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The RNA-guided CRISPR-Cas9 nuclease ftStreptococcus pyogent3pCas9) has been widely
repurposed for genome edittg. High-fidelity (SpCas9-HF1) and enhanced specificity
(eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the
mechanism of target discrimination and the potential to further improve fidelity were urkfown
Using single-molecule Foérster resonance energy transfer (smFRET) experiments, we show that
both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inacti€ wiaée bound to mismatched
targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target
complementarity and governs the HNH nuclease to regulate overall catalytic competence.
Exploiting this observation, we designed a new hyper-accurate Cas9 variant (HypaCas9) that
demonstrates high genome-wide specificity without compromising on-target activity in human
cells. These results offer a more comprehensive model to rationalize and modify the balance
between target recognition and nuclease activation for precision genome editing.

Efforts to minimize off-target cleavage by CRISPR-Cas9 have motivated the development of
SpCas9-HF1 and eSpCas9(1.1) variants that contain amino acid substitutions predicted to
weaken the energetics of target site recognition and cléd¥%gigure 1a). Biochemically,

we found that these Cas9 variants cleaved the on-target DNA with rates similar to that of
wild-type (WT) SpCas9, whereas their cleavage activity was significantly reduced on
substrates bearing mismatches (Extended Data Figures 1a, 2a). To test the hypothesis that
SpCas9 with its single-guide RNA (sgRNA) might exhibit a greater affinity for its target

than is required for effective recognitfoh, we measured DNA binding affinity and

cleavage of SpCas9-HF1 and eSpCas9(1.1) variants. Contrary to a potential hypothesis that
mutating these charged residues to alanine weakens target binthegaffinities of these
variants for on-target and PAM-distal mismatched substrates were similar to WT SpCas9
(Figure 1b, Extended Data Figures 1a, 2b), indicating that cleavage specificity is improved
through a mechanism distinct from a reduction of target binding affinity

The HNH nuclease domain of SpCas9 undergoes a substantial conformational
rearrangement upon target bindtAgtS which activates the RuvC nuclease for concerted
cleavage of both strands of the DMALS It was previously shown that the HNH domain

stably docks in its active state with an on-target substrate, but becomes loosely trapped in a
catalytically-inactive conformational checkpoint when bound to mismatched &r&etd/e
therefore hypothesized that SpCas9-HF1 and eSpCas9(1.1) variants may employ a more
sensitive threshold for HNH domain activation to promote off-target discrimination. To test
this possibility, we labeled catalytically active WT SpCas9 (SpGasP SpCas9-HF1
(SpCas9-HFLnH) and eSpCas9(1.1) (eSpCas9(@@nh) with Cy3/Cy5 FRET pairs at

positions S355C (within the “stationary” REC1 domain) and S867C (within the “mobile”
HNH domain) to measure HNH conformational states upon dsDNA binding (Figure 1c—f,
Extended Data Figure 1c-18) Whereas SpCagfy stably populated the active state with
on-target and mismatched substrates as observed by steady-state SmFRET (Figure 1d), only
~32% of SpCas9-HRyy molecules occupied the HNH active stateg(er= 0.97) with an
on-target substrate, with the remaining ~68% trapped in the inactive intermediate state
(ErreT = 0.45) (Figure 1e). Of the dynamic molecules (~36% of all SmFRET traces)
observed for SpCas9-HRd, kinetics analysis further revealed that the HNH transition

rate from the inactive to active states was ~8-fold slower compared to that of WT
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SpCasfnn (~3% dynamic moleculé®) (Extended Data Figure 3). However, when SpCas9-
HF1ynH Was bound to a substrate with a single mismatch at the PAM-distal end (20-20 bp
mm), stable docking of the HNH nuclease was entirely ablated (Figure 1e). In addition,
eSpCas9(1.1n and other high fidelity variaritd reduced the HNH active state in the
presence of mismatches (Figure 1f, Extended Data Figure 2c—d). We therefore propose that
high fidelity variants of Cas9 reduce off-target cleavage by raising the threshold for HNH
conformational activation when bound to DNA substrates.

Since the HNH domain does not directly contact nucleic acids at the PAM-distaflént?

it is likely that a separate domain of Cas9 senses target complementarity to govern HNH
domain mobility. Structural studies suggested that a domain within the Cas9 recognition
(REC) lobe (REC3) interacts with the RNA/DNA heteroduplex and undergoes
conformational changes upon target binding (Extended Data Figuré2¥-¥-19Because

the function of this hon-catalytic domain was previously unknown, we labeled SpCas9 with
Cy3/Cy5 dyes at positions S701C (within the “mobile” REC3 domain) and S960C (within
the “stationary” RuvC domain) to generate SpGag3and observed that the

conformational states of REC3 become more heterogeneous as PAM-distal mismatches
increase (Extended Data Figure 4a—c). To determine whether PAM-distal sensing precedes
HNH activation, we deleted REC3 from WT Cas9 (SpCas9AREC3) (Figure 2a). Deletion of
REC3 decreased the cleavage rate by ~1000-fold compared to WT Cas9, despite retaining
near-WT affinity for the on-target (Extended Data Figure 4d—e). Unexpectediiro
complementation of REC3 rescued the on-target cleavage rate by ~100-fold in a
concentration-dependent manner (Figure 2b, Extended Data Figure 4d). Furthermore, the
HNH domain in SpCas9AREC3 (SpCas9A RE3) occupied the active state only when
REC3 was supplemented frans(Figure 2c—d, Extended Data Figure 4f). We therefore
propose that REC3 acts as an allosteric effector that recognizes RNA/DNA heteroduplex to
allow for HNH nuclease activation.

We next considered allosteric interactions that could couple the discontinuous REC3 and
HNH domains. Structural studies suggested that REC2 occludes the HNH domain from the
scissile phosphate in the sgRNA-bound $fatend undergoes a large outward rotation upon
binding to double-stranded DNA (dsDN&)14(Figure 2e). To test whether the REC2

domain regulates access of HNH to the target strand scissile phosphate, we labeled SpCas9
with Cy3/Cy5 dyes at positions E60C (within the “stationary” Arginine-rich helix) and

D273C (within the “mobile” REC2 domain) to generate SpKagg9in order to detect

REC?2 conformational changes (Extended Data Figure 1b—c). We observed reciprocal
changes in bulk FRET values ((rafi$3° between SpCag@ and SpCag@-coacross

multiple DNA substrates (Extended Data Figure 4g), which suggest that the REC2 and HNH
domains are tightly coupled to ensure catalytic competence. smFRET experiments further
confirmed a large opening of REC2 during the transition from the sgRNA-bound state
(ErreT = 0.96) to the target-bound state-fgt= 0.43) (Figure 2e—f). In contrast to WT
SpCasfecy SpCas9-HF3ecooccupies an intermediate stategEt= 0.63) when bound

to a target with a single PAM-distal mismatch (Figure 2g). Together with the observation
that the HNH domain of SpCas9-HF1 does not occupy the active state with PAM-distal
mismatches, these experiments suggest that REC2 sterically occludes HNH in the
conformational checkpoint when SpCas9 is bound to off-target substrates.
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Next, we investigated if this conformational proofreading mechanism could be rationally
exploited to design novel hyper-accurate Cas9 variants. We identified five clusters of
residues containing conserved amino acids within 5 A of the RNA/DNA interface, four of
which are located within REC3 and one in the HNH-RuvC Linker 2 (L2) (Figure 3a,
Extended Data Figure 5). Alone or in combination with Q926A, a substitution within L2 that
confers higher specificify we generated alanine substitutions for each residue within the
five different clusters of amino acids (Clusters 1-5 + Q926A) (Figure 3a). We tested whether
these cluster mutations affect cleavage accuracy and equilibrium bindiigp, and found

that Cluster 1 alone and Cluster 2 + Q926A suppressed off-target cleavage while retaining
target binding affinities comparable to WT (Extended Data Figure 6). We next screened all
cluster variants in human cells using an enhanced GBFR disruption assay On-target
activity for Cluster 1 was comparable to that of SpCas9-HF1 or eSpCas9(1.1), whereas
Cluster 2 variants displayed generally lower activity (Figure 3b, Extended Data Figure 7a).
Furthermore, Cluster 1 retained high on-target activity (> 70% of WT) at 19/24 endogenous
gene sites tested, compared to 18/24 for SpCas9-HF1 and 23/24 for eSpCas9(1.1) (Figure
3c, Extended Data Figure 8a).

We then focused on the specific contributions of mutations within Cluster 1 by restoring
each individual mutated residue to its wild-type identity, along with the Q926A mutation,
and tested the resulting variants for on-target editing efficiency in human cells. On-target
activity was significantly compromised when N692A/Q695A/Q926A mutations occurred
together, but restoring either N692 (Cluster 1 N692 + Q926A) or Q695 (Cluster 1 Q695 +
Q926A) alone led to robust on-target efficiency comparable to Cluster 1, signifying
differential contributions from these mutations to activity and specificity (Extended Data
Figure 7b—c, 8a—c). Using sgRNAs with single mismatches against the endogenous human
gene targeFANCFsite 1, we found that Cluster 1 exhibited greater specificity than both
SpCas9-HF1 and eSpCas9(1.1) in the middle and PAM proximal regions of the spacer
(Figure 3d, Extended Data Figure 8c). Additional single mismatch tolerance assays on
FANCFsites 4 and 6 further corroborated the superior accuracy of Cluster 1 (N692A/
M694A/Q695A/HE698A, hereafter referred to as HypaCas9) against mismatches at positions
1 through 18; however, single mismatches alBAd/CFsite 2 were still tolerated across all
SpCas9 variants tested (Figure 3e, Extended Data Figure 8d, e).

Next, we performed GUIDE-sétto compare the genome-wide specificities of WT SpCas9,
SpCas9-HF1, eSpCas9(1.1), and HypaCas9 using three sgRNAs previously shown to exhibit
substantial off-target effect&ANCFsite 2, VEGFA sites 2 and 8)°, and three previously
uncharacterized sgRNAs with a moderate number sff/ico predicted off-target sites
(FANCFsite 6,DNMT1 sites 3 and 4; Extended Data Figure 9a). We assessed GUIDE-seq
tag integration and on-target editing and observed comparable efficiencies among the four
nucleases for all six sgRNAs (Extended Data Figures 9b—d). Our GUIDE-seq analysis
revealed that HypaCas9 exhibits dramatically improved genome-wide specificity compared
to WT SpCas9, and shows equivalent or better genome-wide specificity relative to both
SpCas9-HF1 and eSpCas9(1.1) for all sgRNAs examined (Figure 3f, Extended Data Figures
9e and 10). These results corroborate the enhanced mismatch intolerance of HypaCas9 and
demonstrate that its specificity improvements may extend beyond the PAM-proximal and
middle regions of the spacer sequence.
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To biochemically validate cleavage specificity in the middle region of the spacer with
HypaCas9, we measured cleavage rates againS®&NEFsite 1 sequence with or without
internal mismatches. Although HypaCas9 retained on-target activity comparable to WT and
SpCas9-HF1 in human cells, its vitro cleavage rate was slightly reduced for the one target
site examined (Figure 4a). However, the cleavage rate with internally mismatched substrates
was considerably slower compared to WT and SpCas9-HF1, which may be explained by the
altered threshold of HNH activation (Figure 4a, b).

Our findings provide direct evidence to support previous speculation that Cas9 relies on
protospacer sensing to enable accurate targdtfifgin particular, we propose that REC3

binding to the RNA-DNA duplex is necessary for re-orienting REC2, which enables HNH
docking at the active site (Extended Data Figure 4h—i). Mutation of residues within REC3
that are involved in RNA/DNA heteroduplex recognition, such as those mutated in
HypaCas9 or SpCas9-HF1, prevents transitions by the REC2 domain, which more
stringently traps the HNH domain in the conformational checkpoint in the presence of
mismatches (Figure 4c, Extended Data Figure 10). Curiously, nearly all of the amino acids
within the cluster variants were strongly conserved (Extended Data Figure 5), suggesting
that these residues may also be involved in protospacer sensing and HNH nuclease activation
across Cas9 orthologues. Furthermore, this observation may address how nature apparently
has not selected for a highly precise Cas9 protein, whose native balance between mismatch
tolerance and specificity may be optimized for host immunity. Our study delineates a general
strategy for improving Cas9 specificity by tuning the natural conformational threshold, and
offers opportunities for rational design of hyper-accurate Cas9 variants that do not
compromise efficiency.

METHODS

Protein purification and dye labelling

S. pyogene€as9 and truncation derivatives were cloned into a custom pET-based

expression vector containing an N-terminalg-tsg, maltose-binding protein (MBP) and

TEV protease cleavage site. Point mutations were introduced by Gibson assembly or around-
the-horn PCR and verified by DNA sequencing. Proteins were purified as de$&ribi¢al

the following modifications: after Ni-NTA affinity purification and overnight TEV cleavage

at 4 °C, proteins were purified over an MBPTrap HP column connected to a HiTrap Heparin
HP column for cation exchange chromatography. The final gel filtration step (Superdex 200)
was carried out in elution buffer containing 20 mM Tris-HCI, pH 7.5, 200 mM NacCl, 5%

(v/v) glycerol and 1 mM TCEP. For FRET experiments, Cy3/Cy5-dye positions were

selected within a cysteine-free Cas9 protein based on a structural alignment of the sgRNA-
bound (4ZT0) to dsDNA-bound (5F9R) structures. Each FRET pair consisted of one

cysteine substitution within the “mobile” domain (HNH, REC2 or REC3) and another within
the relatively “stationary” domain (REC1, Arginine-rich helix or RuvC), such that the inter-
residue distance change from the sgRNA-bound to dsDNA-bound states was between 10-90
A (Extended Data Figure 10). Dye-labeled Cas9 samples were subsequently prepared as
described?. A list of all protein variants and truncations is in Supplementary Table 2.
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Nucleic acid preparation

sgRNA templates were PCR amplified from a pUC19 vector containing a T7 promoter, 20 nt
target sequence and optimized sgRNA scaffold. The amplified PCR product was extracted
with phenol:chloroform:isoamyl alcohol and served as the DNA template for sgRNA
transcription reactions, which were performed as des&tbBiNA oligonucleotides and

5’end biotinylated DNAs (Supplementary Table 3) were synthesized commercially
(Integrated DNA Technologies), and DNA duplexes were prepared and purified by native
PAGE as describéd

DNA cleavage and binding assays

DNA duplex substrates weré-532P]-radiolabeled on both strands. For cleavage
experiments, Cas9 and sgRNA were pre-incubated at room temperature for at least 10 min in
1X binding buffer (20 mM Tris-HCI, pH 7.5, 100 mM KCI, 5 mM MgCL mM DTT, 5%
glycerol, 50 pg mit heparin) before initiating the cleavage reaction by addition of DNA
duplexes. For REC8 vitro complementation experiments, SpCas9AREC3 and sgRNA
were pre-incubated with 10-fold molar excess of RECS3 for at least 10 min at room
temperature before addition of radiolabeled substrate. DNA cleavage experiments were
performed and analyzed as previously desctbddNA binding assays were conducted in
1X binding buffer without MgCGl+ 1 mM EDTA at room temperature for 2 hr. DNA-bound
complexes were resolved on 8% native PAGE (0.5X TBE + 1 mM EDTA, without §1g€Cl
4 °C, as previously describk¥t Experiments were replicated at least three times, and
presented gels are representative results.

Bulk FRET experiments

All bulk FRET assays were performed at room temperature in 1X binding buffer, containing

50 nM SpCas@nH (C80S/S355C/C574S/S867C labeled with Cy3/Cy5),
SpCas9AREC3yH(M1-N497,GGS,V713-D1368 + C80S/S355C/C574S/S867C) or
SpCasfec2 (E60C/C80S/D273C/C574S labeled with Cy3/Cy5) with 200 nM sgRNA and

DNA substrate where indicated. Fluorescence measurements were collected and analyzed as
described?. For REC3in vitro complementation FRET experiments, SpCas9AREF3

and sgRNA were pre-incubated with 10-fold molar excess of REC3 for at least 10 min at
room temperature before measuring bulk fluorescence.

Sample preparation for smFRET assay

99% PEG and 1% biotinylated-PEG coated quartz slides were received from MicroSurfaces,
Inc. Sample preparation was performed as previously des&iligiefly, the glass surface

was pre-blocked with casein (10 mg/ml) for 10 min. The sample chamber was washed with
1X binding buffer, then incubated with 20 pL streptavidin (1 mginibr 10 min. Unbound
streptavidin was washed away with 40 uL of 1X binding buffer. To immobilize SpCas9 on

its DNA substrate, 2.5 nM biotinylated DNA substrate was introduced and incubated in
sample chamber for 5 min. Excess DNA was washed with 1X binding buffer. SpCas9-
sgRNA complexes were prepared by mixing 50 nM Cas9 and 50 nM sgRNA in 1X binding
buffer and incubated for 10 min at room temperature. SpCas9-sgRNA was diluted to 100
pM, introduced to sample chamber and incubated for 10 min. Before data acquisition, 20 pL

Nature Author manuscript; available in PMC 2018 April 26.



1duosnue Joyiny |INHH 1duosnue Joyiny |IANHH

yduosnue Joyiny [INHH

Chen et al.

Page 7

imaging buffer (1 mg mit glucose oxidase, 0.04 mg Thicatalase, 0.8% dextrose (w/v) and

2 mM Trolox in 1X binding buffer) was flown into chamber. The RE&€8/tro

complementation assay was performed similar to steady-state FRET experiments: 2.5nM
biotinylated DNA substrate (on-target) was immobilized on surface, and excess DNA was
washed with 1X binding buffer. SpCas9-sgRNA complexes were prepared by mixing 50 nM
SpCas9AREC3 and 50 nM sgRNA in 1X binding buffer and incubated for 10 min at room
temperature. SpCas9-sgRNA was diluted to 100 pM, introduced to the sample chamber and
incubated for 10 min. Before data acquisition, 20 uL imaging buffer was flowed into the
chamber. After data acquisition, the sample chamber was washed with 1X binding buffer. 20
pL imaging buffer supplemented with 1 uM REC3 was flowed into the sample chamber and
incubated for 10 min. After incubation, data for REC3 complementation was collected.

Microscopy and data analysis

A prism-type TIRF microscope was setup using a Nikon Ti-E Eclipse inverted fluorescent
microscope equipped with a 60x 1.20 N.A. Plan Apo water objective and the perfect
focusing system (Nikon). A 532-nm solid state laser (Coherent Compass) and a 633-nm
HeNe laser (JDSU) were used for Cy3 and Cy5 excitation, respectively. Cy3 and Cy5
fluorescence were split into two channels using an Optosplit Il image splitter (Cairn
Instruments) and imaged separately on the same electron-multiplied charged-coupled device
(EM-CCD) camera (512x512 pixels, Andor Ixon EMEffective pixel size of the camera

was set to 267 nm after magnification. Movies for steady-state FRET measurements were
acquired at 10 Hz under 0.3 kW thb32-nm excitation. Steady-state and dynamic FRET

data analysis was performed as described previu@yiefly, for steady-state FRET

analysis, two fluorescent channels were registered with each other using fiducial markers (20
nm diameter Nile Red Beads, Life Technologies) to determine the Cy3/Cy5 FRET pairs.
Cy3/Cy5 pairs that photobleached in one step and showed anti-correlated signal changes
were used to build histograms. FRET values were corrected for donor leakage and the
histograms were normalized to determine the percentage of distinct FRET populations. Only
samples showing greater than 3% of molecules with active transitions were subjected to
dynamic FRET analysis.

Human cell culture and transfection

Descriptions of nuclease and guide RNA plasmids used for human cell culture are available
in Supplementary Tables 2 and 3. Nuclease variants were generated by isothermal assembly
into JDS246 (Addgene #43861and guide RNAs were cloned inBsmA-digested

BPK1520 (Addgene #657727) Both U20S cells (a gift from T. Cathomen, Freiburg) and
U20S-EGFP cells (encoding a single integrated copy of a pCMV-EGFP-PEST c#sette)
were cultured at 37 °C with 5% G@h advanced DMEM containing 10% heat-inactivated

fetal bovine serum, 2 mM GlutaMax, penicillin/streptomycin, and 400 [i§ Geneticin

(for U20S-EGFP cells only). Cell culture reagents were purchased from Thermo Fisher
Scientific, cell line identities were validated by STR profiling (ATCC) and deep-sequencing,
and cell culture supernatant was tested bi-weekly for mycoplasma. Transfections were
performed using a Lonza 4-D Nucleofector with the SE Kit and the DN-100 program on
~200Kk cells with 750 ng of nuclease and 250 ng of guide RNA plasmids.

Nature Author manuscript; available in PMC 2018 April 26.



1duosnue Joyiny |INHH 1duosnue Joyiny |IANHH

yduosnue Joyiny [INHH

Chen et al.

Page 8

Human cell EGFP disruption assay

EGFPdisruption experiments were performed as previously desérffeBriefly,

transfected cells were analyzed ~52 hr post-transfection for loss of EGFP fluorescence using
a Fortessa flow cytometer (BD Biosciences). Background loss was determined by gating a
negative control transfection (containing nuclease and empty guide RNA plasmid) at ~2.5%
for all experiments.

T7 endonuclease | assay

GUIDE-seq

Roughly 72 hr post-transfection, genomic DNA was extracted from U20S cells using the
Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter Genomics), and T7
endonuclease | (T7E1) assays were performed as previously de¥trirafly, 600—-800

nt amplicons surrounding on-target sites were amplified from ~100 ng of genomic DNA
using Phusion Hot-Start Flex DNA Polymerase (New England Biolabs, NEB) using the
primers listed in Supplementary Table 3. PCR products were visualized (using a QIAxcel
capillary electrophoresis instrument, Qiagen), and purified (Agencourt Ampure XP cleanup,
Beckman Coulter Genomics), Denaturation and annealing of ~200 ng of the PCR product
was followed by digestion with T7EI (NEB). Digestion products were purified (Ampure)
and quantified (QIAxcel) to approximate the mutagenesis frequencies induced by Cas9-
sgRNA complexes.

GUIDE-seq experiments were performed with WT SpCas9, SpCas9-HF1, eSpCas9(1.1), and
HypaCas?9 for six different sgrRNAs, essentially as previously desEriBedfly, U20S

cells were transfected as described above with the addition of 100 pmol of an end-protected
double-stranded oligo (dsODN) GUIDE-seq tag. Approximately 72 hr post-nucleofection,
genomic DNA was extracted and gene disruption was quantified via T7E1 assay (as
described above). GUIDE-seq tag-integration efficiencies were assessed using restriction
fragment length polymorphism (RFLP) assays as previously destribeefly, PCR

reactions amplified from ~100 ng of genomic DNA from GUIDE-seq treated samples, using
Phusion Hot-Start Flex DNA Polymerase (NEB), were treated with 2@/&(NEB) for 3

hr. Digested products were purified (Ampure) and quantified (QIAxcel) to approximate
GUIDE-seq tag integration efficiencies. To perform GUIDE-seq, sample libraries were
assembled as previously describadd sequenced on an lllumina MiSeq machine. Data was
analyzed using open-sourgeidesecgsoftware (version 1.2y. GUIDE-seq data can be

found in Supplementary Table 1, and are deposited with the NCBI Sequence Read Archive.
Potential alternate alignments shown in Supplementary Table 1, resulting from RNA or
DNA bulge<8, depict one of many possible alternate alignments.

Data Availability Statement

Plasmids encoding the high-fidelity SpCas9 variants described in this manuscript have been
deposited with the non-profit plasmid distribution service Addgetip:(/

www.addgene.ord/ All sequencing data from this study are available through the NCBI
Sequence Read Archive (SRA) under accession number SRP116962. The authors declare
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that all other data supporting the findings of this study are available within the paper and its
supplementary information files.

Extended Data
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Timecourse: 107, 20", 30", 1’, 2’

Extended Data Figure 1. Dually-labeled SpCas9 variants are fully functional for DNA cleavage
a, Sodium dodecyl sulphate—polyacrylamide gel electrophoresis (SDS—PAGE) analysis of

unlabeled Cas9 variants, SDS-PAGE analysis of Cy3/Cy5-labeled Cas9 variants. The gel
was scanned for Cy3/Cy5 fluorescence (middle, bottom) before staining with Coomassie
blue (top).c—f, DNA cleavage time courses of Cas9 FRET constructs and their dually-
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labeled counterparts faf WT SpCas9d, SpCas9-HF1lg, eSpCas9(1.1) arfd HypaCas9.
For panelsa—f, experiments were repeated three independent times with similar results.

On-target 20-20 bp mm 20-19 bp mm 20-18 bp mm 20-17 bp mm

~o- WT Cas9

SpyCas9-HF 1
-eo- eSpyCas9(1.1)
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—o- KB855A
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SpCas9-K855A 1y d  SpCas9-N497A/RBE1AIQB95A

T - < T
1.0 15 20 0 5 10 0 50 100

Time (min)

1 D10 56 94 167 307 497 713 765 H840 909 1099
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[ On-target
= 20-19 bpmm
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[ RNA-only
[ Inactive (Checkpoint)
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2
%, g
O 26,

Extended Data Figure 2. HNH domain in eSpCas9 variants still populate the docked state in the
presence of PAM-distal mismatches

a, Quantification of DNA cleavage time courses comparing WT SpCas9, SpCas9-HF and
eSpCas9(1.1) variants with perfect and PAM-distal mismatched tasg&issociation

constants comparing WT SpCas9, SpCas9-HF and eSpCas9(1.1) variants with perfect and
PAM-distal mismatched targets, as measured by electrophoretic mobility shift assays. For
panelsa—b, mean and s.d. shown= 3 independent experiments (overlaid as white circles

in panelb). c—d, smFRET histograms fa; SpCas9-K855A and, SpCas9-N497A/R661A/
QG695A. For panels andd, black curves represent a fit to multiple Gaussian peaks.
Schematic of SpCas9 domain structure with color coding for separate doims@cior

map of global SpCas9 conformational changes from the sgRNA- (PDB ID: 4ZT0) to
dsDNA-bound structures (PDB ID: 5F9R), domains colored as in panel
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Extended Data Figure 3. Kinetic analysis of transitions between active and inactive states of the
HNH domain

a, Representative time traces (top), transition density plots (TDPs, middle) and rates of the
transitions in TDPs (bottom) for SpCas9-HF1 with on-target DNA (left), eSpCas9(1.1) with
on-target DNA (middle) and eSpCas9(1.1) with 20-20 bp mm DNA (right); mean and s.e.m.
shown;n= 107, 24, and 74 individual molecules, respectively. The percentage of molecules
that show at least one such transitions was 36%, 7% and 29% for SpCas9-HF1 with on-
target, eSpCas9(1.1) with on-target and eSpCas9(1.1) with 20-20 bp mm DNA, respectively.
Kinetics analysis of other cases (SpCas9-HF1 and eSpCas9(1.1) bound to other off-target
substrates, and HypaCas9 bound to on- and off-target substrates) is not shown, because the
percentage of molecules that show at least one such transitions was less than 3%.
Comparison of on-target transition rates for WT SpCas9, SpCas9-HF1, and eSpCas9(1.1);
mean and s.e.m. shown; 51, 107 and 24 individual molecules, respectively. Transition

rates for WT SpCas9 collected from ref. 10.
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Extended Data Figure 4. Nucleic acid sensing requires engagement with the REC3 domain and
outward rotation of the REC2 domain

a, Schematic of SpCagRc3with FRET dyes at positions S701C and S960C, with HNH
domain omitted for clarity. Inactive to active structures represent REC3 in the sgRNA-bound
(PDB ID: 4ZT0) to dsDNA-bound (PDB ID: 5F9R) forms, respectiviehc, SMFRET
histograms showing HNH conformational activation with black curves representing a fit to
multiple Gaussian peaks for WT SpCasRgczandc, SpCas9-HF3gc3bound to perfect

and PAM-distal mismatched targets. The purple peak denotes the sgRNA-only bound state,
while the red and green peaks represent two states of REC3 with conformational flexibility
upon binding to DNA substrates, REC3/n vitro complementation assay with
SpCas9AREC3 by measuring cleavage rate consts-target DNA binding assay in the
presence or absence of the REC3 domain; mean and s.d. $he&.3/n vitro
complementation assay with SpCas9AREC3 by measuring HNH activation withu(ratio)
values g, (Ratio) data with SpCas§c,and SpCas@yy showing reciprocal FRET states
with the indicated substrates. For partelg, mean and s.d. shown= 3 independent

Nature Author manuscript; available in PMC 2018 April 26.



1duosnuey Joyiny [INHH 1duosnue Joyiny [INHH

1duosnuey Joyiny [INHH

Chen et al.

Page 13

experiments (overlaid as white circles in pamkl§ andg). h, Schematic of
SpCas9ARECReco2with FRET dyes at positions E60C and D273C, with the REC3 domain
addedin trans Inactive to active structures represent REC2 in the sgRNA-bound (PDB ID:
4ZT0) to dsDNA-bound (PDB ID: 5F9R) forms, respectivelgmFRET histograms
measuring REC2 conformational states with SpCas9AREEAN the absence and

presence of the REC3 domain when bound to an on-target substrate.
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Extended Data Figure 5. Identification of Cluster variants based on nucleic acid proximity and
multiple sequence alignment of residues within Clusters 1-5
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a, Schematic depicting interactions of WT SpCas9 residues within Clusters 1-5 with the
RNA/DNA heteroduplex, based on PDB accession 5F9R (adapted from befAignment

of selected Cas9 orthologues using MAFFT and visualized in Geneious 10.0, with red boxes
outlining residues mutated to alanine within each cluster variant.
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Extended Data Figure 6. Mutation clusters in the REC3 domain along the RNA/DNA
heteroduplex demonstrate localized sensitivity to mismatches along the target sequence

a—b, Quantified DNA cleavage rates (dotted line indicates detection limk.fofeset at 10
min~1) displayed as a, heatmap anl, bar graphc—d, Target DNA binding assay
resolved by native polyacrylamide gel electrophoresis (PAGE) mobility shift assays;
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repeated three independent times with similar resultsl agdantification with WT-
normalized dissociation constants. For pabedsidd, mean and s.d. shown= 3
independent experiments (overlaid as white circles).
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Extended Data Figure 7. On-target activities of altered specificity variants using a human cell
EGFP disruption assay

a, Summary ofEGFAdisruption activities for SpCas9-HF1, eSpCas9(1.1), eSpCas9(1.1)-
HF1 and Cluster variants + Q926A with mean and s.e.m., wheta least 3 biologically
independent samples (overlaid as white circleskummary ofEGFAdisruption activities

for the series of Cluster 1 variants with each substituted residue restored to the canonical
amino acid; mean and s.e.m. where at least 3 biologically independent samples (overlaid
as white circles); WT, Cluster 1 (HypaCas9), and Cluster 1 + Q926A datpémoehais
re-plotted for comparisomr, WT-normalized plot of data ipanel b; error bars represent
median and interquartile range for 12 biologically independent samples; the interval with
>70% of WT activity is highlighted in light grey.

Nature Author manuscript; available in PMC 2018 April 26.



1duosnuey Joyiny [INHH 1duosnuey Joyiny [INHH

1duosnuely Joyiny IINHH

Chen et al.

Page 16
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Extended Data Figure 8. Activities and specificities of high-fidelity SpCas9 variants targeted to
endogenous human cell sites

a, On-target activities of WT SpCas9, SpCas9-HF1, Cluster 1 and Cluster 2 variants across
24 endogenous human genes, assessed by T7E1 assay; mean and s.e.m=shioleast 3
biologically independent samples (overlaid as white circles)T-normalized endogenous
gene disruption data from parglfor Cluster 1 and 2 variants. Error bars represent median
and interquartile ranges of 24 biologically independent samples with the >70% interval of
WT activity highlighted in light grey; Cluster 1 (HypaCas9) data from Fig. 3b is replotted

for comparisonc—e Summary of single mismatch tolerance of WT SpCas9, SpCas9-HF1,
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eSpCas9(1.1), and Cluster 1 and Cluster 2 variants ®#WNCFsite 1d, FANCFsites 4 and
6, ande, FANCFsite 2. Percent modification panels c—eassessed by T7E1 assay; mean
and s.e.m. shown far= at least 3 biologically independent samples (overlaid as white

circles).
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Extended Data Figure 9. Genome-wide specificity profiles of high fidelity SpCas9 variants
defined using GUIDE-seq

a, Number ofin silicopredicted target sites mismatched by ‘n’ positions for six sgRNAs
against the reference human genome (hg38) via Cas-OFfindeAssessment of GUIDE-
seq dsODN tag integration at the on-target site for each nuclease and guide combination,
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detected by RFLP assay.On-target editing, determined by T7E1 assay; mean and se.m.;

= 3 biologically independent samples (overlaid as white circles) for paeldc. d,

dsODN tag-integration efficiency ratios (integration:mutagenesis, from pgaaeldc) for

each nuclease and guide combination, with means and 95% confidence intervals stown for
= 6 hiologically independent samples GUIDE-seq genome-wide specificity profiles for

WT SpCas9, SpCas9-HF1, eSpCas9(1.1), and HypaCas9 each paired with six different
sgRNAs. Mismatched positions in off-target sites are highlighted in color; GUIDE-seq read
counts shown to the right of the sequences, which correlate with approximate cleavage
efficiency at a given site; blue circles indicate sites with potential alternate alignments due to
RNA or DNA bulges® (see Supplementary Table 1); yellow circles indicate off-target sites
that are only supported by asymmetric GUIDE-seq reads.
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Extended Data Figure 10. Conformational gating drives targeting accuracy for SpCas9 variants
a—¢ Steady state SmFRET histograms measwittfNH, b, REC2 anda, REC3

conformational states for HypaCas9 bound to on-target and PAM-distal mismatched
substrates. Black curves represent a fit to multiple Gaussian peakSteady state

SMFRET histograms of Cas9 variants bound to PAM distal mismatched substrates were
normalized to and subtracted from that of on-target SmMFRET histograms. This analysis
reveals transitions from one FRET population (negative peak, shaded region) to another
population (positive peak, unshaded regionsHfdREC3 and;, REC2.f, Measured

distances between residues labelled with Cy3/Cy5 FRET dyes for different substrate-bound
Cas9 structures. Residue pairs were designed to report conformational changes of the
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specified domain (HNH, REC2 or REC3). The distances were measured betwatme
of the indicated residues for the associated PDB structures.
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Figure 1. High-fidelity Cas9 variants enhance cleavage specificity through HNH conformational
control
a, Locations of amino acid alterations in existing high-fidelity SpCas9 variants mapped onto

the dsDNA-bound SpCas9 crystal structure (PDB ID: 5F9R); HNH domain is omitted for
clarity. b, Dissociation constants with mean and s.d. shewn3 independent experiments
(overlaid as white circlesg, Cartoon of DNA-immobilized SpCas9 for measuring HNH
conformation by smFRET, with DNA target numbering schatré.smFRET histograms
showing HNH conformation with indicated Cas9 variants bound to on-target and
mismatched targets using nucleotide numbers diagramed inqp&iatk curves represent a
fit to multiple Gaussian peaks.
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Figure 2. The alpha-helical lobe regulates HNH domain activation
a, Domain organization of SpCas9ARE®3 On-target DNA cleavage assay using

SpCas9AREC3 with increasing concentrations of the REC3 domain supptiads
resolved by denaturing PAGE; repeated three independent times with similar cgsults.
Schematic of SpCas9AREGRH, with REC3 addedn frans Inactive to active structures
represent HNH in the sgRNA-bound (PDB ID: 4ZT0) to dsDNA-bound (PDB ID: 5F9R)
forms, respectivelyd, SmFRET histograms showing HNH conformation with
SpCas9AREC3\H bound to an on-target substrate, with and without RECSchematic of
SpCasfigcs; HNH domain is omitted for clarity. Inactive to active structures represent
REC2 in the sgRNA- (PDB ID: 4ZT0) to dsDNA-bound (PDB ID: 5F9R) forms,
respectivelyf—g, smFRET histograms showing REC2 conformation WitNT SpCasRgc2
andg, SpCas9-HF3gc2bound to on-target and mismatched targets. For pdnébndg,
black curves represent a fit to multiple Gaussian peaks.
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Figure 3. Targeted mutagenesis within the REC3 domain reveals a SpCas9 variant with hyper-

accurate behavior in human cells

a, Zoomed image of the REC3 domain and Linker 2 (L2) with amino acids of Cluster
variants indicated (PDB ID: 5F9R). Boxed residues indicate amino acids also present in

SpCas9-HF1b, WT-normalized activity of Cas9 variants, using sgrRNAs targeting 12
different sites withinEGFP ¢, WT-normalized endogenous gene disruption activity

measured by T7 endonuclease 1 (T7E1) assay across 24 sites. Fob pawelserror bars
represent median and interquartile rangegforl2 or 24 hiologically independent samples,

respectively; the interval with > 70% of wild-type activity is highlighted in light giley.

Activities of WT and high-fidelity Cas9 variants when programmed with singly mismatched
sgRNAs againsFANCFsite 1.e, Activities of Cas9 variants when programmed with singly

mismatched sgRNAs againSANCFsite 4 andFANCFsite 6.f, Histogram of the total

number of GUIDE-seq detected off-target sites for Cas9 variants with six different sgRNAs.
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Figure 4. Mutating residues involved in proofreading increases the threshold for conformational
activation to ensure targeting accuracy

a, DNA cleavage kinetics of SpCas9 variants with /#4é/CFsite 1 on-target and internally
mismatched substrates; mean and s.d. showr8 independent experiments (overlaid as
white circles)b, smFRET histograms showing HNH conformation for indicated SpCas9
variants with aFANCFsite 1 on-target and mismatched substrate at tHep@8ition; black
curves represent a fit to multiple Gaussian peaKelodel for alpha-helical lobe sensing and
regulation of the RNA/DNA heteroduplex for HNH activation and cleavage.
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