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ABSTRACT 
 

Identifying  reliable biomarkers of aging  is a major goal  in geroscience. While  the  first generation of epigenetic
biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized
that  incorporation  of  composite  clinical  measures  of  phenotypic  age  that  capture  differences  in  lifespan  and
healthspan may identify novel CpGs and facilitate the development of a more  powerful  epigenetic  biomarker  of  
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INTRODUCTION 
 

One of the major goals of geroscience research is to 

define �biomarkers of aging�[1, 2], which can be 

thought of as individual-level measures of aging that 

capture inter-individual differences in the timing of 

disease onset, functional decline, and death over the life 

course. While chronological age is arguably the 

strongest risk factor for aging-related death and disease, 

it is important to distinguish chronological time from 

biological aging. Individuals of the same chronological 

age may exhibit greatly different susceptibilities to age-

related diseases and death, which is likely reflective of 

differences in their underlying biological aging 

processes. Such biomarkers of aging will be crucial to 

enable evaluation of interventions aimed at promoting 

healthier aging, by providing a measurable outcome, 

which unlike incidence of death and/or disease, does not 

require extremely long follow-up observation.   

 

One potential biomarker that has gained significant 

interest in recent years is DNA methylation (DNAm). 

Chronological time has been shown to elicit predictable 

hypo- and hyper-methylation changes at many regions 

across the genome [3-7], and as a result, the first 

generation of DNAm based biomarkers of aging were 

developed to predict chronological chronological age 

[8-13]. The blood-based algorithm by Hannum [10] and 

the multi-tissue algorithm by Horvath [11] produce age 

estimates (DNAm age) that correlate with chronological 

age well above r=0.90 for full age range samples. 

Nevertheless, while the current epigenetic age 

estimators exhibit statistically significant associations 

with many age-related diseases and conditions [14-27], 

the effect sizes are typically small to moderate. One 

explanation is that using chronological age as the 

reference, by definition, may exclude CpGs whose 

methylation patterns don�t display strong time-

dependent changes, but instead signal the departure of 

biological age from chronological age. Thus, it is 

important to not only capture CpGs that display changes 

with chronological time, but also those that account for 

differences in risk and physiological status among 

individuals of the same chronological age. 

 

 

 

 

 

 

 

 

 

 

 

 
Previous work by us and others have shown that 

�phenotypic aging measures�, derived from clinical 

biomarkers [28-32], strongly predict differences in the 

risk of all-cause mortality, cause-specific mortality, 

physical functioning, cognitive performance measures, 

and facial aging among same-aged individuals. What�s 

more, in representative population data, some of these 

measures have been shown to be better indicators of 

remaining life expectancy than chronological age [28], 

suggesting that they may be approximating individual-

level differences in biological aging rates. As a result, 

we hypothesize that a more powerful epigenetic 

biomarker of aging could be developed by replacing 

prediction of chronological age with prediction of a 

surrogate measure of "phenotypic age" that, in and of 

itself, differentiates morbidity and mortality risk among 

same-age individuals.  

 

RESULTS 
 

Overview of the statistical model and analysis 

 

Our development of the new epigenetic biomarker of 

aging proceeded along three main steps (Fig. 1). In step 

1, a novel measure of �phenotypic age� was developed 

using clinical data from the third National Health and 

Nutrition Examination Survey (NHANES). Details on 

the phenotypic age estimator can be found in Table 1 

and in Supplement 1. In step 2, DNAm from whole 

blood was used to predict phenotypic age, such that:  

ൌ݁݃ܣ݋݄݊݁ܲ ݉ܣܰܦ  ଵܩ݌ܥ൅ݐ݌݁ܿݎ݁ݐ݊݅ ൈ ଵߚ ൅ ଶൈܩ݌ܥ ଶߚ ൅ ڮ ହଵଷܩ݌ܥ ൈ  ହଵଷߚ
 

The coefficient values of this model can be found in 

Supplement 2 (Table S6). Predicted estimates from this 

model represent a person�s epigenetic age, which we 

refer to as �DNAm PhenoAge�. Using multiple indepen-

dent datasets, we then tested whether DNAm PhenoAge 

was associated with a number of aging-related outcomes. 

We also tested whether it differed as a function of social, 

behavioral, and demographic characteristics, and whether 

it was applicable to tissues other than whole blood. 

aging.  Using  an  innovative  two‐step  process,  we  develop  a  new  epigenetic  biomarker  of  aging,  DNAm
PhenoAge  that  strongly  outperforms  previous  measures  in  regards  to  predictions  for  a  variety  of  aging
outcomes,  including  all‐cause  mortality,  cancers,  healthspan,  physical  functioning,  and  Alzheimer's  disease.
While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue
and cell tested. Based on an in‐depth transcriptional analysis in sorted cells, we find that increased epigenetic,
relative  to  chronological  age,  is  associated  with  increased  activation  of  pro‐inflammatory  and  interferon
pathways,  and  decreased  activation  of  transcriptional/translational  machinery,  DNA  damage  response,  and
mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array
of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging. 
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Finally, in step 3, we examine the underlying biology of 

the 513 CpGs in the DNAm PhenoAge measure by 

examining differential expression, GO and pathway 

enrichment, chromosomal locations, and heritability. 

 

Estimating phenotypic age from clinical biomarkers 

 

For step 1, NHANES III was used to generate a 

measure of phenotypic age. NHANES III is a 

nationally-representative sample, with over twenty-

three years of mortality follow-up, from which our 

analytical sample included 9,926 adults with complete 

biomarker data. A Cox penalized regression model�

where the hazard of mortality was regressed on forty-

two clinical markers and chronological age�was used 

to select variables for inclusion in our phenotypic age 

score. The  forty-two  biomarkers  considered  represent  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

those that were available in both NHANES III and IV. 

Based on 10-fold cross-validation, ten variables 

(including chronological age) were selected for the 

phenotypic age predictor (Table 1, Table S1). These 

nine biomarkers and chronological age were then 

combined in a phenotypic age estimate (in units of 

years) as detailed in Methods. 

 

Validation data for phenotypic age came from 

NHANES IV, and included up to 12 years of mortality 

follow-up for n=6,209 national representative US 

adults. In this population, phenotypic age is correlated 

with chronological age at r=0.94. Results from all-cause 

and cause-specific (competing risk) mortality pre-

dictions, adjusting for chronological age (Table 2), 

show that a one year increase in phenotypic age is 

associated with a 9%  increase  in  the  risk  of  all-cause  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.  Roadmap  for  developing  DNAm  PhenoAge.  The  roadmap  depicts  our  analytical  procedures.  In  step  1,  we
developed an estimate of  �Phenotypic Age� based on clinical measure. Phenotypic age was developed using  the NHANES  III as
training data, in which we employed a proportional hazard penalized regression model to narrow 42 biomarkers to 9 biomarkers

and chronological age. This measure was then validated in NHANES IV and shown to be a strong predictor of both morbidity and
mortality risk. In step 2, we developed an epigenetic biomarker of phenotypic age, which we call DNAm PhenoAge, by regressing
phenotypic age  (from step 1) on blood DNA methylation data, using  the  InCHIANTI data. This produced an estimate of DNAm
PhenoAge  based  on  513  CpGs. We  then  validated  our  new  epigenetic  biomarker  of  aging, DNAm  PhenoAge,  using multiple

cohorts,  aging‐related  outcomes,  and  tissues/cells.  In  step  3, we  examined  the  underlying  biology  of  the  513  CpGs  and  the
composite DNAm PhenoAge measure, using a variety of complementary data  (gene expression, blood cell counts) and various
genome annotation tools including chromatin state analysis and gene ontology enrichment. 
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mortality (HR=1.09, p=3.8E-49), a 9% increase in the 

risk of mortality from aging-related diseases (HR=1.09, 

p=4.5E-34), a 10% increase in the risk of CVD 

mortality (HR=1.10, p=5.1E-17), a 7% increase in the 

risk of cancer mortality (HR=1.07, p=7.9E-10), a 20% 

increase in the risk of diabetes mortality (HR=1.20, 

p=1.9E-11), and a 9% increase in the risk of chronic 

lower respiratory disease mortality (HR=1.09, p=6.3E-

4). Further, phenotypic age is highly associated with 

comorbidity count (p=3.9E-21) and physical 

functioning measures (p=2.1E-10, Supplement 1: Fig. 

S1). 

 

An epigenetic biomarker of aging (DNAm 

PhenoAge) 

 

For step 2 (Fig. 1), data from n=456 participants at two 

time-points in the Invecchiare in Chianti (InCHIANTI) 

study was used to relate blood DNAm levels to 

phenotypic age. InCHIANTI was used as training data 

for the new epigenetic biomarker because the study 

assessed all clinical measures needed to estimate 

phenotypic age, contained data on DNAm, and had a 

large age range population (21-100 years). A total of 

20,169 CpGs were considered when generating  the new  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNAm measure. They represented those CpGs 

available on all three chips (27k, 450k, EPIC), so as to 

facilitate usability across platforms. Elastic net regres-

sion, with 10-fold cross-validation, produced a model in 

which phenotypic age is predicted by DNAm levels at 

513 of the 20,169 CpGs. The linear combination of the 

weighted 513 CpGs yields a DNAm based estimator of 

phenotypic age that we refer to as �DNAm PhenoAge� 

(mean=58.9, s.d.=18.2, range=9.1-106.1), in contrast to 

the previously published Hannum and Horvath �DNAm 

Age� measures. 

 

While our new clock was trained on cross-sectional data 

in InCHIANTI, we capitalized on the repeated time-

points to test whether changes in DNAm PhenoAge are 

related to changes in phenotypic age. As expected, 

between 1998 and 2007, mean change in DNAm 

PhenoAge was 8.51 years, whereas mean change in 

clinical phenotypic age was 8.88 years. Moreover, 

participants� clinical phenotypic age (adjusting for 

chronological age) at the two time-points was correlated 

at r=0.50, whereas participants� DNAm PhenoAge 

(adjusting for chronological age) at the two time-points 

was correlated at r=0.68 (Supplement 1: Fig. S2). We 

also  find  that  the  change  in  phenotypic  age  between 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Phenotypic aging measures and Gompertz coefficients. 

Variable  Units Weight 

Albumin Liver g/L -0.0336 

Creatinine  Kidney umol/L 0.0095 

Glucose, serum Metabolic mmol/L 0.1953 

C-reactive protein (log) Inflammation mg/dL 0.0954 

Lymphocyte percent Immune % -0.0120 

Mean (red) cell volume Immune fL 0.0268 

Red cell distribution width Immune % 0.3306 

Alkaline phosphatase Liver U/L 0.0019 

White blood cell count Immune 1000 cells/uL 0.0554 

Age  Years 0.0804 

Table 2. Mortality validations for phenotypic age. 

Mortality Cause Cases HR P-Value 

All-Cause 1052 1.09 3.8E-49 

Aging-Related 661 1.09 4.5E-34 

CVD 272 1.10 5.1E-17 

Cancer 265 1.07 7.9E-10 

Alzheimer's 30 1.04 2.6E-1 

Diabetes 41 1.20 1.9E-11 

Chronic lower respiratory 

diseases 53 1.09 6.3E-4
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1998 and 2007 is highly correlated with the change in 

DNAm PhenoAge between these two time-points 

(r=0.74, p=3.2E-80, Supplement 1: Fig. S2). 

 

DNAm PhenoAge strongly relates to all-cause 

mortality 

 

In step 2 (Fig. 1), the epigenetic biomarker, DNAm 

PhenoAge, was calculated in five independent large-

scale samples�two samples from Women�s Health 

Initiative (WHI) (n=2,016; and n=2,191), the 

Framingham Heart Study (FHS) (n=2,553), the 

Normative Aging Study (NAS) (n=657), and the 

Jackson Heart Study (JHS) (n=1,747). The first four 

studies used the Illumina 450K array while the JHS 

employed the latest Illumina EPIC array platform. In 

these studies, DNAm PhenoAge correlated with 

chronological age at r=0.66 in WHI (Sample 1), r=0.69 

in WHI (Sample 2), r=0.78 in FHS, r=0.62 in the NAS, 

and r=0.89 in JHS. The five validation samples were 

then used to assess the effects of DNAm PhenoAge on 

mortality in comparison to the Horvath and Hannum 

DNAm Age measures. DNAm PhenoAge was 

significantly associated with subsequent mortality risk 

in all studies (independent of chronological age), such 

that, a one year increase in DNAm PhenoAge is 

associated with a 4.5% increase in the risk of all-cause 

mortality (Meta(FE)=1.045, Meta p=7.9E-47, Fig. 2). 

To better conceptualize what this increase represents, 

we compared the predicted life expectancy and 

mortality risk for person�s representing the top 5% 

(fastest agers), the average, and the bottom 5% (slowest 

agers). Results suggest that those in the top 5% of 

fastest agers have a mortality hazard of death that is 

about 1.62 times that of the average person, i.e. the 

hazard of death is 62% higher than that of an average 

person. Further, contrasting the 5% fastest agers with 

the 5% slowest agers, we find that the hazard of death 

of the fastest agers is 2.58 times higher than that of the 

bottom 5% slowest agers (HR=1.045
11.0

/1.045
-10.5

). 

Additionally, both observed and predicted Kaplan-

Meier survival estimates showed that faster agers had 

much lower life expectancy and survival rates compared 

to average and/or slow agers (Fig. 2). 

 

As shown in Fig. 2, the DNAm age based measures 

from Hannum and Horvath also related to all-cause 

mortality, consistent with what has been reported 

previously [15, 19, 23, 33, 34]. To directly compare the 

three epigenetic measures, we contrasted their accuracy 

in predicting 10-year and 20-year mortality risk, using 

receiver operating characteristics (ROC) curves. DNAm 

PhenoAge (adjusted for age) predicts both 10-year 

mortality and 20-year mortality significantly better than 

the Horvath and Hannum DNAmAge measures (Sup-

plement 1: Table S2). When examining a model that 

includes all three measures (Supplement 1: Table S3), 

we find that only DNAm PhenoAge is positively 

associated with mortality (HR=1.04, p=1.33E-8), 

whereas Horvath DNAm Age is now negatively 

associated (HR=0.98, p=2.72E-2), and Hannum DNAm 

Age has no association (HR=1.01, p=4.66E-1). 
 

DNAm PhenoAge strongly relates to aging-related 

morbidity 
 

Given that aging is believed to also influence disease 

incidence/prevalence, we examined whether DNAm 

PhenoAge relates to diverse age-related morbidity 

outcomes. We observe strong associations between 

DNAm PhenoAge and a variety of other aging out-

comes using the same five validation samples (Table 3). 

For instance, independent of chronological age, higher 

DNAm PhenoAge is associated with an increase in a 

person�s number of coexisting morbidities (β=0.008 to 

0.031; Meta P-value=1.95E-20), a decrease in 

likelihood of being disease-free (β=-0.002 to -0.039; 

Meta P-value=2.10E-10), an increase in physical 

functioning problems (β=-0.016 to -0.473; Meta P-

value=2.05E-13), an increase in the risk of coronary 

heart disease (CHD) risk (β=0.016 to 0.073; Meta P-

value=3.35E-11).  
 

DNAm PhenoAge and smoking 
 

Cigarette exposure has been shown to have an 

epigenetic fingerprint[35-37], which has been reflected 

in previous DNAm risk predictors[38]. Similarly, we 

find that DNAm PhenoAge significantly differs 

between never (n=1,097), current (n=209), and former 

smokers (n=710) (p=0.0033) (Supplement 1, Fig. S3A); 

however, conversely, we do not find a robust 

association between pack-years and DNAm PhenoAge 

(Supplement 1, Fig. S3B-D). Given the association 

between DNAm PhenoAge and smoking, we re-

evaluated the morbidity and mortality associations 

(fully-adjusted) in our four samples, stratifying by 

smoking status (Supplement 1: Fig. S4 and Table S4). 

We find that DNAm PhenoAge is associated with 

mortality among both smokers (adjusted for pack-

years) (Meta(FE)=1.050, Meta p=7.9E-31), and non-

smokers (Meta(FE)=1.033, Meta p=1.2E-10). DNAm 

PhenoAge relates to the number of coexisting 

morbidities, physical functioning status, disease free 

status, and CHD for both smokers and non-smokers 

(Supplement 1: Table S4). In previous work we showed 

that Horvath DNAm age of blood predicts lung cancer 

risk in the first WHI sample [20]. Using the same data, 

we find that a one year increase in DNAm PhenoAge 

(adjusting for chronological age, race/ethnicity, pack-

years, and smoking status) is associated with a 5% 

increase in the risk of lung cancer incidence and/or 
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mortality (HR=1.05, p=0.031). Further, when restricting 

the model to current smokers only, we find that the 

effect of DNAm PhenoAge on future lung cancer 

incidence and/or mortality is even stronger (HR=1.10, 

p=0.014).  

 

DNAm PhenoAge in other tissues 

 

One advantage of developing biological aging estimates 

based on molecular markers (like DNAm), rather than 

clinical risk measures (e.g. those in the phenotypic age 

variable), is that they may lend themselves to measuring  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tissue/cell specific aging. Although DNAm PhenoAge 

was developed using samples from whole blood, our 

empirical results show that it strongly correlates with 

chronological age in a host of different tissues and cell 

types (Fig. 3). For instance, when examining all tissues 

concurrently, the correlation between DNAm PhenoAge 

and chronological age was 0.71. Age correlations in 

brain tissue ranged from 0.54 to 0.92, while correlations 

were also found in breast (r=0.47), buccal cells (r=0.88), 

dermal fibroblasts (r=0.87), epidermis (r=0.84), colon 

(r=0.88), heart (r=0.66), kidney (r=0.64), liver (r=0.80), 

lung (r=055), and saliva (r=0.81). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mortality Prediction by DNAm PhenoAge. (A) Using five samples from  large epidemiological cohorts�two samples

from  the Women�s health  Initiative,  the  Framingham Heart  Study,  the Normative Aging  Study, and  the  Jackson Heart  Study�we

tested whether DNAm PhenoAge was predictive of all‐cause mortality. The Fig. displays a forest plot for fixed‐effect meta‐analysis,
based on Cox proportional hazard models, and adjusting for chronological age. Results suggest that DNAm PhenoAge is predictive of
mortality  in all samples, and  that overall, a one year  increase  in DNAm PhenoAge  is associated with a 4.5%  increase  in  the risk of
death (p=9.9E‐47). This  is contrasted against the first generation of epigenetic biomarkers of aging by Hannum and Horvath, which
exhibit less significant associations with lifespan (p=1.7E‐21 and p=4.5E‐5, respectively). (B and C) Using the WHI sample 1, we plotted
Kaplan‐Meier survival estimates using actual data from the fastest versus the slowest agers (panel B). We also applied the equation
from the proportional hazard model to predict remaining life expectancy and plotted predicted survival assuming a chronological age
of 50 and a DNAm PhenoAge of either 40 (slow ager), 50 (average ager), or 60 (fast ager) (panel C). Median life expectancy at age 50
was predicted to be approximately 81 years for the fastest agers, 83.5 years for average agers, and 86 years for the slowest agers. 
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Alzheimer's disease and brain samples 

 

Based on the accuracy of the age prediction in other 

tissues/cells, we examined whether aging in a given 

tissue was associated with tissue-associated outcomes. 

For instance, using data from approximately 700 post-

mortem samples from the Religious Order Study (ROS) 

and the Memory and Aging Project (MAP) [39, 40] we 

tested the association between pathologically diagnosed 

Alzheimer�s disease and DNAm  PhenoAge  in dorsolate- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ral prefrontal cortex (DLPFX). Results suggest (Fig. 4) 

that those who  are  diagnosed  with  Alzheimer�s  disease 

(AD), based on postmortem autopsy, have DLPFX that 

appear more than one year older than same aged 

individuals who are not diagnosed with AD postmortem 

(p=4.6E-4). Further, age adjusted DNAm PhenoAge was 

found to be positively associated with neuropathological 

hallmarks of Alzheimer�s disease, such as amyloid load 

(r=0.094, p=0.012), neuritic plaques (r=0.11, p=0.0032), 

and neurofibrillary tangles (r=0.10, p=0.0073).  

 

Table 3. Morbidity validation for DNAm PhenoAge. 

Comorbidity Disease Free CHD Risk Physical Functioning 

Sample Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

DNAm PhenoAge 

WHI BA23 White 0.008 2.38E-01 -0.002 3.82E-01 0.016 5.36E-02 -0.396 1.04E-04 

WHI BA23 Black 0.013 6.15E-02 -0.006 2.40E-02 0.021 2.02E-02 -0.423 4.50E-04 

WHI BA23 Hispanic 0.024 1.64E-02 -0.004 3.67E-01 0.033 5.07E-02 -0.329 7.37E-02 

WHI EMPC White 0.031 2.95E-07 -0.026 1.63E-02 0.023 1.89E-01 -0.361 3.81E-05 

WHI EMPC Black 0.014 7.67E-02 -0.023 6.98E-02 0.048 2.27E-02 -0.473 3.75E-04 

WHI EMPC Hispanic 0.003 7.83E-01 0.002 9.28E-01 0.073 1.98E-01 -0.377 6.54E-02 

FHS 0.022 3.93E-07 -0.034 1.59E-03 0.028 5.47E-06 -0.016 4.60E-01 

NAS 0.023 7.59E-06 -0.062 2.00E-04 0.030 2.27E-02 NA NA 

JHS 0.018 1.86E-08 -0.039 5.92E-05 0.033 4.73E-02 NA NA 

Meta P-value (Stouffer) 1.95E-20 2.14E-10 3.35E-11 2.05E-13 

DNAmAge Hannum 

WHI BA23 White 0.007 3.90E-01 -0.003 3.48E-01 0.013 2.36E-01 -0.399 2.90E-03 

WHI BA23 Black 0.022 2.72E-02 -0.007 6.03E-02 0.015 2.67E-01 -0.345 4.29E-02 

WHI BA23 Hispanic 0.010 4.33E-01 -0.010 6.24E-02 0.011 6.10E-01 -0.599 1.16E-02 

WHI EMPC White 0.025 1.53E-03 -0.020 1.55E-01 0.022 3.30E-01 -0.284 1.43E-02 

WHI EMPC Black 0.022 6.34E-02 -0.008 6.62E-01 0.055 6.12E-02 -0.323 9.56E-02 

WHI EMPC Hispanic -0.012 4.17E-01 0.035 2.09E-01 -0.012 8.85E-01 -0.345 2.54E-01 

FHS 0.019 5.94E-04 -0.030 2.55E-02 0.022 1.55E-02 0.040 1.32E-01 

NAS 0.009 2.19E-01 -0.026 2.26E-01 0.025 1.83E-01 NA NA 

JHS 0.020 2.09E-05 -0.036 9.91E-03 0.086 1.64E-04 NA NA 

Meta P-value (Stouffer) 1.50E-08 1.64E-04 1.40E-05 2.03E-05

DNAmAge Horvath 

WHI BA23 White 0.007 3.49E-01 -0.004 1.69E-01 0.001 9.12E-01 -0.440 5.10E-04 

WHI BA23 Black 0.018 3.96E-02 -0.006 6.25E-02 0.009 4.07E-01 -0.305 4.52E-02 

WHI BA23 Hispanic 0.012 3.65E-01 -0.007 1.86E-01 -0.001 9.78E-01 -0.204 4.12E-01 

WHI EMPC White 0.031 1.99E-04 -0.043 5.56E-03 0.000 9.88E-01 -0.288 1.74E-02 

WHI EMPC Black 0.016 1.93E-01 -0.003 8.56E-01 0.033 2.87E-01 -0.144 4.68E-01 

WHI EMPC Hispanic -0.025 8.99E-02 -0.016 5.70E-01 -0.064 4.63E-01 -0.012 9.70E-01 

FHS 0.011 5.82E-02 -0.021 8.34E-02 0.007 5.19E-01 0.027 3.16E-01 

NAS 0.011 7.90E-02 -0.039 4.53E-02 0.006 7.14E-01 NA NA 

JHS 0.014 2.03E-03 -0.040 1.78E-03 0.049 3.93E-02 NA NA 

Meta P-value (Stouffer) 3.26E-06 6.36E-07 1.49E-01 1.43E-03 
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Lifestyle and demographic variables 

 

In evaluating the relationship between DNAm 

PhenoAge in blood and additional characteristics we 

observe significant differences between racial/ethnic 

groups (p=5.1E-5), with non-Hispanic blacks having the 

highest DNAm PhenoAge on average, and non-

Hispanic whites having the lowest (Supplement 1: Fig. 

S5). We also find evidence of social gradients in DNAm 

PhenoAge, such that those with higher education 

(p=6E-9) and higher income (p=9E-5) appear younger 

(Figure 5). DNAm PhenoAge relates to exercise and 

dietary habits, such that increased exercise (p=7E-5) 

and markers of fruit/vegetable consumption (such as 

carotenoids, p=2E-27) are associated with lower DNAm 

PhenoAge (Figure 5, Supplement 1: Fig. S6). Cross- 

sectional studies in the WHI also revealed that 

DNAmPhenoAge acceleration is positively correlated 

with C-reactive protein (r=0.18, p=5E-22, Figure 5), 

insulin (r=0.15, p=2E-20), glucose (r=0.10, p=2E-10), 

triglycerides (r=0.09, p=5E-9), waist to hip ratio 

(r=0.15, p=5E-22) but it is negatively correlated with 

HDL cholesterol (r=-0.09, p=7E-9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNAm PhenoAge and Immunosenescence  
 

To test the hypothesis that DNAm PhenoAge captures 

aspects of age-related decline of the immune system, we 

correlated DNAm PhenoAge with estimated blood cell 

count (Supplement 1, Fig. S7). After adjusting for age, 

we find that DNAm PhenoAgeAccel is negatively 

correlated with naïve CD8+ T cells (r=-0.35, p=9.2E-

65), naïve CD4+ T cells (r=-0.29, p=4.2E-42), CD4+ 

helper T cells (r=-0.34, p=3.6E-58), and B cells (r=-

0.18, p=8.4E-17). Further, DNAm PhenoAgeAccel is 

positively correlated with the proportion of granulocytes 

(r=0.32, p=2.3E-51), exhausted CD8+ (defined as 

CD28-CD45RA-) T cells (r=0.20, p=1.9E-20), and 

plasma blast cells (r=0.26, p=6.7E-34). These results are 

consistent with age related changes in blood cells [41] 

and suggest that DNAm PhenoAge may capture aspects 

of immuno-senescence in blood. However, three lines 

of evidence suggest that DNAm PhenoAge is not 

simply a measure of immunosenescence. First, another 

measure of immunosenescence, leukocyte telomere 

length, is only weakly correlated with DNAm 

PhenoAgeAccel (r=-0.13 p=0.00019 in the WHI; r=-

Figure 3. Chronological age versus DNAm PhenoAge  in a variety of tissues and cells. Although DNAm PhenoAge was developed
using methylation data from whole blood, it also tracks chronological age in a wide variety of tissues and cells. (A) The correlation across all
tissues/cells we examined is r=0.71. (B‐ZJ) report results in different sources of DNA as indicated in panel headings. The numbers correspond
to the data sets from (Horvath 2013). Overall, correlations range from r=0.35 (breast, panel O) to r=0.92 (temporal cortex in brain, panel L).  
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0.087, P=7.6E-3 in Framingham Heart study; JHS 

p=7.83E-7, Supplement 1, Fig. S8). Second, the strong 

association between DNAm PhenoAge and mortality 

does not simply reflect changes in blood cell 

composition, as can be seen from the fact that in 

Supplement 1, Fig. S9 the robust association remains 

even after adjusting for estimates of seven blood cell 

count measures (Meta(FE)=1.036, Meta p=5.6E-21). 

Third, DNAmPhenoAge correlates with chronological 

age in non-blood tissue. 

 

DNA sequence characteristics of the 513 CpGs in 

DNAm PhenoAge 

 

Of the 513 CpGs in DNAm PhenoAge, we find that, 41 

CpGs were also in the Horvath DNAm age measure 

(Supplement 2: Table S6). This represents a 4.88-fold 

increase over what would be expected by chance 

(p=8.97E-15). Of the 41 overlapping CpGs, the average 

absolute value for their age correlations was r=0.40, and 

31 had age correlations with absolute values in the top 

20% of what is found among the 513 CpGs in the 

DNAm PhenoAge score. We also observed 6 CpGs that  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

overlapped between the Hannum DNAm Age score and 

the DNAm PhenoAge score�five of which were also 

found in the Horvath DNAm Age measure. All six 

CpGs had extremely high age correlations (half positive, 

half negative), with absolute values between r=0.49 and 

r=0.76. The five CpGs that are found in all three 

epigenetic aging measures were: cg05442902 (P2RXL1), 

cg06493994 (SCGN), cg09809672 (EDARADD), 

cg19722847 (IPO8), and cg22736354 (NHLRC1). 

 

Several additional DNAm biomarkers have been 

described in the literature [12, 13]. A direct comparison 

of 6 DNAm biomarkers (including DNAm PhenoAge) 

reveals that DNAm PhenoAge stands out in terms of its 

predictive accuracy for lifespan, its relationship with 

smoking status, its relationship with leukocyte telomere 

length, naïve CD8+ T cells and CD4+ T cells 

(Supplement 1: Table S5). 

 

Next, we conducted a functional enrichment analysis of 

the chromosomal locations of the 513 CpGs and found 

that 149 CpGs whose age correlation exceeded 0.2 

tended to be located in CpG islands (p=0.0045,  Supple- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4. DNAm  PhenoAge measured  in  dorsolateral  prefrontal  cortex  relates  to Alzheimer�s  disease  and  related
neuropathologies. Using postmortem data from the Religious Order Study (ROS) and the Memory and Aging Project (MAP), we find
a  moderate/high  correlation  between  chronological  age  and  DNAm  PhenoAge  (panel  A).  We  also  estimate  the  Pproportion  of 
neurons via the CETS algorithm and show that it correlates with DNAm PhenoAge (B). Further, the correlation between chronological 
agen and DNAm PhenoAge  is  increased after adjusting for the estimated proportion on neurons  in each sample (panel C). We also 
find  that DNAm PhenoAge  is significantly higher  (p=0.00046) among  those with Alzheimer�s disease versus controls  (panel D), and 
that it positively correlates with amyloid load (p=0.012, panel E), neuritic plaques (p=0.0032, panel F), diffuse plaques (p=0.036, panel 
G), and neurofibrillary tangles (p=0.0073, panel H). 

Figure 5. Lifestyle factors versus DNAm PhenoAge acceleration  in blood  in the WHI.  In this cross
sectional analysis, the correlation test analysis (bicor, biweight midcorrelation) between select variables and
DNAm PhenoAgeAccel reveals that education, income, exercise, proxies of fruit/vegetable consumption, and
HDL  cholesterol  are  negatively  associated  (blue)  with  DNAm  PhenoAge,  i.e.  younger  epigenetic  age.
Conversely, CRP, insulin, glucose, triglycerides, BMI, waist‐to‐hip ratio, systolic blood pressure, and smoking have
a positive association (red) with DNAm PhenoAge. All results have been adjusted for ethnicity and batch/data
set. Similar results based on multivariate regression models can be found in Supplementary Figure 6B. 
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ment 1: Fig. S10) and were significantly enriched with 

polycomb group protein targets (p=8.7E-5, Supplement 

1: Fig. S10), which in line with results of epigenome 

wide studies of aging effects [4, 5, 42]. 

 

Transcriptional and genetic studies of DNAm 

PhenoAge 

 

Using the genome-wide data from FHS and WHI, we 

estimated the heritability of DNAm  PhenoAge. The  heri- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tability estimated by the SOLAR polygenic model for 

those of European ancestry in the FHS was =0.33, 

while the heritability estimated for those of European 

ancestry in WHI, using GCTA-GREML analysis [43] 

was =0.51.  

 

Using the monocyte data mentioned above, as well as 

PBMC expression data on 2,188 persons from the FHS, 

we conducted a transcriptional analysis to identify dif-

ferential expression associated with DNAm  PhenoAge- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Lifestyle factors versus DNAm PhenoAge acceleration  in blood  in the WHI.  In this cross
sectional analysis, the correlation test analysis (bicor, biweight midcorrelation) between select variables and
DNAm PhenoAgeAccel reveals that education, income, exercise, proxies of fruit/vegetable consumption, and
HDL  cholesterol  are  negatively  associated  (blue)  with  DNAm  PhenoAge,  i.e.  younger  epigenetic  age.
Conversely, CRP, insulin, glucose, triglycerides, BMI, waist‐to‐hip ratio, systolic blood pressure, and smoking have
a positive association (red) with DNAm PhenoAge. All results have been adjusted for ethnicity and batch/data
set. Similar results based on multivariate regression models can be found in Supplementary Figure 6B. 
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Accel (Supplement 3: Table S7). Overall, we find that 

genes show similar associations with chronological age 

and DNAm PhenoAgeAccel. DNAm PhenoAgeAccel 

represents aging differences among same-aged 

individuals and is adjusted so as to exhibit a correlation 

of r=0.0 with chronological age. Thus, this observation 

suggests that genes whose transcription increases with 

age are upregulated among epigenetically older 

compared to epigenetically younger persons of the same 

chronological age (Supplement 1: Fig. S11); the same 

applies for genes that show decreases with chrono-

logical age being downregulated in epi-genetically older 

versus younger persons of the same age.   

 

Using the transcriptional data from monocytes 

described above (adjusting for array, sex, race/ethnicity, 

age, and imputed cell counts), we tested for GO 

enrichment among genes that are positively associated 

with DNAm PhenoAge and those that are negatively 

associated with DNAm PhenoAge (Supplement 4: 

Table S8). Among those with positive aging 

associations (over-expression among epigenetically 

older individuals), we observed enrichment for a 

number of pro-inflammatory signaling pathways. These 

pathways included, but are not limited to: multiple toll-

like receptor signaling pathways (7,9,3,2), regulation of 

inflammatory response, JAK-STAT cascade, response 

to lipopoly-saccharide, tumor necrosis factor-mediated 

signaling pathway, and positive regulation of NF-

kappaB transcription factor activity. Additionally, 

positively associated genes were also enriched for a 

number anti-viral response pathways�type I interferon 

signaling, defense response to virus, interferon-gamma-

mediated signaling pathway, cellular response to 

interferon-alpha, etc. Other interesting GO terms 

enriched among positively associated genes included: 

response to nutrient, JAK-STAT cascade involved in 

growth hormone signaling pathway, multicellular 

organism growth, and regulation of DNA methylation. 

 

When testing for enrichment among genes that were 

negatively associated with DNAm PhenoAgeAccel 

(decreased expression among epigenetically older 

persons) we observed that many were implicated in 

processes involving transcriptional and translational 

machinery, as well as damage recognition and repair. 

These included: translational initiation; regulation of 

translational initiation; ribosomal large subunit assemb-

ly; ribosomal small subunit assembly; translational 

elongation; transcription initiation from RNA 

polymerase I promoter; transcription-coupled nucleo-

tide-excision repair; nucleotide-excision repair, DNA 

incision, 5'-to lesion; nucleotide-excision repair, DNA 

damage recognition; DNA damage response, detection 

of DNA damage; and regulation of DNA damage 

checkpoint.  

DISCUSSION 
 

Using a novel two-step method, we were successful in 

developing a DNAm based biomarker of aging that is 

highly predictive of nearly every morbidity and mortali-

ty outcome we tested. Training an epigenetic predictor 

of phenotypic age instead of chronological age led to 

substantial improvement in mortality/healthspan 

predictions over the first generation of DNAm based 

biomarkers of chronological age from Hannum[10], 

Horvath[11] and other published DNAm biomarkers. In 

doing so, this is the first study to conclusively demons-

trate that DNAm biomarkers of aging are highly 

predictive of cardiovascular disease and coronary heart 

disease. DNAm PhenoAge also tracks chronological 

age and relates to disease risk in samples other than 

whole blood. Finally, we find that an individual�s 

DNAm PhenoAge, relative to his/her chronological age, 

is moderately heritable and is associated with activation 

of pro-inflammatory, interferon, DNAm damage repair, 

transcriptional/ translational signaling, and various 

markers of immuno-senescence: a decline of naïve T 

cells and shortened leukocyte telomere length 

(Supplementary Information).  
 

The ability of our measure to predict multifactorial 

aging conditions is consistent with the fundamental 

underpinnings of Geroscience research [1, 44], which 

posits that aging mechanisms give rise to multiple 

pathologies and thus, differences in the rate of aging 

will have implications for a wide array of diseases and 

conditions. Further, these results answer a fundamental 

biological question of whether differences in multi-

system dysregulation (estimated using clinical 

phenotypic age measures), healthspan, and lifespan are 

reflected at the epigenetic level, in the form of 

differential DNAm at specific CpG sites.  
 

The improvement over previous epigenetic biomarkers, 

likely comes down to the types of CpGs selected for the 

various measures. Only 41 of the 513 CpGs in DNAm 

PhenoAge were shared with the Horvath clock, while 

only five CpGs were shared between all three clocks 

(DNAm PhenoAge, Horvath, and Hannum). In general, 

these CpGs did not tend to be drivers of the DNAm 

PhenoAge score, and instead represented those with 

large age correlations. This may explain the 

improvements of DNAm PhenoAge over previous 

epigenetic biomarkers of aging. While the previous 

DNAm age estimators selected CpGs to optimize 

prediction of chronological age, the CpGs in DNAm 

PhenoAge were optimized to predict a multi-system 

proxy of physiological dysregulation (phenotypic age). 

In doing so, we were able to not only capture CpGs that 

exhibited strong correlations with age, but also those 

that captured variations in risk of death and disease 
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among same aged individuals. In general, the CpGs 

with the highest weights in the new clock did not 

correlate with chronological age (Supplement 1: Fig. 

S12), but instead were related to the difference between 

phenotypic and chronological age�i.e. divergence in 

the rate of aging.  

 

While DNAm PhenoAge greatly outperformed all 

previous DNAm biomarkers of aging (Supplement 1: 

Table S5), the utility of DNAm PhenoAge for 

estimating risk does not imply that it should replace 

clinical biomarkers when it comes to informing medical 

and health-related decisions. In fact, but perhaps not 

surprisingly, the phenotypic age measure used to select 

CpGs is a better predictor of morbidity and mortality 

outcomes than DNAm PhenoAge. While the addition of 

error in performing a two-step process, rather than 

training a DNAm predictor directly on mortality may 

contribute, we don�t believe this accounts for the 

difference in predictive performance. In fact, a recent 

DNAm measure by Zhang et al. [38] was trained to 

directly predict mortality risk, yet it appears to be a 

weaker predictor than both our DNAm PhenoAge 

measure and our clinical phenotypic age measure 

(Supplement 1: Table S9). The first generation of 

DNAm age estimators only exhibit weak associations 

with clinical measures of physiological dysregulation 

[24, 45]. Physiological dysregulation, which is more 

closely related to our clinical age measure �phenotypic 

age� than to chronological age, is not only the result of 

exogenous/endogenous stress factors (such as obesity, 

infections) but also a result of age related molecular 

alterations, one example of which are modifications to 

the epigenome. Over time, dysregulation within organ 

systems leads to pathogenesis of disease (age-related 

molecular changes  physiological dysregulation  

morbidity  mortality)[46]. However, stochasticity and 

variability exist at each of these transitions. Therefore, 

measures of physiological dysregulation, will be better 

predictors of transition to the next stage in the aging 

trajectory (i.e. morbidity and mortality) than will 

measures of age related molecular alterations, like 

DNAm PhenoAge. Similarly, quantification of disease 

pathogenesis (cancer stage, Alzheimer�s stage) is likely 

a better predictor of mortality risk than clinical 

phenotypic aging measures. As a result, clinical pheno-

typic aging measures may be preferable to epigenetic 

measures when the goal is risk prediction, and samples 

come from blood. 
 

That being said, when the aim is to study the 

mechanisms of the aging process, DNAm measures 

have advantages over clinical measures. First, they may 

better capture �pre-clinical aging� and thus may be 

more suited for differentiating aging in children, young 

adults, or extremely healthy individuals, for whom 

measures like CRP, albumin, creatinine, glucose, etc. 

are still fairly homogenous. Second, as demonstrated, 

these molecular measures can capture cell and/or tissue 

specific aging rates and therefore may also lend 

themselves to in vitro studies of aging, studies for which 

blood is not available, studies using postmortem 

samples, and/or studies comparing aging rates between 

tissues/cells. While the fundamental drivers of aging are 

believed to be shared across cells/tissues, that is not to 

say that all the cells and tissues within an individual will 

age at the same rate. In fact, it is more likely that 

individuals will vary in their patterning of aging rates 

across tissues, and that this will have implications for 

death and disease risk. Relatedly, it is not known how 

predictions based on DNAm PhenoAge measures from 

non-blood samples will compare to phenotypic age 

predictions. It may be the case that various outcomes 

will be more tightly related to aging in specific 

cells/tissues, rather than blood. Finally, examination of 

DNAm based aging rates facilitates the direct study of 

the proposed mechanisms of aging, of which 

�epigenetic alterations� is one of the seven hypo-

thesized �pillars of aging� [1].  
 

While more work needs to be done to model the biology 

linking DNAm PhenoAge and aging outcomes, we 

began to explore this using differential expression, 

functional enrichment, and heritability estimates. 

Overall, we found that CpGs that had larger increases 

with aging tended to be located in CpG islands and 

enriched with polycomb group protein targets, 

consistent with what has been reported in previous 

epigenome wide studies of aging effects [4-7, 42]. 

While typically DNAm of CpG islands and/or 

polycomb recruitment is linked to transcriptional 

silencing [47], for the most part, we did not observe 

associations between DNAm and expression for co-

locating CpG-gene pairs�this was also true when only 

considering CpGs located in islands. These findings 

may suggest that the genes annotated to the CpGs in our 

score are not part of the link between changes in DNAm 

and aging. Nevertheless, we also recognize that these 

null results could stem from the fact that 1) associations 

were only tested in monocytes, 2) DNAm and 

expression represents what is present globally for each 

sample, rather than on a cell-by-cell basis, and 3) 

stronger associations between DNAm and gene 

expression levels may only exist early in life.  

 

Nevertheless, we do identify potentially promising 

transcriptional pathways when considering DNAm 

PhenoAge as a whole. For instance, we observe that 

higher DNAm PhenoAge is associated with increases in 

the activation of proinflammatory pathways, such as 

NF-kappaB; increased interferon (IFN) signaling; 

decreases in ribosomal�related and translational 
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machinery pathways; and decreases in damage 

recognition and repair pathways. These findings are 

consistent with previous work describing aging 

associated changes, comprising increases in dysregulat-

ed inflammatory activation, increased DNA damage, 

and loss of translational fidelity. For instance, there 

exists a large body of literature highlighting the 

importance of an increased low-grade pro-inflammatory 

status as a driver of the aging process, termed inflamm-

aging [41, 48, 49]. IFN signaling pathways have been 

shown to be markers of DNA damage and mediators of 

cellular senescence[50]. Additionally, it has been shown 

that breakdown of the transcriptional and translational 

machinery may play a central role in the aging process 

[51, 52]. For instance, the ribosome is believed to be a 

key regulator of proteostasis, and in turn, aging [51, 53]. 

Relatedly, loss of integrity in DNA damage repair 

pathways is considered another hallmark of the aging 

process [54-56].  

 

In general, many of these pathways will have implica-

tions for adaptation to exogenous and endogenous 

stressors. Factors related to stress resistance and 

response have repeatedly been shown to be drivers of 

differences in lifespan and aging [49, 57-61]. This may 

partially account for our findings related to smoking. In 

general, it is not surprising that a biomarker of aging 

and mortality risk relates to smoking, given that life 

expectancies of smokers are on average ten years shorter 

than never smokers, and smoking history is associated 

with a drastic increase in the risk of a number of age-

related conditions. However, perhaps more interesting-

ly, we find that the effects of DNAm PhenoAge on 

mortality appear to be higher for smokers than non-

smokers, which could suggest that DNAm PhenoAge 

represent differences in innate resilience/ vulnerability to 

pro-aging stressors, such as cigarette smoke. 

 

Interestingly, we observed moderately high heritability 

estimates for DNAm PhenoAge. For instance, we 

estimated that genetic differences accounted for one-

third to one-half of the variance in DNAm PhenoAge, 

relative to chronological age. In moving forward, it will 

be useful to identify the genetic architecture underlying 

differences in epigenetic aging. Finally, we reported 

that individuals� DNAm PhenoAges�relative to their 

chronological ages�remained fairly stable over a nine-

year period. However, it is unclear whether it is 

attributable to genetic influences, or the fact that social 

and behavioral characteristics tend to also remain stable 

for most individuals.   

  

If the goal is to utilize accurate quantifiable measures of 

the rate of aging, such as DNAm PhenoAge, to assess 

the efficacy of aging interventions, more work will be 

needed to evaluate the dynamics of DNAmPhenoAge 

following various treatments. For instance, it remains to 

be seen whether interventions can reverse 

DNAmPhenoAge in the short term. Along these lines, it 

will be essential to determine causality�does DNAm 

drive the aging process, or is it simply a surrogate 

marker of organismal senescence? If the former is true, 

DNAm PhenoAge could provide insight into promising 

targets for therapies aimed at lifespan, and more 

importantly, healthspan extension. 

 

Overall, DNAm PhenoAge is an attractive composite 

biomarker that captures organismal age and the func-

tional state of many organ systems and tissues, above 

and beyond what is explained by chronological time. 

Our validation studies in multiple large and independent 

cohorts demonstrate that DNAm PhenoAge is a highly 

robust predictor of both morbidity and mortality 

outcomes, and represents a promising biomarker of 

aging, which may prove to be beneficial to both basic 

science and translational research.  

 

METHODS 
 

Using the NHANES training data, we applied a Cox 

penalized regression model�where the hazard of 

aging-related mortality (mortality from diseases of the 

heart, malignant neoplasms, chronic lower respiratory 

disease, cerebrovascular disease, Alzheimer�s disease, 

Diabetes mellitus, nephritis, nephrotic syndrome, and 

nephrosis) was regressed on forty-two clinical markers 

and chronological age to select variables for inclusion in 

our phenotypic age score. Ten-fold cross-validation was 

employed to select the parameter value, lambda, for the 

penalized regression. In order to develop a sparse 

parsimonious phenotypic age estimator (fewer 

biomarker variables preferred to produce robust results) 

we selected a lambda of 0.0192, which represented a 

one standard deviation increase over the lambda with 

minimum mean-squared error during cross-validation 

(Supplement 1, Fig. S13). Of the forty-two biomarkers 

included in the penalized Cox regression model, this 

resulted in ten variables (including chronological age) 

that were selected for the phenotypic age predictor.  
 

These nine biomarkers and chronological age were then 

included in a parametric proportional hazards model 

based on the Gompertz distribution. Based on this 

model, we estimated the 10-year (120 months) 

mortality risk of the j-the individual. Next, the 

mortality score was converted into units of years 

(Supplement 1). The resulting phenotypic age estimate 

was regressed on DNA methylation data using an 

elastic net regression analysis. The penalization 

parameter was chosen to minimize the cross validated 

mean square error rate (Supplement 1, Fig. S14), which 

resulted in 513 CpGs. 
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Estimation of blood cell counts based on DNAm 

levels 

 

We estimate blood cell counts using two different 

software tools. First, Houseman's estimation method 

[62] was used to estimate the proportions of CD8+ T 

cells, CD4+ T, natural killer, B cells, and granulocytes 

(mainly neutrophils). Second, the Horvath method, 

implemented in the advanced analysis option of the 

epigenetic clock software [11, 18], was used to estimate 

the percentage of exhausted CD8+ T cells (defined as 

CD28-CD45RA-), the number (count) of naïve CD8+ T 

cells (defined as CD45RA+CCR7+) and plasmablasts. 

We and others have shown that the estimated blood cell 

counts have moderately high correlations with 

corresponding flow cytometric measures [62, 63].  

 

Additional descriptions of methods and materials can be 

found in Supplement 1.  
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SUPPLEMENTARY MATERIAL 
 

Please browse the Full Text version of this manuscript 

to see Supplementary Methods, Tables, and Figures 

presented in Supplements 1-4. 

 

 

 

 

 

 

 

 


