
Comparison of methods that use whole genome data to estimate 
the heritability and genetic architecture of complex traits

Luke M. Evans 1,10, Rasool Tahmasbi 1, Scott I. Vrieze 2, Gonçalo R. Abecasis 3, Sayantan 
Das3, Steven Gazal 4,5, Douglas W. Bjelland 1, Teresa R. de Candia 1, Haplotype Reference 
Consortium , Michael E. Goddard 6,7, Benjamin M. Neale 5, Jian Yang 8, Peter M. Visscher 8, 
and Matthew C. Keller 1,9,10

1Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA

2Department of Psychology, University of Minnesota, Minneapolis, MN, USA

3Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, 
MI, USA

4Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 
Massachusetts, USA

5Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 
Massachusetts, USA

6Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria

7Agriculture Victoria, Bundoora, Victoria, Australia

8Institute for Molecular Bioscience and the Queensland Brain Institute, University of Queensland, 
Brisbane, Queensland, Australia

9Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA

Abstract

Multiple methods have been developed to estimate narrow-sense heritability, h2, using single 

nucleotide polymorphisms (SNPs) in unrelated individuals. However, a comprehensive evaluation 
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of these methods has not yet been performed, leading to confusion and discrepancy in the 

literature. We present the most thorough and realistic comparison of these methods to date. We 

utilized thousands of real whole genome sequences to simulate phenotypes under varying genetic 

architectures and confounding variables, and used array, imputed, or whole genome sequence 

SNPs to obtain “SNP-heritability” estimates (ĥ2
SNP). We show that ĥ2

SNP can be highly sensitive 

to assumptions about the frequencies, effect sizes, and levels of linkage disequilibrium (LD) of 

underlying causal variants, but that methods that bin SNPs according to minor allele frequency and 

LD are less sensitive to these assumptions across a wide range of genetic architectures and 

possible confounding factors. These findings provide guidance for best practices and proper 

interpretation of published estimates.

Narrow-sense heritability, h2, the proportion of a trait’s phenotypic variance attributable to 

additive genetic variance, is a fundamental concept in quantitative genetics. In addition to 

being the central descriptor of the genetic bases of traits, h2 determines the response to 

selection and the potential utility of individual genetic prediction1,2. h2 estimated in 

traditional designs using pedigrees or twins, h
PED
2 , relies on strong assumptions about the 

causes of covariance between close relatives and can be biased to the degree these 

assumptions are unmet3,4. Over the last eight years, alternative “SNP-based” methods5 have 

been developed to estimate h2 using measured SNPs, denoted h
SNP
2 . When estimated in 

samples of nominally unrelated individuals, h
SNP
2  is unlikely to be confounded by common 

environmental or non-additive genetic effects that increase similarity of close relatives, and 

should reflect the proportion of phenotypic variation due to causal variants (CVs) tagged by 

SNPs. When common SNPs are used in the analysis, h
SNP
2  is expected to be less than h2 and 

h
PED
2  because rare CVs are typically poorly tagged by common SNPs, and indeed h

SNP
2  is 

substantially lower than h
PED
2  for most complex traits in such analyses, with schizophrenia6 

( h
SNP
2

0.23 versus h
PED
2

0.8) a typical example.

More recently, imputed SNPs have been used to capture the effects of rarer CVs and to gain 

insight into the genetic architecture of traits, examine genetic networks and annotation 

classes, and test evolutionary hypotheses6–18. For example, the substantial fraction of the 

variance in prostate cancer risk due to rare variants suggests that negative selection has 

reduced the frequency of risk alleles18, and across a range of traits, young alleles explain 

more of the heritability than old alleles, suggesting widespread purifying selection13,14. 

Whole genome sequence (WGS) SNPs are likely to be increasingly used for such purposes 

in the future.

As SNPs in these analyses begin to more accurately reflect the density and frequency 

distributions of CVs, h
SNP
2  should approach total h2, making it important to understand the 

factors that can bias h
SNP
2 . Moreover, the proliferation of methods (Table 1) has led to 

discrepancies in estimates. For example, schizophrenia h
SNP
2  has been reported as 0.56 (LD 
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score regression19) and 0.23 (univariate GREML16). Recently, Speed et al.15 argued that 

typical assumptions about the relationships between SNP effect size, minor allele frequency 

(MAF), and linkage disequilibrium (LD) are inaccurate, and reported h
SNP
2  values 

significantly higher than previous estimates under different assumptions. How should such 

discrepancies be interpreted? Under which conditions do biases exist across different 

methods and when should researchers prefer one method over another? Answers to these 

questions are important, yet to date, comparisons across methods have been restricted to a 

small subset of methods in the primary papers they were introduced in, and have been 

compared across simulations that are unrealistic with respect to properties of real genomes. 

For example, simulating CVs from imputed genotypic data rather than measured WGS 

data15 can lead to CVs with highly atypical levels of LD and therefore to conclusions about 

h
SNP
2  that apply to genetic architectures unrepresentative of real traits.

Here, we utilized thousands of fully sequenced genomes to simulate traits across different 

genetic architectures and degrees of population stratification, and compared the performance 

of the most popular SNP heritability estimation methods using three different SNP types 

(array, imputed, and WGS). By simulating phenotypes from real WGS data rather than from 

simulated or array/imputed SNPs, we were able to mimic patterns of LD and stratification 

found in real genomes and to include the effects of CVs down to a MAF of 0.0003. We then 

estimated heritability and the allelic spectra of six complex traits in the UK Biobank. Our 

findings provide insight into the most important factors influencing, and best practices for 

estimating, h
SNP
2 .

RESULTS

Comparison of h
SNP
2  across estimation methods under typical assumptions about CV effect 

sizes

For all methods described here other than LD score regression, evidence for h
SNP
2  occurs to 

the degree to which the genome-wide average correlation between pairs of individuals i, j at 

measured SNPs, A ij , is related to phenotypic similarity. A ij  values between all pairs of 

individuals are stored in an n×n genomic relationship matrix (GRM), used to estimate h
SNP
2

with restricted maximum likelihood (REML). Such models can be fit using a single GRM 

(“single-component GREML”)5,20 or by binning SNPs according to MAF, LD, and/or other 

annotations into multiple GRMs (“multi-component GREML”)7,11, akin to multiple 

regression and leading to one h
SNP
2  per GRM, which can be summed to derive total h

SNP
2 .

We used WGS data from the Haplotype Reference Consortium21 to mimic four levels of 

stratification found within Europe by varying the ancestry compositions of samples (each 

n=8201; Online Methods). We simulated traits using 1000 randomly chosen WGS CVs 

within five different MAF ranges under typical assumptions (CV effect sizes independent of 

LD and inversely proportionate to MAF, per-CV contribution to h2 invariant across MAF). 

Later, we tested alternative assumptions. While all CVs are SNPs in our simulations (i.e., we 
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do not simulate non-SNP CVs, such as repeat polymorphisms), we hereafter restrict our 

usage of “SNPs” to denote the markers used to create GRMs and “CVs” to denote 

underlying causal variants. We estimated h2 using commonly applied methods (see 

Supplemental Note for additional methods) and used SNPs on a typical commercial platform 

(the UK Biobank Axiom array22), SNPs imputed from an independent reference panel, or 

WGS SNPs to create GRMs. When WGS SNPs were used to create GRMs, CVs were 

necessarily included in the markers that created the GRMs, whereas this occurred 

sporadically for array and imputed SNPs. We simulated 100 phenotypes for each parameter 

combination and found the means of h
SNP
2  and their empirical 95% confidence intervals 

(CIs) across replicates. We did not simulate any phenotypic effects as a function of ancestry, 

and thus biases related to stratification in our results were due to the genotypic (e.g., long-

range LD), not environmental, effects of stratification.

We note that in some contexts, it is useful to compare h
SNP
2  to a corresponding population 

parameter, h
SNP
2 , defined as the true proportion of variance explained by the set of SNPs 

used in the analysis23, and which in most cases is less than the full h2 due to imperfectly 

tagged CVs. However, such a formulation is cumbersome in the current context because 

h
SNP
2  changes across each combination of genetic architecture and SNP data type. Instead, in 

all cases we compare h
SNP
2  to the full (simulated) h2, with the recognition that downward 

biases in h
SNP
2  are expected when CVs are imperfectly tagged by (array and imputed) SNPs 

used in the analysis, and that such underestimates do not necessarily reflect estimation 

problems. Because this expected underestimation does not apply to WGS data, and because 

these methods will be increasingly applied to WGS data in the future, in this section we 

focus primarily on results from WGS data; results from imputed SNPs (which were similar) 

and array SNPs (which were often dissimilar) are discussed briefly below but are presented 

in full in the Supplement.

The most-widely used estimation method, single-component GREML5 (GREML-SC, or the 

“GCTA” approach15), underestimated h2 when average CV MAF < average SNP MAF, such 

as when CVs were rare and array SNPs were analyzed, and overestimated h2 when average 

CV MAF > average SNP MAF, such as when CVs were common and WGS SNPs were 

analyzed (Figure 1; Supplementary Figs. 1–6, Supplementary Tables 1–3). These biases are 

predictable based on SNP-SNP versus SNP-CV LD: when the mean LD between CVs and 

SNPs (r2
QM

) is less than the mean LD between all SNPs (r2
MM

), which occurs when CVs 

are on average rarer than SNPs, h
SNP
2  under-estimates h2, and vice-versa when r

2
QM

> r
2

MM

(Supplementary Fig. 7, ref.7). GREML-SC analyses using array SNPs led to modest 

overestimation of h2 when CVs were common (Supplementary Fig. 1), presumably because 

array SNPs are chosen to maximally tag surrounding genomic regions. Stratification led to 

long-range tagging between ancestry specific (rare) CVs and ancestry informative common 

SNPs, which altered these biases. In the most stratified sample, average LD for very rare 

SNPs was higher than average LD for common SNPs (Supplementary Fig. 7), which led to 

overestimation of h2 when CVs were very rare and underestimation of common CV h2 when 
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using WGS or imputed variants (Supplementary Figs. 3–5). Controlling for ancestry 

principal components as fixed effects had no influence on these biases. Thus, stratification, 

CV MAF, and data type strongly influenced patterns of CV and SNP LD, leading to over- or 

under-estimated h2 using GREML-SC.

Speed et al. introduced an approach (LDAK) to LD-weight SNPs in order to account for the 

redundant tagging of CVs by multiple SNPs, which can bias h
SNP
2  in certain situations20. We 

limit discussion here to LDAK-SC as originally described20, and explore recent extensions 

of this model15 below with different simulations. As with GREML-SC, LDAK-SC estimates 

were highly sensitive to stratification, CV MAF, and SNP data type. When using common 

SNPs for the analysis (array, imputed, or WGS), LDAK-SC underestimated h2 arising from 

rare CVs, but corrected the overestimation arising from common CVs observed with 

GREML-SC (Fig 1; Supplementary Fig. 1–2). However, when using all SNPs from WGS 

data, LDAK weighted SNPs inversely proportionate to their LD, resulting in near-zero 

weights for common SNPs and very high weights for rare SNPs (Supplementary Fig. 8–9). 

This led to underestimated h2 when CVs were common and overestimated h2 when CVs 

were very rare (Fig. 1; Supplementary Fig. 4). This over-weighting of rare SNPs appeared to 

exacerbate biases arising from stratification versus the unweighted (GREML-SC) approach 

(Supplementary Fig. 3–5). On the other hand, when all imputed SNPs were modeled in 

unstratified samples, LDAK appeared to provide decent estimates of h2 (Supplementary Fig. 

5), although results in the next section suggest that this was due to offsetting biases that 

happened to cancel out across this particular combination of parameters. Overall, the 

LDAK-SC results reiterate that single-component GREML models are highly sensitive to 

assumptions about genetic architecture.

We compared four multi-component approaches: 1) GREML-MS7 (4 GRMs) which binned 

SNPs into 4 MAF categories; 2) GREML-LDMS-R7 (16 GRMs) which binned SNPs by 

MAF crossed by the average LD of SNPs in the surrounding ~200kb region; 3) GREML-

LDMS-I (16 GRMs), which we introduce here and which binned SNPs by MAF crossed by 

their individual levels of LD; and 4) LDAK-MS15,20 (4 GRMs), which binned SNPs by 

MAF and weighted them according to the LDAK model. There were no major differences 

between the results of the first three approaches: all provided ~ unbiased total h
SNP
2  (the sum 

of h
SNP
2  from each GRM) when used on imputed or WGS data (Fig. 1, Supplementary Fig. 

1–5). The similarity of these estimates is unsurprising in this set of simulations because CV 

effects were unrelated to LD, but below we demonstrate that GREML-LDMS-I provides the 

most robust estimates when this is not the case. LDAK-MS provided less biased h
SNP
2  than 

LDAK-SC but more biased h
SNP
2  than the other three multi-component GREML methods 

when CVs were rare. Biased h
SNP
2  from LDAK-MS could occur because the simulation 

model does not match the LDAK assumption that CV effect sizes are a function of LD; we 

explore this issue below. In general, multi-component models outperform single-component 

models because r
2

QM
 is closer to r2

MM
 within narrower MAF/LD ranges, and therefore h

SNP
2

associated with each partitioned GRM—and their sums—are likely to be ~unbiased, 
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consistent with previous work7. For similar reasons, these models were less biased in 

stratified samples than single-component models (Supplementary Fig. 3–5). However, the 

empirical standard errors of h
SNP
2  from GREML-LDMS-I were ~20%–50% higher than 

those from GREML-LDMS-R, which were in turn ~100% higher than those from GREML-

SC (Supplementary Fig. 10–12). Thus, multi-component GREML models require large 

sample sizes (e.g., n > 30k) to be informative.

Zaitlen et al.24, proposed a two GRM approach to obtain h
PED
2  and h

SNP
2  in samples 

containing close relatives. The first GRM contains A ij  for all pairs of individuals, while A ij 

values below a threshold, t (=.05 here), are set to 0 in the second GRM. The first GRM 

contains information on sharing of CVs tagged by SNPs and is used to obtain h
SNP
2 , while 

the second GRM only contains information from closely related individuals, reflecting 

sharing of CVs not tagged by SNPs, and is used to obtain h
IBS > t
2 , the additional h2 captured 

by close relatives. The sum of h
IBS > t
2  and h

SNP
2  therefore provides an estimate of h

PED
2 . In 

our simulations, h
PED
2  was an unbiased estimate of h2 across most situations examined 

(Supplementary Fig. 13–14). However, h
IBS > t
2  and h

SNP
2  were often severely over- or under-

estimated individually, depending on the CV MAF range and data type, with patterns of 

h
SNP
2  similar to those observed for GREML-SC. Thus, attempts to use this method to infer 

genetic architecture should be treated with caution. Moreover, as acknowledged by Zaitlen et 

al.24 and demonstrated in additional simulations, h
PED
2  may be biased upward when 

environmental factors cause similarity within nuclear or extended families (Supplemental 

Fig. 15).

LD score regression (LDSC) is an alternative, computationally-efficient approach that 

estimates h2 from the relationship between LD-tagging of individual SNPs and their 

expected GWAS test statistics under an infinitesimal model10,19. Results from LDSC were 

similar when utilizing array, imputed, or WGS SNPs (Fig. 1, Supplementary Fig. 1–2, 16–

18), as were estimates of the intercept, which reflect the contribution of stratification and 

cryptic relatedness to the GWAS test statistics (see Supplementary Note for further 

discussion of LDSC statistics). Across data types, LDSC generally underestimated h2 by 5–

10% when CVs were common. LDSC increasingly underestimated h2 when CVs were rare, 

regardless of data type, because rare SNPs and CVs generally have very low LD scores. 

However, LDSC was largely immune to the genomic effects of stratification (see 

Supplementary Note), and we found no upward bias when unmodeled shared environmental 

effects were included in the simulations (Supplementary Fig. 15), suggesting that h
SNP
2  from 

LDSC is robust to familial environmental effects and provides a reasonable estimate of the 

lower bound of h2 tagged by common CVs.

We also simulated ascertained, case-control phenotypes applying the standard 

transformation to the liability scale25. While the smaller sample size from ascertainment 

Evans et al. Page 6

Nat Genet. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased standard errors, patterns of h
SNP
2  estimates across methods were similar to those 

found with continuous phenotypes (Supplementary Fig. 19), suggesting that our conclusions 

here apply to categorical outcomes.

Finally, multi-component methods can also estimate h2 across different annotations or 

different MAF bins (the “allelic spectra” of traits). Multi-component GREML approaches 

accurately estimated the allelic spectra when using WGS data (Fig. 2, Supplementary Fig. 

20). However, these approaches underestimated the contribution of very rare CVs by up to 

20% using imputed data (Supplementary Fig. 21), due to the poorer imputation quality of 

rare SNPs, and highly underestimated their contribution when using array SNPs 

(Supplementary Fig. 22) due to the low LD typically observed between array SNPs and rare 

CVs (Supplementary Tables 4–5).

Comparison of h
SNP
2  models under alternative assumptions

Recent work has shown that, conditioning on MAF, SNPs with individually low levels of LD 

contribute disproportionately to the heritability of multiple complex traits13, suggesting that 

CV effects are not independent of their levels of LD. The simulations above assumed that 

CV effect sizes, ́k, were independent of LD and that rare CVs had, on average, larger effect 

sizes than common CVs, and therefore that the per-CV h2 was invariant on average across 

MAF. This is achieved by applying an ³ of −1, which governs the MAF-effect size 

relationship and assuming ´k~N(0,1), the default scaling of GREML-SC, -LDMS-R, and 

LDMS-I5,7 (Online Methods). Recently, Speed et al.15 argued that less biased h
SNP
2  estimates 

are obtained using a single-component model, but by assuming a higher contribution of 

common CVs (i.e., ³=−0.25), by assuming SNP effect sizes, wk, are inversely proportionate 

to LD, (Supplementary Fig. 8–9), and by weighting SNPs by imputation quality (r2) (the 

LDAK model). Across numerous traits, they observed LDAK-SC-based h
SNP
2  25–43% 

higher than h
SNP
2  from GREML-SC and GREML-LDMS-R, as well as higher log-

likelihoods from LDAK-SC models.

We compared the performance of these alternative assumptions of MAF, LD, and CV effect 

size relationships with simulated phenotypes using CVs drawn from different MAF ranges 

under four different combinations of MAF-effect size (³=−1 or −0.25) and LD-effect size 

(´k ~N(0,1) or ~N(0,wk)) relationships. We also simulated phenotypes from two distinct, 

functionally relevant genetic architectures. First, we simulated with CVs randomly chosen 

from all DNase-I Hypersensitivity Sites, which have systematically lower LD17. Second, we 

simulated phenotypes using the empirically-estimated, LD-dependent effect size 

distribution, ́ k~N(0, Äk), where Äk was estimated across 31 traits using partitioned LD score 

regression13 (Online Methods). This latter simulation is particularly important because the 

functional, LD-dependent genetic architecture it used was independent of the assumptions 

made in the GREML and LDAK models used in estimation. Because LDAK-SC was 

intended to be used on imputed data, our primary results below are based on imputed SNPs, 

but results from WGS data are also presented in the Supplement.
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h
SNP
2  from single-component models, including GREML-SC and LDAK-SC, were highly 

sensitive to model assumptions about MAF- and LD-effect size relationships, as well as to 

differences between CV and SNP MAF distributions (Fig. 3, Supplementary Figs. 23–24, 

Supplementary Tables 6–7). Moreover, in simulations with empirically derived genetic 

architectures13 (´k~N(0, Äk)), both GREML-SC and LDAK-SC (Fig. 4, Supplementary Fig. 

25–26) were highly biased. On the other hand, multi-component GREML models were 

much more robust to model misspecification (Figs. 3–4, Supplementary Fig. 23–28). In 

particular, when we binned SNPs by their individual LD scores (GREML-LDMS-I), h
SNP
2

estimates were robust across every genetic architecture we investigated (Fig. 3), including 

when CV effect sizes were drawn from the empirically estimated genetic architectures (Fig. 

4). Across all genetic architectures and all data types investigated, GREML-LDMS-I had the 

lowest absolute bias of any method (Fig. 5). This suggests that particular assumptions 

regarding MAF- and LD-effect size relationships are mitigated by the use of multiple-

component models.

Of note, log likelihood was not a reliable indicator of degree of bias. Speed et al.15 argued 

that higher log-likelihood assuming ³=−0.25 than ³=−1 suggested that the former was more 

tenable. Across single-component models, which had the same number of predictors and 

therefore comparable log likelihoods, models with higher log likelihoods were typically less 

biased. However, we observed multiple cases where negligible differences in log likelihood 

translated into large differences in bias, as well as situations where models with higher 

average log likelihoods produced more biased results than models with lower average log 

likelihoods (Supplementary Figs. 23–26).

Heritability of Complex Traits in the UK Biobank

We applied seven approaches using imputed SNPs to six complex traits in the UK Biobank26 

(Fig. 6, Supplementary Fig. 29–30, Supplementary Table 8). Differences in h
SNP
2  across 

methods were consistent with our simulations. Estimates from single-component models 

were often higher than those from multi-component models that bin SNPs by MAF and LD. 

For instance, the majority of height h2 is attributable common CVs27, and GREML-SC and 

LDAK-SC h
SNP
2  of height were unrealistically high ( > h

PED
2

), which can occur when CVs 

are more common than SNPs used to build the GRM (Fig. 1,3–4). On the other hand, 

estimates from multi-component GREML were much more reasonable. These results 

provide context for understanding previously published estimates (see Supplementary Note), 

including those from Speed et al.15 showing higher LDAK h
SNP
2 , and highlight the dangers 

of using single-component models that rely on strong assumptions about CV effect sizes and 

MAF distributions.

Our results also suggest that the allelic spectra differ across the six traits, as estimated using 

GREML-LDMS-I, the most accurate approach in our simulations (Supplementary Fig. 31, 

Supplementary Tables 9–10). For example, while the majority of height heritability was 

explained by common SNPs, 59% of fluid intelligence h2 was due to rare CVs, with a total 
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h
SNP
2

( 0.35) that approached h
PED
2 . Nevertheless, our simulations suggest that variance due 

to increasingly rare CVs was underestimated by ~20% for all traits due to low imputation 

quality at lower MAF. This under-estimate was probably more severe because the imputation 

reference panel (combined UK10K and 1,000 Genomes) used in the UK Biobank data was 

smaller by ~half and less diverse than the reference panel used in our simulations.

DISCUSSION

We have demonstrated that estimates of h2 and allelic spectra using SNP data can be biased 

in a number of sometimes difficult to foresee ways, and depend strongly on a complex 

interplay between the method and type of data used in the analysis, trait genetic architecture, 

degree of sample stratification, shared environmental effects, and whether close relatives are 

included or excluded. Understanding how these influence h
SNP
2  is crucial for proper 

interpretation of often-conflicting published estimates and for optimal design of future 

studies. Additional factors that we did not investigate might also influence the biases of h
SNP
2

across methods, such as technical artifacts28, environmental factors that covary with 

ancestry29,30, CVs with MAF <0.0003, or non-SNP CVs.

LD is central to the performance of all the methods compared here, in particular, the LD 

among SNPs used to create the GRM and that between CVs and SNPs7,20. Single-

component models, such as GREML-SC and LDAK-SC, are highly sensitive to 

assumptions, especially when rare imputed or WGS SNPs are used to create the GRM. This 

is problematic given that it seems unlikely that a single set of assumptions will hold for all 

traits and across the entire allelic spectrum. Alternatively, multi-component models that 

partition h
SNP
2  across multiple LD and MAF bins provide the most robust estimates across 

the majority of contexts explored here while simultaneously providing insight into the allelic 

spectra of complex traits. However, they are more computationally intensive and have higher 

standard errors than single-component models, and require larger datasets to achieve reliable 

estimates. Nevertheless, such data is now at hand, and if the goal is to obtain the least biased 

estimates of h2 or to estimate allelic spectra, we recommend using multi-component 

GREML models. Even when using multi-component approaches, h2 is likely 

underestimated, but will improve as sample sizes increase and larger imputation panels 

and/or WGS data are utilized.

Based on the results of the present and previous studies, we summarize our suggestions for 

using SNPs to estimate h2 and allelic spectra of complex traits. First, quality control of 

genetic data is crucial, particularly for case-control and/or multiple cohorts datasets where 

technical artifacts can inflate or deflate h
SNP
2 31. Covariates (ancestry principal components, 

cohorts, plates, etc.) that might be confounded with genetic similarity should be included as 

fixed effects in GREML models and in the GWAS models for LD score regression32. 

Related individuals may share common environmental and non-additive genetic effects, 

upwardly biasing estimates of h2; using unrelated individuals should provide estimates not 

inflated by such factors33.
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Second, the model and data type used in the analysis strongly influence estimates. When 

genotype data are unavailable or impractical to use, LDSC provides a lower bound of the h2 

captured by common CVs and is unaffected by confounding due to stratification and the 

common environment. Single component methods such as GREML-SC and LDAK-SC are 

highly sensitive to model misspecification, which can lead to severely biased estimates of 

heritability. Moreover, they are also sensitive to the effects of stratification, which are not 

mitigated by inclusion of ancestry covariates. We recommend these approaches only when 

sample sizes are small (e.g., n < 30,000) and homogeneous. Multi-component approaches 

with WGS or imputed SNPs provide the most accurate estimates of h2 and allelic spectra 

across a range of genetic architectures and stratification levels. When using imputed data, 

SNPs should be imputed using the largest and most diverse reference panel possible (e.g., 

HRC21) in order to more reliably capture the effects of rare CVs. However, more GRMs lead 

to larger standard errors, necessitating larger sample sizes (n > 30,000). Of the multi-

component approaches, GREML-LDMS-I, which we introduce here and bins SNPs by MAF 

and individual LD levels, appears to perform the best.

ONLINE METHODS

Samples and Population Structure

We simulated continuous phenotypes derived from WGS data in the Haplotype Reference 

Consortium (HRC)21. The HRC comprises ~32,500 individuals from multiple WGS studies, 

with called genotypes at all sites with minor allele count ≥5. We had access to a subset 

(Supplementary Note) of 21,500 individuals with genotype calls at 38,913,048 biallelic 

SNPs. This large WGS dataset allowed phenotype simulation with differing genetic 

architectures under realistic patters of LD structure, stratification, and relatedness.

The HRC is mainly of European ancestry. To reduce the effects of worldwide stratification, 

we identified European individuals using principal components analysis (PCA). We used 

flashpca34 on 133,603 MAF- and LD-pruned SNPs (plink235 commands –maf 0.05 --indep-

pairwise 1000 400 0.2), extracted the first ten PCs. We used the 1000 Genomes individuals 

in the HRC as anchor points for ancestry and identified 19,478 individuals of European 

descent, including individuals of Finnish and Sardinian ancestry using K-means clustering in 

R36 (Supplementary Fig. 32).

To identify subsets of these 19,478 individuals spanning different levels of genetic 

heterogeneity, we reran PCA with only these individuals, then identified four increasingly 

homogenous subgroups within them using K-means clustering (Supplementary Fig. 33 and 

Supplemental Note). We sampled an equal number of individuals from each subset at a 

relatedness cutoff of 0.1 (N=8,201), and also identified individuals with relatedness less than 

0.05 within each group (N=7,792; 8,115; 8,129; and 8,186 for the four subsamples) to 

examine how relatedness and stratification influence h
SNP
2  estimates.

Simulation of Phenotypes and Whole Genome Data Types

To assess how methods performed on a range of genetic architectures, we simulated 

phenotypes from CVs drawn randomly from five MAF ranges from the WGS data: common 
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(MAF≥0.05), uncommon (0.01≤MAF<0.05), rare (0.0025≤MAF<0.01), very rare 

(0.0003≤MAF<0.0025), and all SNPs that had a minor allele count (MAC) ≥5 

(MAF≥0.0003). We generated phenotypes from 1,000 CVs from the model yi=gi+ei, where 

gi=ΣX ik´k and Xik=(zik−2pk)[2pk(1−pk)]³/2, where zik was the genotype coded as 0, 1, or 2 

of individual i at the kth CV, pk was the MAF within a population subset, and ´k was the kth 

allelic effect size, drawn from ~N(0,1). In these simulations, we used ³=−1, assuming larger 

average effect sizes for rarer SNPs. The gi’s were standardized and added to residual error 

drawn from ~N(0,(1−h2)/h2) for h2=0.5. A total of 100 replicated phenotypes were 

simulated for each CV MAF range and each of the four population stratification subsets. 

Note that simulations did not include any ancestry (i.e., PC) effects, and thus stratification-

driven biases were due to the genotypic (e.g., long-range LD) effects of stratification.

To simulate ascertained case-control phenotype data, in samples with some and low 

stratification (Supplementary Fig. 33B–C), we converted the continuous phenotypes 

simulated above to dichotomous case-control data using a prevalence of 20% (K=0.2). We 

then combined the cases with an equal number of randomly sampled controls to simulate 

ascertained datasets, which reduced sample sizes (~40% of the continuous trait data). Note 

that this altered sample size reduces the genetic variance for phenotypes derived from rarer 

CVs. We transformed estimates of h2 to the liability scale using the transformation described 

in Lee et al.25.

To simulate array, imputed, and WGS data types, we first extracted from the WGS data SNP 

positions corresponding to a widely-used commercially available genotyping array, the 

UKBiobank Affymetrix Axiom array (the array SNP dataset). We then imputed genome-

wide variants using these Axiom SNPs and independent HRC samples as a WGS reference 

panel (the imputed dataset). Finally, we used the HRC WGS data directly (the WGS 

dataset). See Supplementary Note for details of each dataset. MAF distributions of the 

different data types for two of the structure subsamples are shown in Supplementary Fig. 34.

Heritability Estimation Methods Tested

We briefly describe our implementation of the most commonly used methods to estimate h2 

and partition genetic variation using genome-wide data (see Supplementary Note for 

descriptions of and results from additional, less commonly used methods). For all methods 

except LD score regression (described below), we generated GRMs following the standard 

procedures of each method, and estimated h2
SNP using GCTA37. In all models, variance 

component estimates were unconstrained (e.g., by using the –reml-no-constrain option of 

GCTA), and included 20 PCs (10 from worldwide PCA and 10 from the specific subsample 

PCA) and sequencing cohort as fixed effects.

Single-component GREML (GREML-SC)

Yang et al.5 introduced the single-component approach using a mixed-effects model, with 

GRM entries:
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Aij =
1
m

3
k

m (xik 4 2pk)(x jk 4 2pk)

2pk(1 4 pk)
(1)

where m is the number of SNPs, xjk is the genotype (coded as 0, 1, or 2) of individual j at 

the kth locus, and pk is the MAF of the kth locus. The variance of the phenotypes is

var(y) = Aσv
2 + Iσe

2 (2)

where the variance explained by the SNPs (Ã2
v) and error variance (Ã2

e) are estimated using 

restricted maximum likelihood (REML) implemented in the GCTA package37. The 

proportion of the total variance explained by all SNPs is then a measure of heritability 

(h
SNP
2

= σ
2
v
/(σ2

v
+ σ

2
e
)). Typically, the set of m SNPs used to build the GRM is the set of 

SNPs with MAF≥0.01 (hereafter “common SNPs”) and unrelated individuals (relatedness ≤ 

0.05). We compared this typical approach to one using all SNPs with MAC≥5 (hereafter “all 

SNPs”) in each particular stratification subsample and for each data type (note that ~9.5% of 

Axiom array positions have MAF <0.01 in our sample), as well as to an approach using less 

stringent relatedness thresholds (relatedness < 0.10 and no relatedness threshold). For 

analyses that used no relatedness threshold, inclusion of close relatives increased our sample 

sizes to 9,916; 8,701; 8,715; and 8,506 for the samples with most, some, low, and least 

stratification, respectively (Supplementary Fig. 33).

MAF-Stratified GREML (GREML-MS)

h
SNP
2  is expected to be a biased estimate of h2 when using the GREML-SC method if the 

MAF distribution of the CVs does not match the MAF distribution of SNPs used to generate 

the GRM11. Stratifying SNPs into MAF bins in a multiple GRM GREML approach can 

mitigate this bias and can partition h
SNP
2  into that explained by different SNP MAF bins, 

lending insight into the allelic spectra of complex traits6,7. For each data type, we applied 

this approach using 4 MAF bins, matching the CV MAF binsused for phenotype simulation.

LD- and MAF-Stratified GREML (GREML-LDMS-R and GREML-LDMS-I)

Extending the GREML-MS method to account for different levels of LD throughout the 

genome, Yang et al.7 introduced an approach (originally termed GREML-LDMS but which 

we term GREML-LDMS-R here) that stratifies SNPs jointly by their MAF and regional LD 

scores, defined as the sum of r2 between the focal SNP and all other SNPs in a 200Kb 

sliding window. We estimated LD scores using the default settings in GCTA (200Kb block 

size with a 100Kb overlap), and stratified SNPs into LD score quartiles (see Yang et al.7 for 

details). This resulted in 16 GRMs (4 MAF bins by 4 LD bins) and therefore 16 values of 

h
SNP
2 , which were summed to derive total h

SNP
2 . SNPs with individually low levels of LD 

contribute disproportionately to the heritability for multiple complex traits, particularly low 

LD SNPs in regions of high LD13. Because these results suggest individual rather than 
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regional LD levels influence heritability, we developed and compared results from an 

alternative approach (GREML-LDMS-I) that stratified by individual (rather than regional) 

SNP LD scores, again binning SNPs by LD quartiles and four MAF bins, for a total of 16 

GRMs.

Single- and multi-component LD-Adjusted Kinships (LDAK-SC and LDAK-MS)

Speed et al.20 noted that because LD varies across the genome, CVs in regions of high LD 

receive disproportionate weight by eqn. (1) above. The original LDAK20 approach weights 

SNPs according to individual LD, potentially correcting for the bias introduced when there 

is variation in how well CVs are tagged by SNPs, and assumes standard MAF-CV effect size 

scaling (³ = −1). We used LDAK520 to estimate these LD-weighted GRMs, which first 

thins SNPs in very high LD to reduce redundant tagging, then estimates SNP weights, wk, 

that are inversely proportional to their average LD with other SNPs. We also applied the 

MAF-stratified approach described above but using LDAK weights (LDAK-MS). For the 

single-component model (LDAK-SC), we used all SNPs (MAC≥5) as well as only common 

SNPs (MAF≥0.01) to build the GRM for each data type. For the MAF-stratified approach, 

following recommendations in the LDAK documentation, we estimated SNP weights over 

the union of all SNPs (MAC≥5), then computed GRMs for each MAF class separately. We 

then applied the multiple GRM method with these LDAK-weighted GRMs to estimate 

h2
SNP using GCTA. Results from the first set of simulations (Figs. 1 and 2) come from the 

traditional LDAK approach described above; results from the second set of simulations 

(Figs. 3–5) come from the updated LDAK approach described in the section below, 

Simulation of data and comparison of h
SNP
2  under alternative assumptions about CV effect 

sizes.

Extended Genealogy with Thresholded GRMs

Zaitlen et al.24 introduced a method to simultaneously obtain h
SNP
2  and h

PED
2  by using two 

GRMs in a sample containing close relatives. The first GRM contains all A ij , whereas the 

second GRM sets A ij , values below a threshold, t, to 0. The first GRM, therefore, contains 

information on allele sharing of (mostly common) variants in unrelated and related 

individuals (estimating h2
SNP), while the second only contains information from closely 

related individuals (estimating h2
IBS>t, following Zaitlen et al.24). We tested two relatedness 

thresholds (t ≤ 0.05 and 0.1) for the second GRM. The sum of h
IBS > t
2  and h

SNP
2  provides an 

estimate of total h2, similar to h
PED
2 , with all the same potential biases that exist in h

PED
2

from designs that use close relatives. By necessity, all analyses using this approach included 

close relatives, which could lead to confounding between genetic and environmental 

similarity if shared environmental effects are not modeled38,39. Indeed, Zaitlen et al.24 argue 

that such shared environmental effects were the likely cause of higher h
PED
2  estimates among 

relatives who shared an environment through cohabitation (e.g., half-siblings) compared to 

equally related relatives that did not share a cohabitation environment (e.g., grand-parents 

and grand-children). We therefore assessed whether h
SNP
2  and h

PED
2  estimates from this 

method (as well as from GREML-SC and LDSC) were biased when extended shared 
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environmental effects were present but unmodeled in samples of closely related individuals 

(see Supplementary Note).

LD Score Regression (LDSC)

LDSC uses a different approach to estimate the heritability tagged by common CVs. Rather 

than estimating relatedness within a sample for use in mixed-model GREML analysis, 

LDSC regresses GWAS test statistics (χ2) on SNPs’ LD scores, which reflect the degree to 

which each SNP is correlated with surrounding SNPs10,19. For a polygenic model, the 

expected GWAS test statistic of SNP j, χ2
j, is

E[χ2
j | l j] = N(h2

SNP)l j/M + Na + 1 (3)

where N is the sample size, M is the number of SNPs, l j is the LD score (= Σkr2jk) measuring 

the tagging of surrounding variants by SNP j, and a is a measure of confounding biases 

arising from stratification and cryptic relatedness. Thus, regressing GWAS test statistics on 

per-SNP LD scores allows for both estimation of h
SNP
2  and assessing the degree of 

confounding or polygenicity of a trait19. Bulik-Sullivan et al.19 argue that LDSC provides 

unbiased estimates of h2 tagged by common SNPs regardless of whether GWAS test 

statistics are estimated with or without controlling for ancestry or environmental covariates 

or relatedness. Here, we estimated GWAS test statistics using plink2 without controlling for 

ancestry covariates or controlling for ancestry covariates (20 PCs and sequencing cohort as 

above). We used the ldsc package with default parameters (see URLs) to perform LDSC. We 

calculated LD scores for all SNPs using WGS data, including common and rare SNPs. As 

recommended by Bulik-Sullivan et al.19, we used unrelated individuals (relatedness ≤ 0.05) 

and only common SNPs to perform the regression itself, because the relationship between 

the GWAS χ2 and LD-score is unclear for rare (MAF<.01) SNPs. We examined the 

relationship among h
SNP
2 , the intercept, the mean χ2, and the genomic control inflation 

factor, λGC (see Supplementary Note).

LDSC can also be used to partition heritability among annotations10. We applied this 

approach using the four MAF bins described above. Because our MAF bins included very 

rare SNPs, for this MAF-stratified LDSC, we used GWAS test statistics from all SNPs 

(MAF≥0.0003, using the --not-5–50 flag in the ldsc package) while controlling for 

covariates as above.

Simulation of Phenotypes and Comparison of h
SNP
2  under Alternative Assumptions about 

CV Effect Sizes

We tested the LDAK-SC, GREML-SC, and GREML-LDMS (-R & -I) methods on 

phenotypes imulated under alternative assumptions about CV effect sizes in order to 

determine the degree to which the methods were robust to model misspecification. To 

simulated phenotypes under alternative effect size assumptions, in the low stratification 

sample only (Supplementary Fig. 33C), we varied the MAF-effect size relationship (³=−1 or 

Evans et al. Page 14

Nat Genet. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−0.25), and the effect size distribution (´k~N(0,1) or ~N(0,wk), where wk is the LDAK 

weight of the kth CV estimated from the WGS data, which is inversely proportional to the 

SNP LD score (Supplementary Fig. 8–9)). When ´k~N(0,1) and ³=−1, this model is the 

same as above and as previously described7. WGS CVs were drawn randomly from common 

SNPs (MAF > 0.05), very rare SNPs (MAF < 0.0025), all SNPs (MAF≥0.0003) or randomly 

from all DHS sites (systematically lower LD17), annotated for all UK10K SNPs with 

MAC≥2. Note that in Speed et al.15, effect sizes, ́k, are also assumed to be proportionate to 

the imputation quality scores (r2). Because we were simulating CVs from WGS data rather 

than imputed variants, we did not include the r2 term for simulating CV effect sizes.

Additionally, we simulated phenotypes using an independent LD architecture derived from 

the 75 annotations baseline-LD model described in ref.13, which contains coding, conserved, 

DHS and other functional annotations, 10 MAF bins, and 6 LD-related annotations 

modeling multiple LD-related architectures (including predicted allele age, recombination 

rate and CpG-content). For these simulations, we annotated 20,678,452 SNPs with allele 

count greater or equal than 2 in 3,567 UK10K unrelated individuals, and modeled the 

variance of the kth SNP, Äk, proportional to 3
c = 1
75

a
c
(k)θ

c
, where ac(k) was the continuous 

value annotations of CV k for annotation c and θc was the per-SNP contribution of one unit 

of the annotation ac to the heritability. We used the values of θc estimated with stratified LD 

score regression on 31 independent traits13 and constrained θc to be positive. Finally, as θc 

and stratified LD score regression hold only for common SNPs, we rescaled the variance of 

all Äk so that the heritability explained by the four rarest of the 10 MAF bins (delimited by 0, 

0.1%, 0.5%, 1% and 5% boundaries) were equal to the expected variance of the bin (=Σ(pk(1 

− pk))1+³, where ³=−0.28, estimated by Loh et al.12). We then simulated phenotypes as 

described above with effect sizes ´k drawn from ~N(0,Äk).

We compared estimates from models applying different assumptions of ³ and ́ k. The 

traditional GREML-SC, -LDMS-R, and -LDMS-I estimate GRMs using ³=−1 and ́ k 

~N(0,1), while the updated LDAK-SC model of Speed et al.15 uses ³=−0.25 and ́k 

~N(0,wk) as well as weighting SNPs by imputation r2. To test these assumptions, we 

estimated GRMs using either ³=−1 or −0.25 and either weighting by LDAK weights or not. 

For imputed data, we also weighted SNP contributions to the GRM by imputation r2. For 

GREML-LDMS-R and -I, we used ³=−1 and no LDAK or imputation r2 weighting.

Heritability of Complex Traits in the UK Biobank

We estimated heritability for six continuous phenotypes in the initial release of the UK 

Biobank26 (N~150,000) using the most commonly applied methods (Fig. 6). To reduce the 

effects of stratification, we used individuals of European ancestry (Supplementary Fig. 33). 

To estimate the GRMs, we separately used directly genotyped Axiom array positions as well 

as imputed genome-wide SNPs with IMPUTE info score ≥0.3. See Supplementary Table 8 

for the list of all methods we applied. See Supplemental Note for additional methods and 

details.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Mean h
SNP
2  across 100 replicates from GRMs built from WGS SNPs in the least structured 

subsamples. Methods on the x-axis as follows: Single-component GREML (GREML-SC) 

with all SNPs or only MAF > 0.01; MAF-stratified GREML (GREML-MS); LD and MAF-

stratified GREML (GREML-LDMS-R [regional LD] & -I [individual SNP LD]); Single-

component Linkage Disequilibrium-Adjusted Kinships (LDAK-SC) with all SNPs or only 

MAF > 0.01; MAF-stratified LDAK (LDAK-MS); Extended Genealogy with Thresholded 

GRMs with all SNPs or only common (MAF > 0.01), presenting both h2
SNP and h2

Tot 

(=h2
SNP + h2

ibs>t); LD score regression (LDSC) using no PCs as covariates in GWAS, using 

PCs as covariates, or partitioned using PCs with MAF-stratification. Estimates are from 

samples of unrelated individuals (relatedness <0.05) except for those from the Threshold 

GRM method, which included all individuals. Simulated (true) h2 = 0.5. Colors represent the 

MAF range of the 1,000 randomly drawn CVs. See Online Methods for descriptions of each 

method and Supplementary Figures for additional estimates and Supplementary Table 2 for 

numerical results. Error bars represent 95% confidence intervals.
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Figure 2. 

Mean h
SNP
2  for four MAF bins across 100 replicates from multi-component approaches in 

unrelated individuals using WGS SNPs in the least structured subsample. See Fig. 1 for 

specific methods. Black lines are the true (simulated) h2 values; note that in the top panel, 

the true h2 values differ across MAF. See Online Methods for descriptions of each method 

and Supplementary Figures for additional estimates and Supplementary Table 4 for 

numerical results. Error bars represent 95% confidence intervals.
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Figure 3. 

Mean h
SNP
2  across 100 replicates from GRMs built from imputed SNPs in the least 

structured subsamples across different model assumptions (bars) and different ways of 

simulating CVs (x-axes). The x-axes of each panel show the simulated CV MAF-scaling 

parameter, ³, and the CV effect size distribution, ´k. The four panels show different MAF 

ranges of the 1,000 randomly-drawn CVs. DHS sites were randomly sampled without 

respect to MAF. Bar colors indicate the fitted model, with a single GRM used except for the 

“LDMS” models, which used 16 GRMs (³=−1) stratified by MAF and either regional (-R) 

or individual SNP (-I) LD score. See Online Methods for descriptions of each method and 

Supplementary Figures for additional estimates and Supplementary Table 6 for numerical 

results. Error bars represent 95% confidence intervals.
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Figure 4. 

Mean h
SNP
2  across 100 replicates from GRMs built from imputed SNPs in the least 

structured subsamples across different model assumptions (bars) and different ways of 

simulating CVs (x-axes). CV effect sizes were simulated from ~N(0,Äk). The x-axes of each 

panel show the simulated CV MAF-scaling parameter, ³. The three panels show different 

MAF ranges of the 1,000 randomly-drawn CVs. Bar colors indicate the fitted model. See 

Online Methods for descriptions of each method and Supplementary Figures for additional 

estimates and Supplementary Table 6 for numerical results. Error bars represent 95% 

confidence intervals.
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Figure 5. 

Boxplots of the absolute bias of heritability estimates ( |E(h
SNP
2

) 4 h
2 | ) across all simulated 

phenotypes from Supplementary Figures 24 & 26 using WGS data to estimate GRMs (top), 

and from Figures 3–4 using imputed variants to estimate the GRMs (bottom). X axis 

indicates the parameters for the estimation model, including the MAF scaling factor, ³, and 

the assumed effect size distribution, ´k, specified in the GRM and whether imputation scores 

(r2) were used in the GRM estimation. All used a single GRM except for LD- & MAF-

stratified GREML (LDMS), which used 16 GRMs (³=−1) stratified by MAF and either 

regional (-R) or individual SNP (-I) LD score. * Typical GREML-SC parameters. † Typical 

LDAK-SC parameters. Boxplots show the median and interquartile, with whiskers extending 

1.5 times the quartiles and more extreme points shown for N=22 (WGS) and 26 (imputed) 

mean estimates of heritability.

Evans et al. Page 22

Nat Genet. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 

Estimated h
SNP
2  using multiple methods with imputed variants for six complex traits in the 

UK Biobank. MAF>0.01 indicates common SNPs were used to create the GRMs. ∅ = 

information matrix was not invertible. HM3 indicates that only imputed HapMap3 sites were 

used in the LDSC analysis. Sample sizes as follows: height N=94,769; BMI N=94,595; 

impedance N=93,451; trunk fat N=93,414; fluid intelligence N=31,724; neuroticism 

N=78,565. See Supplementary Table 8 for numerical results. Error bars are 1 S.E.M.
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Table 1

Summary of commonly applied methods and a description of findings from simulations.

Method &
original ref

Description Major Assumptions

Simulation findings 

regarding h
SNP
2

Computational Issues

GREML-SC5

Often called the “GCTA 
approach.” Originally 
applied to common array 
SNPs only. Estimates 

h
SNP
2 , the amount of h2 

caused by CVs tagged 
by SNPs used to create 
the GRM.

1) Genetic similarity is 
uncorrelated with 
environmental similarity; 
2) an infinitesimal model; 
3) SNP effects are 
normally distributed, 
independent of LD, and 
inversely proportionate to 
MAF (³=−1).

Biased to the degree that 
the average LD among 
SNPs is different than the 
average LD between SNPs 
and CVs. This occurs in 
stratified samples and 
when MAF & LD 
distributions of SNPs do 
not match those of CVs.

Simple model tractable 
with large samples 
(>100K).

GREML-MS11 The first multi-
component approach, 
usually applied by 
binning SNPs according 
to their MAF, 
annotation, or physical 
regions in order to 
explore genetic 
architecture.

Requires that the same 
assumptions of GREML-
SC hold within each GRM.

Biased if CVs have 
generally higher or lower 
levels of LD than the SNPs 
used to make the GRM. 
Relatively large standard 
errors.

Run times and memory 
requirements higher than 
GREML-SC and 
increase as a function of 
the number of variance 
components estimated.

GREML-LDMS-R7 A multi-component 
approach that bins 
imputed SNPs by their 
MAF and regional LD.

Same as GREML-MS Use of regional LD scores 
can lead to biases if CVs 
have different LD on 
average than surrounding 
SNPs. Relatively large 
standard errors.

Same as GREML-MS.

GREML-LDMS-I A multi-component 
approach introduced 
here that bins imputed 
SNPs by their MAF and 
individual LD.

Same as GREML-MS Appears to be the least 
biased approach, even 
when traits have complex 
genetic architectures. 
Relatively large standard 
errors.

Same as GREML-MS.

LDAK-SC15,20 Introduced to account for 
redundant tagging of 
CVs by common SNPs. 
Recently modified to 
incorporate error due to 
imputation and to alter 
the MAF-effect size 
relationship.

Same as GREML-SC, 
except that allelic effects 
are a function of LD. 
Extended to assume that 
effects are also a function 
of imputation quality and 
weakly inversely 
proportionate to MAF (³=
−0.25).

Can correct for the 
overestimation observed in 
GREML-SC from 
redundant tagging of CVs, 
but otherwise about as 
biased as GREML-SC 
when assumptions are 
unmet, although the biases 
are sometimes in different 
directions.

Same as GREML-SC.

LDAK-MS15 A multi-component 
extension of LDAK-SC 
that bins SNPs by MAF.

Requires that the same 
assumptions of LDAK-SC 
hold within each GRM.

Less biased on average 
than LDAK-SC, but more 
biased than GREML-
LDMS (-I or -R). 
Relatively large standard 
errors.

Same as GREML-MS.

Threshold GRMs24 A multi-component 
approach with two 
GRMs: the normal 
(unthresholded) GRM 
built from all SNPs, and 
a second GRM with 
entries set to 0 if below a 
threshold. Conducted in 
samples that include 
close relatives.

Same as GREML-SC for 
the unthresholded GRM. 
Assumes no shared 
environmental influences 
among close relatives.

Estimates associated with 
unthresholded GRM 
similar to those of 
GREML-SC. When used in 
samples that include close 
relatives, the second GRM 
captures pedigree-
associated variation but can 
be upwardly biased by 
shared environmental 
influences.

See GREML-SC.
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Method &
original ref

Description Major Assumptions

Simulation findings 

regarding h
SNP
2

Computational Issues

LD Score Regression19 Uses the slope from χ2 

(from GWAS) regressed 
on SNPs’ LD scores to 
estimate the h2 due to 
CVs in LD with 
common SNPs.

Infinitesimal model with 
allelic effects normally 
distributed.

Largely robust to 
confounding due to 
stratification and shared 
environmental influences. 
Estimates h2 due to 
common CVs only, even 
when used on imputed or 
WGS data. Underestimates 
h2 if the trait is not highly 
polygenic.

The most 
computationally efficient 
method of those 
compared and is tractable 
for very large datasets.
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