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Abstract

Structural variations (SVs) are the largest source of genetic variation, but remain poorly
understood because of limited genomics technology. Single molecule long-read sequencing from
Pacific Biosciences and Oxford Nanopore has the potential to dramatically advance the field,
although their high error rates challenge existing methods. Addressing this need, we introduce
open-source methods for long-read alignment (NGMiiRs://github.com/philres/ngnmland SV
identification (Sniffleshttps://github.com/fritzsedlazeck/Sniff)ethat enable unprecedented SV
sensitivity and precision, including within repeat-rich regions and of complex nested events that
can have significant impact on human disorders. Examining several datasets, including healthy and
cancerous human genomes, we discover thousands of novel variants using long-reads and
categorize systematic errors in short-read approaches. NGMLR and Sniffles are further able to
automatically filter false events and operate on low amounts of coverage to address the cost factor
that has hindered the application of long-reads in clinical and research settings.
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Introduction

Structural variations (SVs), including insertions, deletions, duplications, inversions and
translocations at least 50bp in size, account for the largest number of divergent base-pairs
across human genome$Vs contribute to polymorphic variation, pathogenic conditions,
large-scale chromosome evolutipand human diseases such as caneetisnt, or
Alzheimer's. SVs also impact phenotypes across many other orgdhish®ne of the first
reports of the prevalence of SVs came in 2004, when Setmtl! used microarrays to
discover large-scale copy number polymorphisms were common across healthy human
genomes. Today, SV detection is most often performed using short paired-end reads. Copy
number variations are observed as decreases (deletions) or increases (amplifications) in
aligned read covera$e and other types of SVs are identified by the arrangement of paired-
end reads or split-read alignmé¥#tsl8 Short-read approaches, however, have been reported
as lacking sensitivity, with only 10%to 70968 of SVs detected, very high (up to 89%)

false positive rate$18-21and misinterpreting complex or nested %%

Long-read single molecule sequencing by Pacific Biosciences (PacBio) and Oxford
Nanopore has the potential to substantially increase the reliability and resolution of detecting
SVs. With average read lengths of 10kbp or higher, the reads can be more confidently
aligned to repetitive sequences that often mediate the formation é. $¥ag-reads are

also more likely to span SV breakpoints with high-confidence alignments. Despite these
advantages, long-reads introduce new challenges. Most significantly, they have a high
sequencing error rate, currently 10% to 15% for PacBio, and 5% to 20% for Oxford
Nanopore sequencif necessitating new methods. A few aligners are available, including
LAST?4, BlasR®, BWA-MEM?26, GraphMapg’, MECAT 28 and minimap2°. Only one
standalone method, PBHoréyis available to detect all types of SV from long-read data,
although others have been proposed for subset of SVs types e.g. SMRT-SV

Addressing these challenges, we introduce two open-source analysis algorithms, NGMLR
and Sniffles, for comprehensive long-read alignment and SV detection (Figure 1). NGMLR

is a fast and accurate aligner for long-reads based on our previous short-read aligdér NGM
extended with a new convex gap-cost scoring model to align long-reads across SV
breakpoints. Its partner algorithm Sniffles successively scans the alignments to identify all
types of SVs. Sniffles employs a novel SV scoring scheme to exclude false SVs based on the
size, position, type and coverage of the candidate SV to resolve the high indel error rates in
long-read sequencing.

We apply our methods to simulated and genuine datasets of Arabidopsis, healthy human
genomes, and a cancerous human genome to demonstrate the increased accuracy compared
to alternate short- and long-read callers. A particularly innovative feature of Sniffles is its
ability to detect nested SVs, such as inverted tandem duplications (INVDUP) or inversions
flanked by indels (INVDEL). These are poorly studied classes of SVs, although both have
been previously associated to genomic disofde?é3> However, as no alternative methods

can routinely detect them, their full significance is currently unknown. Finally, we show that
our methods reduce the sequencing and computational costs per sample, making it
increasingly feasible to apply long-reads to large numbers of samples.
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Results

Accurate mapping and detection of SVs using long-reads
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Unlike most other aligners, NGMLR uses a convex gap scoring R¥ddedccurately align
reads spanning genuine indel SVs in the presence of small indels (1-10bp) that commonly
occur as sequencing errors (Figure 2). Larger or more complex SVs are captured through
split-read alignments. To achieve both high performance and accuracy, NGMLR first
partitions the long-reads into 256bp sub-segments and aligns them independently to the
reference genome (Figure 1a). It then groups co-linear sub-segment alignments into long
segments, which are then aligned using dynamic programming with our convex gap-cost
scoring scheme. Finally, NGMLR selects the highest scoring non-overlapping combination
of segments per read and outputs the results in standard SAM/BAM format. Overall
NGMLR is among the fastest available methods while showing the highest accuracy. See
Methods and Supplementary Note 1 for more details.

Sniffles detects all types of SVs (indels, duplications, inversions, translocations, and nested
events) from long-read alignments. It can be used with any aligner, although it has the best
performance with NGMLR as it produces the most accurate alignments. The principal steps
consist of scanning the alignments of each read independently for potential SVs and then
clustering the candidate SVs across all reads (Figure 1b). Sniffles uses both within-
alignment and split-read information to detect SVs, as small indels can be spanned within a
single alignment, but large or complex events lead to split-read alignments. The major
advance of Sniffles is filtering false SV signals from the noisy reads. Like other variant
detectors, minimum read support (default: 10 reads) is a critical feature, but it also considers
the consistency of the breakpoint position and size. In addition, Sniffles can perform read-
based phasing of SVs and report adjacent or nested events in the output VCF file. Overall
Shniffles runs very fast and requires <3 hours for a deep coverage (50x) human genome
analysis. Se®l ethods and Supplementary Note 2 for more details.

To establish the performance of NGMLR and Sniffles, we benchmarked them against widely
used alternative approaches using simulated reads with SVs added of different sizes and
types (Supplementary Notes 3, 4, & 5). Overall NGMLR and Sniffles showed the highest
accuracy for alignments and SV calls (Figure 3). We also evaluated the performance using
genuine sequencing reads mapped to modified reference genome with SVs embedded at
known locations, and see similar superior results (Supplementary Note 5).

With the accuracy established, we next used genuine sequencing\&dtaglopsis thaliana

trio (Col-0, CVI and the Col-0 x CVI F1 progerd§)and Ashkenazi human trio data set from
Genome-in-a-Bottle (GiaBY to assess the recall and Mendelian consistency (Table 1 and
Supplementary Notes 4 & 5). Overall, Sniffles and NGMLR had the highest recall rate,
meaning the percentage of homozygous variants found in the parents that were found in the
F1 (Arabidopsis trio: 99.75%, GiaB trio: 97.21%). The Mendelian discordance rate was also
greatly improved: using NGMLR/Sniffles with PacBio reads resulted in 3.36% for
Arabidopsis and 5.57% for GiaB, while state-of-the-art consensus calling with lllumina data
had a 21.11% discordance rate for GiaB. Translocation calls were particularly erroneous for
the short-read analysis and had an unreasonably high number of calls (1,550) in the son.
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Comparison of PacBio and Oxford Nanopore sequencing for human SV analysis

As a new sequencing technology, Oxford Nanopore has not yet been extensively tested for
SV analysis, especially in human genomes. We investigated its capability in the well-studied
NA12878 human genome using three publicly available datasets: 28x coverage of Oxford
Nanopore data (release 3 and 4 from Jain*8t ahalyzed with NGMLR/Sniffles, 55x

coverage of PacBio ddthanalyzed with NGMLR/Sniffles, and 50x coverage lllumina

dat#? analyzed by the consensus caller SURVIVOR used with Delly, Lumpy, and Manta
(Table 1). We also compared these results to two previously published call sets, the GiaB
indel call set based on PacBio sequerftimnd the lllumina-based deletion-only call set

from the 1000 Genomes Project (LK&P)

Overall, Sniffles identified 15,499 SVs for the PacBio reads, and 26,657 SVs for the Oxford
Nanopore reads, while SURIVOR reported 7,275 (Table 1, Supplementary Table 7).
Comparing the 5 SVs sets resulted in a total of 40,601 SVs calls (Table 1, Supplementary
Note 4). The majority (24,392) of the identified SVs are present in only one call set, while
16,209 SVs were identified in two or more call sets. Of the 15,499 PacBio calls, most
(94.80%) were confirmed by Oxford Nanopore, lllumina or the existing call sets. Oxford
Nanopore had substantially worse concordance, as Sniffles reports 11,433 calls unique to
Oxford Nanopore, of which 10,977 (96.01%) were deletions and the majority (92.88%) were
within homopolymers or other simple repeats. In contrast, the 773 calls only found by
PacBio were mainly insertions (66.49%) and only 323 (41.79%) were overlapping with
homopolymers or repeats. This systematic bias for deletions in the Oxford Nanopore data is
most likely an error in the base-calling, as also reported by &iaaf'®. The majority of

these artifacts are small deletions, and by increasing the minimum SV size to 200bp, Sniffles
reports only 38.57% of the SVs calls within homopolymers and low complexity regions. The
lllumina-based SV calling had relatively low concordance to alternative approaches, and
49.71% of their calls were unique to the technology. Interestingly, the majority (54.10%) of
the unique calls were translocations events, and most of these appear to be false positives
(see below).

Detailed investigation of unique short-read vs. long-read events

Over all data sets, Sniffles detects far more indels than the short-read based callers (Table 1).
Conversely, using the short-reads we detect, on average, 27 times more translocation events
compared to using Sniffles within presumably healthy human data sets. We investigated
these discrepancies using NA12878.

We first investigated the small insertion (50bp-300bp) and deletion (50bp—3kbp) calls from
Sniffles using the orthogonal lllumina reads as evidence (Supplementary Note 4). We
focused on these size ranges since they should be well captured by the paired-end Illlumina
data and used the compression-expansion stétistican unbiased measure of the lllumina
paired-end placements near predicted indels. This compares the genome-wide observed
lllumina insert size (average 311bp) to the insert sizes spanning the indel breakpoints as
aligned using BWA-MEM: real insertions in the sample should cause the pairs to map closer
than expected, deletions further away. Using the Illumina data and a p-value threshold of
0.01 (two-sided, one sample t-test), we confirmed 3,415 and 3,879 deletions reported by
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Sniffles in the PacBio and Oxford Nanopore data, respectively (Supplementary Table 8). For
insertions, we confirmed 2,685 and 1,703 for PacBio and Oxford Nanopore, respectively.
For comparison, using SURVIVOR we could confirm 1,873 deletions, and only 10% of
randomly selected regions show a significant alteration.

Next, we investigated the large number of translocations reported in the Illlumina-based
consensus calls (2,247) compared to Sniffles (PacBio: 119 and Oxford Nanopore: 43).
(Supplementary Note 4 and Supplementary Table 9) We noted a large overlap (48.87%) of
the lllumina-based translocation sites with insertion calls from Sniffles using both long-read
technologies. Figure 4a shows a representative example, with an insertion called using both
long-read data types overlapping the candidate short-read translocation. As the insertion falls
within a low-complexity region, it causes the short-reads to be mis-mapped and mis-reported
as a translocation, even when excluding low mapping quality reads (MQ < 20). Overall, we
could rule out 1,869 (83.18%) of the lllumina-based translocation calls, with most
overlapping an insertion (48.87%) or deletion (8.86%), or other SV types (1.20%). The
remaining lllumina-based translocation calls are also questionable, with 404 (17.98%) in

low complexity regions and 141 (6.28%) within a region with abnormally high coverage
without any evidence in the long-read data. Inversions show a similar pattern, and 60% of
the calls overlap with a different SV type identified by long-reads (Figure 4b) or align to low
complexity sequences.

Overall, the majority of PacBio-based indels calls from Sniffles were validated by either the
Oxford Nanopore or the Illumina paired-end reads. In contrast, the majority of calls unique
to the lllumina-based methods were false, especially false translocations caused by mis-
mapped reads across insertions.

Detection of Nested SVs

Next, we investigated the performance of Sniffles on complex, nested SV types such as
inverted duplications (INVDUP) and inversions flanked by deletions (INVDEL). These
variant types are poorly studied, but have been associated with a number of diseases,
including INVDUPs with Pelizaeus-Merzbacher disédsed other diseas&s* and
INVDELSs with Haemophilia A genetic deficiency using long-range BCR

To start, we simulated 280 nested SVs of different sizes and types in the human genome
along with simulated PacBio-like, Oxford Nanopore-like, and Illlumina-like reads (Figure 5
and Supplementary Table 2). We evaluated each SV separately e.g. an inversion flanked by
two deletions was evaluated as three SVs. Sniffles was able to detect the full range of types
due to its dynamic splitting of events, gmé@ciselycalled 67.88% of the nested SVs
(Supplementary Note 2). This includes SVs that are larger than the read length, highlighting
Sniffles’ ability to accurately infer complex events. With Oxford Nanopore-like reads,
Sniffles’ ability is slightly reduced but was still ablegoeciselycall 67.34% of SVs on

average over INVDEL and INVDUP events of different length. None of the other methods
could identify the full complexity of these events and only partially called the SVs (e.g. an
inversion without the flanking deletions).

Nat MethodsAuthor manuscript; available in PMC 2018 October 30.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sedlazeck et al.

Page 6

To highlight this capability in real data, we examined a PacBio-based data set for the
SKBR3 breast cancer cell liffe Sniffles and NGMLR were used to investigate this data set
revealing 15 gene fusions created by as many as 3 chained events, which were all validated
by PCR. Figure 5 shows an INVDEL and INVDUP in SKBR3 in comparison to lllumina
short-read data. The short-reads indicate an inversion but the poor resolution makes it
impossible to detect and interpret the entire event. In contrast, Sniffles detects the events,
and the read phasing allows for the complex regions to be fully resolved (Supplementary
Note 2). Although these were the only two nested types in this sample, Sniffles is capable to
detect and report any combination of SVs based on the IDs assigned in the reported VCF
file.

How much coverage is required?

Discussion

Finally, we assessed how much coverage is required to detect SVs using long-reads. This is
an important consideration since these technologies are more expensive than short-read
technologies to generate the same amount of coverdgem a purely statistical analysis,

about 10x coverage should be sufficient to infer all SV breakpoints using 10kbp reads
whereas about 25x coverage is needed for 2x100bp short-reads (Figure 6a and
Supplementary Note 4). However, this analysis represents an idealized case (e.g. lack of
repeats or coverage hiases) and underestimates the amount of coverage required.

To investigate this, we subsampled reads from the NA12878 PacBio and Oxford Nanopore
datasets and the more complex SKBR3 PacBio sample to 5%, 10x, 15%, 20x and 30x
coverage. We analyzed these subsets with NGMLR and Sniffles with different parameters (-s
1 to —s 10) to vary the minimum number of reads, and measured precision and recall with
respect to the full coverage dataset (Figure 6b—d). As expected, using a minimum support of
only one or two reads leads to many false positives.

Focusing on settings that have a precision rate of 80% or higher, we found 15x PacBio read
coverage has a recall of 69.64% and 67.24% for NA12878 and SKBR3 for homozygous and
heterozygous SVs of any type, respectively (Figure 6b,d). The difference in recall is largely
due to the complexity of the SKBR3 cancer sample, which has some extreme copy (>20
fold) amplifications. Increasing the coverage to 30x, Sniffles has an 80.05% to 76.63%
recall with a precision of ~85% for NA12878 and SKBR3, respectively.

For the Oxford Nanopore NA12878 data set, the highest recall rate (84.23%) had a precision
of 82.24% for 20x coverage (Figure 6c). The higher apparent accuracy is largely because the
original data set has only 28x coverage, so this constitutes a less dramatic down-sampling.
Interestingly, we see a greater loss in precision than the PacBio data, due to the stringent
minimum number of supporting reads (-s 10) used throughout the study. Overall, this shows
NGMLR and Sniffles can detect the vast majority of heterozygous and homozygous SVs
using only a fraction of the original coverage.

NGMLR and Sniffles enable an unprecedented view into SVs using long-read sequencing.
We demonstrated their capabilities over simulated and genuine data sets, where our methods
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outperformed existing tools in both sensitivity and specificity. In particular, we demonstrated
that they can overcome the sensitivity issues reported for short-read callers, which miss
30%°-8to 90947 of the SVs. This allows us to detect many thousands of additional variants
beyond what has been reported by large-scale short-read sequencing projects such as the
1000 Genomes Project. Indeed, prototype versions of our methods were used in a recent
study to identify the causal, pathogenic SV in a patient who presented with multiple
neoplasia and cardiac myxonfftaVe also use the long-read data to identify systematic
errors in short-read SV analysis, where the vast majority (>85%) of the translocations are
false positives due to mis-mapped reads.

The identification of SVs from long-reads is challenging chiefly because of the high error
rates involved. In addition to numerous small indels, we discovered that PacBio introduces
larger false insertions at a low, but noticeable rate (Supplementary Note 2). We control for
this artifact by requiring the size and composition of candidate SVs are consistent across the
spanning reads. Within the Oxford Nanopore dataset, we have highlighted systematic
artifacts in base-calling that form deletions in low complexity repeats. While we fully expect
accuracy to improve through improved base-calling, it is currently necessary to exclude most
small SV calls when using Nanopore sequencing. Beyond sequencing errors, we highlighted
how alignment artifacts can lead to miscalling SVs. For example, some long-read mappers
falsely align reads through a SV without indication of the underlying event. Although

Sniffles recognizes the increase in mismatches, NGMLR alignments correct these issues
more directly. Finally, we showed a deficiency in detecting nested variations such as
INVDUP or INVDEL in all methods except Sniffles. Several diseases are already known to
be associated with these SV types, and we expect their importance will grow as more
samples are analyzed using our methods.

The last remaining barrier to routine analysis of SVs across large numbers of samples is
cost. Long-read technologies are becoming less expensive every year, but remain more
expensive than short-read sequen€ing/e addressed this by investigating how much
coverage is needed for accurate SV calling, and show high accuracy is possible with only
15x to 30x coverage for healthy or cancerous human genomes. These requirements will be
reduced even more as the read lengths increase and error rates decrease. Altogether, these
improvements, aided by our methods, will usher in a new era of high quality genome
sequences for a broad range of research and clinical applications.

Online Methods

NGMLR: Fast, Accurate Mapping of Long Single Molecule Reads

NGMLR is designed to accurately map long single molecule sequencing reads from either
Pacific Biosciences or Oxford Nanopore to a reference genome with the goal of enabling
precise structural variation calls. We follow the terminology used by the SAM

specificatiot” where a read mapping consists either of one linear alignment covering the
full read length or multiple linear alignments covering non-overlapping segments of the read
(i.e. split reads).
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The main challenge when mapping high error long-reads is to evaluate whether a read
should be mapped to the reference genome with one linear alignment, or must be split. For
example, the correct mapping for a read that spans an inversion can only be found when
splitting the read into three segments. Conversely, reads that do not span a structural
variation should always be mapped with a single linear alignment. However, error rates are
high, and are not always uniform with some regions having an error rate of over 30%. These
segments can cause read mappers to falsely split a read. Furthermore, the high insertion and
deletion sequencing error of long-read technologies cause current read aligners to falsely
split up large SVs into several smaller ones and make it difficult to detect exact break points.

To address these challenges, NGMLR implements the following workflow (Figure 1a):

1 NGMLR identifies sub-segments of the read and of the reference genome that
show high similarity and can be aligned with a single linear alignment. These
segments can contain small insertions and deletions, but must not span a larger
structural variation breakpoint. In reference to BLAST’s High-scoring Segment
Pairs (HSPs), we call those segment linear mapping pairs (LMPs).

2. For each LMP, NGMLR extracts the read sequence and the reference sequence
and uses the Smith-Waterman algorithm to compute a pairwise sequence
alignment using a convex gap cost model that accounts for sequencing error and
SVs at the same time.

3. NGMLR scans the sequence alignments for regions of low sequence identity to
identify small SVs that were missed in step (1) and (3).

4 Finally, NGMLR selects the set of linear alignments with the highest joint score,
computes a mapping quality for each alignment and reports them as the final
read mapping in a SAM/BAM file.

Convex scoring model— When aligning high error long-reads it is crucial to choose an
appropriate gap model as there are two sources of insertions and deletions (indels).
Sequencing error predominantly causes very short randomly distributed indels (1-5bp) while
longer indels (20bp+) are caused by genomic structural variations. A linear gap model
appropriately models indels originating from sequencing error, but cannot account for longer
indels from genomic variation as these large blocks occur as a single unit, not as the
combination of multiple single base insertions or deletions. With affine gap models the gap-
open penalty falsely causes short indels from sequencing error to cluster together for noisy
long-reads, and has only little effect on longer indels, especially in repetitive regions of the
genome. With the convex scoring model of NGMLR, extending an indel is penalized
proportionally less the longer the indel is. Therefore, the convex scoring model encourages
large alignment gaps, such as those occurring from a structural variation, to be grouped
together into contiguous stretches (extending a large indel has relatively low cost), while
small indels, which commonly occur as sequencing errors, remain separate (extending a 1 bp
gap has almost the same cost as opening a new gap).

Using a convex gap model to compute optimal alignments increases computation time
substantially as each cell in the alignment matrix not only depends on three other cells, but
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on the full row and column it is located3f This would make it infeasible to use convex

gap costs for aligning large long-read datasets, so we adapted a heuristic implementation of
the convex gap cost algorithm found in the swalign libratipé://github.com/mbreese/

swalign). Instead of scanning the full cell and row while filling the alignment matrix, we use
two additional matrixes to store indel length estimations for each cell. Furthermore, we use
the initial sub-segment alignments to identify the part of the alignment matrix that is most
likely to contain the correct alignment and skip all other cells of the matrix during alignment
computation. (Supplementary Note 1).

Sniffles: Robust Detection of Structural Variations from Long-read Alignments

Sniffles operates within and between the long-read alignments to infer SVs. It applies five
major steps (Figure 1b).

1 Sniffles first estimates the parameters to adapt itself to the underlying data set,
such as the distribution in alignment scores and distances between indels and
mismatches on the read, as well as the ratios of the best and second best
alignments scores.

2. Sniffles then scans the read alignments and segments to determine if they
potentially represent SVs.

3. Putative SVs are clustered and scored based on the number of supporting reads,
the type and length of the SV, consistency of the SV composition, and other
features.

4, Sniffles optionally genotypes the variant calls to identify homozygous or

heterozygous SVs.

5. Sniffles optionally provides a clustering of SVs based on the overlap with the
same reads, especially to detect nested variants.

For details on each step see Supplementary Note 2. In the following, we focus on the
methods that are unique to Sniffles, which are the detection and analysis of alignment
artifacts to reduce falsely called variants and the clustering of variants.

Putative Variant Scoring— The high error rate of the long-reads induces many
alignments that falsely appear as SVs. Sniffles addresses these by scoring each putative
variant using several characteristics that we have determined to be the most relevant to

1duosnuep Joyiny

detecting SVs. The two main user thresholds are the number of high quality reads supporting
the variant (set using the —s parameter) as well as the standard deviation of the coordinates in
the start and stop breakpoint across all supporting reads. The minimum variant size reported
defaults to 50bp, but can also be adjusted using the —| parameter. To account for additional
noise in the data and imprecision of the breakpoints we use a quantile filtering to ignore
outliers given a coverage of more than 8 reads. The computed standard deviations for both
breakpoints are compared to the standard deviation of a uniform distribution representing
spurious SV breakpoints reported in the region. SVs are only reported if both breakpoints

are below this threshold. If the standard deviation for both breakpoints is < 5bp, the
coordinates are marked as PRECISE in the VCF file. See Supplementary Note 2.
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Variant Scoring and Genotyping— At the start of the program the user may specify that
the VCF output should be genotyped. In this case, Sniffles stores summary information
(coordinates and orientation) about all high quality reads that do not include a SVs in a
binary file. This includes those reads that support the reference sequence that pass the
thresholds for MQ and alignment score ratio. After the detection of SVs, the VCF file is read
in, and Sniffles constructs a self-balancing tree of the variants. With this information,
Sniffles then computes the fraction of reads that support each variant versus those that
support the reference. Variants below the minimum allele frequency (default: below 30%)
are considered unreliable; variants with high allele frequency (default: above 80%) are
considered homozygous; and variants with an intermediate allele frequency are considered
heterozygous. Note Sniffles does not currently consider higher ploidy, however this will be
the focus of future work. See Supplementary Note 2.

Clustering and Nested SVs— To enable the study of closely positioned or nested SVs,
Sniffles optionally clusters SVs that are supported by the same set of reads. Note that
Sniffles does not fully phase the haplotypes, as it does not consider SNPs or small indels, but
rather identifies SVs that occur together. If this option is enabled, Sniffles stores the names
of each read that supports a SVs in a hash table keyed by the read name, with the list of SVs
associated with that read name as the value. The hash table is used to find reads that span
more than one event, and later to cluster reads that span the one or more of the same
variants. In this way Sniffles can cluster two or more events, even if the distance between the
events is larger than the read length. Future work will include a full phasing of hapolotypes
including SVs, SNPs and other small variants. See Supplementary Note 2.

Mapping and SV Evaluation

Simulation of SV and reads— As described above, SVs were randomly simulated on
chromosome 21 and 22 of the human genome (GRCh37). Data sets were generated with 20
variants for each type of SV (tandem duplication, indel, inversion, translocation and nested)
and sizes of these events (100, 250, 500, 1kb, 5kb, 10kb and 50kb). lllumina reads were
simulated as 100bp paired end reads using the default parameters of dwgsim. For Pacbio and
Oxford Nanopore we scanned the alignments of HG002 (GiaB) and NA12878, respectively,
and measured their error profile using SURIVOR (option 2). The measured error profiles

and read lengths were then used to simulate the reads for each simulated SV data set
(Supplementary Note 3).

Modified reference analysis— To allow for a more realistic scenario, we also modified

the human reference (GRCh37) and analyzed real reads to assess the introduced SVs. Here
we could only simulate a subset of SV types to be insertions, deletions, inversions and
translocations. We simulated 140 variants of each type on the human genome (GRCh37)
using SURVIVOR (option 1) (Supplementary Note 5).

Evaluation of long-read mappings—  All simulated reads were mapped to the human
reference genome (GRCh37) using BWA-rEnBLASRZ5, GraphMag’, MECAT28,

LAST24 Minimap2®, and NGMLR. Reads that overlap or map in close proximity to a
simulated SV were extracted from the BAM files and used for evaluation. For the genuine
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datasets, we first mapped the reads to the unmodified reference genome (without SV) using
BWA-MEM and extracted all reads that would span our simulated SV by at least 500 bp.
Only these reads were then mapped to the modified reference genome using the four read
mappers and used for evaluation.

Both simulated and genuine reads were then divided into six categories (Supplementary
Figure 3.5):

1.

Read mappings are considergatéciséif they fully identify the SV they cover.

To fall into this category, read mappings have to cover all parts of the SV that are
required for identification, e.g. a read mapping to an inversion has to cover the
inverted part of the genome as well as the non-inverted sequences flanking the
inversion. Furthermore, correct mappings have to be split at the simulated
breakpoints (+/- 10bp) of the SV.

Read mappings are considereddicated’if they show the presence of the
correct SV but as the wrong type, e.g. a duplication that is represented as an
insertion, or show the correct SV but do not show the exact borders (>10bp
away).

Read mappings are considerddréed if they indicated the wrong number of

SVs (e.g. several small instead of a single long insertion) or contain a significant
portion of mapping artifacts (eg. not simulated mismatches) over > 10% of the
SV length. These include mappings such as a read that is aligned through a
deletion or inversion (Figure 2, top).

Read mappings are considergdrimed if they have been soft-clipped or
otherwise trimmed so that they cannot indicate the SV and do not contain
randomly aligned base pairs (ie. noisy regions)

Read mappings that are split into more parts than required to cover the
underlying SV are classified agdgmentet!

Read mappings that are supposed to map across the SV but are not mapped are
considered tinalignet!.

For all simulated SV types and sizes and all mappers, we count how many reads fall into the
above categories, normalize by the number of simulated reads and visualize the result as

barplots.

Evaluation of SV callers— After the SV calling each VCF file was evaluated using
SURVIVOR 48 with appropriate parameter sets to compare the variants to the truth set. A
SV is considere@recisdf its start and stop coordinate is within 10bp of the simulated start
and stop coordinate and the caller predicted the correct type. A SV is congiécatbdf

the start and stop coordinate of the SV is within +-1kb of the simulated event regardless of
the inferred type of SV. A simulated SV is considered detectedt there is no call that

fulfill the two previous criteria. A SV is considerd@se-positivaf the event was not

simulated.
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Data availability

The raw sequencing data used in this study are available from the respective publications
listed in Supplementary Table 5. The alignments and structural variation calls produced in
this study for NGMLR and Sniffles are available héréps://github.com/fritzsedlazeck/
Sniffles

Code availability

The source code, documentation and test data sets are availabijesatgithub.com/
philres/ngmlrandhttps://github.com/fritzsedlazeck/Sniffléar the mapping and SVs calling
method, respectively.

Software Versions and Parameter settings— BWA-MEM (version 0.7.12-r103%6

was used with “-M” parameter to map the short-reads and with “-X pacbio -M” to follow the
recommended parameter settings for PacBio reads. The parameter —M is used to mark only
one alignment as primary and the subsequent alignments as secondary. BlasR (version
1.3.1° was run using the parameters “-sam -bestn 1 -nproc 15” to obtain only the best
alignment in SAM format using 15 threads. Furthermore, Blasr was run with the parameters
suggested by PBHoné§ “-nproc 15 -bestn 1 -sam -clipping subread -affineAlign -
noSplitSubreads -nCandidates 20 -minPctldentity 75 -sdpTupleSize 6”. SAMTools (version
0.1.19-44428cdj’ was used to convert the SAM alignment files to BAM and to sort the
aligned reads.

Delly (version v0.7.3%°, Lumpy (version 0.2.13%* and Manta (version 1.0.3f were used

to call SVs over the high mapping quality aligned lllumina reads (MQ20+) followed by
SURVIVOR (version 0.0.148 to combine the calls and report the consensus variants. To
allow for the uncertainty with short-read variant positioning, SVs were considered to be the
same if their start and stop coordinates fell within 1kb of another and were of the same type.
PBHoney (version PBSuite_15.8.23yvith default parameters was used to infer SV based

on the specified BlasR alignments. The output was converted into a VCF using SURVIVOR
(option 10).

More general information can be obtained fromltife Sciences Reporting Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.
Overview of the main steps implemented in NGMLR (left) and Sniffles (right). For details

see Supplementary Notes 1 and 2 for NGMLR and Sniffles, respectively.

Nat MethodsAuthor manuscript; available in PMC 2018 October 30.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Sedlazeck et al.

Page 17

Deletion Inversion

BWA-MEM

NGMLR

Figure 2.
Alignment improvements using NGMLR shown for a 228 bp deletion (left) and a 150 bp

inversion (right) shown in IGV37. Upper track shows BWA-MEM alignments that indicate
these events but is not able to localize the precise event and breakpoints. With the improved
alignments of NGMLR, Sniffles can precisely pinpoint the location and type of the SV.

Nat MethodsAuthor manuscript; available in PMC 2018 October 30.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Sedlazeck et al.

BLASR

Mapping of reads
BWA MECAT
8o358383.88288o88888 20858388

Minimap2 GraphMap

LAST

NGMLR

lllumina
SURVIVOR

SVs calling
PBHoney
BLASR

Sniffles
+BWA

Sniffles
+NGMLR
o88888,8325388.828288,825383

Figure 3.

Evaluation of NGMLR, Sniffles and related tools using simulated data with 840 SVs. X axis
is showing the size of the simulated SVs. For read alignments (top), we simulated PacBio-

like (left) and Oxford Nanopore-like reads (right), and distinguish between: precise (green),
indicated (yellow), forced (red), unaligned reads (white), or trimmed but not aligned through
the SV (grey). The SV analysis (bottom) used the same alignments as before, and
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Figure 4.

Pairs indicating
Inversion:

1 1 1

Systematic error in short-read based SV calling. A) An example of a putative translocation
identified in the short-read data (top alignments) that overlaps an insertion detected by both
PacBio (middle) and Oxford Nanopore sequencing (bottom). B) An example of a putative
inversion identified in the short-read data (top) that overlaps an insertion detected by both
PacBio (middle) and Oxford Nanopore reads (bottom)
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Figureb5.
Nested SVs in SKBR3 cancer cell line. A: Evaluation of Sniffles + NGMLR using simulated

data to identify nested SVs. B: A 3kb region including two deletions flanking an inverted
sequence clearly visible and detected by Sniffles using NGMLR (above) and not detected by
the Illumina methods (below). C: The start of an inverted duplication. The breakpoints were
reported by Sniffles as the start of an inverted duplication (above) and not correctly detected
by short-read methods (below).
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Analysis of SV detection accuracy with different amounts of coverage. A: Theoretical
assessment of recall vs coverage for different read lengths requiring a 50bp overlap of each
breakpoints for SV events. B: Subsampling experiment of the 55% PacBio NA12878 data; C:
Subsampling experiment using 28x Oxford Nanopore NA12878 data; D: Subsampling
experiment of the 70x PacBio SKBR3 breast cancer cell line dataset. For plots B-D, Sniffles
and NGMLR were run on subsampled data (rate indicated by lines) and using different
thresholds for Sniffles (s: 1-10 indicated in symbols and colors). In every data set we could
show the success for Sniffles using NGMLR with only 10x to 30x coverage that recovers
around 80% of the calls with a precision ~80% or higher.
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Table 1

Summary of detected SVs across 15 different data sets. SVs were reported with a min. size of 50bp using SURVIVOR based on Delly, Lumpy ag;d Manta
for lllumina or Sniffles for PacBio (min 10 reads) or Oxford Nanopore (min 5 reads) due to the lower coverage. Supplementary Table 5 has the f@l details

of all the data sets used. 3
o
Data Set Tech. | Cov. | Avg.read length(bp) | Total SVs DEL | DUP INS | INV | TRA 2
Arabidopsis Col-0 PacBid 127 6,48p 355 67 b3 106 68 51
Arabidopsis CVI PacBio| 1234 6,078 9,692 3,822 9p4 1,423 78 21625
Arabidopsis Col-0 x CVI F1 PacBi 155 11,206 11,9B5 4,974 b82 41049 567 1,763
Arabidopsis Col-0 X CVI F1| lllumina| 404 25| 10,950 4,324 643 0 q71 5312
GiaB HG002 (son) PacBi( 69 8,540 19,131 7,97 1,084 9,656 232 202
GiaB HG002 (son) lllumina| 80% 14 10,82 5,018 8p3 0 23 4,118
GiaB HGO003 (father) PacBi( 32 6,284 11,964 5,206 408 6,p48 99 113
GiaB HGO003 (father) lllumina| 80 14 11,396 5,5%3 8p9 0 418 4,155
GiaB HG004 (mother) PacBi 30 7,285 10,43 4,990 276 5,436 93 68
GiaB HG004 (mother) llluming 80 14 8,901 5,000 8p8 0 29 2,204
NA12878 (healthy female) PacBip 55K 4,334 15,409 6,134 06 71880 160 119
NA12878 (healthy female) Oxford Nanopofe 28x 6,432 26,657 194074 761 376 334 112
NA12878 (healthy female) llluming 50 iop 7,215 3,744 553 0 31 2p47
SKBR3 (Breast Cancer) PacBip 69x 9,872 19,165 7,268 1019 14,391 328 159
SKBR3 (Breast Cancer) llumin 25 101 5,046 2,776 483 0 27 1160
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