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Abstract

Multiple methods have been developed to estimate narrow-sense herit&ilising single
nucleotide polymorphisms (SNPs) in unrelated individuals. However, a comprehensive evaluation
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of these methods has not yet been performed, leading to confusion and discrepancy in the
literature. We present the most thorough and realistic comparison of these methods to date. We
utilized thousands of real whole genome sequences to simulate phenotypes under varying genetic
architectures and confounding variables, and used array, imputed, or whole genome sequence
SNPs to obtain “SNP-heritability” estimate®&np). We show thatisyp can be highly sensitive

to assumptions about the frequencies, effect sizes, and levels of linkage disequilibrium (LD) of
underlying causal variants, but that methods that bin SNPs according to minor allele frequency and
LD are less sensitive to these assumptions across a wide range of genetic architectures and
possible confounding factors. These findings provide guidance for best practices and proper
interpretation of published estimates.

Narrow-sense heritability?, the proportion of a trait’s phenotypic variance attributable to
additive genetic variance, is a fundamental concept in quantitative genetics. In addition to
being the central descriptor of the genetic bases of tfgitktermines the response to
selection and the potential utility of individual genetic predicétor? estimated in

traditional designs using pedigrees or tw'ﬁfsED, relies on strong assumptions about the

causes of covariance between close relatives and can be biased to the degree these
assumptions are unniét Over the last eight years, alternative “SNP-based” methaie

been developed to estimatéusing measured SNPs, denoﬁégp. When estimated in

samples of nominally unrelated individuaT§NP is unlikely to be confounded by common
environmental or non-additive genetic effects that increase similarity of close relatives, and
should reflect the proportion of phenotypic variation due to causal variants (CVs) tagged by
SNPs. When common SNPs are used in the anaﬁiﬁilg,is expected to be less thahand

’;12050 because rare CVs are typically poorly tagged by common SNPs, and E@ggesi

substantially lower thaﬁ?,ED for most complex traits in such analyses, with schizopHtenia

~2 ~2 .
(hgyp~0-23 versusiy,,~0.8) a typical example.

More recently, imputed SNPs have been used to capture the effects of rarer CVs and to gain
insight into the genetic architecture of traits, examine genetic networks and annotation
classes, and test evolutionary hypoth&sésFor example, the substantial fraction of the
variance in prostate cancer risk due to rare variants suggests that negative selection has
reduced the frequency of risk allet&sand across a range of traits, young alleles explain

more of the heritability than old alleles, suggesting widespread purifying seléetbn

Whole genome sequence (WGS) SNPs are likely to be increasingly used for such purposes
in the future.

As SNPs in these analyses begin to more accurately reflect the density and frequency
distributions of CVsEéNP should approach tot&f, making it important to understand the

factors that can biaE?NP. Moreover, the proliferation of methods (Table 1) has led to

discrepancies in estimates. For example, schizophﬁép}ahas been reported as 0.56 (LD
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score regressidf) and 0.23 (univariate GREMF). Recently, Speed et Ht.argued that
typical assumptions about the relationships between SNP effect size, minor allele frequency

(MAF), and linkage disequilibrium (LD) are inaccurate, and repd?igg values

significantly higher than previous estimates under different assumptions. How should such
discrepancies be interpreted? Under which conditions do biases exist across different
methods and when should researchers prefer one method over another? Answers to these
guestions are important, yet to date, comparisons across methods have been restricted to a
small subset of methods in the primary papers they were introduced in, and have been
compared across simulations that are unrealistic with respect to properties of real genomes.
For example, simulating CVs from imputed genotypic data rather than measured WGS
datd® can lead to CVs with highly atypical levels of LD and therefore to conclusions about

EZ

syp that apply to genetic architectures unrepresentative of real traits.

Here, we utilized thousands of fully sequenced genomes to simulate traits across different
genetic architectures and degrees of population stratification, and compared the performance
of the most popular SNP heritability estimation methods using three different SNP types
(array, imputed, and WGS). By simulating phenotypes from real WGS data rather than from
simulated or array/imputed SNPs, we were able to mimic patterns of LD and stratification
found in real genomes and to include the effects of CVs down to a MAF of 0.0003. We then
estimated heritability and the allelic spectra of six complex traits in the UK Biobank. Our
findings provide insight into the most important factors influencing, and best practices for

estimating ﬁéNP.

2

syp across estimation methods under typical assumptions about CV effect

For all methods described here other than LD score regression, evideﬁi;\g)foccurs to

the degree to which the genome-wide average correlation between pairs of indivitatals
measured SNP4g);, is related to phenotypic similarity;; values between all pairs of

individuals are stored in am 7 genomic relationship matrix (GRM), used to estimfé;gp

with restricted maximum likelihood (REML). Such models can be fit using a single GRM
(“single-component GREML32or by binning SNPs according to MAF, LD, and/or other
annotations into multiple GRMs (“multi-component GREM{:2}, akin to multiple

regression and leading to oﬁ%\m per GRM, which can be summed to derive téfg}P.

We used WGS data from the Haplotype Reference Cons@éttionmimic four levels of
stratification found within Europe by varying the ancestry compositions of samples (each
m=8201; Online Methods). We simulated traits using 1000 randomly chosen WGS CVs
within five different MAF ranges under typical assumptions (CV effect sizes independent of
LD and inversely proportionate to MAF, per-CV contributiorffanvariant across MAF).

Later, we tested alternative assumptions. While all CVs are SNPs in our simulations (i.e., we
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do not simulate non-SNP CVs, such as repeat polymorphisms), we hereafter restrict our
usage of “SNPs” to denote the markers used to create GRMs and “CVs” to denote
underlying causal variants. We estimatédising commonly applied methods (see
Supplemental Note for additional methods) and used SNPs on a typical commercial platform
(the UK Biobank Axiom arra8f), SNPs imputed from an independent reference panel, or
WGS SNPs to create GRMs. When WGS SNPs were used to create GRMs, CVs were
necessarily included in the markers that created the GRMs, whereas this occurred
sporadically for array and imputed SNPs. We simulated 100 phenotypes for each parameter

combination and found the meangiélgP and their empirical 95% confidence intervals

(Cls) across replicates. We did not simulate any phenotypic effects as a function of ancestry,
and thus biases related to stratification in our results were due to the genotypic (e.g., long-
range LD), not environmental, effects of stratification.

We note that in some contexts, it is useful to comﬁé&g to a corresponding population

parameterﬁgNP, defined as the true proportion of variance explained by the set of SNPs

used in the analy$id and which in most cases is less than theffidlue to imperfectly
tagged CVs. However, such a formulation is cumbersome in the current context because

ﬁéNP changes across each combination of genetic architecture and SNP data type. Instead, in
all cases we compaﬁ%NP to the full (simulated)?, with the recognition that downward

biases irﬁgNP are expected when CVs are imperfectly tagged by (array and imputed) SNPs

used in the analysis, and that such underestimates do not necessarily reflect estimation
problems. Because this expected underestimation does not apply to WGS data, and because
these methods will be increasingly applied to WGS data in the future, in this section we

focus primarily on results from WGS data; results from imputed SNPs (which were similar)
and array SNPs (which were often dissimilar) are discussed briefly below but are presented
in full in the Supplement.

The most-widely used estimation method, single-component GREGIREML-SC, or the
“GCTA” approach®), underestimated# when average CV MAF < average SNP MAF, such

as when CVs were rare and array SNPs were analyzed, and overestifivatet average

CV MAF > average SNP MAF, such as when CVs were common and WGS SNPs were
analyzed (Figure 1; Supplementary Figs. 1-6, Supplementary Tables 1-3). These biases are
predictable based on SNP-SNP versus SNP-CV LD: when the mean LD between CVs and

SNPS(r_2QM) is less than the mean LD between all s@m), which occurs when CVs

are on average rarer than SNPE%,P under-estimate#?, and vice-versa wheﬁQM > VZMM

(Supplementary Fig. 7, réj. GREML-SC analyses using array SNPs led to modest
overestimation of” when CVs were common (Supplementary Fig. 1), presumably because
array SNPs are chosen to maximally tag surrounding genomic regions. Stratification led to
long-range tagging between ancestry specific (rare) CVs and ancestry informative common
SNPs, which altered these biases. In the most stratified sample, average LD for very rare
SNPs was higher than average LD for common SNPs (Supplementary Fig. 7), which led to
overestimation of” when CVs were very rare and underestimation of commorvhen

Nat GenetAuthor manuscript; available in PMC 2018 October 26.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Evans et al.

Page 5

using WGS or imputed variants (Supplementary Figs. 3-5). Controlling for ancestry
principal components as fixed effects had no influence on these biases. Thus, stratification,
CV MAF, and data type strongly influenced patterns of CV and SNP LD, leading to over- or
under-estimated? using GREML-SC.

Speed et al. introduced an approach (LDAK) to LD-weight SNPs in order to account for the
redundant tagging of CVs by multiple SNPs, which can ;’Bﬁﬁg in certain situatiorfd. We

limit discussion here to LDAK-SC as originally descriB®dnd explore recent extensions

of this model® below with different simulations. As with GREML-SC, LDAK-SC estimates
were highly sensitive to stratification, CV MAF, and SNP data type. When using common
SNPs for the analysis (array, imputed, or WGS), LDAK-SC underestimdgising from

rare CVs, but corrected the overestimation arising from common CVs observed with
GREML-SC (Fig 1; Supplementary Fig. 1-2). However, when using all SNPs from WGS
data, LDAK weighted SNPs inversely proportionate to their LD, resulting in near-zero
weights for common SNPs and very high weights for rare SNPs (Supplementary Fig. 8-9).
This led to underestimate when CVs were common and overestimatédhen CVs

were very rare (Fig. 1; Supplementary Fig. 4). This over-weighting of rare SNPs appeared to
exacerbate biases arising from stratification versus the unweighted (GREML-SC) approach
(Supplementary Fig. 3-5). On the other hand, when all imputed SNPs were modeled in
unstratified samples, LDAK appeared to provide decent estimatéq{®fipplementary Fig.

5), although results in the next section suggest that this was due to offsetting biases that
happened to cancel out across this particular combination of parameters. Overall, the
LDAK-SC results reiterate that single-component GREML models are highly sensitive to
assumptions about genetic architecture.

We compared four multi-component approaches: 1) GREMU-(4$RMs) which binned
SNPs into 4 MAF categories; 2) GREML-LDMSLRL6 GRMs) which binned SNPs by

MAF crossed by the average LD of SNPs in the surrounding ~200kb region; 3) GREML-
LDMS-I (16 GRMs), which we introduce here and which binned SNPs by MAF crossed by
their individual levels of LD; and 4) LDAK-M%:20(4 GRMs), which binned SNPs by

MAF and weighted them according to the LDAK model. There were no major differences

between the results of the first three approaches: all provided ~ unbiasé@l\}pt(ahe sum

~
of h SNP

1-5). The similarity of these estimates is unsurprising in this set of simulations because CV
effects were unrelated to LD, but below we demonstrate that GREML-LDMS-I provides the

from each GRM) when used on imputed or WGS data (Fig. 1, Supplementary Fig.

most robust estimates when this is not the case. LDAK-MS provided less Bjﬁgahan

)
LDAK-SC but more blasehlSNP

than the other three multi-component GREML methods
when CVs were rare. BiaseiéiNP from LDAK-MS could occur because the simulation

model does not match the LDAK assumption that CV effect sizes are a function of LD; we
explore this issue below. In general, multi-component models outperform single-component

models becaungM is closer to_ZMM within narrower MAF/LD ranges, and therefoﬁ%;vp

associated with each partitioned GRM—and their sums—are likely to be ~unbiased,
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consistent with previous wofkFor similar reasons, these models were less biased in
stratified samples than single-component models (Supplementary Fig. 3-5). However, the

empirical standard errors 6§NP from GREML-LDMS-I were ~20%-50% higher than
those from GREML-LDMS-R, which were in turn ~100% higher than those from GREML-

SC (Supplementary Fig. 10-12). Thus, multi-component GREML models require large
sample sizes (e.g3> 30Kk) to be informative.

Zaitlen et aP4, proposed a two GRM approach to obvéﬁ,rbe andﬁéNP in samples
containing close relatives. The first GRM conta#sfor all pairs of individuals, whiled;
values below a threshold(=.05 here), are set to 0 in the second GRM. The first GRM
contains information on sharing of CVs tagged by SNPs and is used toﬁi%@iwhile

the second GRM only contains information from closely related individuals, reflecting
sharing of CVs not tagged by SNPs, and is used to dfﬁgey'r; » the additional? captured

by close relatives. The sum EﬁBS o, andﬁgNP therefore provides an estimateﬁé%D. In

our simulationsﬁf)ED was an unbiased estimate/sfacross most situations examined

(Supplementary Fig. 13-14). HowevéiBS - andﬁéNP were often severely over- or under-

estimated individually, depending on the CV MAF range and data type, with patterns of

EiNP similar to those observed for GREML-SC. Thus, attempts to use this method to infer
genetic architecture should be treated with caution. Moreover, as acknowledged by Zaitlen et
al.24 and demonstrated in additional simulaticﬁfsED may be biased upward when

environmental factors cause similarity within nuclear or extended families (Supplemental
Fig. 15).

LD score regression (LDSC) is an alternative, computationally-efficient approach that
estimated? from the relationship between LD-tagging of individual SNPs and their
expected GWAS test statistics under an infinitesimal mM8délResults from LDSC were
similar when utilizing array, imputed, or WGS SNPs (Fig. 1, Supplementary Fig. 1-2, 16—
18), as were estimates of the intercept, which reflect the contribution of stratification and
cryptic relatedness to the GWAS test statistics (see Supplementary Note for further
discussion of LDSC statistics). Across data types, LDSC generally underestiribies—

10% when CVs were common. LDSC increasingly underestinfatetien CVs were rare,
regardless of data type, because rare SNPs and CVs generally have very low LD scores.
However, LDSC was largely immune to the genomic effects of stratification (see
Supplementary Note), and we found no upward bias when unmodeled shared environmental

effects were included in the simulations (Supplementary Fig. 15), suggestiﬁé,\);babm

LDSC is robust to familial environmental effects and provides a reasonable estimate of the
lower bound of” tagged by common CVs.

We also simulated ascertained, case-control phenotypes applying the standard
transformation to the liability sc#e While the smaller sample size from ascertainment
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increased standard errors, patternég% estimates across methods were similar to those

found with continuous phenotypes (Supplementary Fig. 19), suggesting that our conclusions
here apply to categorical outcomes.

Finally, multi-component methods can also estint&tacross different annotations or

different MAF bins (the “allelic spectra” of traits). Multi-component GREML approaches
accurately estimated the allelic spectra when using WGS data (Fig. 2, Supplementary Fig.
20). However, these approaches underestimated the contribution of very rare CVs by up to
20% using imputed data (Supplementary Fig. 21), due to the poorer imputation quality of
rare SNPs, and highly underestimated their contribution when using array SNPs
(Supplementary Fig. 22) due to the low LD typically observed between array SNPs and rare
CVs (Supplementary Tables 4-5).

2

syp Models under alternative assumptions

Recent work has shown that, conditioning on MAF, SNPs with individually low levels of LD
contribute disproportionately to the heritability of multiple complex #3jisuggesting that

CV effects are not independent of their levels of LD. The simulations above assumed that
CV effect sizespy, were independent of LD and that rare CVs had, on average, larger effect
sizes than common CVs, and therefore that the pef¥Nas invariant on average across
MAF. This is achieved by applying anof —1, which governs the MAF-effect size

relationship and assumigg~N(0,1), the default scaling of GREML-SC, -LDMS-R, and

LDMS-1°7 (Online Methods). Recently, Speed etargued that less biasé@VP estimates

are obtained using a single-component model, but by assuming a higher contribution of
common CVs (i.e.q«=—0.25), by assuming SNP effect sizeg, are inversely proportionate
to LD, (Supplementary Fig. 8-9), and by weighting SNPs by imputation quaitthe

LDAK model). Across numerous traits, they observed LDAK-SC-bﬁ%ﬁp 25-43%

higher tharﬂéNP from GREML-SC and GREML-LDMS-R, as well as higher log-

likelihoods from LDAK-SC models.

We compared the performance of these alternative assumptions of MAF, LD, and CV effect
size relationships with simulated phenotypes using CVs drawn from different MAF ranges
under four different combinations of MAF-effect size=(-1 or —0.25) and LD-effect size
(Bx~N(0,1) or ~N(Oyvy) relationships. We also simulated phenotypes from two distinct,
functionally relevant genetic architectures. First, we simulated with CVs randomly chosen
from all DNase-l Hypersensitivity Sites, which have systematically lowér' L®econd, we
simulated phenotypes using the empirically-estimated, LD-dependent effect size
distribution, B~N(0, t4), wheret, was estimated across 31 traits using partitioned LD score
regressiof? (Online Methods). This latter simulation is particularly important because the
functional, LD-dependent genetic architecture it used was independent of the assumptions
made in the GREML and LDAK models used in estimation. Because LDAK-SC was
intended to be used on imputed data, our primary results below are based on imputed SNPs,
but results from WGS data are also presented in the Supplement.
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2
SNP

sensitive to model assumptions about MAF- and LD-effect size relationships, as well as to
differences between CV and SNP MAF distributions (Fig. 3, Supplementary Figs. 23-24,
Supplementary Tables 6—7). Moreover, in simulations with empirically derived genetic
architecture®® (8,~N(0, t4)), both GREML-SC and LDAK-SC (Fig. 4, Supplementary Fig.
25-26) were highly biased. On the other hand, multi-component GREML models were
much more robust to model misspecification (Figs. 3—4, Supplementary Fig. 23—-28). In

particular, when we binned SNPs by their individual LD scores (GREML-LDM@-IJ,},

estimates were robust across every genetic architecture we investigated (Fig. 3), including
when CV effect sizes were drawn from the empirically estimated genetic architectures (Fig.
4). Across all genetic architectures and all data types investigated, GREML-LDMS-I had the
lowest absolute bias of any method (Fig. 5). This suggests that particular assumptions
regarding MAF- and LD-effect size relationships are mitigated by the use of multiple-
component models.

h’,.» from single-component models, including GREML-SC and LDAK-SC, were highly

Of note, log likelihood was not a reliable indicator of degree of bias. SpeetPetrgiied

that higher log-likelihood assuminrg=—0.25 thamw=-1 suggested that the former was more
tenable. Across single-component models, which had the same number of predictors and
therefore comparable log likelihoods, models with higher log likelihoods were typically less
biased. However, we observed multiple cases where negligible differences in log likelihood
translated into large differences in bias, as well as situations where models with higher
average log likelihoods produced more biased results than models with lower average log
likelihoods (Supplementary Figs. 23—-26).

Heritability of Complex Traits in the UK Biobank

We applied seven approaches using imputed SNPs to six complex traits in the UK Blobank
(Fig. 6, Supplementary Fig. 29-30, Supplementary Table 8). Differenééﬁljracross

methods were consistent with our simulations. Estimates from single-component models
were often higher than those from multi-component models that bin SNPs by MAF and LD.
For instance, the majority of heighfis attributable common C¥4 and GREML-SC and

~2
LDAK-SC gy

are more common than SNPs used to build the GRM (Fig. 1,3-4). On the other hand,
estimates from multi-component GREML were much more reasonable. These results

provide context for understanding previously published estimates (see Supplementary Note),

2
SNP’

of using single-component models that rely on strong assumptions about CV effect sizes and
MAF distributions.

. .. . ~2 .
of height were unrealistically high> 73,.,,), which can occur when CVs

including those from Speed et!&lshowing higher LDAK: and highlight the dangers

Our results also suggest that the allelic spectra differ across the six traits, as estimated using
GREML-LDMS-I, the most accurate approach in our simulations (Supplementary Fig. 31,
Supplementary Tables 9-10). For example, while the majority of height heritability was
explained by common SNPs, 59% of fluid intelligeri@avas due to rare CVs, with a total
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ﬁéNP(~0,35) that approachek?i2 Nevertheless, our simulations suggest that variance due

PED"
to increasingly rare CVs was underestimated by ~20% for all traits due to low imputation
quality at lower MAF. This under-estimate was probably more severe because the imputation
reference panel (combined UK10K and 1,000 Genomes) used in the UK Biobank data was
smaller by ~half and less diverse than the reference panel used in our simulations.

DISCUSSION

We have demonstrated that estimate&?aind allelic spectra using SNP data can be biased

in a number of sometimes difficult to foresee ways, and depend strongly on a complex
interplay between the method and type of data used in the analysis, trait genetic architecture,
degree of sample stratification, shared environmental effects, and whether close relatives are

included or excluded. Understanding how these influééﬁpis crucial for proper

interpretation of often-conflicting published estimates and for optimal design of future
studies. Additional factors that we did not investigate might also influence the bia%% of

across methods, such as technical artificeswironmental factors that covary with
ancestry?:30 CVs with MAF <0.0003, or non-SNP CVs.

LD is central to the performance of all the methods compared here, in particular, the LD
among SNPs used to create the GRM and that between CVs anti?@Ngsgle-

component models, such as GREML-SC and LDAK-SC, are highly sensitive to

assumptions, especially when rare imputed or WGS SNPs are used to create the GRM. This
is problematic given that it seems unlikely that a single set of assumptions will hold for all
traits and across the entire allelic spectrum. Alternatively, multi-component models that

partitionﬁﬁNP across multiple LD and MAF bins provide the most robust estimates across

the majority of contexts explored here while simultaneously providing insight into the allelic
spectra of complex traits. However, they are more computationally intensive and have higher
standard errors than single-component models, and require larger datasets to achieve reliable
estimates. Nevertheless, such data is now at hand, and if the goal is to obtain the least biased
estimates of¥ or to estimate allelic spectra, we recommend using multi-component

GREML models. Even when using multi-component approadfas Jikely

underestimated, but will improve as sample sizes increase and larger imputation panels
and/or WGS data are utilized.

Based on the results of the present and previous studies, we summarize our suggestions for
using SNPs to estimat# and allelic spectra of complex traits. First, quality control of

genetic data is crucial, particularly for case-control and/or multiple cohorts datasets where
technical artifacts can inflate or defla?t%\,ﬁl. Covariates (ancestry principal components,
cohorts, plates, etc.) that might be confounded with genetic similarity should be included as
fixed effects in GREML models and in the GWAS models for LD score regré3sion

Related individuals may share common environmental and non-additive genetic effects,
upwardly biasing estimates #f, using unrelated individuals should provide estimates not
inflated by such factofs.
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Second, the model and data type used in the analysis strongly influence estimates. When
genotype data are unavailable or impractical to use, LDSC provides a lower boundof the
captured by common CVs and is unaffected by confounding due to stratification and the
common environment. Single component methods such as GREML-SC and LDAK-SC are
highly sensitive to model misspecification, which can lead to severely biased estimates of
heritability. Moreover, they are also sensitive to the effects of stratification, which are not
mitigated by inclusion of ancestry covariates. We recommend these approaches only when
sample sizes are small (e.g., n < 30,000) and homogeneous. Multi-component approaches
with WGS or imputed SNPs provide the most accurate estimatésaofi allelic spectra

across a range of genetic architectures and stratification levels. When using imputed data,
SNPs should be imputed using the largest and most diverse reference panel possible (e.g.,
HRC2Y) in order to more reliably capture the effects of rare CVs. However, more GRMs lead
to larger standard errors, necessitating larger sample sizes (n > 30,000). Of the multi-
component approaches, GREML-LDMS-I, which we introduce here and bins SNPs by MAF
and individual LD levels, appears to perform the best.

ONLINE METHODS

Samples and Population Structure

We simulated continuous phenotypes derived from WGS data in the Haplotype Reference
Consortium (HRGY. The HRC comprises ~32,500 individuals from multiple WGS studies,
with called genotypes at all sites with minor allele count 5. We had access to a subset
(Supplementary Note) of 21,500 individuals with genotype calls at 38,913,048 biallelic
SNPs. This large WGS dataset allowed phenotype simulation with differing genetic
architectures under realistic patters of LD structure, stratification, and relatedness.

The HRC is mainly of European ancestry. To reduce the effects of worldwide stratification,
we identified European individuals using principal components analysis (PCA). We used
flashpcd&4 on 133,603 MAF- and LD-pruned SNPs (plisR2Zommands —maf 0.05 --indep-
pairwise 1000 400 0.2), extracted the first ten PCs. We used the 1000 Genomes individuals
in the HRC as anchor points for ancestry and identified 19,478 individuals of European
descent, including individuals of Finnish and Sardinian ancestry using K-means clustering in
R36 (Supplementary Fig. 32).

To identify subsets of these 19,478 individuals spanning different levels of genetic
heterogeneity, we reran PCA with only these individuals, then identified four increasingly
homogenous subgroups within them using K-means clustering (Supplementary Fig. 33 and
Supplemental Note). We sampled an equal number of individuals from each subset at a
relatedness cutoff of 0.1 (N=8,201), and also identified individuals with relatedness less than
0.05 within each group (N=7,792; 8,115; 8,129; and 8,186 for the four subsamples) to

examine how relatedness and stratification influéfig;;, estimates.

Simulation of Phenotypes and Whole Genome Data Types

To assess how methods performed on a range of genetic architectures, we simulated
phenotypes from CVs drawn randomly from five MAF ranges from the WGS data: common
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(MAF®.05), uncommon (0.01#1AF<0.05), rare (0.0025%1AF<0.01), very rare
(0.0003#1AF<0.0025), and all SNPs that had a minor allele count (MAC) 5
(MAF9.0003). We generated phenotypes from 1,000 CVs from the mpee}+e, where
=X iBr and Xu=(Z—2p0[2041-p)] 2, wherezy was the genotype coded as 0, 1, or 2
of individual / at thek”? CV, p, was the MAF within a population subset, ghdvas thex”?
allelic effect size, drawn from ~N(0,1). In these simulations, we ased, assuming larger
average effect sizes for rarer SNPs. fewere standardized and added to residual error
drawn from ~N(0,(1#9)/#7) for ##=0.5. A total of 100 replicated phenotypes were
simulated for each CV MAF range and each of the four population stratification subsets.
Note that simulations did not include any ancestry (i.e., PC) effects, and thus stratification-
driven biases were due to the genotypic (e.g., long-range LD) effects of stratification.

To simulate ascertained case-control phenotype data, in samples with some and low
stratification (Supplementary Fig. 33B—C), we converted the continuous phenotypes
simulated above to dichotomous case-control data using a prevalence of 20% (K=0.2). We
then combined the cases with an equal number of randomly sampled controls to simulate
ascertained datasets, which reduced sample sizes (~40% of the continuous trait data). Note
that this altered sample size reduces the genetic variance for phenotypes derived from rarer
CVs. We transformed estimates/stto the liability scale using the transformation described

in Lee et aP®.

To simulate array, imputed, and WGS data types, we first extracted from the WGS data SNP
positions corresponding to a widely-used commercially available genotyping array, the
UKBiobank Affymetrix Axiom array (the array SNP dataset). We then imputed genome-

wide variants using these Axiom SNPs and independent HRC samples as a WGS reference
panel (the imputed dataset). Finally, we used the HRC WGS data directly (the WGS
dataset). See Supplementary Note for details of each dataset. MAF distributions of the
different data types for two of the structure subsamples are shown in Supplementary Fig. 34.

Heritability Estimation Methods Tested

We briefly describe our implementation of the most commonly used methods to e#éimate
and partition genetic variation using genome-wide data (see Supplementary Note for
descriptions of and results from additional, less commonly used methods). For all methods
except LD score regression (described below), we generated GRMs following the standard
procedures of each method, and estiméfeg,susing GCTA. In all models, variance
component estimates were unconstrained (e.g., by using the —reml-no-constrain option of
GCTA), and included 20 PCs (10 from worldwide PCA and 10 from the specific subsample
PCA) and sequencing cohort as fixed effects.

Single-component GREML (GREML-SC)

Yang et aP introduced the single-component approach using a mixed-effects model, with
GRM entries:
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1 o O = 2P0 — 2py)
YTmli— Zpaspy O

wheremis the number of SNPsj is the genotype (coded as 0, 1, or 2) of indivigial
the k&7 locus, andpy is the MAF of thek”’ locus. The variance of the phenotypes is

var(y) = Acrlz} + Iaz (2)

where the variance explained by the SN&%)(and error variancesf,) are estimated using
restricted maximum likelihood (REML) implemented in the GCTA packagehe

proportion of the total variance explained by all SNPs is then a measure of heritability
~2
(Bsnp

SNPs with MAF8.01 (hereafter “common SNPs”) and unrelated individuals (relatedness <
0.05). We compared this typical approach to one using all SNPs with MACS (hereafter “all
SNPs") in each particular stratification subsample and for each data type (note that ~9.5% of
Axiom array positions have MAF <0.01 in our sample), as well as to an approach using less
stringent relatedness thresholds (relatedness < 0.10 and no relatedness threshold). For
analyses that used no relatedness threshold, inclusion of close relatives increased our sample
sizes to 9,916; 8,701; 8,715; and 8,506 for the samples with most, some, low, and least
stratification, respectively (Supplementary Fig. 33).

=0’ 1(c® +° ). Typically, the set ofn SNPs used to build the GRM is the set of

MAF-Stratified GREML (GREML-MS)

ﬁgNP is expected to be a biased estimaté?fhen using the GREML-SC method if the

MAF distribution of the CVs does not match the MAF distribution of SNPs used to generate
the GRML Stratifying SNPs into MAF bins in a multiple GRM GREML approach can

mitigate this bias and can partitiéEJNP into that explained by different SNP MAF bins,

lending insight into the allelic spectra of complex tfaftsor each data type, we applied
this approach using 4 MAF bins, matching the CV MAF binsused for phenotype simulation.

LD- and MAF-Stratified GREML (GREML-LDMS-R and GREML-LDMS-I)

Extending the GREML-MS method to account for different levels of LD throughout the
genome, Yang et dlintroduced an approach (originally termed GREML-LDMS but which
we term GREML-LDMS-R here) that stratifies SNPs jointly by their MAF and regional LD
scores, defined as the sumrébetween the focal SNP and all other SNPs in a 200Kb
sliding window. We estimated LD scores using the default settings in GCTA (200Kb block
size with a 100Kb overlap), and stratified SNPs into LD score quartiles (see Yaridat al.
details). This resulted in 16 GRMs (4 MAF bins by 4 LD bins) and therefore 16 values of

~2
hsnp:
contribute disproportionately to the heritability for multiple complex traits, particularly low

LD SNPs in regions of high L¥. Because these results suggest individual rather than

which were summed to derive to&%}vp. SNPs with individually low levels of LD
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regional LD levels influence heritability, we developed and compared results from an
alternative approach (GREML-LDMS-I) that stratified by individual (rather than regional)
SNP LD scores, again binning SNPs by LD quartiles and four MAF bins, for a total of 16
GRMs.

Single- and multi-component LD-Adjusted Kinships (LDAK-SC and LDAK-MS)

Speed et &9 noted that because LD varies across the genome, CVs in regions of high LD
receive disproportionate weight by eqn. (1) above. The original L149Akproach weights
SNPs according to individual LD, potentially correcting for the bias introduced when there
is variation in how well CVs are tagged by SNPs, and assumes standard MAF-CV effect size
scaling & = —1). We used LDAK® to estimate these LD-weighted GRMs, which first

thins SNPs in very high LD to reduce redundant tagging, then estimates SNP wejghts,
that are inversely proportional to their average LD with other SNPs. We also applied the
MAF-stratified approach described above but using LDAK weights (LDAK-MS). For the
single-component model (LDAK-SC), we used all SNPs (MACS) as well as only common
SNPs (MAF®.01) to build the GRM for each data type. For the MAF-stratified approach,
following recommendations in the LDAK documentation, we estimated SNP weights over
the union of all SNPs (MACS), then computed GRMs for each MAF class separately. We
then applied the multiple GRM method with these LDAK-weighted GRMs to estimate
Fspnpusing GCTA. Results from the first set of simulations (Figs. 1 and 2) come from the
traditional LDAK approach described above; results from the second set of simulations
(Figs. 3-5) come from the updated LDAK approach described in the section below,

Simulation of data and comparisorﬁé{(] p under alternative assumptions about CV effect

sizes

Extended Genealogy with Thresholded GRMs

Zaitlen et aP4introduced a method to simultaneously ob@pp andﬁI%ED by using two

GRMs in a sample containing close relatives. The first GRM contaidg;althereas the
second GRM setd;, values below a thresholdto 0. The first GRM, therefore, contains
information on allele sharing of (mostly common) variants in unrelated and related
individuals (estimating?syg, while the second only contains information from closely

related individuals (estimating?/zs-; following Zaitlen et af%). We tested two relatedness

thresholds {<0.05 and 0.1) for the second GRM. The sumﬁ@gs o andﬁéNP provides an

2

pep With all the same potential biases that exis‘thJBD

estimate of total?, similar toi

from designs that use close relatives. By necessity, all analyses using this approach included
close relatives, which could lead to confounding between genetic and environmental
similarity if shared environmental effects are not mod&€d Indeed, Zaitlen et & argue

that such shared environmental effects were the likely cause of ﬁh&l@estimates among

relatives who shared an environment through cohabitation (e.g., half-siblings) compared to
equally related relatives that did not share a cohabitation environment (e.g., grand-parents

and grand-children). We therefore assessed whéﬁ;g,grandﬁlz,ED estimates from this

method (as well as from GREML-SC and LDSC) were biased when extended shared
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environmental effects were present but unmodeled in samples of closely related individuals
(see Supplementary Note).

LD Score Regression (LDSC)

LDSC uses a different approach to estimate the heritability tagged by common CVs. Rather
than estimating relatedness within a sample for use in mixed-model GREML analysis,
LDSC regresses GWAS test statistig§)(on SNPs’ LD scores, which reflect the degree to
which each SNP is correlated with surrounding SR®E For a polygenic model, the

expected GWAS test statistic of SNB(Z-, is

E[x*11] = N gup)l /M + Na+ 1 (3)

where/N is the sample sizé/ is the number of SNP4;is the LD score (ikrzjk) measuring
the tagging of surrounding variants by S\NBndais a measure of confounding biases
arising from stratification and cryptic relatedness. Thus, regressing GWAS test statistics on

per-SNP LD scores allows for both estimatiodé\f,P and assessing the degree of

confounding or polygenicity of a trd Bulik-Sullivan et aft® argue that LDSC provides
unbiased estimates #f tagged by common SNPs regardless of whether GWAS test
statistics are estimated with or without controlling for ancestry or environmental covariates
or relatedness. Here, we estimated GWAS test statistics using plink2 without controlling for
ancestry covariates or controlling for ancestry covariates (20 PCs and sequencing cohort as
above). We used thescpackage with default parameters (see URLS) to perform LDSC. We
calculated LD scores for all SNPs using WGS data, including common and rare SNPs. As
recommended by Bulik-Sullivan et ¥, we used unrelated individuals (relatedness <0.05)

and only common SNPs to perform the regression itself, because the relationship between
the GWASX2 and LD-score is unclear for rare (MAF<.01) SNPs. We examined the

relationship amongAéNP, the intercept, the me@p’-, and the genomic control inflation

factor,Agc (see Supplementary Note).

LDSC can also be used to partition heritability among annotaflonge applied this

approach using the four MAF bins described above. Because our MAF bins included very
rare SNPs, for this MAF-stratified LDSC, we used GWAS test statistics from all SNPs
(MAF9.0003, using the --not-5-50 flag in the Idsc package) while controlling for
covariates as above.

Simulation of Phenotypes and Comparison of EéNP under Alternative Assumptions about

CV Effect Sizes

We tested the LDAK-SC, GREML-SC, and GREML-LDMS (-R & -1) methods on
phenotypes imulated under alternative assumptions about CV effect sizes in order to
determine the degree to which the methods were robust to model misspecification. To
simulated phenotypes under alternative effect size assumptions, in the low stratification
sample only (Supplementary Fig. 33C), we varied the MAF-effect size relationshify or
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-0.25), and the effect size distributigB{N(0,1) or ~N(Owy), wherewy is the LDAK

weight of thek?? CV estimated from the WGS data, which is inversely proportional to the
SNP LD score (Supplementary Fig. 8-9)). WienAN(0,1) andw=-1, this model is the

same as above and as previously descfib&@GS CVs were drawn randomly from common
SNPs (MAF > 0.05), very rare SNPs (MAF < 0.0025), all SNPs (MAF®.0003) or randomly
from all DHS sites (systematically lower L), annotated for all UK10K SNPs with

MACZ2. Note that in Speed et &>, effect sizesgy, are also assumed to be proportionate to
the imputation quality scores?). Because we were simulating CVs from WGS data rather
than imputed variants, we did not include tiéerm for simulating CV effect sizes.

Additionally, we simulated phenotypes using an independent LD architecture derived from
the 75 annotations baseline-LD model described ifdafhich contains coding, conserved,
DHS and other functional annotations, 10 MAF bins, and 6 LD-related annotations
modeling multiple LD-related architectures (including predicted allele age, recombination
rate and CpG-content). For these simulations, we annotated 20,678,452 SNPs with allele
count greater or equal than 2 in 3,567 UK10K unrelated individuals, and modeled the

variance of th&!? SNP,t, proportional tozz5= La.(08 , wherea(k) was the continuous

value annotations of C¥for annotation ¢ andé,was the per-SNP contribution of one unit

of the annotatiomm, to the heritability. We used the valuesdafestimated with stratified LD
score regression on 31 independent taasd constrained, to be positive. Finally, a8,

and stratified LD score regression hold only for common SNPs, we rescaled the variance of
all T4 so that the heritability explained by the four rarest of the 10 MAF bins (delimited by 0,
0.1%, 0.5%, 1% and 5% boundaries) were equal to the expected variance of tR&iil (=

- p)tte, wherea=-0.28, estimated by Loh et ). We then simulated phenotypes as
described above with effect siz8sdrawn from ~N(Cg ).

We compared estimates from models applying different assumptianarafgy. The
traditional GREML-SC, -LDMS-R, and -LDMS-| estimate GRMs usitwr-1 andgy

~N(0,1), while the updated LDAK-SC model of Speed éPaisesa=—0.25 angBx

~N(0,wy) as well as weighting SNPs by imputatiéhTo test these assumptions, we
estimated GRMs using either—1 or —0.25 and either weighting by LDAK weights or not.
For imputed data, we also weighted SNP contributions to the GRM by imputatieor
GREML-LDMS-R and -1, we used=-1 and no LDAK or imputatior? weighting.

Heritability of Complex Traits in the UK Biobank

We estimated heritability for six continuous phenotypes in the initial release of the UK
Biobank® (N~150,000) using the most commonly applied methods (Fig. 6). To reduce the
effects of stratification, we used individuals of European ancestry (Supplementary Fig. 33).
To estimate the GRMs, we separately used directly genotyped Axiom array positions as well
as imputed genome-wide SNPs with IMPUTE info score 8.3. See Supplementary Table 8
for the list of all methods we applied. See Supplemental Note for additional methods and
details.
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Figurel.

Meanﬁ?wp across 100 replicates from GRMs built from WGS SNPs in the least structured

subsamples. Methods on the x-axis as follows: Single-component GREML (GREML-SC)
with all SNPs or only MAF > 0.01; MAF-stratified GREML (GREML-MS); LD and MAF-
stratified GREML (GREML-LDMS-R [regional LD] & -I [individual SNP LD]); Single-
component Linkage Disequilibrium-Adjusted Kinships (LDAK-SC) with all SNPs or only
MAF > 0.01; MAF-stratified LDAK (LDAK-MS); Extended Genealogy with Thresholded
GRMs with all SNPs or only common (MAF > 0.01), presenting Bt and #,;

(=FPsnpt FPips>); LD score regression (LDSC) using no PCs as covariates in GWAS, using
PCs as covariates, or partitioned using PCs with MAF-stratification. Estimates are from
samples of unrelated individuals (relatedness <0.05) except for those from the Threshold
GRM method, which included all individuals. Simulated (trt#¥ 0.5. Colors represent the
MAF range of the 1,000 randomly drawn CVs. See Online Methods for descriptions of each
method and Supplementary Figures for additional estimates and Supplementary Table 2 for
numerical results. Error bars represent 95% confidence intervals.
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Figure 2.

GREML-LDMS-I

GREML-LDMS-R

GREML-MS LDAK-MS

Meanl?_zwp for four MAF bins across 100 replicates from multi-component approaches in

unrelated individuals using WGS SNPs in the least structured subsample. See Fig. 1 for
specific methods. Black lines are the true (simulatédjalues; note that in the top panel,

the true/” values differ across MAF. See Online Methods for descriptions of each method
and Supplementary Figures for additional estimates and Supplementary Table 4 for
numerical results. Error bars represent 95% confidence intervals.
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MeanﬁgNP across 100 replicates from GRMs built from imputed SNPs in the least

structured subsamples across different model assumptions (bars) and different ways of
simulating CVs (x-axes). The x-axes of each panel show the simulated CV MAF-scaling
parameterq, and the CV effect size distributiofy. The four panels show different MAF
ranges of the 1,000 randomly-drawn CVs. DHS sites were randomly sampled without
respect to MAF. Bar colors indicate the fitted model, with a single GRM used except for the
“LDMS” models, which used 16 GRMsa.£-1) stratified by MAF and either regional (-R)

or individual SNP (-I) LD score. See Online Methods for descriptions of each method and
Supplementary Figures for additional estimates and Supplementary Table 6 for numerical
results. Error bars represent 95% confidence intervals.

Nat GenetAuthor manuscript; available in PMC 2018 October 26.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Evans et al.

Page 21
1.004 _CVs Randomly Chosen —
0.754
N
<
kS
[}
© 050
£
k71
w
0.254
0.00
Simulation: o =-1 o =-0.25
100 - CVsMAF>0.056 -
: Estimation Model
0.75 . o=-1
% B o=, LDAK W,
-
8 . a = -1, LDAK w, imputation r2
oy B -02
2 o =-0.25, LDAK w,
w
. a =-0.25, LDAK w, imputation r?
0251 B ovsr
B Lowmsi
0.00 <
Simulation: o =-1 a=-0.25
1,00 CVs MAF < 0.0025
0.754
N
<
b
o
o .
"('6 0.50 I
£ T
»
w
0.254
0.00 .
Simulation: o =-1 o =-0.25
Figure 4.

MeanﬁgNP across 100 replicates from GRMs built from imputed SNPs in the least

structured subsamples across different model assumptions (bars) and different ways of
simulating CVs (x-axes). CV effect sizes were simulated from ~f(0The x-axes of each
panel show the simulated CV MAF-scaling parameteil,he three panels show different

MAF ranges of the 1,000 randomly-drawn CVs. Bar colors indicate the fitted model. See
Online Methods for descriptions of each method and Supplementary Figures for additional
estimates and Supplementary Table 6 for numerical results. Error bars represent 95%
confidence intervals.
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Figureb.
Boxplots of the absolute bias of heritability estimates/?gNP) — hzl) across all simulated

phenotypes from Supplementary Figures 24 & 26 using WGS data to estimate GRMs (top),
and from Figures 3-4 using imputed variants to estimate the GRMs (bottom). X axis
indicates the parameters for the estimation model, including the MAF scaling dacad

the assumed effect size distributigi, specified in the GRM and whether imputation scores
() were used in the GRM estimation. All used a single GRM except for LD- & MAF-
stratified GREML (LDMS), which used 16 GRMs%-1) stratified by MAF and either

regional (-R) or individual SNP (-I) LD score. * Typical GREML-SC parameters. T Typical
LDAK-SC parameters. Boxplots show the median and interquartile, with whiskers extending
1.5 times the quartiles and more extreme points shown for N=22 (WGS) and 26 (imputed)
mean estimates of heritability.
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Il crevL-Loms R

I GREML-LDMS-|

I GREML-Ms

B cremL-sc
GREML-SC (MAF>0.01)

. LDAK-SC

B Loak-sc (maF>0.01)

[ Losc

[l Losc (Hu3 sites)

I Threshold GRM

Estimated?gNP using multiple methods with imputed variants for six complex traits in the

UK Biobank. MAF>0.01 indicates common SNPs were used to create the @RMSs.

information matrix was not invertible. HM3 indicates that only imputed HapMap3 sites were

used in the LDSC analysis. Sample sizes as follows: height N=94,769; BMI N=94,595;
impedance N=93,451; trunk fat N=93,414; fluid intelligence N=31,724; neuroticism
N=78,565. See Supplementary Table 8 for numerical results. Error bars are 1 S.E.M.
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Table 1

Page 24

Summary of commonly applied methods and a description of findings from simulations.

component approach,
usually applied by
binning SNPs according
to their MAF,
annotation, or physical
regions in order to
explore genetic
architecture.

assumptions of GREML-

SC hold within each GRM.

generally higher or lower
levels of LD than the SNP{
used to make the GRM.
Relatively large standard
errors.

Method & ! L
original ref Simulation féndlngs
Description Major Assumptions regarding gy p Computational | ssues
GREML-SC . 1) Genetic similarity is Biased to the degree that | Simple model tractable
Often called the "GCTA | yncorrelated with the average LD among with large samples
approach.” Originally environmental similarity; | SNPs is different than the | (>100K).
applied to common array 2y an infinitesimal model; | average LD between SNP
SNPs only. Estimates | 3) SNP effects are and CVs. This occurs in
ﬁg’NP’ the amount of? normally distributed, stratified samples and
independent of LD, and when MAF & LD
caused by CVs tagged | inversely proportionate to | distributions of SNPs do
by SNPs used to create | MAF (a=-1). not match those of CVs.
the GRM.
GREML-MS!! The first multi- Requires that the same Biased if CVs have Run times and memory

requirements higher than]
GREML-SC and
increase as a function of|
the number of variance
components estimated.

GREML-LDMS-R’

A multi-component
approach that bins
imputed SNPs by their
MAF and regional LD.

Same as GREML-MS

Use of regional LD score
can lead to biases if CVs
have different LD on
average than surrounding
SNPs. Relatively large
standard errors.

5 Same as GREML-MS.

GREML-LDMS-|

A multi-component
approach introduced
here that bins imputed
SNPs by their MAF and
individual LD.

Same as GREML-MS

Appears to be the least
biased approach, even
when traits have complex
genetic architectures.
Relatively large standard
errors.

Same as GREML-MS.

LDAK-SC1520

Introduced to account fo
redundant tagging of
CVs by common SNPs.
Recently modified to
incorporate error due to
imputation and to alter
the MAF-effect size
relationship.

Same as GREML-SC,
except that allelic effects
are a function of LD.
Extended to assume that
effects are also a function
of imputation quality and
weakly inversely
proportionate to MAFd=
—-0.25).

Can correct for the
overestimation observed ir}
GREML-SC from
redundant tagging of CVs,
but otherwise about as
biased as GREML-SC
when assumptions are
unmet, although the biase:
are sometimes in different
directions.

Same as GREML-SC.

LDAK-MS15

A multi-component
extension of LDAK-SC
that bins SNPs by MAF.

Requires that the same
assumptions of LDAK-SC
hold within each GRM.

Less biased on average
than LDAK-SC, but more
biased than GREML-
LDMS (-1 or -R).
Relatively large standard
errors.

Same as GREML-MS.

Threshold GRM&

A multi-component
approach with two
GRMs: the normal
(unthresholded) GRM
built from all SNPs, and
a second GRM with
entries set to 0 if below 4
threshold. Conducted in
samples that include
close relatives.

Same as GREML-SC for
the unthresholded GRM.
Assumes no shared
environmental influences
among close relatives.

Estimates associated with
unthresholded GRM
similar to those of
GREML-SC. When used i
samples that include close|
relatives, the second GRM
captures pedigree-
associated variation but ca
be upwardly biased by
shared environmental
influences.

See GREML-SC.

=}
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Method & ! P
original ref Simulation findings
)
Description Major Assumptions regarding higy p Computational Issues

LD Score Regressidh

Uses the slope fromp?
(from GWAS) regressed
on SNPs’ LD scores to
estimate thé? due to
CVs in LD with
common SNPs.

Infinitesimal model with
allelic effects normally
distributed.

Largely robust to
confounding due to
stratification and shared
environmental influences.
Estimates” due to
common CVs only, even
when used on imputed or
WGS data. Underestimate
F2if the trait is not highly
polygenic.

The most
computationally efficient
method of those
compared and is tractable
for very large datasets.
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