1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Author manuscript
Nat GenetAuthor manuscript; available in PMC 2018 October 09.

- HHS Public Access
«

%,
u
Yeyvaaa

Published in final edited form as:
Nat Genet2018 April ; 50(4): 559-571. doi:10.1038/s41588-018-0084-1.

Refining the accuracy of validated target identification through
coding variant fine-mapping in type 2 diabetes

A full list of authors and affiliations appears at the end of the article.

Abstract

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of
diverse ancestry, identifying 40 coding variant association sigoe®s2x10): of these, 16 map
outside known risk loci. We make two important observations. First, only five of these signals are
driven by low-frequency variants: even for these, effect sizes are modest (odds ratio £.29).
Second, when we used large-scale genome-wide association data to fine-map the associated
variants in their regional context, accounting for the global enrichment of complex trait
associations in coding sequence, compelling evidence for coding variant causality was obtained
for only 16 signals. At 13 others, the associated coding variants clearly represent “false leads” with
potential to generate erroneous mechanistic inference. Coding variant associations offer a direct
route to biological insight for complex diseases and identification of validated therapeutic targets:
however, appropriate mechanistic inference requires careful specification of their causal
contribution to disease predisposition.

Genome-wide association studies (GWAS) have identified thousands of association signals
influencing multifactorial traits such as type 2 diabetes (T2D) and obesibost of these
associations involve common variants that map to non-coding sequence, and identification
of their cognate effector transcripts has proved challenging. Identification of coding variants
causally implicated in trait predisposition offers a more direct route from association signal
to biological inference.

The exome occupies 1.5% of overall genome sequence, but for many common diseases,
coding variants make a disproportionate contribution to trait herit@llifihis enrichment
indicates that coding variant association signals have an enhanced probability of being
causal when compared to those involving an otherwise equivalent non-coding variant. This
does not, however, guarantee that all coding variant associations are causal. Alleles driving
common-variant (minor allele frequency [MAF] $%) GWAS signals typically reside on
extended risk haplotypes that, owing to linkage disequilibrium (LD), incorporate many
common variant-11 Consequently, the presence of a coding allele on the risk haplotype
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does not constitute sufficient evidence that it represents the causal variant at the locus, or
that the gene within which it lies is mediating the association signal. Since much coding
variant discovery has proceeded through exome-specific analyses (either exome-array
genotyping or exome sequencing), researchers have often been poorly-placed to position
coding variant associations in the context of regional genetic variation. It is unclear how
often this may have led to incorrect assumptions regarding their causal role.

In our recent study of T2D predispositiénwe surveyed the exomes of 34,809 T2D cases

and 57,985 controls, of predominantly European descent, and identified 13 distinct coding
variant associations reaching genome-wide significance. Twelve of these associations
involved common variants, but the data hinted at a substantial pool of lower-frequency
coding variants of moderate impact, potentially amenable to detection in larger samples. We
also reported that, whilst many of these signals fell within common variant loci previously
identified by GWAS, it was far from trivial to determine, using available data, whether those
coding variants were causal or ‘hitchhiking’ on risk haplotypes.

Here, we report analyses that address these two issues. First, we extend the scope of our
exome-array genotyping to include data from 81,412 T2D cases and 370,832 controls of
diverse ancestry, substantially increasing power to detect coding variant associations across
the allele-frequency spectrum. Second, to understand the extent to which identification of
coding variant associations provides a reliable guide to causal mechanisms, we undertake
high-resolution fine-mapping of identified coding variant association signals in 50,160 T2D
cases and 465,272 controls of European ancestry with genome-wide genotyping data.

Discovery study overview

First, we set out to discover coding variant association signals by aggregating T2D
association summary statistics in up to 452,244 individuals (effective sample size 228,825)
across five ancestry groups, performing both European-specific (EUR) and trans-ethnic (TE)
meta-analyses (Supplementary Tables 1 and 2). Analysis was restricted to the 247,470
variants represented on the exome-array. Genotypes were assembled from: (a) 58,425 cases
and 188,032 controls genotyped with the exome-array; (b) 14,608 cases and 174,322
controls from UK Biobank and GERA (Resource for Genetic Epidemiology on Adult Health
and Aging) genotyped with GWAS arrays enriched for exome content and/or coverage of
low-frequency variation across ethnic grotis¥* and (c) 8,379 cases and 8,478 controls

with whole-exome sequence from GoT2D/T2D-GENE&hd SIGMAS studies. Overall,

this represented a 3-fold increase in effective sample size over our previous study of T2D
predisposition within coding sequeRéeTo deconvolute the impact of obesity on T2D-
associated variants, association analyses were conducted with and without body mass index
(BMI) adjustment.

We considere@<2.2x107 as significant for protein truncating variants (PTVs) and
moderate impact coding variants (including missense, in-frame indel and splice region
variants) based on a weighted Bonferroni correction that accounts for the observed
enrichment in complex trait association signals across sequence anfbtdiiimthreshold
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matches those obtained through other approaches such as simple Bonferroni correction for
the number of coding variants on the exome-arkégthiods). Compared to our previous

study*?, the expanded sample size substantially increased power to detect association for
common variants of modest effect (e.g. from 14.4% to 97.9% for a variant with 20% MAF
and odds ratio [OR]=1.05) and lower-frequency variants with larger effects (e.g. from 11.8%
to 97.5% for a variant with 1% MAF and OR=1.20) assuming homogenous allelic effects
across ancestry groupd éthods).

Insights into coding variant association signals underlying T2D susceptibility

We detected significant associations at 69 coding variants under an additive genetic model
(either in BMI unadjusted or adjusted analysis), mapping to 38 loci (Supplementary Fig. 1,
Supplementary Table 3). We observed minimal evidence of heterogeneity in allelic OR
between ancestry groups (Supplementary Table 3), and no compelling evidence for non-
additive allelic effects (Supplementary Fig. 2, Supplementary Table 4). Reciprocal
conditional analysedV(ethods) indicated that the 69 coding variants represented 40 distinct
association signals (conditionat2.2x107) across the 38 loci, with two distinct signals

each atHNF1Aand RREBI(Supplementary Table 5). These 40 signals included the 13
associations reported in our earlier publicatforach featuring more significant

associations in this expanded meta-analysis (Supplementary Table 6). Twenty-five of the 40
signals were significant in both EUR and TE analyses. Of the other 15, Rir€88,
C170orf58,and ZHX3) were significant in EUR, and all reacheg:<6.8x106 in the TE

analysis: forPLCB3and ZHX3, risk allele frequencies were substantially lower outside
European descent populations. Twelve loci (Supplementary Table 3) were significant in TE
alone, but for these (exced X4 which is East Asian specific), the evidence for association
was proportionate in the smaller EUR componggt)g<8.4x107).

Sixteen of the 40 distinct association signals mapped outside regions previously implicated
in T2D susceptibility (Methods, Table 1). These included missense variant sigRaPCi5i
(p.His36Arg, rs23071119re=1.6x1015), PNPLA3(p.lle148Met, rs73840Qr BMI-
adjusted=2.8x103), andZZEF1(p.lle2014Val, rs78183Jgrg=8.3x1011).

In addition to the 69 coding variant signals, we detected signifipaBk(08) and novel
T2D-associations for 20 non-coding variants (at 15 loci) that were also assayed on the
exome-array (Supplementary Table 7). Three of thes&J5 LPL, andBPTAH overlap with
novel coding signals reported here.

Contribution of low-frequency and rare coding variation to T2D susceptibility

Despite increased power and good coverage of low-frequency variants on the exoffe-array
35 of the 40 distinct coding variant association signals were common, with modest effects
(allelic ORs 1.02-1.36) (Supplementary Fig. 3, Supplementary Table 3). The five signals
attributable to lower-frequency variants were also of modest effect (allelic ORs 1.09-1.29)
(Supplementary Fig. 3). Two of the lower-frequency variant signals were novel, and in both,
the minor allele was protective against TZHRV63A p.Tyr95Asn (rs140386498,

MAF=1.2%, OR= 0.82 [0.77-0.88hyr=5.8x108) andANKH p.Arg187GIn
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(rs146886108, MAF=0.4%, OR=0.78 [0.69-0.873,5=2.0x10°7). Both variants were very
rare or monomorphic in non-European descent individuals.

In Fuchsberger et &% we highlighted a set of 100 low-frequency coding variants with

allelic ORs between 1.10 and 2.66, which despite relatively large estimates for liability-scale
variance explained, had not reached significance. In this expanded analysis, only five of
these variants, including the two novel associatiofAa63A p.Tyr95Asn andANKH
p.Arg187Gln, attained significance. More precise effect-size estimation in the larger sample
size indicates that OR estimates in the earlier study were subject to a substantial upwards
bias (Supplementary Fig. 3).

To detect additional rare variant association signals, we performed gene-based analyses
(burden and SKA¥) using previously-defined “strict” and “broad” masks, filtered for
annotation and MAE-18(Methods). We identified gene-based associations with T2D
susceptibility p<2.5x10°6, Bonferroni correction for 20,000 genes) fAM63A (10
variants, combined MAF=1.9%,=3.1x109) and PAM (17 variants, combined
MAF=4.7%, pr/=8.2x10°9). On conditional analysis (Supplementary Table 8), the gene-
based signal #&4AM63A was entirely attributable to the low-frequency p.Tyr95Asn allele
described earlier (conditionak0.26-,,5. The gene-based signal {8AM was also driven
by a single low-frequency variant (p.Asp563Gly; conditigmai=0.15). A second,
previously-described, low-frequency variaR4M p.Ser539Trf’, is not represented on the
exome-array, and did not contribute to these analyses.

Fine-mapping of coding variant association signals with T2D susceptibility

These analyses identified 40 distinct coding variant associations with T2D, but this
information is not sufficient to determine that these variants are causal for disease. To assess
the role of these coding variants given regional genetic variation, we fine-mapped these
association signals using a meta-analysis of 50,160 T2D cases and 465,272 controls
(European-descent only; partially overlapping with the discovery samples), which we
aggregated from 24 GWAS. Each component GWAS was imputed using appropriate high-
density reference panels (for most, the Haplotype Reference Cong8rfuisthods,
Supplementary Table 9). Before fine-mapping, distinct association signals were delineated
using approximate conditional analysbsethods, Supplementary Table 5). We included 37
of the 40 identified coding variants in this fine-mapping analysis, excluding three (those at
the MHC, PAX4, andZHX3) that were, for various reasons (8&ethods), not amenable to
fine-mapping in the GWAS data.

For each of these 37 signals, we first constructed “functionally-unweighted” credible variant
sets, which collectively account for 99% of the posterior probability of association (PPA),
based exclusively on the meta-analysis summary stafs{Msthods, Supplementary

Table 10). For each signal, we calculated the proportion of PPA attributable to coding
variants (missense, in-frame indel, and splice region variants; Figure 1, Supplementary Fig.
4 and 5). There were only two signals at which coding variants accounted for 80% of PPA:
HNF4Ap.Thr139lle (rs1800961, PPA>0.999) aR&EBIp. Aspll71Asn (rs9379084,
PPA=0.920). However, at other signals, including thos&OK~p.Pro446Leu and
SLC30A8p.Arg276Trp, for which robust empirical evidence has established a causal
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role?2:23 genetic support for coding variant causation was weak. This is because coding
variants were typically in high LD4#0.9) with large numbers of non-coding variants, such
that the PPA was distributed across many sites with broadly equivalent evidence for
association.

These functionally-unweighted sets are based on genetic fine-mapping data alone, and do
not account for the disproportionate representation of coding variants amongst GWAS
associations for complex treftt3 To accommodate this information, we extended the fine-
mapping analyses by incorporating an “annotation-informed prior” model of causality. We
derived priors from estimates of the enrichment of association signals by sequence
annotation from analyses conducted by deCODE across 96 quantitative and 123 binary
phenotype¥ (M ethods). This model “boosts” the prior, and hence the posterior
probabilities (we use,{PPA’ to denote annotation-informed PPAS) of coding variants. It also
takes account (in a tissue-non-specific manner) of the GWAS enrichment of variants within
enhancer elements (as assayed through DNase | hypersensitivity) when compared to non-
coding variants mapping elsewhere. The annotation-informed model generated smaller 99%
credible sets across most signals, corresponding to fine-mapping at higher resolution
(Supplementary Table 10). As expected, the contribution of coding variants was increased
under the annotation-informed model. At these 37 association signals, we distinguished
three broad patterns of causal relationships between coding variants and T2D risk.

Group 1: T2D association signal is driven by coding variants— At 16 of the 37
distinct signals, coding variation accounted for >80% offREA (Fig. 1, Table 2,
Supplementary Table 10). This was attributable to a single coding variant at 12 signals and
multiple coding variants at four. Reassuringly, group 1 signals confirmed coding variant
causation for several locGCKR, PAM, SLC30A8 KCNJ11-ABCC#& at which functional
studies have established strong mechanistic links to T2D pathogenesis (Table 2). T2D
association signals at the 12 remaining signals (Fig. 1, Supplementary Table 10) had not
previously been shown to be driven by coding variation, but our fine-mapping analyses
pointed to causal coding variants with higPA values: these includédVF4A, RREB1

(p. Aspl171Asn)ANKH, WSCDZ2 POCS TM6SFZ HNF1A (p.Alal46Val; p.lle75Leu),
GIPR LPL, PLCB3 andPNPLA3(Table 2). At several of these, independent evidence
corroborates the causal role of the genes harbouring the associated coding variants. For
example, rare coding mutationstWF1A and HNF4A are causal for monogenic, early-
onset forms of diabet& and at7M6SF2and PNPLA3, the associated coding variants are
implicated in the development of non-alcoholic fatty liver disease (NAFLES)

The use of priors to capture the enrichment of coding variants seems a reasonable model,
genome-wide. However, at any given locus, strong priors (especially for PTVs) might
elevate to apparent causality, variants that would have been excluded from a causal role on
the basis of genetic fine-mapping alone. Comparison of the annotation-informed and
functionally-unweighted credible sets for group 1 signals indicated that this scenario was
unlikely. For 11 of the 16GCKR, PAM, KCNJ11-ABCC8 HNF4A, RREB1
[p.Aspl171Asn)|ANKH, POCS TM6SFZ2 HNF1A[p.Alal46Val], PLCB3 PNPLA3, the

coding variant had the highest PPA in the fine-mapping analysis (Table 2) even under the
functionally-unweighted model. AL C30A8, WSCD2andG/PR, the coding variants had
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similar PPAs to the lead non-coding SNPs under the functionally-unweighted prior (Table

2). At these 14 signals therefore, coding variants have either greater or equivalent PPA to the
best flanking non-coding SNPs under the functionally-unweighted model, but receive a
boost in PPA after incorporating the annotation weights.

The situation is less clear BPL. Here, fine-mapping resolution is poor under the
functionally-unweighted prior, and the coding variant sits on an extended haplotype in
strong LD with non-coding variants, some with higher PPA, such as rs74855321
(PPA=0.048) (compared thPL p.Serd74* [rs328, PPA=0.023]). HoweVvePL p.Serd74*

is annotated as a PTV, and benefits from a substantially-increased prior that boosts its
annotation-informed ranking (Table 2). Ultimately, decisions regarding the causal role of any
such variant must rest on the amalgamation of evidence from diverse sources including
detailed functional evaluation of the coding variants, and of other variants with which they
are in LD.

Group 2: T2D association signals are not attributable to coding variants— At

13 of the 37 distinct signals, coding variation accounted for <20% of the PPA, even after
applying the annotation-informed prior model. These signals are likely to be driven by local
non-coding variation and mediated through regulatory mechanisms. Five of these signals
(TPCNZ MLX, ZZEF1 C170rf58, andCEP68)epresent novel T2D-association signals

identified in the exome-focused analysis. Given the exome-array discoveries, it would have
been natural to consider the named genes at these, and other loci in this group, as candidates
for mediation of their respective association signals. However, the fine-mapping analyses
indicate that these coding variants do not provide useful mechanistic inference given low
aiPPA (Fig. 1, Table 2).

The coding variant association at tfeNTD2(ARAPI) locus is a case-in-point. The

association with the p.GIn802Glu variantA®AP1 (rs56200889pr=4.8x10°8 but

aiPPA<0.001) is seen in the fine-mapping analysis to be secondary to a substantially stronger
non-coding association signal involving a cluster of variants including rs11603334
(pre=9.5x1018 ,PPA=0.0692) and rs1552224r£=2.5x1017, ,PPA=0.0941). The

identity of the effector transcript at this locus has been the subject of detailed investigation,
and some early studies used islet expression data to préiRet€2’. However, a more

recent study integrating human islet genomics and murine gene knockout data establishes
STARDI10as the gene mediating the GWAS signal, consistent with the reassignment of the
ARAPI1 coding variant association as irrelevant to causal infefénce

Whilst, at these loci, the coding variant associations represent “false leads”, this does not
necessarily exclude the genes concerned from a causal rdg=&ifor example, coding
variants too rare to be visible to the array-based analyses we performed, and statistically
independent of the common p.Val333lle variant we detected, cause an early-onset form of
diabetes that rendet#FS1the strongest local candidate for T2D predisposition.

Group 3: Fine-mapping data consistent with partial role for coding variants—

At eight of the 37 distinct signals, thPA attributable to coding variation lay between
20% and 80%. At these signals, the evidence is consistent with “partial” contributions from
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coding variants, although the precise inference is likely to be locus-specific, dependent on
subtle variations in LD, imputation accuracy, and the extent to which global priors
accurately represent the functional impact of the specific variants concerned.

This group include®PARGfor which independent evidence corroborates the causal role of
this specific effector transcript with respect to T2D-riBlRARGencodes the target of
antidiabetic thiazolidinedione drugs and harbours very rare coding variants causal for
lipodystrophy and insulin resistance, conditions highly-relevant to T2D. The common
variant association signal at this locus has generally been attributed to the p.Prol2Ala coding
variant (rs1801282) although empirical evidence that this variant influences PPARG
function is scarf®-31 In the functionally-unweighted analysis, p.Pro12Ala had an
unimpressive PPA (0.0238); after including annotation-informed priors, the same variant
emerged with the highegPPA (0.410), although the 99% credible set included 19 non-
coding variants, spanning 67kb (Supplementary Table 10). These credible set variants
included rs4684847,PA=0.0089), at which the T2D-associated allele has been reported to
impact PPARGZexpression and insulin sensitivity by altering binding of the homeobox
transcription factor PRR)E. These data are consistent with a model whereby regulatory
variants contribute to altered PPARG activity in combination with, or potentially to the
exclusion of, p.Pro12Ala. Future improvements in functional annotation for regulatory
variants (gathered from relevant tissues and cell types) should provide increasingly granular
priors that allow fine-tuned assignment of causality at loci such as this.

Functional impact of coding alleles

In other contexts, the functional impact of coding alleles is correlated with: (i) variant-
specific features, including measures of conservation and predicted impact on protein
structure; and (ii) gene-specific features such as extreme selective constraints as quantified
by the intolerance to functional variat®nTo determine whether similar measures could
capture information pertinent to T2D causation, we compared coding variants falling into
the different fine-mapping groups for a variety of measures including MAF, Combined
Annotation Dependent Depletion (CADD) sc#feand loss-of-function (LoF)-intolerance
metric, pLP3 (Methods, Fig. 2). Variants from group 1 had significantly higher CADD-
scores than those in group 2 (Kolmogorov-Smirpe®.0031). Except for the variants at
KCNJ1:tABCC8and GCKR, all group 1 coding variants considered likely to be driving

T2D association signals had CADD-score 20. On this basis, we predict that the East-Asian
specific coding variant &4X4, for which the fine-mapping data were not informative, is

also likely causal for T2D.

T2D loci and physiological classification

The development of T2D involves dysfunction of multiple mechanisms. Systematic analysis
of the physiological effects of known T2D-risk alleles has improved understanding of the
mechanisms through which they exert their primary impact on disea®e Wk obtained
association summary statistics for diverse metabolic traits (and other outcomes) for 94 T2D-
associated index variants. These 94 were restricted to sites represented on the exome-array
and included the 40 coding signals plus 54 distinct non-coding signals (12 novel and 42
previously-reported non-coding GWAS lead SNPs). We applied clustering techniques
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(Methods) to generate multi-trait association patterns, allocating 71 of the 94 loci to one of
three main physiological categories (Supplementary Figs. 6, Supplementary Table 11). The
first category, comprising nine T2D-risk loci with strong BMI and dyslipidemia
associations, included three of the novel coding sigi&?LA3 POC5and BPTF. The

T2D associations at bo#tBOC5and BPTFwere substantially attenuated (>2-fold decrease in
—logygp) after adjusting for BMI (Table 1, Supplementary Table 3, Supplementary Fig. 7),
indicating that their impact on T2D-risk is likely mediated by a primary effect on adiposity.
PNPLA3and POC5are established NAFL4Y and BMF loci, respectively. The second
category featured 39 loci at which multi-trait profiles indicated a primary effect on insulin
secretion. This set included four of the novel coding variant SigAAI&f/, ZZEF1,

TTLL6, ZHX?3). The third category encompassed 23 loci with primary effects on insulin
action, including signals at th¢/F9, PLCB3 CEP68 TPCNZ FAM63A, andP/M3loci.

For most variants in this category, the T2D-risk allele was associated with lower BMI, and
T2D association signals were more pronounced after adjustment for BMI. At a subset of
these loci, including</F9 and PLCB3 T2D-risk alleles were associated with higher waist-
hip ratio and lower body fat percentage, indicating that the mechanism of action likely
reflects limitations in storage capacity of peripheral adipose #&sue

DISCUSSION

The present study adds to mounting evidence constraining the contribution of lower-
frequency variants to T2D-risk. Although the exome-array interrogates only a subset of the
universe of coding variants, it captures the majority of low-frequency coding variants in
European populations. The substantial increase in sample size in the present study over our
previous effort? (effective sample sizes of 228,825 and 82,758, respectively), provides more
robust evaluation of the effect size distribution in this low-frequency variant range, and
indicates that previous analyses are likely, if anything, to have overestimated the contribution
of low-frequency variants to T2D-risk.

The present study is less informative regarding rare variants. These are sparsely captured on
the exome-array. In addition, the combination of greater regional diversity in rare allele
distribution and the enormous sample sizes required to detect rare variant associations
(likely to require meta-analysis of data from diverse populations) acts against their
identification. Our complementary genome and exome sequence analyses have thus far
failed to register strong evidence for a substantial rare variant component to TZDHriisk
therefore highly unlikely that rare variants missed in our analyses are causal for any of the
common or low-frequency variant associations we have detected and fine-mapped. On the
other hand, its probable that rare coding alleles, with associations that are distinct from the
common variant signals we have examined and detected only through sequence based
analyses, will provide additional clues to the most likely effector transcripts at some of these
signals (WFSIprovides one such example).

Once a coding variant association is detected, it is natural to assume a causal connection
between that variant, the gene in which it sits, and the phenotype of interest. Whilst such
assignments may be robust for many rare protein-truncating alleles, we demonstrate that this
implicit assumption is often inaccurate, particularly for associations attributable to common,
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missense variants. A third of the coding variant associations we detected were, when
assessed in the context of regional LD, highly unlikely to be causal. At these loci, the genes
within which they reside are consequently deprived of their implied connection to disease
risk, and attention redirected towards nearby non-coding variants and their impact on
regional gene expression. As a group, coding variants we assign as causal are predicted to
have a more deleterious impact on gene function than those that we exonerate, but, as in
other settings, coding annotation methods lack both sensitivity and specificity. It is worth
emphasising that empirical evidence that the associated coding allele is “functional” (i.e. can
be shown to influence cognate gene function in some experimental assay) provides limited
reassurance that the coding variant is responsible for the T2D association, unless that
specific perturbation of gene function can itself be plausibly linked to the disease phenotype.

Our fine-mapping analyses make use of the observation that coding variants are globally
enriched across GWAS sign&fs18with greater prior probability of causality assigned to

those with more severe impact on biological function. We assigned diminished priors to non-
coding variants, with lowest support for those mapping outside of DNase | hypersensitive
sites. The extent to which our findings corroborate previous assignments of causality (often
substantiated by detailed, disease-appropriate functional assessment and other orthogonal
evidence) suggests that even these sparse annotations provide valuable information to guide
target validation. Nevertheless, there are inevitable limits to the extrapolation of these
‘broad-brush’ genome-wide enrichments to individual loci: improvements in functional
annotation for both coding and regulatory variants, particularly when gathered from trait-
relevant tissues and cell types, should provide more granular, trait-specific priors to fine-tune
assignment of causality within associated regions. These will motivate target validation
efforts that benefit from synthesis of both coding and regulatory mechanisms of gene
perturbation. It also needs to be acknowledged that, without whole genome sequencing data
on sample sizes comparable to those we have examined here, imperfections arising from the
imputation may confound fine-mapping precision at some loci, and that robust inference will
inevitably depend on integration of diverse sources of genetic, genomic and functional data.

The term “smoking gun” has often been used to describe the potential of functional coding
variants to provide causal inference with respect to pathogenetic mech&niEnis study
provides a timely reminder that, even when a suspect with a smoking gun is found at the
scene of a crime, it should not be assumed that they fired the fatal bullet.

ONLINE METHODS

Ethics statement

All human research was approved by the relevant institutional review boards, and conducted
according to the Declaration of Helsinki. All participants provided written informed consent.

Derivation of significance thresholds

We considered five categories of annotatfoof variants on the exome array in order of
decreasing effect on biological function: (1) PTVs (stop-gain and stop-loss, frameshift indel,
donor and acceptor splice-site, and initiator codon variagt8,388); (2) moderate-impact
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variants (missense, in-frame indel, and splice region varig216,114); (3) low-impact
variants (synonymous, 3and 5 UTR, and upstream and downstream variamgs$,829);
(4) other variants mapping to DNase | hypersensitive sites (DHS) in any of 217 céll types
(DHS, m=3,561); and (5) other variants not mapping to DKHs10,578). To account for
the greater prior probability of causality for variants with greater effect on biological
function, we determined a weighted Bonferroni-corrected significance threshold on the basis
of reported enrichmet, denotedw;, in each annotation categoryw;=165; w,=33; us=3;
wy=1.5; ws=0.5. For coding variants (annotation categories 1 and 2):

0.05%2_ jnw

7

L _—221x107 7,

(21'2= 1”1')(2?: 1"iWi)

o=

We note that this threshold is similar to a simple Bonferroni correction for the total number
of coding variants on the array, which would yield:

005
= 224502

7

a =223x10"".

For non-coding variants (annotation categories 3, 4 and 5) the weighted Bonferroni-
corrected significance threshold is:

00557 _ ynw;
(Z?: 3”1')(21'5: 1niwi)

—9.45%1077.

a=

DISCOVERY: Exome-array study-level analyses

Within each study, genotype calling and quality control were undertaken according to
protocols developed by the UK Exome Chip Consortium or the CHARGE central calling
effort38 (Supplementary Table 1). Within each study, variants were then excluded for the
following reasons: (i) not mapping to autosomes or X chromosome; (ii) multi-allelic and/or
insertion-deletion; (i) monomorphic; (iv) call rate <99%; or (v) exact0 for deviation

from Hardy-Weinberg equilibrium (autosomes only).

We tested association of T2D with each variant in a linear mixed model, implemented in
RareMetalWorkeY’, using a genetic relationship matrix (GRM) to account for population
structure and relatedness. For participants from family-based studies, known relationships
were incorporated directly in the GRM. For founders and participants from population-based
studies, the GRM was constructed from pair-wise identity by descent (IBD) estimates based
on LD pruned £<0.05) autosomal variants with MAF2% (across cases and controls
combined), after exclusion of those in high LD and complex regfidf¥sand those mapping

to established T2D loci. We considered additive, dominant, and recessive models for the
effect of the minor allele, adjusted for age and sex (where appropriate) and additional study-
specific covariates (Supplementary Table 2). Analyses were also performed with and without
adjustment for BMI (where available Supplementary Table 2).
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For single-variant association analyses, variants with minor allele count 40 in cases and
controls combined were excluded. Association summary statistics for each analysis were
corrected for residual inflation by means of genomic cohrohliculated after excluding
variants mapping to established T2D susceptibility loci. For gene-based analyses, we made
no variant exclusions on the basis of minor allele count.

DISCOVERY: Exome-sequence analyses

We used summary statistics of T2D association from analyses conducted on 8,321 T2D
cases and 8,421 controls across different ancestries, all genotyped using exome sequencing.
Details of samples included, sequencing, and quality control are described el$&Where
(http:/www.type2diabetesgenetics.Qrgdamples were subdivided into 15 sub-groups
according to ancestry and study of origin. Each sub-group was analysed independently, with
sub-group specific principal components and genetic relatedness matrices. Association tests
were performed with both a linear mixed model, as implemented in EM¥Aing

covariates for sequencing batch, and the Firth test, using covariates for principal components
and sequencing batch. Related samples were excluded from the Firth analysis but
maintained in the linear mixed model analysis. Variants were then filtered from each sub-
group analysis, according to call rate, differential case-control missing-ness, or deviation
from Hardy-Weinberg equilibrium (as computed separately for each sub-group). Association
statistics were then combined via a fixed-effects inverse-variance weighted meta-analysis, at
both the level of ancestry as well as across all samples. P-values were taken from the linear
mixed model analysis, while effect sizes estimates were taken from the Firth analysis.
Analyses were performed with and without adjustment for BMI. From exome sequence
summary statistics, we extracted variants passing quality control and present on the exome
array.

DISCOVERY: GWAS analyses

The UK Biobank is a large detailed prospective study of more than 500,000 participants
aged 40-69 years when recruited in 2006—28revalent T2D status was defined using
self-reported medical history and medication in UK Biobank particifar®articipants

were genotyped with the UK Biobank Axiom Array or UK BILEVE Axiom Array, and

quality control and population structure analyses were performed centrally at UK Biobank.
We defined a subset of “white European” ancestry samples (n=120,286) as those who both
self-identified as white British and were confirmed as ancestrally “Caucasian” from the first
two axes of genetic variation from principal components analysis. Imputation was also
performed centrally at UK Biobank for the autosomes only, up to a merged reference panel
from the 1000 Genomes Project (multi-ethnic, phase 3, October 2014 réleastihe

UK10K Projec?. We used SNPTESTvZSto test for association of T2D with each SNP in

a logistic regression framework under an additive model, and after adjustment for age, sex,
six axes of genetic variation, and genotyping array as covariates. Analyses were performed
with and without adjustment for BMI, after removing related individuals.

GERA is a large multi-ethnic population-based cohort, created for investigating the genetic
and environmental basis of age-related diseases [dbGaP phs000674.p1]. T2D status is based
on ICD-9 codes in linked electronic medical health records, with all other participants
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defined as controls. Participants have previously been genotyped using one of four custom
arrays, which have been designed to maximise coverage of common and low-frequency
variants in non-Hispanic white, East Asian, African American, and Latino ethrfiifies
Methods for quality control have been described previdtisBach of the four genotyping

arrays were imputed separately, up to the 1000 Genomes Project reference panel
(autosomes, phase 3, October 2014 release; X chromosome, phase 1, March 2012 release)
using IMPUTEV2.38:49 We used SNPTESTvZ5to test for association of T2D with each

SNP in a logistic regression framework under an additive model, and after adjustment for
sex and nine axes of genetic variation from principal components analysis as covariates.
BMI was not available for adjustment in GERA.

For UK Biobank and GERA, we extracted variants passing standard imputation quality
control thresholds (IMPUTE info8.4)° and present on the exome array. Association
summary statistics under an additive model were corrected for residual inflation by means of
genomic contrdf, calculated after excluding variants mapping to established T2D
susceptibility loci: GERAX=1.097 for BMI unadjusted analysis) and UK Biobank

(A=1.043 for BMI unadjusted analysis=1.056 for BMI adjusted analysis).

DISCOVERY: Single-variant meta-analysis

We aggregated association summary statistics under an additive model across studies, with
and without adjustment for BMI, using METAL (i) effective sample size weighting &%

scores to obtaip-values; and (ii) inverse variance weighting of log-odds ratios. For exome-
array studies, allelic effect sizes and standard errors obtained from the RareMetalWorker
linear mixed model were converted to the log-odds scale prior to meta-analysis to correct for
case-control imbalanéé

The European-specific meta-analyses aggregated association summary statistics from a total
of 48,286 cases and 250,671 controls from: (i) 33 exome-array studies of European ancestry;
(i) exome-array sequence from individuals of European ancestry; and (iii) GWAS from UK
Biobank. Note that non-coding variants represented on the exome array were not available in
exome sequence. The European-specific meta-analyses were corrected for residual inflation
by means of genomic contfd) calculated after excluding variants mapping to established

T2D susceptibility lociA=1.091 for BMI unadjusted analysis akd1.080 for BMI

adjusted analysis.

The trans-ethnic meta-analyses aggregated association summary statistics from a total of
81,412 cases and 370,832 controls across all studies (51 exome array studies, exome
sequence, and GWAS from UK Biobank and GERA), irrespective of ancestry. Note that
non-coding variants represented on the exome array were not available in exome sequence.
The trans-ethnic meta-analyses were corrected for residual inflation by means of genomic
controf, calculated after excluding variants mapping to established T2D susceptibility loci:
A=1.073 for BMI unadjusted analysis akhe1.068 for BMI adjusted analysis.

Heterogeneity in allelic effect sizes between exome-array studies contributing to the trans-
ethnic meta-analysis was assessed by Coch@statisti®3,
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DISCOVERY: Detection of distinct association signals

Conditional analyses were undertaken to detect association signals by inclusion of index
variants and/or tags for previously reported non-coding GWAS lead SNPs as covariates in
the regression model at the study level. Within each exome-array study, approximate
conditional analyses were undertaken under a linear mixed model using RakéMétih

uses score statistics and the variance-covariance matrix from the RareMetalWorker single-
variant analysis to estimate the correlation in effect size estimates between variants due to
LD. Study-level allelic effect sizes and standard errors obtained from the approximate
conditional analyses were converted to the log-odds scale to correct for case-control
imbalancé2. Within each GWAS, exact conditional analyses were performed under a
logistic regression model using SNPTEST¥2.5WAS variants passing standard

imputation quality control thresholds (IMPUTE info8.2§ and present on the exome array
were extracted for meta-analysis.

Association summary statistics were aggregated across studies, with and without adjustment
for BMI, using METAL®L (i) effective sample size weighting &tscores to obtaip-values;
and (ii) inverse variance weighting of log-odds ratios.

We defined novel loci as mapping >500kb from a previously reported lead GWAS SNP. We
performed conditional analyses where a novel signal mapped close to a known GWAS locus,
and the lead GWAS SNP at that locus is present (or tagged) on the exome array
(Supplementary Table 5).

DISCOVERY: Non-additive association models

For exome-array studies only, we aggregated association summary statistics under recessive
and dominant models across studies, with and without adjustment for BMI, using

METAL>: (i) effective sample size weighting Sfscores to obtaip-values; and (i) inverse
variance weighting of log-odds ratios. Allelic effect sizes and standard errors obtained from
the RareMetalWorker linear mixed model were converted to the log-odds scale prior to
meta-analysis to correct for case-control imbal@hcenhe European-specific meta-analyses
aggregated association summary statistics from a total of 41,066 cases and 136,024 controls
from 33 exome-array studies of European ancestry. The European-specific meta-analyses
were corrected for residual inflation by means of genomic cdhtaliculated after

excluding variants mapping to established T2D susceptibility Age1.076 and\=1.083 for

BMI unadjusted analysis, under recessive and dominant models respectivaly,1ad@l
andA=1.062 for BMI adjusted analysis, under recessive and dominant models respectively.
The trans-ethnic meta-analyses aggregated association summary statistics from a total of
58,425 cases and 188,032 controls across all exome-array studies, irrespective of ancestry.
The trans-ethnic meta-analyses were corrected for residual inflation by means of genomic
controf, calculated after excluding variants mapping to established T2D susceptibility loci:
A=1.041 and\=1.071 for BMI unadjusted analysis, under recessive and dominant models
respectively, and=1.031 and\=1.063 for BMI adjusted analysis, under recessive and
dominant models respectively.
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DISCOVERY: Gene-based meta-analyses

For exome-array studies only, we aggregated association summary statistics under an
additive model across studies, with and without adjustment for BMI, using RaréMetal

This approach uses score statistics and the variance-covariance matrix from the
RareMetalWorker single-variant analysis to estimate the correlation in effect size estimates
between variants due to LD. We performed gene-based analyses using a burden test
(assuming all variants have same direction of effect on T2D susceptibility) and SKAT
(allowing variants to have different directions of effect on T2D susceptibility). We used two
previously defined filters for annotation and M¥Fo define group files: (i) strict filter,
including 44,666 variants; and (ii) broad filter, including all variants from the strict filter, and
97,187 additional variants.

We assessed the contribution of each variant to gene-based signals by performing
approximate conditional analyses. We repeated RareMetal analyses for the gene, excluding
each variant in turn from the group file, and compared the strength of the association signal.

Fine-mapping of coding variant association signals with T2D susceptibility

We defined a locus as mapping 500kb up- and down-stream of each index coding variant
(Supplementary Table 5), excluding the MHC. Our fine-mapping analyses aggregated
association summary statistics from 24 GWAS incorporating 50,160 T2D cases and 465,272
controls of European ancestry from the DIAGRAM Consortium (Supplementary Table 9).
Each GWAS was imputed using miniMA€or IMPUTEvVZ2*8:4%up to high-density

reference panels: (i) 22 GWAS were imputed up to the Haplotype Reference Corfbrtium
(i) the UK Biobank GWAS was imputed to a merged reference panel from the 1000
Genomes Project (multi-ethnic, phase 3, October 2014 reféase) the UK10K Projet

and (iii) the deCODE GWAS was imputed up to the deCODE Icelandic population-specific
reference panel based on whole-genome sequend€. dsdaociation with T2D

susceptibility was tested for each remaining variant using logistic regression, adjusting for
age, sex, and study-specific covariates, under an additive genetic model. Analyses were
performed with and without adjustment for BMI. For each study, variants with minor allele
count<5 (in cases and controls combined) or those with imputation quality r2-hat<0.3
(miniMAC) or proper-info<0.4 (IMPUTEZ2) were removed. Association summary statistics
for each analysis were corrected for residual inflation by means of genomic ontrol
calculated after excluding variants mapping to established T2D susceptibility loci.

We aggregated association summary statistics across studies, with and without adjustment
for BMI, in a fixed-effects inverse variance weighted meta-analysis, using METAhe

BMI unadjusted meta-analysis was corrected for residual inflation by means of genomic
control .=1.012}, calculated after excluding variants mapping to established T2D
susceptibility loci. No adjustment was required for BMI adjusted meta-analysis994).

From the meta-analysis, variants were extracted that were present on the HRC panel and
reported in at least 50% of total effective sample size.

We included 37 of the 40 identified coding variants in fine-mapping analyses, excluding
three that were not amenable to fine-mapping in the GWAS data sets: (i) the locus in the
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major histocompatibility complex because of the extended and complex structure of LD
across the region, which complicates fine-mapping efforts; (ii) the East Asian sp&ckfit
p.Arg190His (rs2233580) signal, since the variant was not present in European ancestry
GWAS; and (iil)ZHX3 p.Asn310Ser (rs4077129) because the variant was only weakly
associated with T2D in the GWAS data sets used for fine-mapping.

To delineate distinct association signals in four regions, we undertook approximate
conditional analyses, implemented in GC*Ato adjust for the index coding variants and
non-coding lead GWAS SNPs: ®WREB1Ip. Aspl171Asn (rs9379084), p.Serl499Tyr
(rs35742417), and rs9505118; #)VFLIAp.lle75Leu (rs1169288) and p.Alal46Val
(rs1800574); (ii)G/PRp.Glu318GIn (rs1800437) and rs8108269; and Ki)-4A

p.Thr139lle (rs1800961) and rs4812831. We made use of summary statistics from the fixed-
effects meta-analyses (BMI unadjusted RREB1, HNF1A andHNF4A, and BMI adjusted

for G/PRas this signal was only seen in BMI adjusted analysis) and genotype data from
5,000 random individuals of European ancestry from the UK Biobank, as reference for LD
between genetic variants across the region.

For each association signal, we first calculated an approximate Bayes*Tattawvour of
association on the basis of allelic effect sizes and standard errors from the meta-analysis.
Specifically, for theth variant,

Vi
Aj = Vj+ w P

whereg; and IV denote the estimated allelic effect (log-OR) and corresponding variance
from the meta-analysis. The parametatdlenotes the prior variance in allelic effects, taken
here to be 0.0%.

2
wﬂj
2VJ.(Vj + )

B

We then calculated the posterior probability thatthevariant drives the association signal,
given by

A
DYV

In this expressiong; denotes the prior probability that tjie variant drives the association
signal, and the summation in the denominator is over all variants across the locus. We
considered two prior models: (i) functionally unweighted, for which 1 for all variants;
and (i) annotation informed, for whigt is determined by the functional severity of the
variant. For the annotation informed prior, we considered five categories of vdfiasioch
that: (i) po; = 165 for PTVs; (ii)o; = 33 for moderate-impact variants; (ji)= 3 for low-
impact variants; (ivp; = 1.5 for other variants mapping to DHS; anddy¥ 0.5 for all other
variants.
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For each locus, the 99% credible?demnder each prior was then constructed by: (i) ranking
all variants according to their posterior probability of driving the association signal; and (ii)
including ranked variants until their cumulative posterior probability of driving the
association attained or exceeded 0.99.

Functional impact of coding alleles

We used CADB* to obtain scaled Combined Annotation Dependent Depletion score
(CADD-score) for each of the 40 significantly associated coding variants. The CADD
method objectively integrates a range of different annotation metrics into a single measure
(CADD-score), providing an estimate of deleteriousness for all known variants and an
overall rank for this metric across the genome. We obtained the estimates of the intolerance
of a gene to harbouring loss-of-function variants (pLI) from the EXAC data ¥é¢ used

the Kolmogorov-Smirnov test to determine whether fine-mapping groups 1 and 2 have the
same statistical distribution for each of these parameters.

T2D loci and physiological classification

To explore the different patterns of association between T2D and other anthropometric/
metabolic/endocrine traits and diseases, we performed hierarchical clustering analysis. We
obtained association summary statistics for a range of metabolic traits and other outcomes
for 94 coding and non-coding variants that were significantly associated with T2D through
collaboration or by querying publically available GWAS meta-analysis datasets. The z-score
(allelic effect/SE) was aligned to the T2D-risk allele. We obtained the distance matrix
amongst z-score of the loci/traits using the Euclidean measure and performed clustering
using the complete agglomeration method. Clustering was visualised by constructing a
dendogram and heatmap.
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Figure 1. Posterior probabilitiesfor coding variants across loci with annotation-informed priors
Fine-mapping of 37 distinct association signals was performed using European ancestry

GWAS meta-analysis including 50,160 T2D cases and 465,272 controls. For each signal, we
constructed a credible set of variants accounting for 99% of the posterior probability of
driving the association, incorporating an “annotation informed” prior model of causality
which “boosts” the posterior probability of driving the association signal that is attributed to
coding variants. Each bar represents a signal with the total probability attributed to the
coding variants within the 99% credible set plotted on the y-axis. When the probability (bar)
is split across multiple coding variants (at least 0.05 probability attributed to a variant) at a
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particular locus, these are indicated by blue, pink, yellow, and green colours. The combined
probability of the remaining coding variants is highlighted in gf¥yEB1{a): RREBIp.
Aspll71AsnRREBIDL): RREBIp.Serl499TyrHNF1A(a): HNF1A p.Alal46Val;

HNF1ADb): HNF1Ap.lle75Leu;PPIP5K2 : PPIP5K20.Ser1207GlyMTMR3tT: MTMR3
p.Asn960SeriL17RELT: IL17REL p.Gly70Arg; NBEALZt: NBEALZ p.Arg511Gily,

KIF9t: KIF9p.Arg638Trp.
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Figure 2. Plot of measures of variant-specific and gene-specific features of distinct coding signals
to access the functional impact of coding alleles

Each point represents a coding variant with the minor allele frequency plottedeaxise

and the Combined Annotation Dependent Depletion score (CADD-score) plottedyan the
axis. Size of each point varies with the measure of intolerance of the gene to loss of function
variants (pLI) and the colour represents the fine-mapping group each variant is assigned to.
Group 1: signal is driven by coding variant. Group 2: signal attributable to non-coding
variants. Group 3: consistent with partial role for coding variants. Group 4: Unclassified
category; include®AX4, ZHX3, and signal af CF19within the MHC region where we did

not perform fine-mapping. Inset: plot shows the distribution of CADD-score between
different groups. The plot is a combination of violin plots and box plots; width of each violin
indicates frequency at the corresponding CADD-score and box plots show the median and
the 25% and 75% quantileBvalue indicates significance from two-sample Kolmogorov-
Smirnov test.
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Table 1

Summary of discovery and fine-mapping analyses of the 40 index coding variants associated WikRT2E1¢ 7).
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Discovery meta-analysis using exome-array component: 81,412 T2D cases and 370,832 controls from diver se ancestries

Fine-mapping meta-analysis using GWAS: 50,160 T 2D cases and 465,272 controls from European ancestry

Alleles BMI unadjusted BMI adjusted
Locus Index variant rsiD Chr Pos RAF RAF OR L95 u9%s p-value Group
R/O OR | L95 | u9s | pvalue | OR | L95 | u9s | p-value
Previously reported T2D associated loci
MACF1 MACF1p.Met1424Val rs2296172 1 39,835,81 GI/A 0.193 .p6 05 1408.7x1016 | 1.04 | 1.03| 1.06| 5.9x108 0.22 1.08 1.06 11 1.6x10°15 3
GCKR GCKRp.Pro446Leu rs1260326 2 27,730,94p Cchn 0.6B0 06 .05 .@83x1025 | 1.06 | 1.04| 1.07| 3.2x1018 0.607 1.05 1.04 1.07 9.1x10°10 1
THADA THADA p.Cys845Tyr rs35720761 2 43,519,97f Cchn 0.8p5 08 05 1.1.6x10°15 | 1.07 1.05 1.10| 8.3x10°16 0.881 1.1 1.07 1.12 3.4x10°12 2
GRB14 COBLL1p.Asn901Asp rs7607980 2 165,551,2¢1 T/q 0.879 08 .06 18.6x1020 | 1.09 | 1.07| 1.12] 5.0x1023 0.871 1.08 1.06 111 3.6x10°10 2
PPARG PPAR®.Prol2Ala rs1801282 3 12,393,12 C/g 0.8p7 09 07 1114ax1017 | 1.10 | 1.07| 1.12| 2.7x1019 0.876 112 1.09 1.14 3.7x1017 3
IGF2BP2 SENP®.Thr291Lys 16762208 3 185,331,145 A/Q 0.3p7 D3 01 1.04.6x10°6 1.03 1.02 1.05| 3.0x108 0.339 1.02 1.01 1.04 0.01 2
WFS1 WFSh.Val333lle rs1801212 4 6,302,519 A/G 0.748 97 p6  1J09.1x1024 | 1.07 | 1.05| 1.08]| 7.1x102% 0.703 1.07 1.05 1.09 4.1x10°13 2
PAM-PPIP5K2 PAMp.Asp336Gly rs35658696, 5 102,338,811 G/A 0.0'15 13 10  1172x1016 | 1.13 | 1.09| 1.17| 7.4x1015 0.051 117 1.13 1.22 2.5x1017 1
RREBIp.Aspl171Asn rs9379084 6 7,231,84 G/A O.8l34 08 06 1111x1013 | 1.10 1.07 1.13| 1.5x1017 0.888 1.09 1.06 1.12 1.1x10°9 1
RAEBE RREBIp.Serl499Tyr rs35742417 6 7,247,34. CIA 0.8B6 04 03 .06.5x10°8 1.04 1.02 1.06| 2.2x107 0.817 1.04 1.02 1.07 0.00012 2
MHC TCF19p.Met131Val rs2073721 6 31,129,611 G/A 0.749 p4 02  105.6x1010 | 1.04 | 1.02]| 1.05| 2.3x10° N/A N/A N/A N/A N/A N/A
PAX4 PAX4p.Arg190His rs2233580 7 127,253,550 T/ 0.0p9 36 25 1488x1012 | 1.38 1.26 1.51| 4.2x1013 0 N/A N/A N/A N/A N/A
SLC30A8 SLC30A&.Arg276Trp rs13266634 8 118,184,743 ch 0.6p1 09 08 1119x1047 | 1.09 | 1.08| 1.11| 1.3x1047 0.683 1.12 1.1 1.14 8.2x10736 1
GPSM1 GPSMp.Ser391Leu rs60980157 9 139,235,445 C/ 0.471 .06 .05 l.382x10716 | 1.06 | 1.05| 1.08| 6.6x10°16 0.756 1.06 1.04 1.09 8.3x10°8 3
KCNJ11-ABCC8 KCNJ1p.Lys29Glu rs5219 11 17,409,573 TIC 0.3¢4 .06 05  10B.7x1022 | 1.07 | 1.05| 1.08] 1.5x1022 0.381 1.07 1.05 1.09 8.1x10°16 1
CENTDZ2 ARAPIp.GIn802GIu rs56200889 11 72,408,05p G/( 0.7B3 04 .02 .08.8x10°8 1.05 1.03 1.06| 5.2x1010 0.727 1.05 1.03 1.07 2.3x10°8 2
KLHDC5 MRPS35.Gly43Arg rs1127787 12 27,867,72 GIA 0.840 .p6 04 1J08.4x10°11 | 1.05 1.03 1.07| 15x108 0.842 1.06 1.04 1.09 2.2x10°7 2
HNF1Ap.lle75Leu rs1169288 12 121,416,690 CIA 0.3p3 D4 03 1061x101! | 1.04 | 1.02| 1.06]| 1.9x1010 0.33 1.05 1.04 1.07 4.6x10° 1
A HNF1Ap.Alal46Val rs1800574 12 121,416,864 T/ 0.0p9 11 06 11%.1x108 1.10 1.06 1.15| 1.3x107 0.03 1.16 11 1.21 5.0x10°9 1
MPHOSPH9 SBNOp.Ser729Asn rs1060105 12 123,806,219 C/ 0.415 .04 .02 L.0®7x107 1.04 1.02 1.06| 1.1x107 0.787 1.04 1.02 1.06 3.6x10°5 2
CILP2 TM6SF2.Glul67Lys rs58542926 19 19,379,54p T/q 0.0f6 07 05 AP8x1012 | 1.09 | 1.06| 1.11| 3.4x1015 0.076 1.09 1.05 1.12 2.0x107 1
GIPR GIPRp.Glu318GIn rs1800437 19 46,181,39p C/q 0.2po 03 02 .0%.1x10° 1.06 | 1.04| 1.07| 6.8x1012 0.213 1.09 1.06 1.12 4.6x10° 1
HNF4A HNF4Ap.Thr139lle rs1800961 20 43,042,364 T/ 0.0p2 D9 05 112.6x108 1.10 1.06 1.14| s5.0x108 0.037 1.17 1.12 1.22 1.4x10°12 1
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Discovery meta-analysis using exome-array component: 81,412 T2D cases and 370,832 controls from diver se ancestries Fine-mapping meta-analysis using GWAS: 50,160 T 2D cases and 465,272 controls from European ancestry
Alleles BMI unadjusted BMI adjusted
Locus Index variant rsiD Chr Pos RAF RAF OR L95 u9s p-value Group §
R/O OR L95 | U9 p-value OR L95 | U9 p-value 93;
MTMR3-ASCC2 ASCC2.Asp407His rs28265 22 30,200,76) C/g 0.9p5 1J09 o6 1121x1012 | 1.09 | 1.07| 1.12| 4.4x104 0.916 11 1.07 1.14 9.6x10°11 3 §
Novel T2D associated loci i
FAMG3A FAM63A p.Tyr95Asn rs140386499 1 150,972,919 A 0.9‘38 1p1 114 12§5x108 119 | 1.12| 1.26| 6.7x107 0.986 1.15 1.06 1.25 0.00047 3 .
CEP68 CEP68.Gly74Ser rs7572857 2 65,296,79'3 GI/A 086 1)p5 1Jo4  1.0B.3x10° 1.05 | 1.03| 1.07| 6.6x107 0.830 1.06 1.03 1.08 6.6x107 2
KIF9 KIF9p.Arg638Trp rs2276853 3 47,282,30! AlG 0588 1p2 1jo1  Yos.0x105 1.03 | 1.02| 1.05| 5.3x108 0.602 1.04 1.02 1.05 2.6x10°° 3
ANKH ANKH p.Arg187Gin rs146886104 5 14,751,30p Ccn 0.9p6 1§29 116 1.43 4x107 1.27 1.13 1.41]| 3.5x107 0.995 1.51 1.29 1.77 3.5x10°7 1
POC5 POC#H.His36Arg rs2307111 5 75,003,67 TIC 0542 1p5 1jo4 Yoi.6x1015 | 1.03 | 1.01| 1.04] 2.1x10° 0.606 1.06 1.05 1.08 1.1x10°12 1
LPL LPL p.Serd74* rs328 8 19,819,724 CIG 0993 1p5 1p3  1]0%.8x10° 1.05| 1.03| 1.07| 2.3x107 0.901 1.08 1.05 111 7.1x10°8 1
chggf PLCB3p.Ser778Leu rs35169799 11 64,031,241 T/ 0.471 105 .02 L.0B3x10°5 1.06 | 1.03| 1.09| 1.8x107 0.065 1.07 1.04 111 3.8x10° 1
TPCNZ2 TPCN2.Val219lle rs72928978 11 68,831,364 G/A 0.890 1p5 1/02  J0B.2x107 1.05 | 1.03| 1..07| 1.8x10°8 0.847 1.03 1.00 1.05 0.042 2
wscpz WSCD2.Thrl13lle rs3764002 12 108,618,640 Chn 0709 1jo3 102 1.03.3x108 1.03 | 1.02| 1.05| 1.2x107 0.736 1.05 1.03 1.07 8.1x10°7 1
ZZEF1 ZZEFIp.lle402Val rs781831 17 3,947,644 CIT 0.432 1.p4 103 108.3x1011 | 1.03 1.02 1.05| 1.8x107 0.407 1.04 1.02 1.05 2.1x10°5 2
MLX MLX p.GIn139Arg 1665268 17 40,722,02! GIA 0.294 1.p4 1§02 140 0x10°8 1.03 1.02 1.04| 1.1x10° 0.280 1.04 1.02 1.06 5.2x10°6 2
TTLLE TTLL6 p.Glu712Asp rs2032844 17 46,847,36p CIA 0.7p4 1jo4 102 1.06.2x107 1.03 | 1.01| 1.04 0.00098 0.750 1.04 1.02 1.06 9.5x10°° 3
c17orf58 C170rf58p.11e92Val rs9891146 17|  65,988,04 Tic|  o02f7 1ps 1jo2  Yoa.3xio7 | 1.02| 1.00| 1.04] 0.00058 0.269 1.05 1.03 1.07 1.7x107 2
Zngf ZHX3p.Asn310Ser rs17265513 20 39,832,648 cT 0411 405 .03 .0y 2x10°8 1.04 | 1.02| 1.05| 2.9x106 0.208 1.02 1.00 1.04 0.068 N/A
PNPLA3 PNPLA3.llel48Met rs738409 22 44,324,72 G/Q 0289 1jp4 1j03 403.1x1010 | 1.05 | 1.03| 1.06| 2.8x10LL 0.230 1.05 1.03 1.07 5.8x10°6 1
PIM3 PIM3p.Val300Ala rs4077129 22 50,356,69: TIC 0.2f6 1pa 1jo2  1.05.9x107 1.04 | 1.02| 1.06| 3.5x108 0.280 1.04 1.02 1.06 8.7x10°° 3

Chr: chromosome. Pos: Position build 37. RAF: risk allele frequency. R: risk allele. O: other allele. BMI: body mass index. OR: odds ratio. L95: lower 95% confidence interval. U95: upper 95% confidence interval. GWAS: genome wide association studies.

7LSummary statistics from European ancestry specific meta-analyses of 48,286 cases and 250,671 controls. Fine-mapping group 1: signal is driven by coding variant, group 2: signal attributable to non-coding variants, and group 3: consistent with partial role for coding ve
pvalues are based on the meta-analyses of discovery stage and fine-mapping studies as appropriate.

€€ abed



"60 4900100 8TOZ DI Ul d|qe|ene JdLISNUBW IOYINYISUSD JEN

1diosnuey Joyiny

Posterior probabilities for coding variants within 99% credible set across loci with annotation-informed and functionally-unweighted prior based aa fine-
QD

wduosnue Joyiny

1diosnuey Joyiny

Table 2

mapping analysis performed using 50,160 T2D cases and 465,272 controls of European ancestry.
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Posterior probability | Cumulative posterior probability attributed to coding variants
Locus Variant rsiD Chr Position
PPA 4PPA PPA 4PPA
MACF1p.lle39Val rs16826069 1 39,797,05p 0.013 0.24p
MACF1 MACF1 p.Met1424Val rs2296172 1 39,835,817 0.011 0.224 0.032 0.628
MACF1 p.Lys1625Asn rs41270807 1 39,801,815 0.008 0.143
FAMGE3A FAMG63A p.Tyr95Asn rs140386498 1 150,972,9%9 0.00% 0.129 0.012 0.303
GCKR GCKRp. Pro 446Leu rs1260326 2 27,730,940 0.77B 0.995 0.773 0.995
THADA p.Cys845Tyr rs35720761 2 43,519,977 <0.001 0.011
THADA 0.003 0.120
THADA p.Thr897Ala rs7578597 2 43,732,82B 0.003 0.10f
CEP68 CEP68.Gly74Ser rs7572857 2 65,296,798 <0.001 0.004 <0.001 0.004
GRB14 COBLL1p.Asn901Asp rs7607980 2 165,551,201 0.00p 0.140 0.006 0.160
PPARG PPARG.Prol2Ala rs1801282 3 12,393,12p 0.02 0.41p 0.024 0.410
SETDZ2p.Prol1962Lys rs4082155 3 47,125,345 0.008 0.1171
KIF9 NBEALZ p.Arg511Gly rs11720139 3 47,036,75p 0.00§ 0.09y 0.018 0.384
KIF9 p.Arg638Trp rs2276853 3 47,282,303 0.003 0.059
IGF2BP2 SENPP.Thr291Lys rs6762208 3 185,331,145 <0.001 <0.001 <0.001 <0.001
WFS1 WFShH.Val333lle rs1801212 4 6,302,519 <0.00} 0.001 <0.001 0.004
ANKH ANKH p.Arg187GIn rs14688610% 5 14,751,306 0.45 0.97R 0.447 0.972
POC5 POC#H.His36Arg rs2307111 5 75,003,678 0.697 0.95¢4 0.702 0.986
PAM p.Asp336Gly rs35658696 5 102,338,811 0.28 0.895
PAM-PPIP5K2 0.309 0.947
PPIP5K2.Ser1207Gly rs3604659] 5 102,537,2B5 0.02p 0.063
RREBIp.Aspll71Asn| RREBIp.Aspll71Asn rs9379084 6 7,231,848 0.92 0.997 0.920 0.997
RREB1p.Serl499Tyr RREBIp.Serl499Tyr rs35742411 6 7,247,344 <0.04q1 0.013 0.005 0.111
LPL LPL p.Serd74* rs328 8 19,819,724 0.023 0.83 0.023 0.832
SLC30A8 SLC30A®.Arg276Trp 1513266634 8 118,184,733 0.29 0.823 0.295 0.823
GPSM1 GPSMDP.Ser391Leu rs60980157 9 139,235,415 0.031 0.5%7 0.031 0.557
KCNJ11-ABCC8 KCNJ11p.Val250lle rs5215 11 17,408,63 0.208 0.41 0.481 0.951
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Posterior probability | Cumulative posterior probability attributed to coding variants
Locus Variant rsiD Chr Position
PPA aPPA PPA 4iPPA
KCNJ11 p.Lys29Glu rs5219 11 17,409,572 0.190 0.376
ABCC8p.Alal369Ser rs757110 11 17,418,447 0.08B 0.143
PLCB3 PLCB3.Ser778Leu rs35169799 11 64,031,241 0.113 0.720 0.130 0.830
TPCNZ2 TPCN2.Val219lle rs72928978 11 68,831,36¢ <0.000 0.004 0.006 0.140
CENTDZ2 ARAPIp.GIn802GIu rs56200889 11 72,408,055 <0.041 <0.0p1 <0.001 <0.001
KLHDC5 MRPS35.Gly43Arg rs1127787 12 27,867,72f <0.00[L <0.0q1 <0.001 <0.001
wscpz WSCD2.Thr113lle rs3764002 12| 108,618,630 0.28 0.956 0.282 0.958
HNF1A Gly226Ala rs56348580 12 121,432,137 0.35 0.89¢
HNF1Ap.lle75Leu 0.358 0.894
HNF1A p.lle75Leu rs1169288 12 | 121,416,650 | <0.001 <0.001
HNF1Ap.Alal46Val HNF1Ap.Alal46Val rs1800574 12| 121,416,864 0.26 0.86f7 0.280 0.902
MPHOSPH9 SBNOp.Ser729Asn rs1060105 13 123,806,219 0.002 0.0%4 0.002 0.057
ZZEF1 ZZEFIp.lle402Val rs781831 17 3,947,644 <0.00L 0.001 <0.001 0.018
MLX MLX p.GIn139Arg rs665268 17 40,722,02p 0.002 0.03B 0.002 0.039
TTLL6 p.Glu712Asp rs2032844 17 46,847,364 <0.001 <0.001
TTLLE CALCOCOZp.Pro347Ala rs10278 17, 46,939,658 0.0100 0.187 0.016 0.305
SNF8p.Arg155His rs57901004 17, 47,011,897 0.00 0.092
C170rf58 C170rf58.11le92Val rs9891146 17 65,988,049 <0.00[L 0.00p <0.001 0.009
TM6SF2 p.Glul67Lys 158542926 19 19,379,549 0.211 0.732
CILP2 0.263 0.913
TM6SF2 p.Leul56Pro rs187429064f 19 19,380,51 0.049 0.17
GIPR GIPRp.Glu318GIn rs1800437 19 46,181,392 0.16 0.90L 0.169 0.901
ZHX3 ZHX3 p.Asn310Ser rs17265519 2 39,832,628 <0.001 0.003 0.003 0.110
HNF4A HNF4Ap.Thr139lle rs1800961 20 43,042,36% 1.00 1.00p 1.00 1.000
ASCC2 p.Asp407His rs28265 22 30,200,761 0.011 0.192
ASCC2p.Pro423Ser rs36571 22 30,200,713 0.00f 0.116
MTMR3-ASCC2 0.028 0.481
ASCC2p.Val123lle rs11549795 22 30,221,12p 0.00 0.107
MTMR3 p.Asn960Ser rs41278853 oy 30,416,527 0.004 0.065
PNPLA3p.lle148Met rs738409 22 44,324,72f 0.112 0.691L
PNPLA3 0.130 0.806
PARVBp.Trp37Arg rs1007863 22 44,395,45]L 0.017 0.10B
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Posterior probability | Cumulative posterior probability attributed to coding variants
Locus Variant rsiD Chr Position
PPA 4iPPA PPA 4iPPA
/L17REL p.Leu333Pro rs5771069 27 50,435,440 0.04 0.419
PIM3 IL17REL p.Gly70Arg rs9617090 22 50,439,194 0.004 0.05¢ 0.047 0.475
PIM3 p.Val300Ala rs4077129 22 50,356,693 <0.001 0.002

Chr: chromosome. Pos:

Position build 37. PPA: functionally-unweighted prior; aiPPA: annotation informed prior. Index coding variants are highlighted in bold.
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