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Abstract Macromolecular complexes that exhibit continuous forms of structural flexibility pose a
challenge for many existing tools in cryo-EM single-particle analysis. We describe a new tool, called
multi-body refinement, which models flexible complexes as a user-defined number of rigid bodies
that move independently from each other. Using separate focused refinements with iteratively
improved partial signal subtraction, the new tool generates improved reconstructions for each of
the defined bodies in a fully automated manner. Moreover, using principal component analysis on
the relative orientations of the bodies over all particle images in the data set, we generate movies
that describe the most important motions in the data. Our results on two test cases, a cytoplasmic
ribosome from Plasmodium falciparum, and the spliceosomal B-complex from yeast, illustrate how
multi-body refinement can be useful to gain unique insights into the structure and dynamics of
large and flexible macromolecular complexes.

DOI: https://doi.org/10.7554/eLife.36861.001

Introduction

In electron cryo-microscopy (cryo-EM) single-particle analysis, biological macromolecules are embed-
ded in a thin layer of vitrified buffer and imaged in a transmission electron microscope. In principle,
this represents a single-molecule imaging technique that provides unique information about the
structure of individual macromolecular complexes. However, because the electron dose needs to be
carefully limited to reduce radiation damage, cryo-EM images are typically extremely noisy and one
needs to combine projections of many molecules supposedly in the same state to reliably recover
high-resolution information. In recent years, with the development of direct-electron detectors and
improved image processing procedures, this technique has allowed structure determination of many
macromolecular complexes with enough detail to allow de novo atomic modelling (Fernandez-
Leiro and Scheres, 2016).

Because macromolecular complexes often undergo conformational transitions as part of their
functional cycles, many cryo-EM samples contain mixtures of different conformations. This type of
structural heterogeneity may co-exist with incomplete complex formation or samples that have not
been purified to homogeneity. In order to achieve high-resolution reconstructions, the presence of
multiple different structures in the data needs to be dealt with during cryo-EM single-particle analy-
sis. Many popular image classification approaches are based on competitive refinement of a user-
defined number of references. These methods effectively divide the data into a discrete number of
subsets or classes, each of which is assumed to be structurally homogeneous, for example see
Heymann et al. (2004) and Gao et al. (2004) for early applications. Particularly useful are so-called
unsupervised classification approaches, which do not require prior knowledge about the structural
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heterogeneity in the data. Unsupervised classification of a discrete number of three-dimensional
states became possible with the introduction of maximum likelihood classification methods
(Scheres et al., 2007), which have since then been implemented in multiple image processing pack-
ages (Sorzano et al., 2004; Scheres, 2012b; Lyumkis et al., 2013; Punjani et al., 2017,
Grant et al., 2018). Using many classes, competitive multi-reference refinement approaches have
also been used to deduce energy landscapes from Boltzmann distributions of the relative number of
particle images assigned to each of the class for flexible molecular complexes like the 26S protea-
some (Haselbach et al., 2017) and the spliceosome (Haselbach et al., 2018).

However, discrete classification approaches are ultimately not well suited when macromolecular
complexes exhibit continuous molecular motions. In principle, an infinite amount of classes would be
needed to describe a continuum, and given a finite data size the number of particle images per class
would approach zero. When a limited number of classes is used instead, each class will still contain
residual structural heterogeneity. Several approaches have been proposed to deal with continuous
heterogeneity in cryo-EM data. Moreover, classification based on multi-reference refinement aims to
optimise the metric used in the target function (e.g. a marginal likelihood), which is not necessarily
the optimal classification to understand the conformational transitions in the data. An early approach
to describe continuous heterogeneity used normal-mode analysis to deduce macromolecular
motions from low-resolution maps (Tama et al., 2002), and such predictions have also been used to
guide alignment and discrete classification of cryo-EM images (Jin et al., 2014). Normal-mode re-
parametrisation has also been used to describe continuous deviations from helical symmetry in fila-
mentous protein assemblies (Rohou and Grigorieff, 2014). An approach that in principle allows one
to extract any three-dimensional state along a continuum is based on manifold embedding
(Dashti et al., 2014). In this approach, each particle image represents a point in a multi-dimensional
hyperspace, and a continuous manifold is deduced from the cloud of all points in the data set. Mov-
ing along this manifold then represents moving along the continuum of conformational changes. The
manifold would ideally be calculated from the particle images alone, but currently available methods
require prior alignment of the particle images against a single consensus reference. This may limit its
effectiveness in cases where orientational and conformational assignments are intertwined.

Perhaps, a favourable case of continuous structural heterogeneity is when the molecular motion
can be described by two or more rigid bodies that maintain their own internal structure but differ in
their relative orientations. This model relies on the observation that tertiary protein structure often
remains relatively constant upon domain movement. In case of such rigid-body motions, masked or
focused refinements provide an efficient way to obtain high-resolution reconstructions. In this
approach, at every iteration of the refinement process one masks away all density from the reference
structure that does not correspond to a user-defined part of the complex. Thereby, the variability in
the orientation of that part relative to the rest of the complex is ignored, and the part can be recon-
structed to higher resolution. This procedure allowed atomic modelling in the presence of continu-
ous variability in the relative orientations of ribosomal subunits for the yeast mitochondrial ribosome
(Amunts et al., 2014) and the Plasmodium falciparum cytoplasmic ribosome (Wong et al., 2014).
Later, this approach was improved by partial signal subtraction, where density corresponding to the
rest of the complex is subtracted from the experimental particle images prior to performing focused
refinements (Bai et al., 2015; Zhou et al., 2015; llca et al., 2015). Partial signal subtraction typically
uses a so-called consensus refinement of all particle images against a single reference, and subtracts
projections of the resulting consensus reconstruction in the directions of the consensus orientations
from the experimental images. A limitation of the focused refinement approach is that each domain
that is refined separately needs to be large enough to allow alignment of the individual subtracted
particle images. To overcome this problem, a new approach called WarpCraft was described
recently for the structure determination of transcription pre-initiation complexes with TFIIH and
Mediator (Schilbach et al., 2017). WarpCraft uses normal mode analysis on a pseudo-atomic model
of the cryo-EM map to restrain the motions between different regions in the map, thereby allowing
reconstructions of much smaller regions than in focused refinement. However, there will exist a bal-
ance between separating highly flexible structures into many pieces and the amount of data avail-
able to reconstruct each piece.

In general, dealing with both discrete and continuous structural heterogeneity in cryo-EM data
sets not only allows one to obtain higher-resolution maps, but also provides unique insights into the
conformational landscape of macromolecular complexes. The presence of continuous forms of
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structural heterogeneity represents one of the most important open questions in cryo-EM single-par-
ticle analysis. Nowadays, many groups apply combinations of different approaches to disentangle
structural heterogeneity in high-resolution cryo-EM data sets, and optimal results depend strongly
on user expertise in designing this strategy (Fernandez-Leiro and Scheres, 2016).

Here, we introduce a new approach to describe continuous structural heterogeneity in cryo-EM
single-particle data in a user-friendly and fully automated manner. This approach, called multi-body
refinement, builds on the approach of focused refinement with partial signal subtraction, and relies
on the user to divide the reconstructed map from a consensus refinement into a discrete number of
independently moving bodies. The multi-body model provides a balance between being able to
describe large conformational transitions, while still being able to average (parts of) projections from
the entire data set. During every iteration of multi-body refinement, the best relative orientation of
each body is determined for every particle image, while the signal from the other bodies is sub-
tracted on-the-fly. By keeping track of the relative orientations of all bodies for each particle image
from the previous iteration, the partial signal subtraction is continually improved. Moreover, we use
the refined relative orientations of all bodies upon convergence of the multi-body refinement to gen-
erate movies of the principal motions that exist within the data set. We first used an early implemen-
tation of our multi-body refinement to improve the density of mobile domains in the spliceosomal
tri-snRNP complex (Nguyen et al., 2015). Since then, an approach that updates the relative orienta-
tions of different parts of a molecule was also implemented by others (Schoebel et al., 2017). In this
paper, we formally introduce the multi-body approach and its implementation in rReLioN, and describe
its application to two test cases: the cytoplasmic ribosome (Wong et al., 2014) from Plasmodium fal-
ciparum, and the spliceosomal B-complex from yeast (Plaschka et al., 2017). These results showcase
how multi-body refinement can improve cryo-EM reconstructions and provide insights into the con-
formational landscape of large and flexible macromolecular complexes.

Materials and methods

Key resources table

Reagent type Designation Reference Identifier

software RELION (Scheres, 2012b) RRID:SCR_016274

Theoretical background

Multi-body refinement in ReLiON is based on the assumption that all particles in a cryo-EM data set
comprise the same macromolecular complex, that is, it is stoichiometrically homogeneous. Where
multi-body refinement deviates from the standard approach for refinement of a single structure (or
class) in ReLiION (Scheres, 2012a), is in the assumption that the macromolecular complex of interest
behaves as B separate rigid bodies. These bodies are identical in all particles, but their relative orien-
tations are permitted to vary among the particles.

In Fourier space, the model is described as follows:

B
X;=CTF; (Z Py, vb> +N;, ™
b=1

where:

e X; is the 2D Fourier transform of the projection image of the ith particle, withi =1,... ,N.

e CTF; is the 2D contrast transfer function for X;.

eV, is the 3D Fourier transform of the bth rigid body. Its 3D Fourier components are assumed
to be independent, zero-mean, Gaussian-distributed with variance 12, which varies with spatial
frequency.

« Py, represents the operation that extracts a slice out of the 3D Fourier transform of the bth
body, and ¢, defines the orientation of that body with respect to the particle, comprising a 3D
rotation and a phase shift according to a 2D translation in the image plane.

* N is independent, zero-mean Gaussian noise in the 2D complex plane with variance o2, which
varies with spatial frequency.
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In analogy to standard refinement in RELION, optimisation of a regularised, marginal likelihood
function is performed using expectation-maximisation (Scheres, 2012b). Because the sum of the B
bodies represents the same underlying 3D structure as in the standard refinement, the main differ-
ence in multi-body refinement is a B-fold increase in the number of hidden variables ¢, to describe
the orientations of all bodies in every particle image. Based on the model in Equation (1), the likeli-
hood P(X,-\({J,G)“‘)) of observing the ith experimental image given the current model parameter set

©™ and any combination ¢ of all orientations ¢, can be calculated as a multivariate Gaussian cen-
tred on the difference between the particle image and the corresponding reference projection:

2
X;— CTF; Y0 Py, Vs

2
a;

P(X,—|¢,@(n>> o exp 2

To prevent having to integrate for each body b over the orientations ¢, of all the other bodies
b' #b, we treat each body b separately and assume that the most likely orientations of the other

bodies as determined for that particle image in the previous iteration (qﬁ:,,,) are the correct ones.
Thereby, we can rewrite Eq (2) as:

2

)7 (3)

P(X16,0 )mp<

where S, is the ith particle image, from which the CTF-modulated reference projections of all the
other bodies b’ # b have been subtracted:

Siy — CTFPy, V,
2

;

B
S =X;—CTEiy Py Vy 4
ETE

By calculating all S;, on-the-fly during every expectation step, we can use Eq (3) to obtain poste-
rior distributions Ty, of all orientations ¢, being the correct one for the ith particle image given the
model estimates at the current iteration (n):

r(ll): (X|¢b7 (n>)P(¢b|®(n))
O Jy, P(Xil4,,0) P(}]00)dd

(5)

where P(¢,|0") expresses prior information about ¢,. In our current implementation, P(¢,/0")
is implemented as a Gaussian function centred on the rotations and translations of the consensus
refinement (see below), and with user-defined standard deviations.

During the maximisation step, the posterior distributions are used to obtain updated estimates

for each body Vj, and the optimal orientations ¢;, of all bodies in every particle image using:

T CTF iSi
V(n+l) Z’ 1 f¢b tgb, a? bdd)

b T CTFL
Zl 1 f([)b l(!;[P o’ d¢h+

(b;fn“) = maxl"l((;:). @)
(bb b

Thereby, multi-body refinement is closely related to focused refinement with partial signal sub-
traction (Bai et al., 2015). However, whereas partial signal subtraction is typically performed once
with a consensus model prior to starting a focused refinement, in multi-body refinement the partial
signal subtraction is performed at every iteration with updated estimates for the reconstructed bod-
ies and their relative orientations. A schematic overview of the multi-body approach is shown in
Figure 1.

Implementation details
Multi-body refinement has been implemented as a continuation of a standard 3D auto-refine job (in
the program relion_refine_mpi) and is hardware-accelerated on both CPU or GPU (Kimanius et al.,
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Figure 1. A schematic overview of multi-body refinement. After a consensus 3D auto-refinement in RELION, the three-dimensional consensus map is
split into B separate bodies using user-defined masks. In this example, B = 3 and the letters ‘M’ (orange), 'R’ (green) and 'C’ (puple) each represent a
body, and the corresponding spherical masks are shown with transparency. During multi-body refinement, one performs focused refinement for all
experimental particle images X;, with local rotational and translational searches around the orientations from the consensus refinement. The yellow
crosses in the reference projections for the focused refinements of each body indicate the centre-of-mass of each body’s mask, around which all
rotations are made.For each body, partial signal subtraction is performed with projections along the current estimates for the respective orientations of
the other B — 1 bodies. This leads to B subtracted versions of each experimental particle image during every iteration, which are aligned against
projections of the corresponding body. The resulting optimal orientations ¢; for each body are used for the partial signal subtraction in the next
iteration. Iterative alignment and reconstruction of all three bodiesis is repeated until convergence, which is when resolutions no longer improve and
changes in the relative orientations of all bodies become small.

DOI: https://doi.org/10.7554/eLife.36861.002

The following source data and figure supplements are available for figure 1:

Source data 1. The body definition STAR file.
DOI: https://doi.org/10.7554/eLife.36861.005
Figure supplement 1. Overlapping body masks.
DOI: https://doi.org/10.7554/eLife.36861.003
Figure supplement 2. Relative body orientations.
DOV https://doi.org/10.7554/eLife.36861.004
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2016). We will refer to the previous standard refinement as the consensus refinement. It provides an
initial estimate for the reconstructed density of each body, relative orientations for all particle
images with respect to the consensus reconstruction, and estimates for the resolution-dependent
variance in the experimental noise a7.

The definition of the B separate bodies is provided by the user through a dedicated metadata file
in STAR format (Figure 1—source data 1). The table in this file contains a single row for each body,
where the entry rinBodyMaskName points to a real-space mask that defines the outline of the corre-
sponding body. Because sharp edges on masks cause artefacts in the Fourier-space refinements
inside RELION, the user should provide masks with soft edges, i.e. they contain grey values between
zero outside the body, and one inside the body. Although Equation (1) only holds for non-overlap-
ping masks, our actual implementation also allows for overlapping masks between the different bod-
ies, and the program will subtract only the non-overlapping parts of the masks of the other bodies
when calculating S? for the focused refinements. For example, in Figure 1, when calculating the sub-
tracted image for the first body, the program will only subtract projections of the second body cor-
responding to the volume that does not overlap with the first body; and of the volume of the third
body that does not overlap with the first or the second body (Figure 1—figure supplement 2A).
Likewise, when calculating subtracted images for the second body, only the volume of the first body
that does not overlap with the second will be subtracted, and only the volume of the third body that
does not overlap with the first or second body will be subtracted, etc. Because bodies that are
higher up in the STAR file are subtracted first, and only non-overlapping parts of subsequent bodies
are subtracted, one should position larger bodies above smaller ones in the STAR file. This treatment
of overlapping bodies results in an overhead in required computer memory, as besides the 3D Four-
ier transforms of the B bodies, one also needs to store Fourier transforms of their non-overlapping
parts. Therefore, if all bodies overlap with all other bodies, B> 3D Fourier transforms are stored in

memory (see Figure 1—figure supplement 2B).

The optimal orientations o,’>;fn“> for all bodies of all particle images are stored in additional tables

(called data_images_body_b, with b being the body number) in the _data.star file that is written out
at every iteration. These orientations are defined as residual rotations and translations that need to
be applied on top of the orientations from the consensus refinement. Internally, every body is recon-
structed with the centre-of-mass of its mask in the centre of the particle image box, and rotations
are performed around this centre. The entry called rinBodyRotateRelativeTo in the bodies STAR file
defines the vector around which the rotations of the corresponding body are made: from its own
centre-of-mass to the centre-of-mass of the body defined by this entry. For example, according to
the STAR file defined in Figure 1—source data 1, the letters ‘M’ and 'R’ rotate relative to each
other, while the letter 'C’ rotates relative to the letter ‘R’. This description of rotations permits mean-
ingful priors, P(¢b|®(“)), for the residual rotations of the bodies: the entries rinBodySigmaAngles
define the standard deviation (10 degrees for the bodies defined in Figure 1—source data 1) of a
Gaussian-shaped prior on the Euler angles of the three bodies. Thereby, larger rotations are down-
weighted and rotational searches are limited from —30 to +30 degrees (i.e. £3 times the standard
deviation) around the consensus rotation for each of the three Euler angles. To avoid ambiguities in
rotations where the second Euler angle (rlnAngleTilt) is close to zero, the stored Euler angles repre-
sent a rotation around a vector that is orthogonal to the vector between the centres-of-mass of the
bodies. Thereby, the residual rotations are all around the Euler-angle values rinAngleRot = O, rInAn-
gleTilt = 90 and rIinAnglePsi = O (see Figure 1—figure supplement 3). The entries for rinBodySig-
maOffset in the bodies STAR file define the standard deviation (in pixels) of a Gaussian prior on the
translational offsets for each of the bodies, which again are relative to the translations for the entire
particles as defined in the consensus refinement.

Running as a continuation of a consensus 3D auto-refinement, the multi-body refinement will esti-
mate the power of the signal 12 for each body from the Fourier shell correlation (FSC) between two
independently-refined half-sets of the data. Because the individual bodies occupy a relatively small
volume in the particle image box, the option "-—solvent_correct_fsc" is activated by default. This
option performs an internal correction to the FSC curves that accounts for the convolution effects of
the mask, much like the post-processing job-type does in the standard RreLioN approach (Chen et al.,
2013). The multi-body refinement approach is started from user-defined initial sampling rates for
the rotations and translations, which are automatically increased during the refinement process. At

Nakane et al. eLife 2018;7:e36861. DOI: https://doi.org/10.7554/eLife.36861 60f 18


https://doi.org/10.7554/eLife.36861

LI FE Structural Biology and Molecular Biophysics

every iteration the algorithm assesses whether the resolution is still increasing and whether the orien-
tational assignments are still changing. The orientations of an individual body will be kept fixed once
the angular sampling becomes finer than the estimated accuracy of the rotations for that body, and
the algorithm converges once the resolutions no longer increase, changes in the orientations
become small, and the sampling rate is finer than the angular accuracies of all bodies.

In case of extensive structural heterogeneity, the initial extent of the body masks will be hard to
assess in blurry parts of the consensus reconstruction. In such cases, an initial multi-body refinement
may be run with a relatively large mask that comprises the entire blurry region of each body. The
resulting maps after the first multi-body refinement may then allow the definition of tighter masks
for one or more of the bodies. To allow a second multi-body refinement to proceed from the
higher resolution reconstructions of the bodies in the first multi-body refinement, one can then pro-
vide an optional column in the body STAR file called rinBodyReferenceName, which points towards
the initial reference map for each of the bodies. An example of this is given below for the spliceo-
some test case.

Analysis of multi-body orientations

Besides potentially improved densities for the individual bodies, multi-body refinement also outputs
the optimal orientations ¢;, for all bodies and for all particle images in the data set. This information
can be used to assess the molecular flexibility in the macromolecular complex. To this end, we have
implemented a program called relion_flex_analyse. This program has two main applications. Firstly,
it can write out subtracted images which may be useful in subsequent focused refinements or classifi-
cations outside the framework of multi-body refinement. To allow smaller image sizes and more
meaningful priors in the subsequent refinements, the subtracted images are centered on the pro-
jected centre-of-mass of the remaining density after subtraction.

Secondly, the relion_flex_analyse program can also perform a principal component analysis on
the relative orientations of the bodies of all particle images in the data set. For the principal compo-
nent analysis, the three Euler angles describing the relative orientations of the bodies are taken into
account, together with the two translations in the projection plane. In order to compare the two
translational offsets in different projection directions, they are converted into three translations on
the three-dimensional Cartesian grid of the reconstructions by setting the translations along the pro-
jection direction to zero. Thereby, principal component analysis is performed on six variables per
body. The corresponding columns in the principal component analysis are normalised by the
squared difference of the intensity values in the maps for each of the bodies after rotating them one
degree or translating them one pixel in each of the directions. For each specified eigenvector, the
program then outputs a user-specified number of maps (M = 10 by default). This is done by dividing
the histogram of the amplitudes along the eigenvector of interest into M equi-populated bins,
that is each bin contains 1/Mth of the particle images. For each bin, the same reconstructed densi-
ties of the B bodies are positioned relative to each other according to the rotations and translations
that correspond to the centre amplitude of that bin, and a combined map is generated by adding all
repositioned body densities together. This generates M combined maps for the entire complex with
different relative orientations of the bodies, each corresponding to the median orientations for
1/Mth of the particle images in the data set. These maps can then be used to generate a movie that
visualises the motion along that eigenvector. Movies can be made, for example, using the "Volume
Series’ utility in UCSF Chimera (Pettersen et al., 2004) or using CueMol (www.cuemol.org), which
we used to generate the images and movies in this paper. When analysing these movies, it is useful
to consider that the principal components describe the largest variations in the data along orthogo-
nal degrees of freedom, and that general motions in the data are formed by linear combinations of
multiple principal components. Alternatively, the program can also be used to output a subset of
particle images within a user-specified range of amplitudes along one of the eigenvectors. The latter
can be used to classify particle images based on the extent of a specific motion in the data set. An
example of the latter is shown below for the ribosome test case.
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Results

A ribosome test case

The multi-body refinement approach was tested on two previously published, experimental data
sets. The first data set comprises 105,247 particle images of a Plasmodium falciparum ribosome
bound to the drug emetine (Wong et al., 2014). This data set is available as entry 10028 on the
EMPIAR data base (ludin et al., 2016) and is used as a standard benchmark for retion. We used the
so-called polished particle images, that is particle images after movie-refinement and radiation dam-
age weighting in ReLION (Scheres, 2014).

The consensus refinement was started from a 60 A low-pass filtered version of EMDB entry 2660,
and yielded an overall resolution estimate of 3.2 A after standard ReLION post-processing to account
for the solvent effects of the mask on the FSC curve (Chen et al., 2013). The estimated B-factor for
sharpening this map was —61 A2 (Rosenthal and Henderson, 2003). In accordance with results
described previously (Wong et al., 2014), the consensus map showed excellent density for the large
ribosomal subunit, but the density was worse in the small subunit. In particular, the so-called head
region of the small subunit exhibited much more fuzzy density than the rest of the complex. There-
fore, we decided to split the ribosome into three bodies, which we named ‘LSU’ for the large
subunit; ‘SSU’ for the small subunit without the head; and 'head’ for the head region (Figure 2A).
The corresponding masks were made using a 30 A low-pass filtered version of the consensus map to
define the boundary with the solvent region, and relied on available atomic models (PDB entries
3J79 and 3J7A) to determine the boundaries between the bodies. By placing soft-edges with a
width of 11 A on the boundaries of the masks, all three bodies overlapped with each other.

In a first multi-body refinement, the standard deviation of the Gaussian prior on the rotations was
set to 10 degrees for all three bodies, and the standard deviations on the body translations were all
set to two pixels (2.7 A). These values represent an estimate of the amount of flexibility present in
the different domains. Based on the domain architecture of the ribosome, the LSU and SSU were set
to rotate with respect to each other, while the head was rotating with respect to the SSU. Multi-
body refinement was started using an initial angular sampling rate of 1.8 degrees and an initial trans-
lational sampling rate of 0.25 pixels (0.33 A). The choice for the initial angular sampling rate reflects
a compromise between computational cost and a sufficiently fine sampling to describe the estimated
flexibility. The initial translational sampling rate is similar to the estimated accuracy of the transla-
tions in the consensus refinement. Convergence of the multi-body refinement occured after 16
iterations, which took 16 hr on a single GPU work station with four nvibia 1080Ti GPUs, a 3.2 GHz
Intel Xeon CPU, and 256 GB of RAM. Upon convergence, the solvent-corrected resolution estimates
for the three bodies were: 3.1 A for the LSU, 3.2 A for the SSU, and 3.7 A for the head. To test the
influence of the mask boundaries on the results, we repeated the multi-body refinement with masks
where the boundaries between the three bodies were defined by spheres that were manually posi-
tioned using the Volume Eraser tool in UCSF Chimera (Pettersen et al., 2004) to approximate the
boundaries between the LSU, SSU and head. To test the influence of the standard deviations of the
priors on the rotations and translations of the bodies, we also repeated multi-body refinement with
standard deviations of 5 and 20 degrees on the rotations, and standard deviations of 1 pixel and 5
pixels on the translations of all three bodies. For all repeated multi-body refinements, the estimated
resolutions in the three bodies did not differ by more than a single resolution shell (<0.1 A) from the
first multi-body-refinement, indicating that the approach is relatively robust to the choice of these
parameters.

To assess the improvement in reconstructed density after multi-body refinement, we post-proc-
essed the maps after the consensus refinement using the three body masks and compared the
resulting maps with the post-processed maps of the three bodies after multi-body refinement
(Figure 2B,C). The same B-factor of —61 A% was applied to all maps. The improvements for the LSU
and SSU were modest, with average resolution in the LSU improving from 3.2 to 3.1 A, and in the
SSU from 3.3 to 3.2 A, and visual inspection of the maps did not reveal major improvements (not
shown). The improvements for the head were larger. In this region, the average resolution improved
from 4.0 to 3.7 A, and the reconstructed density improved considerably upon visual inspection. In
particular, in the region furthest away from the centre of the ribosome, the reconstructed density for
the head improved to such an extent that previously unmodelled regions became interpretable.
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Figure 2. The ribosome test case. (A) The ribosome consensus map with the three transparent body masks (LSU,
SSU and head) superimposed. (B) Slices through the density of the three bodies after the consensus refinement
(top) and after multi-body refinement (down). (C) Local resolution estimates (in A) calculated in rReLion after the
consensus refinement (left) and after multi-body refinement (right). (D) The contributions of all eigenvectors to the
variance. The first eigenvector, for which the maps at the extremes are shown in panel F, is highlighted in red. (E)
Histograms of the amplitudes along the first and second eigenvectors for all particle images in the data set. The
histogram of the amplitudes along the first eigenvector shows a bimodal distribution. The data set was split into
two subsets: particle images with the amplitude along the first eigenvector smaller than —14 (red arrow) and
particle images with that amplitude larger than —14 (blue arrow). (F) Refined maps for the two subsets in the same

colors. As observed in the movie along the first eigenvector, the SSU rolls with respect to the the LSU and the
head swivels with respect to the SSU, cf Video 1.

DOI: https://doi.org/10.7554/eLife.36861.006

The following figure supplement is available for figure 2:

Figure supplement 1. Fourier shell correlation curves calculated from independently refined halves of the data for
the three bodies after consensus refinement (dashed lines) and after the second multi-body refinement (solid
lines).

DOI: https://doi.org/10.7554/eLife.36861.007
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Application of the principal component analysis in the relion_flex_analyse program revealed that
approximately 30% of the variance in the rotations and translations of the three bodies is explained
by the first two eigenvectors (Figure 2D). Movies of the reconstructed body densities repositioned
along these eigenvectors reveal that the first eigenvector corresponds to a rolling-like motion of the
SSU with respect to the LSU and a concomittant swiveling of the head (Video 1), whereas the
motion along the second eigenvector is more reminiscent of a ratchet-like motion of the SSU with
respect to the LSU together with a displacement of the head (Video 2). With the exception of the
amplitudes along the first eigenvector, histograms of all other amplitudes were monomodal. For the
histogram of the amplitudes along the first eigenvector, a shoulder was visible on the negative side
of the histogram, indicating that the structural heterogeneity along the first eigenvector may not be
continuous. We then used the relion_flex_analyse program to write out two separate STAR files with
11,431 particle images for which the amplitude along the first eigenvector is less than —14, and
93,816 particle images for which the amplitude along the first eigenvector is greater than —14
(Figure 2E). Separate refinements of these subsets yielded overall resolution estimates of 4.4 and
3.2 A, respectively. The differences between the two maps reveal similar differences in the orienta-
tion of the SSU and head as observed in Video 1 (Figure 2F). This sort of discrete structural hetero-
geneity had remained undetected in our previous analysis (Wong et al., 2014), and re-running
conventional 3D classifications on this data set (with six or eight classes, and with exhaustive, local or
no alignments of the particle images after the consensus refinement; results not shown) did not yield
class reconstructions with meaningful differences between them.

A spliceosome test case
The second data set on which we tested multi-body refinement comprised 327,490 polished particle
images of a spliceosomal B-complex from yeast (Plaschka et al., 2017). With the submission of this
paper, we also submitted this data set to the EMPIAR data base, where it is now available under
entry 10180. In the original study describing this data set (Plaschka et al., 2017), different parts of
the complex were refined separately using focused refinement with partial image subtraction. Here,
we used four masks that were generated in the original study for multi-body refinement: ‘core’ for
the centre of the tri-snSNP structure, ‘foot’ for the tri-snSNP foot domains, 'helicase’ for the helicase
domain, and 'SF3b’ for the SF3b subunits (Figure 3A). Note that the centre of the tri-snSNP struc-
ture is often called ‘body’ in the spliceosome literature, but we chose to call it the core to prevent
confusion with the more general definition of body in this paper. The body masks were generated
using a combination of the Volume Eraser tool in UCSF Chimera (Pettersen et al., 2004) and
relion_mask_create. The masks were large enough to enclose the blurred, weak densities at the
periphery of the complex, that is in the foot, helicase and SF3b domains. To reduce memory con-
sumption, polished particle images used in the
previous study (Plaschka et al., 2017) were
down-sampled to 1.7 A per pixel and re-win-
dowed into a 320 pixel box. All refinements -« head
were perfomed  without Fourier space 3
padding by specifying the "—pad 1" option.
The consensus refinement was started from
the B complex map in (Plaschka et al., 2017),
which was low-pass filtered to 40 A. The overall
resolution after the consensus refinement, using
a mask around the entire complex for post-proc-
essing, was 4.3 A. The estimated B-factor for

map sharpening was —148 A2. When postpro-  Ribosome ;
cessed with individual masks for the four bodies, Eigenvector #1
the core, foot, helicase and SF3°b gave resolu-
tions of 3.9, 4.2, 4.6 and 9.2 A, respectively. Video 1. Repositioning of the reconstructed body
Consistent with these values, the density for the densities along the first eigenvector for the ribosome
SF3b was weak and blurred (Figure 3C,D). case reveals a rolling-like motion of the SSU with

For multi-body refinement, the core and the respect to the LSU and a concomitant swiveling of the
foot were set to rotate against each other. The head.
helicase and the SF3b were set to rotate relative  DOI: https://doi.org/10.7554/elife.36861.008
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to the core. Based on similar considerations as for the ribosome case, the initial angular sampling
rate was set to 1.8 degrees, and the initial translational sampling range and rate were set to three
pixel (5.1 A) and 0.75 pixel (1.3 A), respectively. The standard deviations of the angular and the
translational prior were set to 10 degrees and two pixels (3.4 A) for all bodies. The multi-body refine-
ment converged in 15 iterations, which took 33 hr on the same GPU workstation as used for the
ribosome case. Upon covergence, the estimated resolutions for the core, foot, helicase and SF3b
domains were 3.8, 4.0, 4.5 and 5.1 A, respectively.

Next, we ran a second round of multi-body refinement using tighter masks that were generated
from the body reconstructions from the first multi-body refinement. These masks were generated by
low-pass filtering the reconstruction for each body from the first multi-body refinement to 30 A,
extending the binarised maps by 10 pixels, and adding a soft edge of 5 pixels. In addition, we used
7 A low-pass filtered maps of each body obtained in the first multi-body refinement as initial referen-
ces for the second run using the rinBodyReferenceName label in the body STAR file. The second
multi-body refinement converged in 12 iterations, and took 40 hr on our GPU workstation. The reso-
lutions of the core, foot and helicase remained essentially the same as in the first multi-body refine-
ment (3.7, 4.0 and 4.5 A, respectively), while that of the SF3b improved to 4.4 A (Figure 3C;
Figure 3—figure supplement 1). Despite the reasonable overall resolutions for each of the bodies,
the densities for the U4 Sm ring within the helicase domain and the LSm ring and Rse1’s B-propeller
B (BPB) within the SF3b domain remained relatively fuzzy, indicating remaining flexibilities and/or
compositional heterogeneity within these bodies.

In an attempt to address the remaining structural heterogeneity within the SF3b body, and as an
illustration of how multi-body refinement can be combined with existing refinement approaches, we
then used the relion_flex_analyse program to subtract the other three bodies from all experimental
particle images, and performed a focused 3D classification on the SF3b without alignments. Using
six classes, we identified a single class (containing 126,186 particle images) with better defined den-
sity than the other classes. A separate refinement of this class led to a SF3b map with improved local
resolution of its central region (Figure 3—figure supplement 2) and an overall resolution of 4.0 A.
Subsequent focused refinements and classifications with partial signal subtraction on only the LSm
ring did not yield better resolution maps (not shown).

We also examined the effect of wider search ranges for the rotations and translations of the bod-
ies by changing the standard deviation of the angular and the translational priors to 20 degrees and
4 pixels. The resulting resolutions were within one or two resolution shells (<0.5A) of those with the
default values of 10 degrees and 2 pixels, which is consistent with the observations for the ribosome
dataset.

Principal component analysis by relion_flex_analyse revealed that the first two components
describe approximately 30% of the variance in the rotations and translations (Figure 3D). In contrast
to the ribosome discussed above, the histograms were unimodal, suggesting that these motions
were of a continuous nature. The first component corresponded to a rocking motion of the SF3b
over the core (Video 3). The second represented concerted rocking of the helicase and SF3b
(Video 4). Interestingly, the latter motion may resemble an early phase of the transition from the B
complex (this structure) to the B’ complex, where the SF3b regions moves towards the U6 snRNA
ACAGAGA stem to form the spliceosome active site (Yan et al., 2016; Rauhut et al., 2016;
Plaschka et al., 2017).

Finally, we compared the results from multi-body refinement with those from discrete classifica-
tion. The two largest classes of a 3D classification run with eight classes (keeping the orientations
fixed at those determined in the consensus refinement) comprised 40% and 27% of the particle
images. These two classes represent a similar motion as identified by the first component in the
relion_flex_analyse program (Figure 3—figure supplement 3). However, even for the largest class,
the local resolutions for the SF3b, the core and the foot domain were lower than those obtained
using multi-body refinement (Figure 3—figure supplement 1).

Discussion

The main assumption in conventional cryo-EM single-particle analysis is that every experimental par-
ticle image is a two-dimensional projection of a common three-dimensional structure. This assump-
tion no longer holds in the presence of continuous structural heterogeneity in the data set. Instead,
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multi-body refinement assumes that the continu-
ous structural heterogeneity can be modelled as
independent movements between rigid bodies,
that is bodies that adopt the same structure but
have different relative orientations among the
data set. This assumption is probably reasonable
for many macromolecular complexes, as tertiary
protein structure often remains intact upon
changes in quaternary structure. This is because
within individual protein domains, the chemical
environment of each amino acid does not change
much upon movements of the entire domain. A
major advantage of the multi-body model is that
it allows one to use the entire data set for the
reconstruction of each body, that is no subdivi-
ribosome case reveals a ratchet-like motion of the SSU >0 of the data I,S required to describe the struc-
with respect to the LSU together with a displacement tural heterogeneity. The usefulness of this model
of the head. is illustrated by the observation that multi-body
DO https://doi.org/10.7554/eLife.36861.009 refinement yields marked improvements over
consensus refinement in the maps of flexible
domains for both the ribosome and the spliceo-
some. For both test cases, parts of the consensus
map that were not interpretable in terms of an atomic model improved to resolutions around 4 A
after multi-body refinement. For the ribosome case, conventional 3D classification into a discrete
number of classes turned out to be difficult and following standard procedures did not yield insights
into the structural heterogeneity present. For the spliceosome case, multi-body refinement provided
better maps than those obtained by conventional classification into a discrete number of classes.
This is explained by the lower number of particle images that contribute to each class in discrete
classification, whereas multi-body refinement allows the use of all particle images for each of the
bodies. Moreover, in the presence of continuous heterogeneity, each discrete class will still corre-
spond to a mixture of different structures. Therefore, we anticipate that multi-body refinement will
be a useful tool in generating atomic models for domains that adopt multiple different orientations
with respect to the rest of the complex.

Whereas the internal structure of protein domains may change little when a body moves relative
to a neighbour, significant changes in the chemical environment are expected for amino acids at the
interfaces between the bodies. As one domain moves relative to another, continuous or multiple dis-
crete conformational changes may occur at the interface. Ultimately, these changes may also affect
the internal structure of the protein domains, in which case multi-body refinement would no longer
be justified, but in general the structural variability will be largest at the interfaces. Our implementa-
tion allows the definition of overlapping body masks. Thereby, each body can be defined to include
the interface with its neighbouring bodies. Provided this interface density is not large enough to
affect the particle image alignments, the resulting blurry density may help to better understand the
nature of the structural variability at these interfaces.

Our implementation outputs a separate reconstruction for each of the bodies, which may then be
used to build atomic models for the different bodies. Often, the experimentalist may want to com-
bine these separately built atomic models into a single atomic model describing the entire complex.
Such a combined atomic model can then be used to make figures for publication, or for submission
to the Protein Data Bank. For example, in the original study on the spliceosomal B-complex, a com-
bined atomic model was generated by rigid-body fitting the models that were built into maps result-
ing from separate focused refinements with partial signal subtraction, and a similar procedure could
be used after multi-body refinement. However, we note that this representation of a single atomic
model for the entire complex is in principle not supported by the data. Besides creating a false
impression of structural homogeneity, in particular the conformations of residues at the interfaces of
the rigid-body fitted atomic models may not reflect the true interface with the relative orientation of
the bodies observed in the combined model. For example, a helix connecting the core of the spli-
ceosome and the LSm ring of the SF3b body (marked by asterisks in Figure 3D,E,G) looks broken in

Video 2. Repositioning of the reconstructed body
densities along the second eigenvector for the
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Figure 3. The spliceosome test case. (A) The four body masks used for the first splicesome multi-body refinement are shown in semi-transparent
colours on top of the consensus map on the left; the resulting density after the first multi-body refinement and the masks used for the second multi-
body refinement are shown on the right. (B) Slices through the density of the four bodies after the consensus refinement (top) and after multi-body
refinement (down). (C) Local resolution estimates (in A) calculated in RELION after the consensus refinement (left) and after multi-body refinement
(right). (D) The contributions of all eigenvectors to the variance. The second eigenvector, for which the maps at the extremes are shown in panel E, is
highlighted in red. (E) Motion represented by the second eigenvector, cf Video 4. The helix that connects the core of the spliccosome and the LSm

ring of the SF3b body that gets broken during the repositioning of the bodies in the eigenvector movies and the combined maps is indicated with an
asterisk (also see main text).

DOI: https://doi.org/10.7554/eLife.36861.010
The following figure supplements are available for figure 3:

Figure supplement 1. Fourier shell correlation curves calculated from independently refined halves of the data for the four bodies after consensus
refinement (dashed lines), for the largest class of a discrete 3D classification (dotted lines) and after the second multi-body refinement (solid lines).
DOI: https://doi.org/10.7554/eLife.36861.011

Figure supplement 2. Local resolution estimates (in A) for the SF3b region after multi-body refinement (left) and after subsequent partial signal
subtraction in relion_flex_analyse followed by focused classification and refinement of the best class (right).

DOI: https://doi.org/10.7554/elife.36861.012

Figure supplement 3. The largest two classes of a 3D classification with eight classes (right) represent a similar motion as identified by the first
principal component from the multi-body approach (left).

DOI: https://doi.org/10.7554/eLife.36861.013

combined multi-body reconstructions, which is chemically unfeasible. This is where the rigid body
assumption no longer holds. In reality, the interface should rearrange to keep the helix intact. As
many different interface structures may exist in the data set, reconstruction of all these different den-
sities and the generation of atomic models for these may not be possible. One could propose to
keep the atomic models for each of the bodies separate, as this would prevent the impression of a
well-defined structure at the interface. However, such a solution would still not reflect the variability
in conformations of residues at the interface, and would be more difficult to analyse by non-experts.
How to tackle the problem of reflecting continuous structural heterogeneity with atomic models will
require community-wide discussion.
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Multi-body refinement improved the maps for
flexible parts of both the ribosome and spliceo-
some test cases. Similar improvements can also
be achieved by existing focused refinement or
classification approaches with partial signal sub-
traction. In fact, in the original study describing
the spliceosomal B-complex, parts of the SF3b
region were reconstructed to higher resolutions
(3.9 A) than achieved in multi-body refinement
4.4 A). Multi-body refinement has the advantage
Spliceosome of iteratively improving the partial signal subtrac-
Eigenvector #1 tion, whereas focused refinement and classifica-
tion is typically done with fixed subtracted
particle images. On the other hand, combining
multiple focused classifications and/or refinement

: ) ) runs, each with its own user-specified samplin
spliceosome case reveals a rocking motion of the SF3b . P . piing
) and mask parameters, is more flexible than the
domain over the core.

DOI: https://doi.org/10.7554/eLife. 36861.014 fully automated multi-body refinement, - but
requires more user expertise. To combine the
advantages of both approaches, the relion_flex_-
analyse program can output subtracted images
according to the iteratively refined relative orientations from a multi-body refinement. The resulting
subtracted particle images can then be used in subsequent focused classifications and/or refine-
ments. An additional advantage of this program over previously existing subtraction tools in RELION is
the centering at the projected centre-of-mass of the subtracted particle images, which allows the
use of more meaningful priors and smaller box sizes. The use of this procedure was illustrated for
the SF3b region of the spliceosome, where focused classification and refinement after subtraction in
the relion_flex_analyse program led to a resolution of 4.0 A, which is close to the resolution of 3.9 A
obtained for this region in the original study.

Besides improved reconstructed density for flexible domains, multi-body refinement also provides
information about the relative orientations of all bodies for every particle image in the data set. The
proposed principal component analysis on the relative rotations and translations of all bodies allows
convenient visualisation of the principal motions that exist within the data set through the generation
of movies. These movies provide the user with unique insights into how different bodies move with
respect to each other, which bodies move together with others, etc. However, we do again point
out that (as outlined above for the analysis of atomic models) densities at the interfaces between dif-
ferent bodies are not well-defined in these mov-
ies. For the ribosome, analysis of the movies for
the first two eigenvectors revealed the presence
of the typical ribosome motions of rolling and
ratcheting of the SSU relative to the LSU. In
addition, the presence of a bimodal histogram
for the amplitudes along the first eigenvector
h‘é”case indicated the presence of non-continuous het-
erogeneity in the rolling motion. In the general
core agy A : case of discrete heterogeneity, the movies gen-
| s erated from such non-unimodal histograms will
display a discontinuous jump from one confor-
Spliceosome : mation to the other. Subsequent classification of
Eigenvector #2 the particle images based on the amplitude
along the first eigenvector was also used to
obtain two separately refined maps of the two

Video 3. Repositioning of the reconstructed body
densities along the first eigenvector for the

Video 4. Repositioning of the reconstructed body

densities along the second eigenvector for the states, which confirmed the motion observed
spliceosome case reveals a concerted rocking motion along that eigenvector. For the spliceosome,
of the helicase and SF3b over the core. rotations of the helicase and SF3b with respect
DOI: https://doi.org/10.7554/eLife.36861.015 to the core were observed. Interestingly, the
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motion corresponding to the second eigenvector resembles an early phase of the transition from the
B complex to the B’ state in the spliccosome functional cycle (Yan et al., 2016; Rauhut et al.,
2016; Plaschka et al., 2017). These results illustrate that the movies generated by the relion_flex_a-
nalyser program may be useful in exploring biologically relevant molecular motions.

One of the main limitations of multi-body refinement, and focused refinement in general, is that
when the size of individual bodies decreases the signal becomes too weak for reliable alignment of
the subtracted particle images. Refinement of macromolecular complexes with molecular weights
below 100 kDa becomes progressively difficult, although smaller complexes have been refined, and
phase-plate imaging (Khoshouei et al., 2017) can help to reduce the size limits. In the case of per-
fect partial signal subtraction, similar limits on the minimum size of the bodies are expected for
multi-body refinement. In practice, partial signal subtraction will contain errors, and larger bodies
may be required. The smallest body presented in this paper, the foot of the spliceosome, has a
molecular weight of approximately 290 kDa. The current implementation allows keeping very small
bodies fixed (by setting the standard deviations on their rotational and translational priors to zero).
Thereby, at least the consensus density can be subtracted for the alignment of the other bodies.

Ultimately, one would aim to introduce dependencies between the alignments of bodies, such
that simultaneous alignment of many small bodies would become feasible. This would allow model-
ling of much more complicated forms of continuous structural heterogeneity. The approach in Warp-
Craft represents a step in that direction. WarpCraft could be considered as a many-body approach,
where the flexibility is re-parametrised using normal mode analysis. This reduces the number of
degrees of freedom from five per body (three Euler angles and two in-plane shifts) to the number of
normal modes considered, regardless of the number of bodies. Consequently, WarpCraft may per-
form well in cases where the structural flexibility can be described by a few correlated local motions,
as was probably the case for the Mediator complex (Schilbach et al., 2017). However, when multiple
independently moving bodies are present, one again needs many normal modes to describe the
entire conformational landscape, and the advantage of the normal-mode re-parametrisation would
disappear. Moreover, the presence of domain rotations, which are highly non-linear deformations, as
well as the presence of discrete heterogeneity are difficult to describe by normal modes. In such
cases, provided the individual bodies are large enough, one would expect the multi-body approach
to perform better than the approach implemented in WarpCraft. Probably, both approaches will suf-
fer from similar problems at the boundaries between bodies that undergo large motions, as many
data sets will not contain sufficient information to describe those. Currently, the exploration of new
re-parametrisation schemes that allow modelling of commonly occurring types of flexibility in macro-
molecular complexes is a topic of active research in our groups.

Meanwhile, the multi-body approach presented here offers a convenient tool to improve the
reconstructed density of flexible regions in macromolecular complexes that can be described as mul-
tiple moving rigid bodies, and to provide unique insights into the nature of these movements. The
computer programs described in this paper will be distributed as part of release 3.0 of reLioN, which
is completely free for any user. As this software is distributed as open-source, others can contribute
their own modifications and improvements of the presented algorithms, as has happened for partial
signal subtraction approaches in the past (Zhou et al., 2015; llca et al., 2015; Schoebel et al.,
2017). Based on the observations described here, we anticipate that multi-body refinement, possibly
combined with existing classification and refinement approaches, will be a useful tool to extract
more information from cryo-EM data sets on macromolecular complexes exhibiting continuous struc-
tural heterogeneity.
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