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Abstract

Molecular neurobiological insight into human nervous tissues is needed to generate next 

generation therapeutics for neurological disorders like chronic pain. We obtained human Dorsal 

Root Ganglia (DRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to 

study the human DRG (hDRG) transcriptional landscape, systematically comparing it with 

publicly available data from a variety of human and orthologous mouse tissues, including mouse 

DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted 

gene co-expression patterns and putative transcriptional regulators, and formulated an information-

theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also 

analyzed, including transcription factors (TFs), g-protein coupled receptors (GCPRs) and ion 

channels. Our analyses reveal a hDRG-enriched protein-coding gene set (~140), some of which 

have not been described in the context of DRG or pain signaling. A majority of these show 

conserved enrichment in mDRG, and were mined for known drug - gene product interactions. 

Conserved enrichment of the vast majority of TFs suggest that the mDRG is a faithful model 

system for studying hDRGs, due to evolutionarily conserved regulatory programs. Comparison of 

hDRG and tibial nerve transcriptomes suggest trafficking of neuronal mRNA to axons in adult 

hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present 

our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/
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sensoryomics/drgtxome), creating a resource for the community. Our analyses provide insight into 

DRG biology for guiding development of novel therapeutics, and a blueprint for cross-species 

transcriptomic analyses.

1. Introduction

The dorsal root ganglia (DRG) is a primary sensory tissue in vertebrate nervous systems, 

delivering sensory signals from the body to the central nervous system (CNS) via 

pseudounipolar neurons. The DRG is composed of several specialized cell types including 

proprioceptive, low-threshold and damage-sensing nociceptive sensory neurons 

(nociceptors) as well as Schwann cells, fibroblasts and satellite glial cells (SGCs). With the 

advent of high-throughput RNA-seq, there has been a concerted effort on generating whole 

transcriptome snapshots of DRG and other tissues with recent emphasis on single cell RNA-

seq (scRNA-seq) studies. Thus far, efforts have largely been directed toward mouse DRG 

(mDRG) [59] and rat DRG [51], with some focusing on single neuron [15; 56; 114] or 

specific neuronal subpopulations [31; 41; 109] highlighting nociceptors. Such studies are 

informative because they focus on profiling a key neuronal subpopulation in the context of 

detecting nociceptive signals and generation of pain, enhancing our understanding of the 

molecular biology and diversity of these neurons. The hDRG in general, and nociceptors in 

particular, are widely viewed as tissue and cell types with possibilities for discovering 

biological targets for analgesic drugs, leading to development of therapeutics for both acute 

and chronic pain [72; 99] that do not involve the CNS and avoid resulting complications [4; 

20]. Studies identifying transcriptional [21; 34; 122; 125] (including scRNA-seq efforts 

[39]) and proteomic [96] changes in preclinical pain models have been undertaken, but do 

not account for evolutionary differences in DRG transcriptomes between rodent models and 

humans. Such preclinical models can potentially suffer from translational issues as they 

move toward the clinic [101]. Studies characterizing transcriptome profiles of human 

nociceptors and DRG (or related tissues and cell types in vivo or in vitro) present 

opportunities for advancing understanding of basic pain mechanisms and therapeutic targets 

but a limited number of such in vitro [118] or in vivo [26; 98; 105; 118] studies have been 

performed. The SymAtlas [105] project provided the first in vivo, high-throughput (but 

incomplete) characterization of the hDRG transcriptome using microarrays. Recent in vivo 
studies [26; 98] perform RNA-seq, but have mainly focused on specific gene families or 

diseases, without systematic comparison with preclinical models.

We performed RNA-seq on female, human organ donor L2 DRG tissues (publicly available 

at dbGAP phs001158). Comprehensive analyses of the transcriptional landscape with 

respect to other human tissues identified gene co-expression modules and hDRG-enriched 

genes in pertinent gene families and signaling pathways. As a starting point for therapeutic 

target identification, we identified the set of genes with conserved DRG enrichment in 

human and mouse, and mined drug databases to catalog interactions of known drugs with 

products of these genes. This effort is the first to present whole transcriptome gene 

abundances for hDRGs and mDRGs, contrasted with relevant human and mouse tissues 

(online at https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome).
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2. Methods

We performed RNA-seq for hDRG and integratively analyzed the transcriptome by 

comparing it with publicly available human and mouse RNA-seq datasets (sources shown in 

Table 1, and the workflow for the project shown in Supplementary Fig. 1). We also used 

publicly available human microarray data to contrast whole human DRG and Trigeminal 

Ganglia (TG) (GEO PRJNA87249) [105], along with two datasets representative of DRG 

component cell types: cultured primary Normal Human Schwann Cells (NHSCs) from 

peripheral nerves (GEO GSE14038) [68] and cultured fibroblasts (FIBRO) from the skin 

(GEO dataset GSE21899). We were unable to find a dataset for purified satellite glial cells 

(SGCs) in any database. We further integrated published quantification from mDRG scRNA-

seq analyses [114] (male and female lumbar DRG neurons, GEO GSE59739) to putatively 

identify cell-type specific expression in DRG enriched genes. For ease of discourse, human 

gene names in upper case are used in the text to refer to both human genes and its orthologs, 

with the species being apparent from context. Mouse gene names and human protein names 

are capitalized, with human protein names being additionally italicized, when used in the 

paper. At the outset, it is important to clarify that our analyzed tissue panel only queries a 

finite set of adult, healthy tissue; and the notions of 8DRG enriched9 and 8DRG specific9 

gene expression is with respect to this set of reference tissues that provide a relevant test-

bench for asking questions about mammalian DRG.

2.1 Human DRG preparation and RNA-seq

Tissue was sourced from Anabios, Inc (San Diego, CA). For this study, L2 lumbar DRGs 

were removed from 3 female, middle-aged (30 – 60 years), Caucasian, consented organ 

donors with no history of chronic pain, prior to cross clamp and stored immediately in 

RNALater (Ambion, Austin, TX). RNA-seq was performed on the whole tissue by Active 

Motif, Inc (San Diego, CA). An RNEasy Qiagen kit was used for total RNA isolation, and 

DNA was removed using DNase-I digestion. The extracted total RNA was then used with an 

Illumina Truseq RNA sample preparation v2 kit to generate polyA+ RNA libraries for 

sequencing. Over 50 million paired-end 75 bp reads were sequenced from each sample on 

the Illumina platform, with mean sequencing quality (Phred) scores per base between 29.4 

and 34.24 (Supplementary Table 1). The RNA-seq datasets generated were contrasted with 

publicly available RNA-seq datasets in other relevant human tissues, and their orthologous 

tissues in the house mouse (M. musculus). For mDRG RNA-seq datasets, we used publicly 

available RNA-seq data from female mice of the C57BL/6 mouse strain, the inbred model 

strain used to sequence the reference mouse genome [14]. The publicly available mDRG 

RNA-seq datasets (SRR869619-21) we used for comparison were sourced from individual 

female mice and homogenized in Trizol, with total RNA treated with two rounds of polyA 

selection (Dynabeads mRNA purification kit, Invitrogen) followed by fragmentation 

(Fragmentation Reagents, Applied Biosystems). While not identical to the library 

preparation for hDRG RNA-seq, this dataset was also generated using the Illumina TruSeq 

kit, and yielded 50 bp paired end reads (of comparable size to the hDRG 75 bp paired end 

reads) [29], thus being suitable for comparison. The following subsection details in silico 
strategies to normalize gene abundance quantifications obtained from these and other 
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datasets we analyzed to minimize the effect of differential library preparation across 

samples.

2.2 Quantification of gene abundances from RNA-seq experimental data

Mapping of sequenced reads and quantification of gene abundances—
Sequenced FASTQ files generated by our RNA-seq experiments or downloaded from public 

databases were mapped to the human and mouse reference transcriptome for the purposes of 

quantifying relative gene abundance. Reference human (NCBI hg19) and mouse (NCBI 

mm10) genomes [22], and reference human (Gencode v14) and mouse (Gencode vM4) 

transcriptomes [37] were used for mapping sequenced reads. The Tophat/Cufflinks pipeline 

was used for analyzing the RNA-seq datasets [112]. The Burroughs-Wheeler transform 

based RNA-seq mapping tool Tophat [111] (v2.0.13) was used for mapping the sequencing 

reads with the following command-line parameters: tophat2 -o <output_path> -p 8 --
transcriptome-index <reference_transcriptome> <reference_genome> <leftreads.fastq> 
<rightreads.fastq>. The gene abundance quantification tool Cuffdiff [110] (v2.2.1) was used 

to estimate relative abundances of genes in the reference transcriptome with the following 

command-line parameters: cuffdiff -o <output_file> --library-norm-method classic-fpkm -p 
8 <reference_transcriptome>. Relative abundances were calculated for genes with respect to 

the reference library, based on Gencode coding genes, lincRNAs, pseudogenes and other 

noncoding genes with evidence for polyA site or signal [126]. Absolute abundance 

quantification of genes or transcripts require calibrating RNA-seq based on exogenous 

spike-ins with known copy numbers [83] or other methods is rarely performed in practice, 

and typically require additional amounts of input material, or attachment of unique 

molecular barcodes to individual transcripts to correct amplification bias in traditional RNA-

seq [103], making them unfeasible or intractable for our samples with limited, varying 

amounts of tissue sourced from human donors.

Design decisions for RNA-seq analyses— While mapping RNA-seq datasets using 

Tophat, the number of mismatches allowed per alignment segment was set to the default 

(two), with all of our analyzed datasets, including the three hDRG samples we sequenced, 

having acceptable mapping rates for post-mortem samples (> 70%, Supplementary Table 1) 

[94]. For Tophat, all datasets were assumed to be generated from strand-agnostic libraries 

for the purposes of mapping. While some analyzed libraries were actually strand-specific, 

such an approach allows us to avoid the inherently different nature of strand specific and 

non-specific libraries, and minimizes the chances that downstream differential expression 

analysis will yield artifacts. Since the reference transcriptomes for human and mouse are 

well annotated by the GENCODE project, de novo assembly was not performed - instead, all 

concordantly mapped read pairs (fragments) mapping to each known transcript were used by 

Cuffdiff to quantify relative abundance. Finally, we performed a second round of in silico 
library selection limiting analysis to only genes with known or predicted polyA+ transcripts 

(detailed in Section 2.3 under TPM calculations), to minimize the effect of different library 

selection techniques (rRNA depletion or polyA+ selection) in the different analyzed 

samples.
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2.3 Sample statistics

Sample statistics for characterizing gene abundances in individual tissues for 
each species— The relative abundance of a transcript was calculated based on the number 

of fragments (paired-end reads) that map to it, by calculating Fragments per Kilobase per 

Million Mapped Fragments (FPKM) as follows:

FPKMtranscript i =
Mapped fragment counttranscript i

No of mapped fragments in expt

106
×

Effective transript length in base pairs

103

FPKMs for genes were calculated by summing the FPKMs for individual transcripts 

corresponding to the gene. Cuffdiff was configured to use all replicates to estimate a mean 

FPKM for each gene. Our analysis ultimately required us to compare across tissues and 

species for many different RNA-seq experiments, performed across multiple laboratories 

utilizing different library preparations and sequencing depth. Hence, we decided to 

transform the FPKMs to another commonly used measure for quantifying relative 

abundance: Transcripts per million (TPM) [84]. To calculate TPMs, FPKMs are re-

normalized with respect to the sum of FPKMs of the reference library of transcripts to 

generate a relative abundance score scaled to parts per million.

TPMtranscript i = 106 ×
FPKMtranscript i

3
j
FPKMtranscript j

We only chose to quantify relative abundance with respect to transcripts that were polyA+, 

since most datasets in our analysis used a polyA selection step. LincRNAs, pseudogenes and 

other noncoding genes with evidence of polyA signal or site (based on APASdb [126] ) were 

retained in the reference library, while remaining noncoding genes (including ribosomal 

rRNA genes) were not evaluated. Abundances for genes on chromosome Y were also not 

evaluated to minimize detection of male sex-linked gene expression patterns. By only 

quantifying the relative abundance of genes with respect to the set of common genes that are 

minimally targeted by most RNA-seq protocols, we effectively performed a second round of 

library selection in silico. Finally, in order to scale the distribution of TPMs in across tissue 

and species comparably, the upper quartile (75th percentile) TPM was calculated for each 

sample and values scaled with respect to it to calculate upper quartile-normalized TPMs 

(uqTPM), based on previous approaches in the literature [30]. A complete list of evaluated 

genes, with relative abundances in TPM and uqTPM across all analyzed tissues, is available 

at https://tinyurl.com/yc9e67yu. Empirical density functions for uqTPMs for different 

tissues in both human and mouse are presented in Supplementary Fig. 2. We used upper 

quartile normalization to scale TPM measures such that the bimodal distribution of relative 

abundances were comparable across both tissues and species.

Sample statistics for characterizing tissue specificity of genes in individual 
species— A tissue-specific transcriptomic signature inevitably depends upon a set of 

tissue-restricted genes, potentially contributing to tissue-specific functionality or phenotype. 
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The information theoretic measure of Shannon9s entropy [102] has been historically used in 

various domains as a framework for assessing diversity in a population [38], including the 

identification of tissue-restricted genes in transcriptomics [123]. For each gene, the uqTPM 

levels were first normalized to 1, generating a probability distribution X ⃗ with xi 

corresponding to the gene9s normalized abundance and ti corresponding to its uqTPM in the 

i th tissue. Based on this distribution, Shannon9s entropy [102] H(X )⃗ was calculated to 

identify tissue-restricted genes that are expressed in the DRG:

x
i

=
t
i

3
i

t
i

; H(X ) = 4 3
i

[x
i
× log2 (x

i
)] where log2 (0) = 0

Since the value of Shannon9s entropy can vary between 0 and log2(n) where n = information 

length (number of tissues in our case), we use Shannon9s normalized measure of entropy 

which ranges between 0 (highest tissue specificity) and 1 (lowest tissue specificity): 

H(X ) =
1

log2(n)
H(X )

We defined two additional formulations derived from this framework to characterize tissue-

restricted genes of interest. We profiled nervous-system enriched genes among the set of 

tissue-restricted genes we characterized in this work, since these are potential targets or 

excluded targets for drugs which do or do not cross the blood brain barrier (BBB). We 

calculated a neural proportion score by summing the proportion xi calculated for Shannon9s 

entropy across all neural tissues in our tissue panel. We also calculated a score for DRG 

enrichment that would take into account the magnitude of relative abundance values across 

different tissues. For each gene, we also calculated a DRG enrichment score to quantify 

enrichment in the DRG with respect to other analyzed tissues, ranging from 0 (undetected in 

the DRG or uniformly expressed across tissues) to 1 (only expressed in the DRG), defined as 

xDRG × (1 − H̄(X ⃗)). Empirical density functions for the neural proportion and DRG 

enrichment scores for both human and mouse are presented in Supplementary Fig. 3. The 

degree of neural or DRG enrichment for a gene can thus be estimated by contrasting the 

enrichment score with the overall distribution of the score across all genes.

Sample statistics for characterizing conservation of gene expression patterns 
in human and mouse— Based on the Homologene database [28], we identified orthology 

mappings between human and mouse genes, using the Homologene gene family IDs. Every 

individual human to mouse gene mapping was categorized as being part of a one-to-one, 

one-to-many, many-to-one, or many-to-many mapping between gene sets, based on the 

relative timing estimates for duplication and speciation events. Additionally, genes with no 

orthologs in the other species were categorized as one-to-none, many-to-none, none-to-one, 

or none-to-many mapping. We additionally curated the Homologene database to correct 

orthology relationships that were inconsistent with the literature, most notably the 

relationships in the MRGPR family. Ensembl Compara [116] gene trees were used to guide 

this process, and the final set of homology mappings used are presented beside abundance 

data for each gene in the RNA-seq tables on our website. Correlational measures (Pearson 

Correlation Coefficient or PCC [86]) previously used in the literature [97] were calculated 
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between the gene expression (uqTPM) vectors of human genes and their mouse orthologs 

across corresponding tissues, for those human and mouse genes that have a one-to-one 

orthology mapping and show either human or mouse DRG enrichment. We analyzed the 

empirical distribution of the DRG enrichment scores to identify hDRG enriched and mDRG 

enriched genes (DRG enrichment score > 0.29 in at least one species, corresponding to 

inclusion of all genes where TPM is highest in DRG across tissues) for all human and mouse 

genes, and restricted this gene set to genes with high correlation (determined from empirical 

distribution of the PCC) between human and mouse tissue expression panels.

2.4 Similarity analysis of gene and tissue expression profiles to identify gene expression 
signatures

For microarray comparisons, only microarray datasets from variations of the Affymetrix 

HG-U133A were used. For each chip, the tool Oligo was used for microarray probe 

normalization [10], followed by quantile normalization across chips [9], available on our 

website. Averaging across replicates, a clear unimodal distribution for probe intensity was 

identified (Supplementary Fig. 4) for classifying probesets as expressed or unexpressed. 

Since culturing cells can alter gene expression profiles [128], we ignore probesets that were 

not expressed in hDRG or TG and characterized which of the hDRG or TG expressed 

probesets were expressed in NHSCs or fibroblasts. Gene abundance profiles of RNA-seq 

datasets were not contrasted with microarray datasets due to the different nature of the 

inherent bias of the two technologies and the limited dynamic range of microarrays [87].

For RNA-seq, we analyzed only genes with polyA+ transcripts, and by performing upper 

quartile normalization, we aimed to minimize the effect of technical variation in our data. 

Within human datasets, genes were analyzed for co-expression patterns across all analyzed 

tissues, to identify sets of genes with similar expression patterns and cluster them into 

<modules= [24]. We assigned each gene a digital <co-expression pattern=, based on 

clustering the gene9s TPM values into two top-level clusters. The most frequent gene co-

expression patterns were identified, along with TFs and other relevant genes in each module. 

The genes in the corresponding modules were then hierarchically clustered [24] and the 

resulting dendrogram optimally leaf-ordered on the genes [6] to depict the gene expression 

patterns across the set of analyzed human tissues. This allowed us to visualize relevant co-

expression patterns and putatively identify regulatory circuitry underlying such co-

expression. Additionally, this allows for simplification of downstream analyses like 

coexpression module detection, identifying regulatory networks or gene set enrichment 

analysis [12].

We also performed hierarchical clustering of all human and mouse tissue transcriptome 

profiles, restricted to the set of genes to those with one-to-one orthology between human and 

mouse based on our analysis [28]. For the hDRG and mDRGs, when all 3 individual 

replicates were individually used instead of a single tissue profile to identify the sample-to-

sample variation relative to observed tissue-to-tissue variation. The set of genes used for this 

analysis was limited to genes with tissue-restricted expression in order to identify a clear 

tissue-specific gene signature [91].
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2.5 Functional enrichment analysis

We identified human and mouse genes with relevant functional gene ontology descriptions, 

based on the Gene Ontology (GO) database [16]. Wherever possible, the set of human genes 

were augmented using the HGNC database [32]. The gene sets used can be downloaded 

from our website. Functional enrichment analysis was then performed using Enrichr [12], 

allowing for multiple testing correction, with the Reactome database [18] being used for 

pathway analysis. In order to identify all known drug – gene product interactions for genes 

present in the conserved DRG enriched gene set, the Drug – Gene Interaction Database 

(DGIdb) [117] was used. Protein-protein interactions (PPI) were mined based on validated 

interactions of genes with relevant GO terms in the StringDB database [27]. The KEGG 

database and visualization tool [46] was used to analyze the neurotrophin signaling pathway, 

used with permission from Kanehisa Laboratories (available on our website).

2.6 In silico detection of mRNA axonal localization

We contrasted relative abundances of mRNAs in the hDRG from our own RNA-seq 

experiments to human tibial nerve (hTN) RNA-seq experiments from the GTex consortium 

[17]. Changes in gene expression between the hDRG and hTN can be brought about by 

region-specific gene expression in non-neuronal cells, subcellular localization in sensory 

neurons, variable composition of cell types between hDRG and hTN samples, differential 

expression between sensory (present in hDRG and hTN) and motor neurons (present only in 

hTN) or a combination of all of these. Thus, the analysis was restricted to characterizing 

genes known to be present in the axonal compartment of sensory neurons in adult rats [35]. 

Uniquely identifiable human and mouse orthologs of the rat genes in our curated 

Homologene database were used in the analysis. The hDRG: hTN fold change was 

calculated based on TPM values for all genes, and is presented in Sheet 1 of the human 

RNA-seq data, available on our website.

3. Results

We introduce an open-data, searchable website for our analyses allowing users to visualize 

gene expression profiles (http://www.utdallas.edu/bbs/painneurosciencelab/

DRGtranscriptome/search.php) across orthologous human and mouse genes. For 

reproducibility, code for performing calculation of the data underlying the figures: uqTPMs, 

and sample statistics for characterizing tissue specificity and conservation of expression are 

available on our website.

3.1 Comparison of hDRG whole transcriptome profile with other transcriptome profiles

From a transcriptional point of view, the hDRG is a highly heterogeneous conglomerate of 

cells with multiple types of sensory neurons, Schwann cells, satellite glial cells, fibroblasts, 

and resident macrophages [77]. In vivo studies of heterogeneous tissues like the hDRG or 

hTN pose a special challenge, since mRNA species may be expressed specifically in 

individual cell types or more generically. We estimated the degree of overlap between the 

whole DRG transcriptomic profiles and some of its non-neuronal constituent cell types. We 

looked at assembled microarray datasets for human DRG, TG and cultured normal human 

Schwann cells (NHSC) and skin fibroblasts (FIBRO) (Fig. 1A). We identified 12,422 

Ray et al. Page 8

Pain. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.utdallas.edu/bbs/painneurosciencelab/DRGtranscriptome/search.php
http://www.utdallas.edu/bbs/painneurosciencelab/DRGtranscriptome/search.php


probesets that show expression in hDRGs. Of these, 11,407 (94.6%) are shared with the 

human TG, reiterating the overall similarity of the two tissues. Interestingly, we found that 

approximately 70% (8,666/12,422) of the DRG-expressed probesets show co-expression in 

either the NHSC or fibroblast dataset or both. The remaining 30% of the DRG-expressed 

probesets were putatively due to expression restricted to sensory neurons or SGCs and 

included nociceptor-enriched channels like SCN10A and SCN11A [114], and nociceptor-

enriched transcription factors like PRDM12 [13] which are well characterized in mammalian 

DRGs. Our analysis indicates that cDNA libraries constructed from whole hDRGs have a 

strong non-neuronal component.

To look at conservation of gene expression across tissues in humans and mice in a 

transcriptome-wide fashion, we performed hierarchical clustering of the RNA-seq 

transcriptomes (Fig. 1B). We find that for non-neural tissues, homologous human and mouse 

tissues cluster in pairs. The hDRG replicates, mDRG replicates and hTN sample also cluster 

together, showing a distinct PNS gene expression profile, and low sample-to-sample 

variation in our hDRG and mDRG samples. Our findings agree with meta-analyses that 

suggest distinct signatures for human sensory tissues and brain tissues [107], and that inter-

study distances among homologous tissue transcriptomes are typically less than intra-study 

distances between different tissues [106]. However, inside the CNS tissue cluster, we find 

that the human samples and mouse samples do not cluster according to brain regions, and 

we attribute this to well characterized evolutionary divergence of the CNS transcriptome in 

humans with respect to other primates and rodents [67; 81] rather than batch or laboratory 

effects as the subclusters are not determined by source laboratory of the samples. Preclinical 

rodent models have been shown to mimic human response in several domains [107]. Our 

analysis identifies a distinct, evolutionarily conserved tissue-specific signature for healthy 

human and mouse PNS tissues, opening the door to the follow up question of how faithfully 

rodent pain models correlate with human pain signatures at the molecular level.

3.2 Co-expression patterns and regulatory programs shaping the hDRG

Based on our binary co-expression pattern for each coding or non-coding human gene, we 

found that 22,140 genes were expressed in one or more tissues, with 12,462 genes being 

generically expressed across the reference tissue panel based on their entropy 

(Supplementary Figs. 5A and 5B). Of the remaining 9,498 genes, we found a power law-like 

distribution for frequencies of possible co-expression patterns across the tissues we queried 

(Supplementary Fig. 5C), suggesting that a few dominant regulatory paradigms primarily 

shape the hDRG transcriptome. Out of the top 25 most frequent patterns (5,542 out of the 

9,498 tissue-restricted genes in our analysis), 15 correspond to enrichment or de-enrichment 

in subsets of non-neural tissues, 6 to enrichment in subsets of CNS tissue (Supplementary 

Fig. 5D), and the remaining 4 affecting hDRG expression. The most common co-expression 

pattern of these was the set expressed pan-neuronally (Fig. 2A), the basis of a neuronal gene 

signature [25]. Previous analyses with hDRG microarray datasets were limited to analyzing 

a set of predefined probesets, and were unable to identify a broad pan-neuronal 

transcriptome signature including the hDRG [95; 105]. In our analysis, pan-neuronal genes 

include splicing factor RBFOX3, ion channels (SCN1A, KCNK1), tyrosine receptor kinase 

NTRK2, cell adhesion molecule (CAM) gene DOCK3 and the early neural lineage TF 
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SOX1 [88]. The second relevant gene co-expression module consists of genes which are 

downregulated in the hDRG and spinal cord but expressed in the rest of the CNS (Fig. 2B), 

potentially driven by TFs like HOXA3, HOXA4 and HOXB3 involved in rostral-caudal 

patterning [78] and are common to these two adult human tissues but not more rostral parts 

of the nervous system. The TF MYT1L is downregulated in hDRG and spinal cord with 

respect to the rest of the CNS. A third prominent co-expression pattern identifies genes 

enriched primarily in the CNS but undetectable in the hDRG (Fig. 2C). These include CNS-

expressed genes like SLC32A1 [80] and GLRA2 [127], known to be suppressed in the DRG, 

the metabotropic glutamate receptor GRM5 (linked to postsynaptic plasticity in the spinal 

dorsal horn [40]), RNA binding protein PABPC1L2A, serotonin 2C receptor HTR2C, and 

TFs OLIG2 (present in astrocyte and oligodendrocyte cell types, and subpopulations of 

motor neuron [61]) and POU3F4. The fourth prominent co-expression pattern was primarily 

enriched in the hDRG (Fig. 2D), with the gene set explored in more detail in Section 3.3.

To identify a more comprehensive picture of the regulatory forces driving gene expression in 

the hDRG, we catalogued all hDRG-enriched and neurally enriched TFs (heatmaps for 

human and orthologous mouse gene expression in Fig. 3A). Multiple evolutionary 

developmental studies have been performed [13; 58; 74] suggesting an important role of 

TLX3, RUNX1, DRGX, POU4F1 and PRDM12 in mouse, human, and Xenopus sensory 

tissue development. We find that most of the studied regulatory TFs have conserved DRG-

enriched gene expression in adult humans and mouse, suggesting that regulatory interactions 

are conserved through evolutionary history. The most well-studied among these TFs is 

possibly PRDM12, which is essential for mammalian DRG development and pain sensation 

[13]. The ancient origins of somatic and visceral neurons is well documented in bilaterans 

(arthropods and vertebrates) [79], and among the transcriptional determinants of such 

neurons are DRG-enriched TFs DRGX, POU4F1 and POU4F2 (both of the BRN family). 

Based on mDRG scRNA-seq data [113], several of the DRG-enriched TFs (HOXD1, 

PRDM12, POU4F2, POU4F3, ISL2) are restricted to subpopulations of adult mDRG 

neurons while POU4F1 and ISL1 are more widely expressed across subpopulations. The 

TFs may thus collaborate in subpopulation-specific ways to drive regulatory programs 

specific to each of the neuronal subpopulations. In vitro differentiation of human pluripotent 

cells using POU4F1 (and either NGN1 or NGN2) [8], reprogramming of human fibroblasts 

using a TF cocktail of multiple subpopulation-restricted TFs including ISL2 [118], and 

characterization of sensory neurons induced from human pluripotent stem cells uniformly 

expressing ISL1 and POU4F1 [11] suggests that a transcriptional program similar to mDRG 

neurons may be at work in humans.

Several hDRG-expressed TFs, co-factors, splicing regulators and mRNA binding proteins 

(both spliceosomal and non-spliceosomal) show neural enrichment, but are only weakly 

hDRG-enriched (Figs. 3A and 3B). Several of these are potentially involved in hDRG 

function, and are described in Supplementary Table 2.

These analyses give a global view of DRG gene expression in humans compared to a 

number of other tissues, highlighting that the DRG expression profile is distinct from CNS 

gene expression patterns [95; 105] driven apart during development by well-characterized 

CNS-specific TFs like POU3F3, and SOX21 and DRG-specific TFs like PRDM12, DRGX 
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and TLX3. While DRG-specific [58; 74; 92] and CNS-specific TFs [71; 119] have well-

appreciated roles in development, their persistent expression into late adulthood in humans 

has previously not been appreciated, suggesting a role of cell-type maintenance alongside 

that of the well-characterized developmental lineage drivers. Additionally, multiple DRG-

enriched TFs (ISL1, ISL2, DRGX) are known to play a dual role in developmental 

axonogenesis and adult axon regeneration. Human DRG-specific TFs are also likely 

involved in regulating the transcription of hDRG-specific genes, although specific TF 

targeting of DRG-specific genes underlying mammalian regulatory programs are not well 

understood except for a small subset of genes profiled in evolutionary development studies 

[13; 58; 74].

3.3 hDRG and mDRG enriched genes and a conserved evolutionary signature

Based on the DRG enrichment score, we identified 140 protein coding genes to be hDRG-

enriched, and 141 protein-coding genes to be mDRG-enriched. Of these 128 hDRG-enriched 

and 119 mDRG-enriched genes (identified based on Section 2.2, Fig. 4A) have one-to-one 

orthologs in the other species. We then looked at the correlation between the human and 

mouse ortholog gene expression across the analyzed tissue panel to identify if the gene in 

the other species also had a DRG-enriched expression profile, reported in Table 2. When we 

analyzed the distribution of correlation values, we found a large population of highly 

correlated relative abundance, suggesting that a large fraction of these genes are under 

negative evolutionary selection in their regulatory regions, causing conserved gene 

expression profiles across tissues (Fig. 4B). 81 out of 128 (63.3%) human genes have 

correlation scores above 0.68 (the peak in the distribution before the primary mode). All 81 

of these genes in both species have the highest relative abundance in DRG across the panel 

of analyzed tissues, showing a clear conservation of DRG-enrichment. Among the genes we 

identified with a common pattern of DRG enrichment in mouse and human (Fig. 4C), are 

several that have not been previously studied in DRG biology. These include UCHL1 

(neuroepidermal marker of itch [54]), SKOR2 (a developmental co-repressor in cerebellum 

[75]), TRIM67 (shown to be involved in RAS-mediated signaling in the cerebellum [124]), 

BET3L (particle transport complex member identified in mDRG single cell studies [56] but 

not functionally studied), and TLX2 (whose paralog TLX3 is well characterized as a key 

DRG-enriched TF).

Several DRG-enriched genes show subpopulation restricted expression in the mDRG 

(expression profiles in mDRG neuronal subpopulations based on Usoskin et al [113] are 

shown for all DRG-enriched genes in Fig. 4D and Supplementary Table 3), raising the 

possibility of a similar expression profile in sensory neuronal subpopulations in the hDRG. 

Among the more well-studied genes are NTRK1, TRPV1, and CALCA (mRNA found in 

both peptidergic and non-peptidergic neurons), ASIC3 (neurofilament and peptidergic 

neurons), MRGPRD (non-peptidergic neurons), and PRDM12 (peptidergic, non-peptidergic 

and TH-positive neurons).

We also identified a gene set which have undetectable gene expression in mDRG scRNA 

dataset, many of which are known to be expressed in mammalian Schwann cells, detailed in 

Supplementary Table 4. Known peripheral SGC markers are either weakly expressed in our 
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hDRG datasets (like PAX3 or PAX7) or also expressed in other tissues (like GFAP) and are 

thus not DRG-enriched. Fibroblast markers like S100A4 are highly expressed in DRG, but 

are also generically expressed, leading to low DRG-enrichment scores.

We identified that many of the gene products of hDRG-enriched genes can be assigned a 

handful of molecular roles including transcriptional activators or repressors, receptor and 

receptor binding, kinases or phosphatases, ion channels, and transmembrane domain 

containing proteins. Based on the Enrichr tool [53], we performed enrichment analysis for 

biological processes in the Gene Ontology (GO) database [3] (Supplementary Table 5) and 

molecular pathways in the Reactome database [18] (Supplementary Table 6) that were 

enriched in our gene set (Fisher9s exact test, p < 0.01 after multiple testing correction). Gene 

or protein functional ontologies are well known to be incomplete [44], necessitating us to 

look at DRG-enriched genes in non-enriched ontology terms and the literature, and showing 

the diverse roles played by these gene products. Several of these are already well studied in 

DRG biology. CALCB is a paralog of CALCA with similar function. MRGPR family 

members are known to play a key role in itch sensation [57]. PIRT is a well-known 

regulatory subunit of TRPV1 [48], while PRDM12 is a key TF in neural sensory lineages 

[13]. Querying the Reactome database yielded enrichment for acetylcholine and nicotinic 

receptor signaling centered around 3 specific receptor subunits, ´3, ³6 and ³9. The 

CHRNA6 gene is potentially involved in mechanical allodynia in mouse, leading to an 

identification of a novel interaction between ³6 nicotinic receptors and P2X3 ion channels 

that leads to inhibition of P2X3 channel activity [120]. CHRNA9 (encoding the ³9 nicotinic 

receptor subunit) was recently implicated in development of chemotherapy induced 

peripheral neuropathic pain using an antagonist of ³9 and ³10 nicotinic receptors [85]. 

While more work is needed to validate ³9 as the mechanistic target for this compound, the 

very strong enrichment of CHRNA9 in human DRG makes it an interesting target for this 

prominent form of neuropathic pain.

More interestingly, we identified many genes whose functional roles in DRG have not been 

well studied (Fig. 5C). PPP1R1C, PPM1J, and PPEF1 are phosphatases: PPM1J is known to 

regulate neurite growth [2], PPEF1 interacts with Calmodulin in a Ca+2 dependent manner 

[55], and DUSP15 regulates the JNK pathway [100]. AMIGO3 [52] is involved in axonal 

tract development. SUSD2 is known to regulate neurite growth in hippocampal cultures [73]. 

TPPP3, PLA2G3, and TRIM36 [104] (along with TUBB3) are associated with the 

microtubule cytoskeleton. AKAP12 is a kinase scaffold involved in regulating cAMP 

biosynthesis and signaling. TUSC5 is expressed in the PNS and adipose tissue, and 

potentially performs shared adipose-nervous system functions [82]. PTGDR and IL17B are 

known to be involved in inflammation response, and POLR3G is also involved in cytokine 

production and immune response. BET3L is part of the TRAPP protein trafficking complex, 

while NMB is a neuropeptide involved in nociceptive signaling [70]. Additionally, we have a 

very limited understanding of the role of some DRG-enriched neuronally expressed genes. 

INSM2, SHOX2, SCRT2, and SKOR2 are development-related transcriptional regulators but 

their regulatory function in adult DRG is not known. These DRG-enriched genes create a 

rich set of novel targets for potential exploration in the pain neurobiology space.
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3.4 Identifying potential pharmacological targets among tissue-restricted genes in the 
hDRG

Since a primary goal of our analysis is the identification of potential therapeutics, we 

performed additional analysis on our DRG-enriched and neurally enriched gene sets to mine 

for known or new drug targets. We first used our hDRG-enriched gene set to explore the 

drug – gene product interaction database DGIdb [117] for targets of known drugs (Table 3). 

This identifies genes for which ligand interactions are known, potentially identifying new 

drugs that can be repurposed or redesigned to target pain. We identified a subset of gene-

ligand interactions from DGIdb but these were mostly well-known pain targets with ligands 

moving into or already in clinical trials. For instance, CALCA (CGRP), P2RX3 (P2X3), 

NTRK1 (TrkA), SCN10A (Nav1.8) and SCN11A (Nav1.9) are all well-known genes 

involved in pain, most of which have robust ongoing clinical candidate development. Others 

in this list included nicotinic receptors that were mentioned above but most of the ligands 

identified lack specificity for these targets. The HTR3A gene, which encodes the 5-HT3 

ligand gated ion channel, is enriched in hDRG and many ligands of this receptor subtype are 

known. Despite a strong case for the role of this receptor in chronic pain states [49], the 

pain-relieving potential of antagonists of this receptor have never been clarified in humans, 

although one small clinical trial in neuropathic pain suggests efficacy of antagonists [62].

Only one gene in this list clearly stood out as novel, QRFPR, which encodes the 

pyroglutamylated RFamide peptide receptor. Interestingly while the QRFPR receptor has not 

been widely studied in the context of pain or sensory biology, the RFamide peptides also 

interact with the Mas-related GPCR family of receptors [36] suggesting unappreciated 

potential complexity in the sensory responses to these peptides in the DRG via their cognate 

receptor. We also note that while these known drug/receptor interactions mentioned above 

are of potential interest for drug repurposing, they do not encompass potential transcriptional 

changes in the hDRG that would likely accompany nerve injury leading to neuropathic pain 

and therefore represent a theoretically incomplete list. However, we are also not aware of a 

single study that has evaluated transcriptome wide changes in the DRG of human pain 

patients.

The short list of known ligand to gene interactions identified from the DRG-enriched dataset 

suggests that many DRG-specific genes have not been explored as drug targets. We thus 

characterized several pharmacologically important gene families including kinases, 

phosphatases, ion channels, GPCRs, neuropeptides and associated receptors, and cell 

adhesion molecules. We also considered that drug targets can include drugs that do not cross 

the BBB and we therefore included hDRG-expressed genes that had strong neuronal 

expression but did not show expression in non-neuronal tissues. These genes may be targets 

for drugs that do not cross the BBB, if DRG targeting is the desired outcome.

Among ion channels, we identified several ion channels with well-known DRG-specific 

expression and roles but also identified several others (Fig. 5A), such as nicotinic receptor 

subunits ³6 and ³9 (mentioned above) and the potassium channel KCNH6. A much larger 

set of ion channel genes showed enrichment in neuronal tissues with preserved expression in 

hDRG, and in many cases also in mDRG. Among these were many additional potassium 

channel genes and strong expression for kainate receptor subtypes, in particular in the 

Ray et al. Page 13

Pain. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hDRG. Several neuropeptide and neuropeptide receptors have been targets of new drugs 

developed in the past decade [33]. Some candidate drugs targeting these molecules have not 

been studied due to low bioavailability (because of BBB and other factors) [23], which is not 

necessarily a challenge when targeting the DRG. NMB, CALCA, CALCB, and GAL were 

identified to be hDRG-enriched, as was the receptor QRFPR, which was mentioned above. 

GLRA4, which is a glycine receptor subunit, was expressed in hDRG but not mDRG (Fig. 

5B). Cell Adhesion Molecules (CAMs) are also increasingly viewed as pharmacological 

targets due to their involvement in processes like inflammation, and cell signaling [50]. We 

identified several neuronally enriched CAMs like CNTN1, NLGN3, NRCAM, and 

LRRC4C, but none of these were specific to hDRG (Fig. 5C). DRG-enriched MPZ and 

CLDN19 are expressed in Schwann cells, but have gene products that are present at neuron – 

Schwann cell junctions.

Among GPCRs, the Mas-related GPCR family (including known DRG specific genes in 

mouse and human) showed DRG enrichment (as expected) as did several other GCPRs 

including QRFPR, CCKAR and F2RL2 (Fig. 6A), while AGTR2 is notably low in both 

hDRG and mDRG. We also identified several DRG-enriched (OR7E101P, OR51E2) or pan-

neurally enriched (OR2L13, OR7A5) olfactory receptors. While we cannot assess if they are 

enriched in human olfactory epithelium due to a lack of transcriptome data for this tissue, 

we find that the mouse orthologs for OR7A5 and OR51E2 are not expressed in the mouse 

olfactory epithelium. While the role of olfactory receptors in non-olfactory tissue is under 

debate, some have been shown to be upregulated in nerve injury models [1], suggesting that 

these receptors may have functions outside of their canonical tissue. A broader list of 

GPCRs were expressed in hDRG and also found in other CNS tissues. Interestingly, these 

included a large number of orphan GPCRs, suggesting an unmined pharmacological 

resource for sensory and pain research. Finally, we assessed kinases (Fig. 6B) and 

phosphatases (Fig. 6C). Notable among the kinases were NTRK1 and RET, receptor tyrosine 

kinases for NGF and GDNF, respectively, both of which are well-known to be DRG-

enriched in adult human and mouse. Another weakly enriched receptor tyrosine kinase in 

hDRG was INSRR, an insulin receptor related receptor. All other kinases we identified were 

expressed in hDRG but also in other human CNS regions. Several neuron-enriched 

phosphatases were also detected, including tyrosine phosphatases PTPRN, PTPRN2, and 

PTPRZ1 but none of these showed a clear enrichment in hDRG.

To delve deeper into identifying DRG enriched genes as putative therapeutic targets, we 

looked at experimentally validated protein - protein interactions (PPI) in StringDB [27]. We 

limited this search to interactions within and between the set of DRG-enriched genes and the 

gene families with drug targeting potential, in a bid to identify pathways with strong 

therapeutic potential. Based on this network (Supplementary Fig. 6) and intersectional 

analysis with the KEGG pathway database [46], we identify several well understood 

pathways whose components are partially identified, including the neurotrophin signaling, 

cAMP signaling, retrograde endocannabinoid signaling, and axon guidance pathways. We 

detailed the neurotrophin signaling pathway (Fig. 7), with focus on signaling through the 

NGF receptor since NGF-targeted therapies are in clinical trials for pain but have an 

uncertain future due to rare, severe side effects [5]. We find that most gene level abundances 

for the corresponding proteins in this signaling pathway are present in the hDRG and some 
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are either hDRG-enriched (NTRK1, NGFR), or weakly hDRG-enriched (MAPK11, SHC2, 

ARHGDIA, ARHGDIG). These NGF signaling pathway components may be drug targets to 

manipulate this pathway in the hDRG with relative specificity.

3.5 Putative axonal localization of mRNAs in hDRG sensory neurons

mRNA may be specifically compartmentalized inside somatic or axonal compartments of 

very long pseudounipolar sensory neurons. Gene expression changes in proximal versus 

distal portions of peripheral nerves in nerve-injured rats [43] have shown a clear signal of 

differential gene expression, and abundant evidence links axonally localized mRNAs in 

mouse DRG neurons to axon growth, regeneration and nociceptive plasticity [45; 64; 65; 69; 

121]. Gene expression in peripheral nerves and the DRG in humans have only been 

contrasted with respect to peripheral neuropathies [98], and putative localization of mRNAs 

to the axons of hDRG neurons has not been examined in general. We analyzed the tibial 

nerve RNA-seq experiments from the GTex consortium [17], contrasting it with our hDRG 

RNA-seq profiles and rodent scRNA-seq datasets of DRG neurons [113] and sensory neuron 

axonal compartment mRNA profiles [35], to identify transcripts that might be potentially 

axonally transported in hDRG sensory neurons.

Transcription factor protein sequences typically contain NLS sequences that promote 

retrograde transport to the nucleus. It has thus been hypothesized that anterograde transport 

of mRNA to axons, stimulus-induced local translation, and retrograde transport of protein to 

the nucleus is a potential mechanism for growth cone, or nerve ending to nucleus signaling 

[42] and similar signaling may promote nociceptor sensitization [65]. In the mDRG, several 

proteins have been shown to be locally translated in the axonal compartments of sensory 

neurons. These include the enzyme Ranbp1, the transcription factors Stat3 and Creb, 
filament protein Vim, and nuclear transport protein Importin-́  [7; 66; 93]. While some of 

these have been shown to be axonally translated under specific circumstances like axon 

growth or repair, under normal conditions local translation may not take place, but baseline 

amounts of mRNA would still be detectable in the axon. Gumy et al [35] have previously 

shown that in uninjured axons of sensory neurons sourced from rats, mRNA from 

inflammatory and immune response genes are present. Therefore, we looked for expression 

of the corresponding genes (Ranbp1, Stat3, Creb1, Vim and Kpnb1) in the mDRG scRNA-

seq dataset and find that these are expressed in subpopulations of these neurons (Fig. 8A). 

We further find that orthologs are expressed in both the hDRG and hTN (Fig. 8A) 

suggesting that these mRNAs are potentially axonally transported in humans.

To expand our analysis more broadly, we decided to examine genes known to be axonally 

transported in healthy mammalian DRGs. mRNA in axonal compartments of sensory 

neurons have been profiled in genome-wide fashion in both mouse [69] and rats [35], and 

meta-analysis of these datasets have also been performed [47]. Gumy et al [35] generated 

microarray profiles of the axonal compartment in adult rat axons from DRG explants that 

contains the largest gene set. From this, we identified 2261 human genes which have an 

annotated, unambiguous ortholog with these rat genes (gene list presented on our website). 

These genes9 expression levels were queried in hDRG and hTN and found to be highly 

expressed in both hDRG and hTN with many genes being expressed in the 10 TPM – 100 
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TPM range, as shown in the distribution of gene abundances (Fig 8B). This analysis 

supports the conclusion that axonally transported mRNAs are conserved from rat to human.

It is obvious that some portion of the hTN gene expression is driven by Schwann cell 

transcriptomes, so we additionally looked at the set of genes that were previously identified 

to be hDRG-enriched (Fig. 4), but not putatively Schwann cell expressed (Supplementary 

Tables 3 and 4) to see if any of these genes were detectable in the hTN. While most of these 

genes were not identified as axonally transported in the rat study, we find that several of 

these genes are detectable in the hTN transcriptome (Fig 8C). The detection of these 

transcripts shows that an additional subset of hDRG transcripts that are putatively 

transported into the axonal compartment. Based on our findings, we also looked across all 

414 GTEx tibial nerve samples and identified sensory neuronal genes like PRPH and 

CALCA, and neuronal markers like RBFOX2 to be expressed at abundances > 10 TPM.

Additionally, we identified multiple weakly hDRG-enriched genes (hDRG enrichment score 

> 0.10) to be also detectable in the hTN transcriptome. While some of these genes (like 

TUBB2A) are known to be expressed in the Schwann cell transcriptome, we show that all of 

these genes are also expressed in mDRG neurons based on the mDRG scRNA-seq dataset, 

and thus the expression in the tibial nerve may be contributed by both neuronal and glial 

cells (Fig 8C). The potentially sizeable overlap of the transcriptome between neurons and 

glia in the PNS requires further study at the single cell level to deconvolute transcriptome 

contributions from different cell types.

We found that membrane protein PIRT (regulatory subunit of TRPV1) [48; 108] is localized 

only to the hDRG with no detectable expression in the hTN. Additionally, we noticed 

several sensory neuron-specific genes like MAS-related GPCRs MRGPRX1, MRGPRX3, 

and MRGPRE have low or undetectable gene expression levels in hTN, but are detected at 

high levels in the hDRG, suggesting that these mRNAs are not axonally transported. These 

make them good candidates for neuronal subpopulation level cell body biomarkers for 

mRNA in situ hybridization studies. The fold change of all human genes between the hDRG 

and hTN is detailed in the human RNA-seq table on our website.

4. Discussion

Our analysis profiled the hDRG transcriptome, and contrasted it with other human tissue 

transcriptomes and their corresponding mouse transcriptomes. By contrasting gene 

expression patterns across tissues in humans, we created comprehensive gene co-expression 

modules that take into account gene expression in DRGs. For each co-expression module, 

we identified putative transcription regulatory genes (TFs, and cofactors). For the co-

expression module with genes specifically expressed in the hDRG (and silenced in other 

analyzed tissues), we identified 13 DRG-specific TFs. We confirmed known mammalian 

sensory development-related transcription factors in DRG like DRGX, TLX3 and PRDM12 

in the adult hDRG, and additionally identified several transcription factors like POU4F1, 

POU4F3, HOXD1 and SKOR2. We comprehensively catalogued hDRG-expressed members 

of gene families known to be functionally important in the DRG: ion channels, receptors, 

kinases, and RNA binding proteins.
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One important finding of our work is that the majority of DRG-enriched genes in the 

commonly used laboratory mouse strain, C57BL/6, are accurately predicted by hDRG-

specificity suggesting strong translational capacity for the mouse model. With the exception 

of HMX1 and NOTO, all DRG-enriched TFs have conserved enrichment, which strongly 

suggests purifying selection, and supports the validity of the mouse as a preclinical model 

species for sensory biology and pain pharmacological and genetic research. Empirically, this 

is borne out as hDRG and mDRG whole transcriptome profiles cluster together in our 

analysis, unlike CNS transcriptomes (Fig. 1B).

There are several factors that distinguish our work from previous studies that used high 

throughput transcriptome analyses. Our goal was to design an analysis framework to contrast 

the steady state mRNA profile of different human and mouse tissues, with a focus on 

identifying gene expression patterns across tissues that can be relevant for understanding 

DRG biology and guide pain therapeutic discovery. We focused on unbiased gene set 

enrichment analysis in DRG-specific gene expression patterns for functional analysis, in 

contrast to Flegel et al [26] who comprehensively characterized expression patterns of gene 

families known to be important in sensory tissues a priori. Flegel et al also pooled data from 

individual DRG donors in vitro, while we separately quantify transcriptome profiles from 3 

individual DRG donors, as well as pooling them in silico where required, such that both 

measures of dispersion and central tendency can be calculated on estimated transcript 

abundances for further statistical analyses. Sapio et al [98] contrasted human and mouse 

DRG gene expression and performed functional analysis of DRG-enriched genes in the 

context of sensory neuropathies, but we additionally contrast mouse RNA-seq data from a 

homologous set of tissues to our human tissue panel, thereby building a framework to 

contrast human and mouse evolutionary divergence of expression patterns. Like the Sapio et 
al study, we identify constituent cell types where DRG-expressed genes are most likely to be 

transcribed. The most comprehensive study inclusive of the DRG for cross-tissue 

transcriptome comparisons between human and mouse was performed by the Genomics 

Institute of the Novartis Research Foundation in 2004 using standard Affymetrix 

microarrays [105]. To address these gaps and to generate our own resource for the field, we 

profiled the mRNA abundances in the hDRG by performing RNA-seq and contrasted it with 

relevant human and mouse RNA-seq datasets from public repositories, primarily the GTEx 

Consortium [17]. Our quantification is based on a genome-wide readout of transcript 

abundance not limited to a predefined set of probes, has the added benefit of low technical 

variability with respect to microarray studies [60], and unlike the Novartis study is analyzed 

from the perspective of DRG biology, and drug target discovery in the PNS.

In addition to this, we performed several analyses which characterize the hDRG 

transcriptome in several biologically relevant ways for the first time. Over and above 

identifying hDRG-specific genes, gene co-expression analysis across human tissues allowed 

us to identify gene modules with similar co-expression patterns that are putatively co-

regulated, thus taking the first step in identifying the transcriptional regulatory networks 

underlying fundamental cell types in the hDRG. Identification of hDRG-enriched 

transcription factors allowed us to further identify transcription factors that may be 

implicated in controlling such regulatory networks into adulthood. Notably, our result 

divides the well-studied mammalian pan-CNS expressed genes [19] into CNS genes that are 

Ray et al. Page 17

Pain. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



downregulated in the hDRG and those that are expressed in both the CNS and in the hDRG 

(such as DOCK3, which had been known to be expressed pan-CNS in mouse [76]). Further 

studies analyzing single cell transcriptome profiles and performing TF binding motif 

analyses are required for clarifying our understanding of these transcriptional regulatory 

networks.

Based on our comprehensively catalogued and annotated hDRG mRNA profile, we aim to 

perform several follow up studies. Since we specifically sourced L2 lumbar DRG from 

female donors, we aim to contrast mRNA profiles between both male and female DRG 

donors, to identify sex-specific differences in DRG gene expression. We aim to identify if 

there are region specific differences in the DRG transcriptome by analyzing DRGs from 

additional spinal levels and that innervate different target tissues. Finally, we aim to perform 

RNA-seq on cohorts of pain patients to identify both patient-specific and cohort-specific 

transcriptomic signatures of chronic pain, if they exist, in the hDRG. The absence of these 

datasets in the present analysis can be viewed as a weakness of this study, but, to our 

knowledge, these datasets do not exist or are not publicly available. All of our sequencing 

data is publicly available and can be searched without the need for additional analysis on our 

resource webpage. This resource can be built upon by interested researchers.

An interesting finding of our study is the presence of neuronally expressed genes in the 

human tibial nerve transcriptome, some of which are DRG-enriched and neuronally 

expressed (like PRPH and CALCA), and others which have been shown to be axonally 

transported or locally translated in mammalian sensory neurons. We interpret this to mean 

that RNAs generated in DRG neuron nuclei are potentially trafficked into peripherally 

projecting axons, likely through binding to RNA binding proteins that have previously been 

shown to be abundant in DRG axons [89; 90]. This finding opens the possibility of gaining 

insight into changes in DRG transcriptomes in humans by sampling from peripheral nerves 

(e.g. tibial nerve biopsies) or even from skin biopsies that are routinely taken for evaluation 

of epidermal nerve fiber densities in neuropathic pain patients. By comparing transcriptomes 

of peripheral tissues like skin biopsies with nerve endings, or nerve biopsies, we aim to 

eventually be able to build up a <personal genomics= model of the pain transcriptome [115] 

that can give molecular neurobiological insight into phenotype changes in DRG neurons that 

drive chronic pain. Insofar as local translation at nociceptor terminals has already been 

identified as a key regulation step in nociceptor plasticity [63–65], this insight could develop 

into a powerful tool for mechanism-based discovery in patients. Additional work is needed 

to confirm this finding, but our identification of specific transcripts that are likely to be 

axonally transported will facilitate this work. For instance, our work points to a distinct 

subset of mRNAs that can be used in in situ hybridization experiments on human nerve 

biopsies to demonstrate that these transcripts are indeed localized to distal axons.

In summary, we have described the transcriptional landscape of the hDRG in comparison to 

a large number of other tissues and comprehensively categorized similarities and differences 

to the most commonly used preclinical pain research model, the laboratory mouse. The work 

elucidates a number of previously unknown facets of sensory biology (e.g. the continuous 

adult expression of TFs known to be involved in nociceptor development) and identifies new 

potential drug targets based on unbiased transcriptomic enrichment analysis of the hDRG.
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Figure 1. Cell-type specific and cell compartment specific gene expression in the hDRG
(A) Microarray analysis of human DRG, TG, cultured Schwann cells (NHSC) and 

fibroblasts (FIBRO) reveal that over 3500 probes are expressed in vivo in DRG and TG but 

not detected in Schwann cells or fibroblasts, suggesting regulatory programs driving gene 

expression specifically in sensory neurons and SGCs. (B) Clustering of human and mouse 

tissue transcriptomes based on a Pearson9s correlation coefficient (PCC)-based distance 

measure (1 – PCC) and average linkage for tissue-restricted genes.
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Figure 2. Identification of common tissue-restricted human gene co-expression patterns in our 
analyzed tissue panel
Heatmaps with hallmark genes and potential transcriptional regulators which are 

differentially expressed in (A) neural versus non-neural tissue (B) brain tissues versus 

remaining tissue (C) CNS versus non-CNS tissue (D) DRG versus remaining tissues.
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Figure 3. Identification of hDRG enriched genes
(A) Flowchart for identifying DRG-enriched genes with conserved expression patterns in 

human and mouse. (B) Estimated density function in DRG-enriched genes for Pearson9s 

correlation across vectors of relative abundance in orthologous tissues. (C) The set of hDRG 

and mDRG enriched genes (based on the DRG enrichment score) with one-to-one orthology 

and correlated gene expression abundances (based on Pearson correlation) across our panel 

of analyzed tissues. Many of the 81 genes belong to gene families known to play important 

functional roles in nociceptors, including GPCRs, ion channels, TFs, and transmembrane 

proteins. (D) Assessment of expression of hDRG genes in mDRG scRNA-seq data [114] for 

prediction of potential sensory neuronal subtype expression.
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Figure 4. hDRG-enriched genes that potentially regulate the transcriptomic landscape
Orthologous human and mouse gene expression in the corresponding tissues is depicted as 

heatmaps. Differentially expressed genes that are hDRG-enriched or neural enriched are 

shown. Gene families characterized are TFs (A), splicing factors, mRNA transport 

molecules, and RNA binding proteins are shown (B).
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Figure 5. hDRG-enriched genes for pharmacological targets: ion channels, neuropeptides and 
cell adhesion molecules
Orthologous human and mouse gene expression in the corresponding tissues is depicted as 

heatmaps. Differentially expressed ion channels (A), neuropeptide signaling (B) and cell 

adhesion molecules (C) show several candidate genes for pharmacological targeting, 

including several neuropeptides.
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Figure 6. hDRG-enriched genes for pharmacological targets: GPCRs, phosphatases and kinases
Orthologous human and mouse gene expression in the corresponding tissues is depicted as 

heatmaps. Differentially expressed GPCRs (A), phosphatases (B) and kinases (C) show 

several candidate genes, including several receptor tyrosine kinases and phosphatases, and 

olfactory receptors for pharmacological targeting.
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Figure 7. Enrichment of NGF/trkA signaling components in hDRG
(A) The NGF neurotrophin signaling pathway, based on the KEGG database, showing 

hDRG and human tibial nerve (hTN) expression and hDRG-enrichment for members of the 

pathway. Several signaling molecules in this pathway are expressed or enriched in the hDRG 

compared to other tissues analyzed in this study (figure based on KEGG visualization with 

permission from Kanehisa Laboratories who retain copyright). KEGG protein group IDs are 

in italicized boldface, with associated genes written below the ID. If the associated gene 

name is lexically identical to the protein group ID, then it is not shown.
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Figure 8. Identification of axonally transported mRNA in the human tibial nerve transcriptome
(A) Several key genes that have been shown in the literature to be locally translated in the 

axon and retrograde transported show gene expression in hDRG and hTN samples, and also 

show expression in an mDRG neuronal subpopulation. (B) A large majority of genes with 

mRNAs that were detected to be to be axonally transported in rat DRG neurons have human 

orthologs that are expressed ( > 1.0 TPM ) in both the hDRG and hTN, as shown based on 

the estimated probability density of the relative abundances ( in TPM) in the respective 

tissues. (C) We identified several strongly and weakly enriched hDRG genes that are also 

expressed in hTN, and in mDRG neuronal subpopulations. Their potential for expression in 

non-neuronal cells is shown as the h neural proportion score.
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Table 1
Details of RNA-seq datasets used in analyses

Nucleotide databases and corresponding IDs of analyzed datasets. The hDRG samples were sequenced as part 

of the study and deposited in dbGAP/SRAdb, while the rest of the datasets were obtained from the dbGAP, 

SRAdb, GEO, ENCODE and ENA (ArrayExpress) databases. Sex of the samples and strains for the mouse 

datasets are also noted.

Tissue Human data id Mouse data id

DRG SRA: SRR3734492 (F), SRR3734493 (F), 
SRR3734494 (F)

SRA: SRR869619 (C57BL/6, F), SRR869620 (C57BL/6, F), 
SRR869621 (C57BL/6, F)

Spinal cord SRA: SRR1330498 (F), SRR1369219 (F) SRA: SRR789190 (C57BL/6, F), SRR789191 (C57BL/6, F)

Frontal cortex SRA: SRR1413562 (F), SRR1432123 (F) SRA: SRR1646331 (C57BL/6, M), SRR1646335 (C57BL/6, 
M)

Hippocampus SRA: SRR1348339 (F), SRR1348424 (F) SRA: SRR1646332 (C57BL/6, M), SRR1646336 (C57BL/6, 
M)

Nucleus accumbens SRA: SRR598196 (F), SRR598253 (F) SRA: SRR647495 (C57BL/6, M), SRR647501 (C57BL/6, M), 
SRR647498 (C57BL/6, M)

Caudate nucleus (h)/
Striatum (m)

SRA: SRR598428 (F), SRR1332856 (F) SRA: SRR1519958 (CBAxC57BL/6, F), SRR1519959 
(CBAxC57BL/6, F), SRR1519960 (CBAxC57BL/6, F)

Skeletal muscle ENA: ERR579149 (M), ERR579152 (F), 
ERR579141 (F)

SRA: SRR545833 (C57BL/6, M), SRR545834 (C57BL/6, M)

Heart ENCODE: ENCFF001RTS (F), 
ENCFF770NYA (F)

ENCODE: ENCFF001IVS (C57BL/6, pooled M+F), 
ENCFF001IVU (C57BL/6, pooled M+F)

Lung SRA: SRR820596 (F), SRR821302 (F) SRA: SRR453156 (C57BL/6, pooled M+F), SRR453157 
(C57BL/6, pooled M+F), SRR453158 (C57BL/6, pooled M
+F), SRR453159 (C57BL/6, pooled M+F)

Whole blood SRA: SRR614503 (F), SRR607042 (F) SRA: SRR1774203 (C57BL/6, M), SRR1774204 (C57BL/6, 
M), SRR1774205 (C57BL/6, M), SRR1774206 (C57BL/6, M)

Small Intestine SRA: SRR1957202 (F) ENCODE: ENCFF996KVO (C57BL/6, pooled M+F), 
ENCFF001JLL (C57BL/6, pooled M+F), ENCFF001JLQ 
(C57BL/6, pooled M+F)

Liver ENCODE: ENCFF187OKV (M) ENCODE: ENCFF001JAT (C57BL/6, pooled M+F), 
ENCFF001JAW (C57BL/6, pooled M+F), ENCFF001RTN 
(C57BL/6, pooled M+F), ENCFF001RTD (C57BL/6, pooled 
M+F)

Tibial Nerve SRA: SRR1312622 (F), SRR1312802 (F)

Olfactory epithelium SRA: SRR1646337 (C57BL/6, M), SRR1646333 (C57BL/6, 
M)
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Table 2
Conservation of expression of hDRG and mDRG enriched genes between species

Human DRG-enriched and mDRG-enriched genes are shown in pairs, when they are direct orthologues with the corresponding Pearson9s correlation. 

Darker green implies higher correlation.

 Human gene Mouse gene Pearson's R Human gene Mouse gene Pearson's R

High correlation ( >= 0.68 )

 TRIM36 Trim36 0.99

Marginal correlation ( >= 0.5 
and < 0.68 )

NDST4 Ndst4 0.67

 SUSD2 Susd2 0.88 VWA7 Vwa7 0.65

 INSM2 Insm2 0.96 MRGPRE Mrgpre 0.60

 ISL2 Isl2 1.00 STAC Stac 0.59

 PLEKHA4 Plekha4 0.99 IBSP Ibsp 0.67

 PRDM12 Prdm12 1.00 CCDC172 Ccdc172 0.64

 GFRA3 Gfra3 0.98 FABP7 Fabp7 0.56

 SLC17A6 Slc17a6 0.74 HMX1 Hmx1 0.65

 TRPV1 Trpv1 0.96 KLRG2 Klrg2 0.54

 AHNAK2 Ahnak2 0.99 TMEM233 Tmem233 0.50

 KCNK18 Kcnk18 1.00 CDK15 Cdk15 0.56

 PLEKHD1 Plekhd1 0.98 TRPA1 Trpa1 0.59

 FGF4 Fgf4 1.00 FAM70A Tmem255a 0.67

 ISL1 Isl1 1.00

 DRGX Prrxl1 1.00

Poor correlation (<0.5)

CRYBA2 Cryba2 0.33

 CLDN19 Cldn19 0.99 RDH12 Rdh12 −0.10

 PPP1R1C Ppp1r1c 0.94 TMEM239 Tmem239 0.18

 TMEM72NGFR

Tmem72 0.98 TNFSF12-TNFSF13 Tnfsf12Tnfsf13 0.06

Ngfr 1.00 GCGR Gcgr 0.11

 FAM19A3 Fam19a3 0.82 ANGPTL7 Angptl7 0.04

 MRGPRD Mrgprd 0.93 SMCP Smcp −0.22

 PRUNE2 Prune2 0.87 NEFM Nefm −0.19

 NTRK1 Ntrk1 1.00 GLDN Gldn −0.02

 OC90 Oc90 0.97 ADAMTS16 Adamts16 0.21

 P2RX3 P2rx3 1.00 KCNG3 Kcng3 0.08

P
ain. A

uthor m
anuscript; available in P

M
C

 2019 July 01.



Author ManuscriptAuthor ManuscriptAuthor ManuscriptAuthor Manuscript

R
ay et al.

P
age 37

 Human gene Mouse gene Pearson's R Human gene Mouse gene Pearson's R

 EGR2 Egr2 0.72 GPHA2 Gpha2 −0.06

 POU4F3 Pou4f3 1.00 FRMD3 Frmd3 −0.06

 KCNS1 Kcns1 0.89 A3GALT2P A3galt2 −0.10

 CHRNA6 Chrna6 1.00 ANKRD33 Ankrd33 0.03

 POU4F2 Pou4f2 1.00 CLRN1 Clrn1 0.11

 ASIC3 Asic3 0.70 KCTD19 Kctd19 −0.13

 KCND1 Kcnd1 0.93 LHFPL1 Lhfpl1 0.01

 POU4F1 Pou4f1 1.00 GPR142 Gpr142 0.25

 SCN10A Scn10a 1.00 QRFPR Qrfpr −0.06

 SCN9A Scn9a 0.93 C11orf53 1810046K07Rik −0.22

 DHH Dhh 0.99 DAPL1 Dapl1 −0.03

 GNG3 Gng3 0.86 C1QL4 C1ql4 0.06

 SFRP5 Sfrp5 0.99 SHC4 Shc4 0.31

 TLX3 Tlx3 1.00 ASCL4 Ascl4 0.15

 SNCG Sncg 0.99 GABRA6 Gabra6 −0.20

 PPM1J Ppm1j 0.93 GPX2 Gpx2 0.00

 NCMAP Ncmap 0.94 PMP2 Pmp2 0.01

 TPPP3 Tppp3 0.98 TSPAN8 Tspan8 0.29

 KCNH6 Kcnh6 0.98 KLK8 Klk8 −0.20

 DUSP15 Dusp15 0.97 ANGPT2 Angpt2 −0.15

 CHRNB3 Chrnb3 0.97 PMFBP1 Pmfbp1 −0.02

 NMB Nmb 0.99 TRPM8 Trpm8 −0.04

 AKAP12 Akap12 0.92 KCNG4 Kcng4 0.06

 UCHL1 Uchl1 0.96 TAC1 Tac1 0.47

 POLR3G Polr3g 0.95 GNAT3 Gnat3 0.10

 AVIL Avil 1.00 PHLDA2 Phlda2 0.44

 KCNA10 Kcna10 0.95 F2RL2 F2rl2 0.24

 NEFH Nefh 0.90 CRYGD Crygd NC

 TMEM132E Tmem132e 0.95 CCKAR Cckar 0.21
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 Human gene Mouse gene Pearson's R Human gene Mouse gene Pearson's R

 MPZ Mpz 0.98 TIMP4 Timp4 −0.23

 AMIGO3 Amigo3 0.95 HTR3B Htr3b 0.43

 PRPH Prph 1.00 TECTA Tecta −0.05

 TRIM67 Trim67 0.99 SPTBN5 Sptbn5 0.45

 FOXD3 Foxd3 0.97 NEFL Nefl −0.18

 STMN2 Stmn2 0.73 SERTM1 Sertm1 0.13

 PPEF1 Ppef1 0.99 TYRP1 Tyrp1 −0.06

 SKOR2 Skor2 1.00 MIA Mia −0.34

 TUSC5 Tusc5 1.00 TPBGL Gm4980 0.31

 COL28A1 Col28a1 0.98 CSHL1 Gh −0.09

 HTR3A Htr3a 1.00 FGFBP3 Fgfbp3 −0.14

 FKBP1B Fkbp1b 0.88 ALX1 Alx1 0.38

 TUBB3 Tubb3 0.96 IL31RA Il31ra −0.22

 SHOX2 Shox2 0.98 BIRC7 Birc7 0.08

 DHRS2 Dhrs2 0.96 FSTL1 Fstl1 0.32

 PTGDR Ptgdr 0.70 SERPINE3 Serpine3 −0.24

 RET Ret 0.99 NOTO Noto −0.13

 TLX2 Tlx2 1.00 CCL1 Ccl1 0.04

 PRX Prx 0.93 CST5 Cst10 −0.22

 PIRT Pirt 0.99 OTOA Otoa −0.05

 HOXD1 Hoxd1 0.98 PRL Prl −0.12

 SCN11A Scn11a 1.00 DLX3 Dlx3 0.07

 BET3L Trappc3l 1.00 KLK5 Klk5 −0.21

 CNTF Cntf 0.96 GAL Gal 0.04

 CLRN2 Clrn2 0.98 KRT27 Krt27 0.25

 IL17B Il17b 0.87 INSC Insc 0.08

 CALCB Calcb 1.00 SYNGR4 Syngr4 −0.08

 CALCA Calca 1.00 GRXCR2 Grxcr2 −0.10

 PLA2G3 Pla2g3 0.83 FXYD2 Fxyd2 −0.19
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 Human gene Mouse gene Pearson's R Human gene Mouse gene Pearson's R

 SCRT2 Scrt2 0.95 FAM178B Fam178b −0.09

MRGPRX1, MRGPRX4

Mrgprx1, 
Mrgprb4, 
Mrgprb5, 
Mrgpra3

Noted pairs >= 
0.68

VSX1 Vsx1 0.18

SOSTDC1 Sostdc1 −0.04

PRLH Prlh −0.11

CHRNA9 Chrna9 −0.12
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Table 3
Known drug - hDRG-enriched gene product interactome from DGIdb database

Only a handful of hDRG-enriched genes have known drugs that effectively target them, suggesting further 

research is required into evaluating hDRG-enriched gene products as therapeutic targets. Drug databases are 

referenced within curly braces. Numbers within curly braces indicate related Pubmed publication IDs.

Gene Role: Drug {reference: PUBMED ID/drug database}

CALCA inhibitor : OLCEGEPANT {TTD, DrugBank, 17665333};

CHRNA6

agonist: CYTISINE {DrugBank, 25517706, 11553677}; NICOTINE {DrugBank, 11006350, 19560048, 20081230, 20400469}; 
partial agonist: VARENICLINE {DrugBank, 16766716}; unknown/NA:  ETHANOL {DrugBank, 19270242, 23641218}; 
HEXAMETHONIUM {GuideToPharmacologyInteractions}; MECAMYLAMINE {GuideToPharmacologyInteractions};

CHRNA9

agonist: NICOTINE {DrugBank, 11006350, 19560048, 20081230, 20400469, GuideToPharmacologyInteractions, 
TdgClinicalTrial, TEND}; agonist/inhibitor:  TETRAETHYLAMMONIUM {DrugBank, 12824448}; unknown/NA: 
ETHANOL {DrugBank, 19270242, 23641218}; LOBELINE {DrugBank}; MUSCARINE 
{GuideToPharmacologyInteractions}; STRYCHNINE {GuideToPharmacologyInteractions};

CHRNB3
agonist: NICOTINE {DrugBank, 11006350, 19560048, 20081230, 20400469}; unknown/NA:  ETHANOL {DrugBank, 
19270242, 23641218};

HTR3A

agonist: CISAPRIDE {DrugBank, 10328995, 1600046, 9697104, 8093733}; METOCLOPRAMIDE {DrugBank, 2955843, 
GuideToPharmacologyInteractions}; antagonist: ALOSETRON {DrugBank, 10776833, 20136586, 11752352, 10354345, 
10848662, 10429744, 11060667, 18555935, 15061683, 17138606, 14596662, GuideToPharmacologyInteractions, 
TdgClinicalTrial, TEND}; ALOSETRON_HYDROCHLORIDE {ChEMBL}; AMOXAPINE {DrugBank, 1666997}; 
ARIPIPRAZOLE {DrugBank, 17848919}; ARVERAPAMIL {TTD}; CHLOROPROCAINE {DrugBank, 17016423, 
17139284}; CLOZAPINE {DrugBank, 17848919, PharmGKB}; DDP-225 {TTD}; DOLASETRON {DrugBank, 11752352, 
14635083, 1397053, 14586600, 9506240, 9341357, 8141114, 15740177, 9257083, 7493546, TTD, TdgClinicalTrial, TEND}; 
DOLASETRON_MESYLATE {ChEMBL}; GRANISETRON {ChEMBL, DrugBank, 12943486, 17093363, 11814868, 
10882387, 11752352, 17379085, 10412832, 15740177, 16044252, TTD, GuideToPharmacologyInteractions, TdgClinicalTrial, 
TEND}; GRANISETRON_HYDROCHLORIDE {ChEMBL}; LERISETRON {TTD}; MEMANTINE {DrugBank, 
11403963}; METHADONE {DrugBank, 19131665}; MIRTAZAPINE {DrugBank, 10446734, 11752352, 17587360, 
10446735, 8930006, 11607047, TdgClinicalTrial, TEND}; OLANZAPINE {DrugBank, 17848919, TdgClinicalTrial}; 
ONDANSETRON_HYDROCHLORIDE {ChEMBL}; PALONOSETRON_HYDROCHLORIDE {ChEMBL}; PROCAINE 
{DrugBank, 7539114, 11752352, TTD}; RENZAPRIDE {TTD, DrugBank, 16696817}; ROCURONIUM {DrugBank, 
10648343, TdgClinicalTrial}; TUBOCURARINE {DrugBank, 12243766, 10066903, 16723497, 1691468, 7684066, 
GuideToPharmacologyInteractions}; VORTIOXETINE_HYDROBROMIDE {ChEMBL, 21486038}; ZIPRASIDONE 
{DrugBank, 17848919}; agonist/antagonist: ONDANSETRON {ChEMBL, DrugBank, 11752352, 11919526, 17269994, 
9506240, 11972287, 10065930, 19320280, 8588861, 15740177, 11763467, 20098535, 12032025, 10517265, 
GuideToPharmacologyInteractions, TdgClinicalTrial, TEND, TTD}; binder:  LOXAPINE {DrugBank}; TRIMIPRAMINE 
{DrugBank, 8863001}; unknown/NA:  {3H};GRANISETRON {GuideToPharmacologyInteractions}; {3H};RAMOSETRON 
{GuideToPharmacologyInteractions}; {3H};(S)-ZACOPRIDE {GuideToPharmacologyInteractions}; AZASETRON 
{GuideToPharmacologyInteractions}; BILOBALIDE {GuideToPharmacologyInteractions}; CILANSETRON {DrugBank, 
16898618, 15757394, GuideToPharmacologyInteractions, TdgClinicalTrial}; COCAINE {GuideToPharmacologyInteractions}; 
DILTIAZEM {GuideToPharmacologyInteractions}; ESMIRTAZAPINE {TdgClinicalTrial}; ETHANOL {DrugBank, 
19270242}; GINKGOLIDE_B {GuideToPharmacologyInteractions}; PALONOSETRON {GuideToPharmacologyInteractions, 
TdgClinicalTrial, TEND}; PICROTOXININ {GuideToPharmacologyInteractions}; PUMOSETRAG {TdgClinicalTrial}; 
QUETIAPINE {DrugBank, 17848919}; QUIPAZINE {GuideToPharmacologyInteractions}; RAMOSETRON 
{GuideToPharmacologyInteractions}; RICASETRON {GuideToPharmacologyInteractions}; (R)-ZACOPRIDE 
{GuideToPharmacologyInteractions}; (S)-ZACOPRIDE {GuideToPharmacologyInteractions}; TAPENTADOL {DrugBank, 
10592235}; TEDATIOXETINE {TdgClinicalTrial}; TROPISETRON {GuideToPharmacologyInteractions}; VORTIOXETINE 
{GuideToPharmacologyInteractions, TdgClinicalTrial};

KCNK18

unknown/NA:  ARACHIDONIC_ACID {GuideToPharmacologyInteractions}; DESFLURANE {ChEMBL, 15562060, 
16192517, 16402123, 17227289}; ENFLURANE {ChEMBL, 16402123, 16973644, 17227289}; HALOTHANE {ChEMBL, 
11605899, 11886861, 16402123, 17227289, 20217349, 20519544}; ISOFLURANE {ChEMBL, 11605899, 16402123, 
17227289}; SEVOFLURANE {ChEMBL, 16402123, 21788314, 22226507};

MRGPRX1 unknown/NA:  CHLOROQUINE {GuideToPharmacologyInteractions};

NTRK1

agonist: AMITRIPTYLINE {DrugBank, 19549602}; antagonist: IMATINIB {DrugBank, 17579194, 15832750, 17582306, 
16052979, 16782438, TdgClinicalTrial, TEND}; inhibitor: LESTAURTINIB {TTD, TdgClinicalTrial}; REGORAFENIB 
{DrugBank, MyCancerGenomeClinicalTrial}; unknown/NA: DOVITINIB {ClearityFoundationClinicalTrial}; ENMD-2076 
{TdgClinicalTrial};

P2RX3 unknown/NA:  BZATP {GuideToPharmacologyInteractions};

QRFPR unknown/NA:  QRFP {GuideToPharmacologyInteractions};

RET
antagonist/inhibitor:  CABOZANTINIB {DrugBank, 21606412, MyCancerGenomeClinicalTrial,MyCancerGenome,TALC}; 
inhibitor:  AMUVATINIB {MyCancerGenome, TALC, TdgClinicalTrial}; AT9283 {TALC}; IMATINIB {DrugBank, 
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Gene Role: Drug {reference: PUBMED ID/drug database}

16782438, TdgClinicalTrial, TEND}; LENVATINIB {TALC}; MOTESANIB {MyCancerGenome, TALC, CIViC, 21422803}; 
PONATINIB {DrugBank, 23526464, MyCancerGenomeClinicalTrial}; REGORAFENIB {ChEMBL, DrugBank, 
MyCancerGenome, MyCancerGenomeClinicalTrial, TALC}; SORAFENIB {DrugBank, 16507829, 17016424, 15466206, 
MyCancerGenome, TTD, GuideToPharmacologyInteractions}; SORAFENIB_TOSYLATE {ChEMBL}; SUNITINIB {TALC, 
DoCM, 21470995, GuideToPharmacologyInteractions, TdgClinicalTrial, TEND}; SUNITINIB_MALATE {ChEMBL}; 
VANDETANIB {ChEMBL, MyCancerGenome, MyCancerGenomeClinicalTrial, TALC, TTD, ClearityFoundationClinicalTrial, 
DoCM, 20065189, TdgClinicalTrial}; unknown/NA:  APATINIB {GuideToPharmacologyInteractions}; AZD1480 {CIViC, 
23056499}; DOVITINIB {ClearityFoundationClinicalTrial}; ENMD-2076 {TdgClinicalTrial}; LINIFANIB 
{GuideToPharmacologyInteractions, TdgClinicalTrial};

SCN10A

blocker: DIBUCAINE_HYDROCHLORIDE {ChEMBL, 8798723, 9742684}; inhibitor:  BENZOCAINE {DrugBank, 
17967784, 17016423, 17139284, 16174788, 19661462, TdgClinicalTrial}; BUPIVACAINE {DrugBank, 20685573, 17016423, 
17139284, TdgClinicalTrial}; CHLOROPROCAINE {DrugBank, 17016423, 8418714, 17139284, TdgClinicalTrial, TEND}; 
COCAINE {DrugBank, 17016423, 17139284, TdgClinicalTrial}; DYCLONINE {DrugBank, 9476974, 17016423, 17139284, 
10355012, TdgClinicalTrial}; HEXYLCAINE {DrugBank, 17016423, 17139284, TdgClinicalTrial}; LEVOBUPIVACAINE 
{DrugBank, 11094008, 17016423, 16418020, 17139284, 10969308, TdgClinicalTrial}; LIDOCAINE {DrugBank, 17077153, 
19088384, 20585544, TdgClinicalTrial, TEND}; MEPIVACAINE {DrugBank, 17016423, 20044988, 17139284, 
TdgClinicalTrial}; ORPHENADRINE {DrugBank, 10344632}; OXYBUPROCAINE {DrugBank, 17016423, 17139284, 
19429093, TdgClinicalTrial}; PROCAINE {DrugBank, 17016423, 17139284, 9768788, 8581044, 2167458, TdgClinicalTrial}; 
PROPARACAINE {DrugBank, 9476974, 17016423, 17139284, TdgClinicalTrial}; ROPIVACAINE {DrugBank, 17016423, 
17139284, 10781449, TdgClinicalTrial}; TETRACAINE {TTD}; unknown/NA: BATRACHOTOXIN 
{GuideToPharmacologyInteractions}; DIBUCAINE {TdgClinicalTrial}; LACOSAMIDE {DrugBank, 10592235}; 
TETRODOTOXIN {TdgClinicalTrial};

SCN11A

inhibitor:  COCAINE {DrugBank, 17016423, 17139284, TdgClinicalTrial, TEND}; ZONISAMIDE {DrugBank, 20025128, 
19948168, 15511691, 18433351, 20001433, 14704463, 19557119, TdgClinicalTrial}; unknown/NA:  SAFINAMIDE 
{TdgClinicalTrial}; TETRODOTOXIN {TdgClinicalTrial};

TUBB3

inhibitor:  IXABEPILONE {DrugBank, 18321240, 18945860, 18378531, TdgClinicalTrial}; unknown/NA:  CYT997 
{DrugBank}; DOCETAXEL {ClearityFoundationBiomarkers}; EPOTHILONE_B {DrugBank, 17016423, 17139284}; 
PACLITAXEL {CIViC, 21576762, ClearityFoundationBiomarkers};
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