheads) present from the apical to the basal surface in one 

dividing cell. Scale bar, 30 µm.
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Fig. 6. 3D cell migration in vivo
(A) Two views of newly differentiated neurons highlighted by Autobow labeling in a 60-µm 

by 224-µm by 180-µm section of the spinal cord of a zebrafish embryo 58 hpf (Movie 8). 

Magenta and yellow arrowheads show neurons differentiated before and after Autobow 

expression, respectively. (B) Increase in the density of rostro-caudally projecting axons over 

time. Scale bar, 20 µm. (C) Sagittal (top) and transverse (bottom) views of the growth cones 

of four rostrocaudally projecting axons. Scale bars, 10 µm. (D) Sagittal (top) and transverse 

(bottom) views of the growth cones of three dorsoventrally projecting axons. Scale bars, 10 

µm. (E) Time-coded color overlay of an immune cell migrating within the perilymphatic 

space next to the inner ear of a live transgenic zebrafish embryo 70 hpf expressing PM-

targeted Citrine (Movie 9 and fig. S12). Texas Red dextran particles are shown in blue. Scale 

bar, 10 µm. (F) Changing morphologies of two different immune cells (top and bottom 

rows), one showing internalized dextran particles (blue) (fig. S13). Scale bar, 5 µm. (G) 

MDA-MB-231 human breast cancer cell (green) rolling in a blood vessel (magenta) in a 

zebrafish embryo 48 hpf. (H) Another MDA-MB-231 cell crawling through a blood vessel. 

(I ) A partially extravasated MDA-MB-231 cell, showing an increasingly complex 

morphology over time (Movie 10 and fig. S1). Scale bars, 10 µm in (G) to (I).
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Movie 1. Endocytosis in a human stem cell–derived organoid
Gene-edited clathrin (magenta) and dynamin (green) before and after adaptive optical 

correction and deconvolution, showing comparative xy and xz orthoslices, volume 

renderings, and postcorrection tracking of the motion and lifetimes of individual CCPs and 

CCVs over 120 time points at 1.86-s intervals (Fig. 1E and fig. S5).
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Movie 2. Clathrin-mediated endocytosis in vivo
Dynamics of CCPs and CCVs over 15 min at 10-s intervals in the dorsal tail region of a 

zebrafish embryo 80 hpf. Segmented cells reveal brighter clathrin puncta at the vascular 

endothelium than at muscle fibers (Fig. 2A).
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Movie 3. Clathrin localization in muscle fibers
PM (red) and clathrin (green) in the tail of a zebrafish embryo 50 to 55 hpf, showing xy and 

xz orthoslices before and after AO correction and deconvolution, dynamics of individual 

CCPs and CCVs at and between t-tubules, large clathrin clusters and small clathrin puncta in 

volume-rendered and segmented cells, and tracked CCPs and CCVs in a segmented cell 

(Fig. 2, B to E; fig. S8; and movie S3).
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Movie 4. Subcellular imaging of organelle dynamics in the early zebrafish brain
Dynamics of PM (green or gray) and trans-Golgi (green), ER (magenta or red), and 

mitochondria (cyan) within neural progenitor cells over 200 time points at 44-s intervals 

from 14.0 hpf, showing complexity within the tissue, cross-sectional slab views through 

cells, sequential division of adjacent cells, segmentation and separation of all cells, and 

morphological changes to organelles during mitosis in one such cell (Fig. 3, A and B, and 

figs. S9 and S10).
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Movie 5. Membrane dynamics in the zebrafish eye
PM (blue) and the endomembrane system (orange) 30 hpf viewed as xy orthoslices, cell 

divisions in a 1-µm-thick slab, and volume-rendered PM dynamics across the eye at 43.8-s 

intervals for 200 time points (Fig. 3, C to E).
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Movie 6. Tiled AO correction for imaging large volumes
A 170-µm by 185-µm by 135-µm volume from the dorsal surface to the notochord in a PM-

labeled zebrafish embryo, showing increasing aberration but continued full correction at 

increasing depth; corrective excitation and detection wavefronts in each of the tiled 

isoplanatic subvolumes of 5 by 4 by 7 tiles; and four views of PM dynamics within the 

complete volume from 30 to 39.5 hpf, imaged at 7.5 min intervals (Fig. 4C).
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Movie 7. Organelle dynamics across the zebrafish eye
PM (cyan), trans-Golgi (green), ER (magenta), and mitochondria (brown) across a 128-µm 

by 150-µm by 75-µm volume assembled from subvolumes of 4 by 4 by 3 tiles, showing 

orthoslices in a single tile, volume-rendered tiles before assembly into the combined volume, 

organelles in the combined volume, dynamics over 30 time points from 24.0 to 26.8 hpf in a 

1-µm-thick slab through the combined volume, dynamics in perpendicular orthoslices, and 

organelle morphologies in different cell types in the computationally expanded volume (Fig. 

5).
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Movie 8. In vivo imaging of spinal cord neural circuit development
Autobow-labeled, newly differentiated neurons expressing stochastic combinations of three 

fluorophores in a zebrafish embryo, showing corrective excitation and detection wavefronts 

in subvolumes of 5 by 2 by 1 tiles, with scrolling updates at one tile (green box) per time 

point; AO-corrected orthoslices and volume-rendered views in each color channel 58 hpf; 

and axon pathfinding in each color channel from 58 to 70 hpf (Fig. 6, A to D; fig. S12; and 

movie S6).
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