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Abstract

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of 

diverse ancestry, identifying 40 coding variant association signals (p<2.2×10−7): of these, 16 map 

outside known risk loci. We make two important observations. First, only five of these signals are 

driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). 

Second, when we used large-scale genome-wide association data to fine-map the associated 

variants in their regional context, accounting for the global enrichment of complex trait 

associations in coding sequence, compelling evidence for coding variant causality was obtained 

for only 16 signals. At 13 others, the associated coding variants clearly represent “false leads” with 

potential to generate erroneous mechanistic inference. Coding variant associations offer a direct 

route to biological insight for complex diseases and identification of validated therapeutic targets: 

however, appropriate mechanistic inference requires careful specification of their causal 

contribution to disease predisposition.

Genome-wide association studies (GWAS) have identified thousands of association signals 

influencing multifactorial traits such as type 2 diabetes (T2D) and obesity1–7. Most of these 

associations involve common variants that map to non-coding sequence, and identification 

of their cognate effector transcripts has proved challenging. Identification of coding variants 

causally implicated in trait predisposition offers a more direct route from association signal 

to biological inference.

The exome occupies 1.5% of overall genome sequence, but for many common diseases, 

coding variants make a disproportionate contribution to trait heritability8,9. This enrichment 

indicates that coding variant association signals have an enhanced probability of being 

causal when compared to those involving an otherwise equivalent non-coding variant. This 

does not, however, guarantee that all coding variant associations are causal. Alleles driving 

common-variant (minor allele frequency [MAF] ≥5%) GWAS signals typically reside on 

extended risk haplotypes that, owing to linkage disequilibrium (LD), incorporate many 

common variants10,11. Consequently, the presence of a coding allele on the risk haplotype 
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does not constitute sufficient evidence that it represents the causal variant at the locus, or 

that the gene within which it lies is mediating the association signal. Since much coding 

variant discovery has proceeded through exome-specific analyses (either exome-array 

genotyping or exome sequencing), researchers have often been poorly-placed to position 

coding variant associations in the context of regional genetic variation. It is unclear how 

often this may have led to incorrect assumptions regarding their causal role.

In our recent study of T2D predisposition12, we surveyed the exomes of 34,809 T2D cases 

and 57,985 controls, of predominantly European descent, and identified 13 distinct coding 

variant associations reaching genome-wide significance. Twelve of these associations 

involved common variants, but the data hinted at a substantial pool of lower-frequency 

coding variants of moderate impact, potentially amenable to detection in larger samples. We 

also reported that, whilst many of these signals fell within common variant loci previously 

identified by GWAS, it was far from trivial to determine, using available data, whether those 

coding variants were causal or ‘hitchhiking’ on risk haplotypes.

Here, we report analyses that address these two issues. First, we extend the scope of our 

exome-array genotyping to include data from 81,412 T2D cases and 370,832 controls of 

diverse ancestry, substantially increasing power to detect coding variant associations across 

the allele-frequency spectrum. Second, to understand the extent to which identification of 

coding variant associations provides a reliable guide to causal mechanisms, we undertake 

high-resolution fine-mapping of identified coding variant association signals in 50,160 T2D 

cases and 465,272 controls of European ancestry with genome-wide genotyping data.

RESULTS

Discovery study overview

First, we set out to discover coding variant association signals by aggregating T2D 

association summary statistics in up to 452,244 individuals (effective sample size 228,825) 

across five ancestry groups, performing both European-specific (EUR) and trans-ethnic (TE) 

meta-analyses (Supplementary Tables 1 and 2). Analysis was restricted to the 247,470 

variants represented on the exome-array. Genotypes were assembled from: (a) 58,425 cases 

and 188,032 controls genotyped with the exome-array; (b) 14,608 cases and 174,322 

controls from UK Biobank and GERA (Resource for Genetic Epidemiology on Adult Health 

and Aging) genotyped with GWAS arrays enriched for exome content and/or coverage of 

low-frequency variation across ethnic groups13,14; and (c) 8,379 cases and 8,478 controls 

with whole-exome sequence from GoT2D/T2D-GENES12 and SIGMA15 studies. Overall, 

this represented a 3-fold increase in effective sample size over our previous study of T2D 

predisposition within coding sequence12. To deconvolute the impact of obesity on T2D-

associated variants, association analyses were conducted with and without body mass index 

(BMI) adjustment.

We considered p<2.2×10−7 as significant for protein truncating variants (PTVs) and 

moderate impact coding variants (including missense, in-frame indel and splice region 

variants) based on a weighted Bonferroni correction that accounts for the observed 

enrichment in complex trait association signals across sequence annotation16. This threshold 
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matches those obtained through other approaches such as simple Bonferroni correction for 

the number of coding variants on the exome-array (Methods). Compared to our previous 

study12, the expanded sample size substantially increased power to detect association for 

common variants of modest effect (e.g. from 14.4% to 97.9% for a variant with 20% MAF 

and odds ratio [OR]=1.05) and lower-frequency variants with larger effects (e.g. from 11.8% 

to 97.5% for a variant with 1% MAF and OR=1.20) assuming homogenous allelic effects 

across ancestry groups (Methods).

Insights into coding variant association signals underlying T2D susceptibility

We detected significant associations at 69 coding variants under an additive genetic model 

(either in BMI unadjusted or adjusted analysis), mapping to 38 loci (Supplementary Fig. 1, 

Supplementary Table 3). We observed minimal evidence of heterogeneity in allelic OR 

between ancestry groups (Supplementary Table 3), and no compelling evidence for non-

additive allelic effects (Supplementary Fig. 2, Supplementary Table 4). Reciprocal 

conditional analyses (Methods) indicated that the 69 coding variants represented 40 distinct 

association signals (conditional p<2.2×10−7) across the 38 loci, with two distinct signals 

each at HNF1A and RREB1 (Supplementary Table 5). These 40 signals included the 13 

associations reported in our earlier publication12, each featuring more significant 

associations in this expanded meta-analysis (Supplementary Table 6). Twenty-five of the 40 

signals were significant in both EUR and TE analyses. Of the other 15, three (PLCB3, 
C17orf58, and ZHX3) were significant in EUR, and all reached pTE<6.8×10−6 in the TE 

analysis: for PLCB3 and ZHX3, risk allele frequencies were substantially lower outside 

European descent populations. Twelve loci (Supplementary Table 3) were significant in TE 

alone, but for these (except PAX4 which is East Asian specific), the evidence for association 

was proportionate in the smaller EUR component (pEUR<8.4×10−5).

Sixteen of the 40 distinct association signals mapped outside regions previously implicated 

in T2D susceptibility (Methods, Table 1). These included missense variant signals in POC5 
(p.His36Arg, rs2307111, pTE=1.6×10−15), PNPLA3 (p.Ile148Met, rs738409, pTE BMI-

adjusted=2.8×10−11), and ZZEF1 (p.Ile2014Val, rs781831, pTE=8.3×10−11).

In addition to the 69 coding variant signals, we detected significant (p<5×10−8) and novel 

T2D-associations for 20 non-coding variants (at 15 loci) that were also assayed on the 

exome-array (Supplementary Table 7). Three of these (POC5, LPL, and BPTF) overlap with 

novel coding signals reported here.

Contribution of low-frequency and rare coding variation to T2D susceptibility

Despite increased power and good coverage of low-frequency variants on the exome-array12, 

35 of the 40 distinct coding variant association signals were common, with modest effects 

(allelic ORs 1.02–1.36) (Supplementary Fig. 3, Supplementary Table 3). The five signals 

attributable to lower-frequency variants were also of modest effect (allelic ORs 1.09–1.29) 

(Supplementary Fig. 3). Two of the lower-frequency variant signals were novel, and in both, 

the minor allele was protective against T2D: FAM63A p.Tyr95Asn (rs140386498, 

MAF=1.2%, OR= 0.82 [0.77–0.88], pEUR=5.8×10−8) and ANKH  p.Arg187Gln 
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(rs146886108, MAF=0.4%, OR=0.78 [0.69–0.87], pEUR=2.0×10−7). Both variants were very 

rare or monomorphic in non-European descent individuals.

In Fuchsberger et al.12, we highlighted a set of 100 low-frequency coding variants with 

allelic ORs between 1.10 and 2.66, which despite relatively large estimates for liability-scale 

variance explained, had not reached significance. In this expanded analysis, only five of 

these variants, including the two novel associations at FAM63A p.Tyr95Asn and ANKH 
p.Arg187Gln, attained significance. More precise effect-size estimation in the larger sample 

size indicates that OR estimates in the earlier study were subject to a substantial upwards 

bias (Supplementary Fig. 3).

To detect additional rare variant association signals, we performed gene-based analyses 

(burden and SKAT17) using previously-defined “strict” and “broad” masks, filtered for 

annotation and MAF12,18 (Methods). We identified gene-based associations with T2D 

susceptibility (p<2.5×10−6, Bonferroni correction for 20,000 genes) for FAM63A (10 

variants, combined MAF=1.9%, pEUR=3.1×10−9) and PAM (17 variants, combined 

MAF=4.7%, pTE=8.2×10−9). On conditional analysis (Supplementary Table 8), the gene-

based signal at FAM63A was entirely attributable to the low-frequency p.Tyr95Asn allele 

described earlier (conditional p=0.26EUR). The gene-based signal for PAM was also driven 

by a single low-frequency variant (p.Asp563Gly; conditional pTE=0.15). A second, 

previously-described, low-frequency variant, PAM p.Ser539Trp19, is not represented on the 

exome-array, and did not contribute to these analyses.

Fine-mapping of coding variant association signals with T2D susceptibility

These analyses identified 40 distinct coding variant associations with T2D, but this 

information is not sufficient to determine that these variants are causal for disease. To assess 

the role of these coding variants given regional genetic variation, we fine-mapped these 

association signals using a meta-analysis of 50,160 T2D cases and 465,272 controls 

(European-descent only; partially overlapping with the discovery samples), which we 

aggregated from 24 GWAS. Each component GWAS was imputed using appropriate high-

density reference panels (for most, the Haplotype Reference Consortium20; Methods, 
Supplementary Table 9). Before fine-mapping, distinct association signals were delineated 

using approximate conditional analyses (Methods, Supplementary Table 5). We included 37 

of the 40 identified coding variants in this fine-mapping analysis, excluding three (those at 

the MHC, PAX4, and ZHX3) that were, for various reasons (see Methods), not amenable to 

fine-mapping in the GWAS data.

For each of these 37 signals, we first constructed “functionally-unweighted” credible variant 

sets, which collectively account for 99% of the posterior probability of association (PPA), 

based exclusively on the meta-analysis summary statistics21 (Methods, Supplementary 

Table 10). For each signal, we calculated the proportion of PPA attributable to coding 

variants (missense, in-frame indel, and splice region variants; Figure 1, Supplementary Fig. 

4 and 5). There were only two signals at which coding variants accounted for ≥80% of PPA: 

HNF4A p.Thr139Ile (rs1800961, PPA>0.999) and RREB1 p. Asp1171Asn (rs9379084, 

PPA=0.920). However, at other signals, including those for GCKR p.Pro446Leu and 

SLC30A8 p.Arg276Trp, for which robust empirical evidence has established a causal 

Mahajan et al. Page 4

Nat Genet. Author manuscript; available in PMC 2018 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



role22,23, genetic support for coding variant causation was weak. This is because coding 

variants were typically in high LD (r2>0.9) with large numbers of non-coding variants, such 

that the PPA was distributed across many sites with broadly equivalent evidence for 

association.

These functionally-unweighted sets are based on genetic fine-mapping data alone, and do 

not account for the disproportionate representation of coding variants amongst GWAS 

associations for complex traits8,9. To accommodate this information, we extended the fine-

mapping analyses by incorporating an “annotation-informed prior” model of causality. We 

derived priors from estimates of the enrichment of association signals by sequence 

annotation from analyses conducted by deCODE across 96 quantitative and 123 binary 

phenotypes16 (Methods). This model “boosts” the prior, and hence the posterior 

probabilities (we use ‘aiPPA’ to denote annotation-informed PPAs) of coding variants. It also 

takes account (in a tissue-non-specific manner) of the GWAS enrichment of variants within 

enhancer elements (as assayed through DNase I hypersensitivity) when compared to non-

coding variants mapping elsewhere. The annotation-informed model generated smaller 99% 

credible sets across most signals, corresponding to fine-mapping at higher resolution 

(Supplementary Table 10). As expected, the contribution of coding variants was increased 

under the annotation-informed model. At these 37 association signals, we distinguished 

three broad patterns of causal relationships between coding variants and T2D risk.

Group 1: T2D association signal is driven by coding variants— At 16 of the 37 

distinct signals, coding variation accounted for >80% of the aiPPA (Fig. 1, Table 2, 

Supplementary Table 10). This was attributable to a single coding variant at 12 signals and 

multiple coding variants at four. Reassuringly, group 1 signals confirmed coding variant 

causation for several loci (GCKR, PAM, SLC30A8, KCNJ11-ABCC8) at which functional 

studies have established strong mechanistic links to T2D pathogenesis (Table 2). T2D 

association signals at the 12 remaining signals (Fig. 1, Supplementary Table 10) had not 

previously been shown to be driven by coding variation, but our fine-mapping analyses 

pointed to causal coding variants with high aiPPA values: these included HNF4A, RREB1 
(p. Asp1171Asn), ANKH , WSCD2, POC5, TM6SF2, HNF1A (p.Ala146Val; p.Ile75Leu), 

GIPR, LPL, PLCB3, and PNPLA3 (Table 2). At several of these, independent evidence 

corroborates the causal role of the genes harbouring the associated coding variants. For 

example, rare coding mutations at HNF1A and HNF4A are causal for monogenic, early-

onset forms of diabetes24; and at TM6SF2 and PNPLA3, the associated coding variants are 

implicated in the development of non-alcoholic fatty liver disease (NAFLD)25,26.

The use of priors to capture the enrichment of coding variants seems a reasonable model, 

genome-wide. However, at any given locus, strong priors (especially for PTVs) might 

elevate to apparent causality, variants that would have been excluded from a causal role on 

the basis of genetic fine-mapping alone. Comparison of the annotation-informed and 

functionally-unweighted credible sets for group 1 signals indicated that this scenario was 

unlikely. For 11 of the 16 (GCKR, PAM, KCNJ11-ABCC8, HNF4A, RREB1 
[p.Asp1171Asn], ANKH , POC5, TM6SF2, HNF1A [p.Ala146Val], PLCB3, PNPLA3), the 

coding variant had the highest PPA in the fine-mapping analysis (Table 2) even under the 

functionally-unweighted model. At SLC30A8, WSCD2, and GIPR, the coding variants had 
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similar PPAs to the lead non-coding SNPs under the functionally-unweighted prior (Table 

2). At these 14 signals therefore, coding variants have either greater or equivalent PPA to the 

best flanking non-coding SNPs under the functionally-unweighted model, but receive a 

boost in PPA after incorporating the annotation weights.

The situation is less clear at LPL. Here, fine-mapping resolution is poor under the 

functionally-unweighted prior, and the coding variant sits on an extended haplotype in 

strong LD with non-coding variants, some with higher PPA, such as rs74855321 

(PPA=0.048) (compared to LPL p.Ser474* [rs328, PPA=0.023]). However, LPL p.Ser474* 

is annotated as a PTV, and benefits from a substantially-increased prior that boosts its 

annotation-informed ranking (Table 2). Ultimately, decisions regarding the causal role of any 

such variant must rest on the amalgamation of evidence from diverse sources including 

detailed functional evaluation of the coding variants, and of other variants with which they 

are in LD.

Group 2: T2D association signals are not attributable to coding variants— At 

13 of the 37 distinct signals, coding variation accounted for <20% of the PPA, even after 

applying the annotation-informed prior model. These signals are likely to be driven by local 

non-coding variation and mediated through regulatory mechanisms. Five of these signals 

(TPCN2, MLX , ZZEF1, C17orf58, and CEP68) represent novel T2D-association signals 

identified in the exome-focused analysis. Given the exome-array discoveries, it would have 

been natural to consider the named genes at these, and other loci in this group, as candidates 

for mediation of their respective association signals. However, the fine-mapping analyses 

indicate that these coding variants do not provide useful mechanistic inference given low 

aiPPA (Fig. 1, Table 2).

The coding variant association at the CENTD2 (ARAP1) locus is a case-in-point. The 

association with the p.Gln802Glu variant in ARAP1 (rs56200889, pTE=4.8×10−8 but 

aiPPA<0.001) is seen in the fine-mapping analysis to be secondary to a substantially stronger 

non-coding association signal involving a cluster of variants including rs11603334 

(pTE=9.5×10−18, aiPPA=0.0692) and rs1552224 (pTE=2.5×10−17, aiPPA=0.0941). The 

identity of the effector transcript at this locus has been the subject of detailed investigation, 

and some early studies used islet expression data to promote ARAP127. However, a more 

recent study integrating human islet genomics and murine gene knockout data establishes 

STARD10 as the gene mediating the GWAS signal, consistent with the reassignment of the 

ARAP1 coding variant association as irrelevant to causal inference28.

Whilst, at these loci, the coding variant associations represent “false leads”, this does not 

necessarily exclude the genes concerned from a causal role. At WFS1 for example, coding 

variants too rare to be visible to the array-based analyses we performed, and statistically 

independent of the common p.Val333Ile variant we detected, cause an early-onset form of 

diabetes that renders WFS1 the strongest local candidate for T2D predisposition.

Group 3: Fine-mapping data consistent with partial role for coding variants—
At eight of the 37 distinct signals, the aiPPA attributable to coding variation lay between 

20% and 80%. At these signals, the evidence is consistent with “partial” contributions from 
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coding variants, although the precise inference is likely to be locus-specific, dependent on 

subtle variations in LD, imputation accuracy, and the extent to which global priors 

accurately represent the functional impact of the specific variants concerned.

This group includes PPARG for which independent evidence corroborates the causal role of 

this specific effector transcript with respect to T2D-risk. PPARG encodes the target of 

antidiabetic thiazolidinedione drugs and harbours very rare coding variants causal for 

lipodystrophy and insulin resistance, conditions highly-relevant to T2D. The common 

variant association signal at this locus has generally been attributed to the p.Pro12Ala coding 

variant (rs1801282) although empirical evidence that this variant influences PPARG 

function is scant29–31. In the functionally-unweighted analysis, p.Pro12Ala had an 

unimpressive PPA (0.0238); after including annotation-informed priors, the same variant 

emerged with the highest aiPPA (0.410), although the 99% credible set included 19 non-

coding variants, spanning 67kb (Supplementary Table 10). These credible set variants 

included rs4684847 (aiPPA=0.0089), at which the T2D-associated allele has been reported to 

impact PPARG2 expression and insulin sensitivity by altering binding of the homeobox 

transcription factor PRRX132. These data are consistent with a model whereby regulatory 

variants contribute to altered PPARG activity in combination with, or potentially to the 

exclusion of, p.Pro12Ala. Future improvements in functional annotation for regulatory 

variants (gathered from relevant tissues and cell types) should provide increasingly granular 

priors that allow fine-tuned assignment of causality at loci such as this.

Functional impact of coding alleles

In other contexts, the functional impact of coding alleles is correlated with: (i) variant-

specific features, including measures of conservation and predicted impact on protein 

structure; and (ii) gene-specific features such as extreme selective constraints as quantified 

by the intolerance to functional variation33. To determine whether similar measures could 

capture information pertinent to T2D causation, we compared coding variants falling into 

the different fine-mapping groups for a variety of measures including MAF, Combined 

Annotation Dependent Depletion (CADD) score34, and loss-of-function (LoF)-intolerance 

metric, pLI33 (Methods, Fig. 2). Variants from group 1 had significantly higher CADD-

scores than those in group 2 (Kolmogorov-Smirnov p=0.0031). Except for the variants at 

KCNJ11-ABCC8 and GCKR, all group 1 coding variants considered likely to be driving 

T2D association signals had CADD-score ≥20. On this basis, we predict that the East-Asian 

specific coding variant at PAX4, for which the fine-mapping data were not informative, is 

also likely causal for T2D.

T2D loci and physiological classification

The development of T2D involves dysfunction of multiple mechanisms. Systematic analysis 

of the physiological effects of known T2D-risk alleles has improved understanding of the 

mechanisms through which they exert their primary impact on disease risk35. We obtained 

association summary statistics for diverse metabolic traits (and other outcomes) for 94 T2D-

associated index variants. These 94 were restricted to sites represented on the exome-array 

and included the 40 coding signals plus 54 distinct non-coding signals (12 novel and 42 

previously-reported non-coding GWAS lead SNPs). We applied clustering techniques 
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(Methods) to generate multi-trait association patterns, allocating 71 of the 94 loci to one of 

three main physiological categories (Supplementary Figs. 6, Supplementary Table 11). The 

first category, comprising nine T2D-risk loci with strong BMI and dyslipidemia 

associations, included three of the novel coding signals: PNPLA3, POC5 and BPTF. The 

T2D associations at both POC5 and BPTF were substantially attenuated (>2-fold decrease in 

−log10p) after adjusting for BMI (Table 1, Supplementary Table 3, Supplementary Fig. 7), 

indicating that their impact on T2D-risk is likely mediated by a primary effect on adiposity. 

PNPLA3 and POC5 are established NAFLD25 and BMI6 loci, respectively. The second 

category featured 39 loci at which multi-trait profiles indicated a primary effect on insulin 

secretion. This set included four of the novel coding variant signals (ANKH , ZZEF1, 
TTLL6, ZHX3). The third category encompassed 23 loci with primary effects on insulin 

action, including signals at the KIF9, PLCB3, CEP68, TPCN2, FAM63A, and PIM3 loci. 

For most variants in this category, the T2D-risk allele was associated with lower BMI, and 

T2D association signals were more pronounced after adjustment for BMI. At a subset of 

these loci, including KIF9 and PLCB3, T2D-risk alleles were associated with higher waist-

hip ratio and lower body fat percentage, indicating that the mechanism of action likely 

reflects limitations in storage capacity of peripheral adipose tissue36.

DISCUSSION

The present study adds to mounting evidence constraining the contribution of lower-

frequency variants to T2D-risk. Although the exome-array interrogates only a subset of the 

universe of coding variants, it captures the majority of low-frequency coding variants in 

European populations. The substantial increase in sample size in the present study over our 

previous effort12 (effective sample sizes of 228,825 and 82,758, respectively), provides more 

robust evaluation of the effect size distribution in this low-frequency variant range, and 

indicates that previous analyses are likely, if anything, to have overestimated the contribution 

of low-frequency variants to T2D-risk.

The present study is less informative regarding rare variants. These are sparsely captured on 

the exome-array. In addition, the combination of greater regional diversity in rare allele 

distribution and the enormous sample sizes required to detect rare variant associations 

(likely to require meta-analysis of data from diverse populations) acts against their 

identification. Our complementary genome and exome sequence analyses have thus far 

failed to register strong evidence for a substantial rare variant component to T2D-risk12. It is 

therefore highly unlikely that rare variants missed in our analyses are causal for any of the 

common or low-frequency variant associations we have detected and fine-mapped. On the 

other hand, it is probable that rare coding alleles, with associations that are distinct from the 

common variant signals we have examined and detected only through sequence based 

analyses, will provide additional clues to the most likely effector transcripts at some of these 

signals (WFS1 provides one such example).

Once a coding variant association is detected, it is natural to assume a causal connection 

between that variant, the gene in which it sits, and the phenotype of interest. Whilst such 

assignments may be robust for many rare protein-truncating alleles, we demonstrate that this 

implicit assumption is often inaccurate, particularly for associations attributable to common, 
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missense variants. A third of the coding variant associations we detected were, when 

assessed in the context of regional LD, highly unlikely to be causal. At these loci, the genes 

within which they reside are consequently deprived of their implied connection to disease 

risk, and attention redirected towards nearby non-coding variants and their impact on 

regional gene expression. As a group, coding variants we assign as causal are predicted to 

have a more deleterious impact on gene function than those that we exonerate, but, as in 

other settings, coding annotation methods lack both sensitivity and specificity. It is worth 

emphasising that empirical evidence that the associated coding allele is “functional” (i.e. can 

be shown to influence cognate gene function in some experimental assay) provides limited 

reassurance that the coding variant is responsible for the T2D association, unless that 

specific perturbation of gene function can itself be plausibly linked to the disease phenotype.

Our fine-mapping analyses make use of the observation that coding variants are globally 

enriched across GWAS signals8,9,16 with greater prior probability of causality assigned to 

those with more severe impact on biological function. We assigned diminished priors to non-

coding variants, with lowest support for those mapping outside of DNase I hypersensitive 

sites. The extent to which our findings corroborate previous assignments of causality (often 

substantiated by detailed, disease-appropriate functional assessment and other orthogonal 

evidence) suggests that even these sparse annotations provide valuable information to guide 

target validation. Nevertheless, there are inevitable limits to the extrapolation of these 

‘broad-brush’ genome-wide enrichments to individual loci: improvements in functional 

annotation for both coding and regulatory variants, particularly when gathered from trait-

relevant tissues and cell types, should provide more granular, trait-specific priors to fine-tune 

assignment of causality within associated regions. These will motivate target validation 

efforts that benefit from synthesis of both coding and regulatory mechanisms of gene 

perturbation. It also needs to be acknowledged that, without whole genome sequencing data 

on sample sizes comparable to those we have examined here, imperfections arising from the 

imputation may confound fine-mapping precision at some loci, and that robust inference will 

inevitably depend on integration of diverse sources of genetic, genomic and functional data.

The term “smoking gun” has often been used to describe the potential of functional coding 

variants to provide causal inference with respect to pathogenetic mechanisms37. This study 

provides a timely reminder that, even when a suspect with a smoking gun is found at the 

scene of a crime, it should not be assumed that they fired the fatal bullet.

ONLINE METHODS

Ethics statement

All human research was approved by the relevant institutional review boards, and conducted 

according to the Declaration of Helsinki. All participants provided written informed consent.

Derivation of significance thresholds

We considered five categories of annotation16 of variants on the exome array in order of 

decreasing effect on biological function: (1) PTVs (stop-gain and stop-loss, frameshift indel, 

donor and acceptor splice-site, and initiator codon variants, n1=8,388); (2) moderate-impact 
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variants (missense, in-frame indel, and splice region variants, n2=216,114); (3) low-impact 

variants (synonymous, 3′ and 5′ UTR, and upstream and downstream variants, n3=8,829); 

(4) other variants mapping to DNase I hypersensitive sites (DHS) in any of 217 cell types8 

(DHS, n4=3,561); and (5) other variants not mapping to DHS (n5=10,578). To account for 

the greater prior probability of causality for variants with greater effect on biological 

function, we determined a weighted Bonferroni-corrected significance threshold on the basis 

of reported enrichment16, denoted wi, in each annotation category, i: w1=165; w2=33; w3=3; 

w4=1.5; w5=0.5. For coding variants (annotation categories 1 and 2):

α =
0.05∑

i = 1
2

n
i
w

i

∑
i = 1
2

n
i

∑
i = 1
5

n
i
w

i

= 2.21 × 10−7 .

We note that this threshold is similar to a simple Bonferroni correction for the total number 

of coding variants on the array, which would yield:

α =
0.05

224502
= 2.23 × 10−7 .

For non-coding variants (annotation categories 3, 4 and 5) the weighted Bonferroni-

corrected significance threshold is:

α =
0.05∑

i = 3
5

n
i
w

i

∑
i = 3
5

n
i

∑
i = 1
5

n
i
w

i

= 9.45 × 10−9 .

DISCOVERY: Exome-array study-level analyses

Within each study, genotype calling and quality control were undertaken according to 

protocols developed by the UK Exome Chip Consortium or the CHARGE central calling 

effort38 (Supplementary Table 1). Within each study, variants were then excluded for the 

following reasons: (i) not mapping to autosomes or X chromosome; (ii) multi-allelic and/or 

insertion-deletion; (iii) monomorphic; (iv) call rate <99%; or (v) exact p<10−4 for deviation 

from Hardy-Weinberg equilibrium (autosomes only).

We tested association of T2D with each variant in a linear mixed model, implemented in 

RareMetalWorker17, using a genetic relationship matrix (GRM) to account for population 

structure and relatedness. For participants from family-based studies, known relationships 

were incorporated directly in the GRM. For founders and participants from population-based 

studies, the GRM was constructed from pair-wise identity by descent (IBD) estimates based 

on LD pruned (r2<0.05) autosomal variants with MAF≥1% (across cases and controls 

combined), after exclusion of those in high LD and complex regions39,40, and those mapping 

to established T2D loci. We considered additive, dominant, and recessive models for the 

effect of the minor allele, adjusted for age and sex (where appropriate) and additional study-

specific covariates (Supplementary Table 2). Analyses were also performed with and without 

adjustment for BMI (where available Supplementary Table 2).
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For single-variant association analyses, variants with minor allele count ≤10 in cases and 

controls combined were excluded. Association summary statistics for each analysis were 

corrected for residual inflation by means of genomic control41, calculated after excluding 

variants mapping to established T2D susceptibility loci. For gene-based analyses, we made 

no variant exclusions on the basis of minor allele count.

DISCOVERY: Exome-sequence analyses

We used summary statistics of T2D association from analyses conducted on 8,321 T2D 

cases and 8,421 controls across different ancestries, all genotyped using exome sequencing. 

Details of samples included, sequencing, and quality control are described elsewhere12,15 

(http://www.type2diabetesgenetics.org/). Samples were subdivided into 15 sub-groups 

according to ancestry and study of origin. Each sub-group was analysed independently, with 

sub-group specific principal components and genetic relatedness matrices. Association tests 

were performed with both a linear mixed model, as implemented in EMMAX42, using 

covariates for sequencing batch, and the Firth test, using covariates for principal components 

and sequencing batch. Related samples were excluded from the Firth analysis but 

maintained in the linear mixed model analysis. Variants were then filtered from each sub-

group analysis, according to call rate, differential case-control missing-ness, or deviation 

from Hardy-Weinberg equilibrium (as computed separately for each sub-group). Association 

statistics were then combined via a fixed-effects inverse-variance weighted meta-analysis, at 

both the level of ancestry as well as across all samples. P-values were taken from the linear 

mixed model analysis, while effect sizes estimates were taken from the Firth analysis. 

Analyses were performed with and without adjustment for BMI. From exome sequence 

summary statistics, we extracted variants passing quality control and present on the exome 

array.

DISCOVERY: GWAS analyses

The UK Biobank is a large detailed prospective study of more than 500,000 participants 

aged 40–69 years when recruited in 2006–201013. Prevalent T2D status was defined using 

self-reported medical history and medication in UK Biobank participants43. Participants 

were genotyped with the UK Biobank Axiom Array or UK BiLEVE Axiom Array, and 

quality control and population structure analyses were performed centrally at UK Biobank. 

We defined a subset of “white European” ancestry samples (n=120,286) as those who both 

self-identified as white British and were confirmed as ancestrally “Caucasian” from the first 

two axes of genetic variation from principal components analysis. Imputation was also 

performed centrally at UK Biobank for the autosomes only, up to a merged reference panel 

from the 1000 Genomes Project (multi-ethnic, phase 3, October 2014 release)44 and the 

UK10K Project9. We used SNPTESTv2.545 to test for association of T2D with each SNP in 

a logistic regression framework under an additive model, and after adjustment for age, sex, 

six axes of genetic variation, and genotyping array as covariates. Analyses were performed 

with and without adjustment for BMI, after removing related individuals.

GERA is a large multi-ethnic population-based cohort, created for investigating the genetic 

and environmental basis of age-related diseases [dbGaP phs000674.p1]. T2D status is based 

on ICD-9 codes in linked electronic medical health records, with all other participants 
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defined as controls. Participants have previously been genotyped using one of four custom 

arrays, which have been designed to maximise coverage of common and low-frequency 

variants in non-Hispanic white, East Asian, African American, and Latino ethnicities46,47. 

Methods for quality control have been described previously14. Each of the four genotyping 

arrays were imputed separately, up to the 1000 Genomes Project reference panel 

(autosomes, phase 3, October 2014 release; X chromosome, phase 1, March 2012 release) 

using IMPUTEv2.348,49. We used SNPTESTv2.545 to test for association of T2D with each 

SNP in a logistic regression framework under an additive model, and after adjustment for 

sex and nine axes of genetic variation from principal components analysis as covariates. 

BMI was not available for adjustment in GERA.

For UK Biobank and GERA, we extracted variants passing standard imputation quality 

control thresholds (IMPUTE info≥0.4)50 and present on the exome array. Association 

summary statistics under an additive model were corrected for residual inflation by means of 

genomic control41, calculated after excluding variants mapping to established T2D 

susceptibility loci: GERA (λ=1.097 for BMI unadjusted analysis) and UK Biobank 

(λ=1.043 for BMI unadjusted analysis, λ=1.056 for BMI adjusted analysis).

DISCOVERY: Single-variant meta-analysis

We aggregated association summary statistics under an additive model across studies, with 

and without adjustment for BMI, using METAL51: (i) effective sample size weighting of Z-

scores to obtain p-values; and (ii) inverse variance weighting of log-odds ratios. For exome-

array studies, allelic effect sizes and standard errors obtained from the RareMetalWorker 

linear mixed model were converted to the log-odds scale prior to meta-analysis to correct for 

case-control imbalance52.

The European-specific meta-analyses aggregated association summary statistics from a total 

of 48,286 cases and 250,671 controls from: (i) 33 exome-array studies of European ancestry; 

(ii) exome-array sequence from individuals of European ancestry; and (iii) GWAS from UK 

Biobank. Note that non-coding variants represented on the exome array were not available in 

exome sequence. The European-specific meta-analyses were corrected for residual inflation 

by means of genomic control41, calculated after excluding variants mapping to established 

T2D susceptibility loci: λ=1.091 for BMI unadjusted analysis and λ=1.080 for BMI 

adjusted analysis.

The trans-ethnic meta-analyses aggregated association summary statistics from a total of 

81,412 cases and 370,832 controls across all studies (51 exome array studies, exome 

sequence, and GWAS from UK Biobank and GERA), irrespective of ancestry. Note that 

non-coding variants represented on the exome array were not available in exome sequence. 

The trans-ethnic meta-analyses were corrected for residual inflation by means of genomic 

control41, calculated after excluding variants mapping to established T2D susceptibility loci: 

λ=1.073 for BMI unadjusted analysis and λ=1.068 for BMI adjusted analysis. 

Heterogeneity in allelic effect sizes between exome-array studies contributing to the trans-

ethnic meta-analysis was assessed by Cochran’s Q statistic53.
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DISCOVERY: Detection of distinct association signals

Conditional analyses were undertaken to detect association signals by inclusion of index 

variants and/or tags for previously reported non-coding GWAS lead SNPs as covariates in 

the regression model at the study level. Within each exome-array study, approximate 

conditional analyses were undertaken under a linear mixed model using RareMetal17, which 

uses score statistics and the variance-covariance matrix from the RareMetalWorker single-

variant analysis to estimate the correlation in effect size estimates between variants due to 

LD. Study-level allelic effect sizes and standard errors obtained from the approximate 

conditional analyses were converted to the log-odds scale to correct for case-control 

imbalance52. Within each GWAS, exact conditional analyses were performed under a 

logistic regression model using SNPTESTv2.545. GWAS variants passing standard 

imputation quality control thresholds (IMPUTE info≥0.4)50 and present on the exome array 

were extracted for meta-analysis.

Association summary statistics were aggregated across studies, with and without adjustment 

for BMI, using METAL51: (i) effective sample size weighting of Z-scores to obtain p-values; 

and (ii) inverse variance weighting of log-odds ratios.

We defined novel loci as mapping >500kb from a previously reported lead GWAS SNP. We 

performed conditional analyses where a novel signal mapped close to a known GWAS locus, 

and the lead GWAS SNP at that locus is present (or tagged) on the exome array 

(Supplementary Table 5).

DISCOVERY: Non-additive association models

For exome-array studies only, we aggregated association summary statistics under recessive 

and dominant models across studies, with and without adjustment for BMI, using 

METAL51: (i) effective sample size weighting of Z-scores to obtain p-values; and (ii) inverse 

variance weighting of log-odds ratios. Allelic effect sizes and standard errors obtained from 

the RareMetalWorker linear mixed model were converted to the log-odds scale prior to 

meta-analysis to correct for case-control imbalance52. The European-specific meta-analyses 

aggregated association summary statistics from a total of 41,066 cases and 136,024 controls 

from 33 exome-array studies of European ancestry. The European-specific meta-analyses 

were corrected for residual inflation by means of genomic control41, calculated after 

excluding variants mapping to established T2D susceptibility loci: λ=1.076 and λ=1.083 for 

BMI unadjusted analysis, under recessive and dominant models respectively, and λ=1.081 

and λ=1.062 for BMI adjusted analysis, under recessive and dominant models respectively. 

The trans-ethnic meta-analyses aggregated association summary statistics from a total of 

58,425 cases and 188,032 controls across all exome-array studies, irrespective of ancestry. 

The trans-ethnic meta-analyses were corrected for residual inflation by means of genomic 

control41, calculated after excluding variants mapping to established T2D susceptibility loci: 

λ=1.041 and λ=1.071 for BMI unadjusted analysis, under recessive and dominant models 

respectively, and λ=1.031 and λ=1.063 for BMI adjusted analysis, under recessive and 

dominant models respectively.
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DISCOVERY: Gene-based meta-analyses

For exome-array studies only, we aggregated association summary statistics under an 

additive model across studies, with and without adjustment for BMI, using RareMetal17. 

This approach uses score statistics and the variance-covariance matrix from the 

RareMetalWorker single-variant analysis to estimate the correlation in effect size estimates 

between variants due to LD. We performed gene-based analyses using a burden test 

(assuming all variants have same direction of effect on T2D susceptibility) and SKAT 

(allowing variants to have different directions of effect on T2D susceptibility). We used two 

previously defined filters for annotation and MAF18 to define group files: (i) strict filter, 

including 44,666 variants; and (ii) broad filter, including all variants from the strict filter, and 

97,187 additional variants.

We assessed the contribution of each variant to gene-based signals by performing 

approximate conditional analyses. We repeated RareMetal analyses for the gene, excluding 

each variant in turn from the group file, and compared the strength of the association signal.

Fine-mapping of coding variant association signals with T2D susceptibility

We defined a locus as mapping 500kb up- and down-stream of each index coding variant 

(Supplementary Table 5), excluding the MHC. Our fine-mapping analyses aggregated 

association summary statistics from 24 GWAS incorporating 50,160 T2D cases and 465,272 

controls of European ancestry from the DIAGRAM Consortium (Supplementary Table 9). 

Each GWAS was imputed using miniMAC12 or IMPUTEv248,49 up to high-density 

reference panels: (i) 22 GWAS were imputed up to the Haplotype Reference Consortium20; 

(ii) the UK Biobank GWAS was imputed to a merged reference panel from the 1000 

Genomes Project (multi-ethnic, phase 3, October 2014 release)44 and the UK10K Project9; 

and (iii) the deCODE GWAS was imputed up to the deCODE Icelandic population-specific 

reference panel based on whole-genome sequence data19. Association with T2D 

susceptibility was tested for each remaining variant using logistic regression, adjusting for 

age, sex, and study-specific covariates, under an additive genetic model. Analyses were 

performed with and without adjustment for BMI. For each study, variants with minor allele 

count<5 (in cases and controls combined) or those with imputation quality r2-hat<0.3 

(miniMAC) or proper-info<0.4 (IMPUTE2) were removed. Association summary statistics 

for each analysis were corrected for residual inflation by means of genomic control41, 

calculated after excluding variants mapping to established T2D susceptibility loci.

We aggregated association summary statistics across studies, with and without adjustment 

for BMI, in a fixed-effects inverse variance weighted meta-analysis, using METAL51. The 

BMI unadjusted meta-analysis was corrected for residual inflation by means of genomic 

control (λ=1.012)41, calculated after excluding variants mapping to established T2D 

susceptibility loci. No adjustment was required for BMI adjusted meta-analysis (λ=0.994). 

From the meta-analysis, variants were extracted that were present on the HRC panel and 

reported in at least 50% of total effective sample size.

We included 37 of the 40 identified coding variants in fine-mapping analyses, excluding 

three that were not amenable to fine-mapping in the GWAS data sets: (i) the locus in the 
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major histocompatibility complex because of the extended and complex structure of LD 

across the region, which complicates fine-mapping efforts; (ii) the East Asian specific PAX4 
p.Arg190His (rs2233580) signal, since the variant was not present in European ancestry 

GWAS; and (iii) ZHX3 p.Asn310Ser (rs4077129) because the variant was only weakly 

associated with T2D in the GWAS data sets used for fine-mapping.

To delineate distinct association signals in four regions, we undertook approximate 

conditional analyses, implemented in GCTA54, to adjust for the index coding variants and 

non-coding lead GWAS SNPs: (i) RREB1 p. Asp1171Asn (rs9379084), p.Ser1499Tyr 

(rs35742417), and rs9505118; (ii) HNF1A p.Ile75Leu (rs1169288) and p.Ala146Val 

(rs1800574); (iii) GIPR p.Glu318Gln (rs1800437) and rs8108269; and (iv) HNF4A 
p.Thr139Ile (rs1800961) and rs4812831. We made use of summary statistics from the fixed-

effects meta-analyses (BMI unadjusted for RREB1, HNF1A, and HNF4A, and BMI adjusted 

for GIPR as this signal was only seen in BMI adjusted analysis) and genotype data from 

5,000 random individuals of European ancestry from the UK Biobank, as reference for LD 

between genetic variants across the region.

For each association signal, we first calculated an approximate Bayes’ factor55 in favour of 

association on the basis of allelic effect sizes and standard errors from the meta-analysis. 

Specifically, for the jth variant,

Λ
j

=
V

j

V
j

+ ω
exp

ωβ
j
2

2V
j
(V

j
+ ω)

,

where βj and V j denote the estimated allelic effect (log-OR) and corresponding variance 

from the meta-analysis. The parameter ω denotes the prior variance in allelic effects, taken 

here to be 0.0455.

We then calculated the posterior probability that the jth variant drives the association signal, 

given by

Ã
j

=
Ä

j
Λ

j

∑
k

Ä
k

Λ
k

.

In this expression, ρj denotes the prior probability that the jth variant drives the association 

signal, and the summation in the denominator is over all variants across the locus. We 

considered two prior models: (i) functionally unweighted, for which ρj = 1 for all variants; 

and (ii) annotation informed, for which ρj is determined by the functional severity of the 

variant. For the annotation informed prior, we considered five categories of variation16, such 

that: (i) ρj = 165 for PTVs; (ii) ρj = 33 for moderate-impact variants; (iii) ρj = 3 for low-

impact variants; (iv) ρj = 1.5 for other variants mapping to DHS; and (v) ρj = 0.5 for all other 

variants.
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For each locus, the 99% credible set21 under each prior was then constructed by: (i) ranking 

all variants according to their posterior probability of driving the association signal; and (ii) 

including ranked variants until their cumulative posterior probability of driving the 

association attained or exceeded 0.99.

Functional impact of coding alleles

We used CADD34 to obtain scaled Combined Annotation Dependent Depletion score 

(CADD-score) for each of the 40 significantly associated coding variants. The CADD 

method objectively integrates a range of different annotation metrics into a single measure 

(CADD-score), providing an estimate of deleteriousness for all known variants and an 

overall rank for this metric across the genome. We obtained the estimates of the intolerance 

of a gene to harbouring loss-of-function variants (pLI) from the ExAC data set33. We used 

the Kolmogorov-Smirnov test to determine whether fine-mapping groups 1 and 2 have the 

same statistical distribution for each of these parameters.

T2D loci and physiological classification

To explore the different patterns of association between T2D and other anthropometric/

metabolic/endocrine traits and diseases, we performed hierarchical clustering analysis. We 

obtained association summary statistics for a range of metabolic traits and other outcomes 

for 94 coding and non-coding variants that were significantly associated with T2D through 

collaboration or by querying publically available GWAS meta-analysis datasets. The z-score 

(allelic effect/SE) was aligned to the T2D-risk allele. We obtained the distance matrix 

amongst z-score of the loci/traits using the Euclidean measure and performed clustering 

using the complete agglomeration method. Clustering was visualised by constructing a 

dendogram and heatmap.
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Figure 1. Posterior probabilities for coding variants across loci with annotation-informed priors
Fine-mapping of 37 distinct association signals was performed using European ancestry 

GWAS meta-analysis including 50,160 T2D cases and 465,272 controls. For each signal, we 

constructed a credible set of variants accounting for 99% of the posterior probability of 

driving the association, incorporating an “annotation informed” prior model of causality 

which “boosts” the posterior probability of driving the association signal that is attributed to 

coding variants. Each bar represents a signal with the total probability attributed to the 

coding variants within the 99% credible set plotted on the y-axis. When the probability (bar) 

is split across multiple coding variants (at least 0.05 probability attributed to a variant) at a 
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particular locus, these are indicated by blue, pink, yellow, and green colours. The combined 

probability of the remaining coding variants is highlighted in grey. RREB1(a): RREB1 p. 

Asp1171Asn; RREB1(b): RREB1 p.Ser1499Tyr; HNF1A(a): HNF1A p.Ala146Val; 

HNF1A(b): HNF1A p.Ile75Leu; PPIP5K2† : PPIP5K2 p.Ser1207Gly; MTMR3†: MTMR3 
p.Asn960Ser; IL17REL†: IL17REL p.Gly70Arg; NBEAL2†: NBEAL2 p.Arg511Gly, 

KIF9†: KIF9 p.Arg638Trp.
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Figure 2. Plot of measures of variant-specific and gene-specific features of distinct coding signals 
to access the functional impact of coding alleles
Each point represents a coding variant with the minor allele frequency plotted on the x-axis 

and the Combined Annotation Dependent Depletion score (CADD-score) plotted on the y-

axis. Size of each point varies with the measure of intolerance of the gene to loss of function 

variants (pLI) and the colour represents the fine-mapping group each variant is assigned to. 

Group 1: signal is driven by coding variant. Group 2: signal attributable to non-coding 

variants. Group 3: consistent with partial role for coding variants. Group 4: Unclassified 

category; includes PAX4, ZHX3, and signal at TCF19 within the MHC region where we did 

not perform fine-mapping. Inset: plot shows the distribution of CADD-score between 

different groups. The plot is a combination of violin plots and box plots; width of each violin 

indicates frequency at the corresponding CADD-score and box plots show the median and 

the 25% and 75% quantiles. P value indicates significance from two-sample Kolmogorov-

Smirnov test.
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Table 1

Summary of discovery and fine-mapping analyses of the 40 index coding variants associated with T2D (p<2.2×10−7).

Discovery meta-analysis using exome-array component: 81,412 T2D cases and 370,832 controls from diverse ancestries Fine-mapping meta-analysis using GWAS: 50,160 T2D cases and 465,272 controls from European ancestry

Locus Index variant rs ID Chr Pos
Alleles

RAF
BMI unadjusted BMI adjusted

RAF OR L95 U95 p-value Group
R/O OR L95 U95 p-value OR L95 U95 p-value

Previously reported T2D associated loci

MACF1 MACF1 p.Met1424Val rs2296172 1 39,835,817 G/A 0.193 1.06 1.05 1.086.7×10−16 1.04 1.03 1.06 5.9×10−8 0.22 1.08 1.06 1.1 1.6×10−15 3

GCKR GCKR p.Pro446Leu rs1260326 2 27,730,940 C/T 0.630 1.06 1.05 1.085.3×10−25 1.06 1.04 1.07 3.2×10−18 0.607 1.05 1.04 1.07 9.1×10−10 1

THADA THADA  p.Cys845Tyr rs35720761 2 43,519,977 C/T 0.895 1.08 1.05 1.14.6×10−15 1.07 1.05 1.10 8.3×10−16 0.881 1.1 1.07 1.12 3.4×10−12 2

GRB14 COBLL1 p.Asn901Asp rs7607980 2 165,551,201 T/C 0.879 1.08 1.06 1.118.6×10−20 1.09 1.07 1.12 5.0×10−23 0.871 1.08 1.06 1.11 3.6×10−10 2

PPARG PPARG p.Pro12Ala rs1801282 3 12,393,125 C/G 0.887 1.09 1.07 1.111.4×10−17 1.10 1.07 1.12 2.7×10−19 0.876 1.12 1.09 1.14 3.7×10−17 3

IGF2BP2 SENP2 p.Thr291Lys rs6762208 3 185,331,165 A/C 0.367 1.03 1.01 1.041.6×10−6 1.03 1.02 1.05 3.0×10−8 0.339 1.02 1.01 1.04 0.01 2

WFS1 WFS1 p.Val333Ile rs1801212 4 6,302,519 A/G 0.748 1.07 1.06 1.091.1×10−24 1.07 1.05 1.08 7.1×10−21 0.703 1.07 1.05 1.09 4.1×10−13 2

PAM-PPIP5K2 PAM p.Asp336Gly rs35658696 5 102,338,811 G/A 0.045 1.13 1.10 1.171.2×10−16 1.13 1.09 1.17 7.4×10−15 0.051 1.17 1.13 1.22 2.5×10−17 1

RREB1
RREB1 p.Asp1171Asn rs9379084 6 7,231,843 G/A 0.884 1.08 1.06 1.111.1×10−13 1.10 1.07 1.13 1.5×10−17 0.888 1.09 1.06 1.12 1.1×10−9 1

RREB1 p.Ser1499Tyr rs35742417 6 7,247,344 C/A 0.836 1.04 1.03 1.065.5×10−8 1.04 1.02 1.06 2.2×10−7 0.817 1.04 1.02 1.07 0.00012 2

MHC TCF19 p.Met131Val rs2073721 6 31,129,616 G/A 0.749 1.04 1.02 1.051.6×10−10 1.04 1.02 1.05 2.3×10−9 N/A N/A N/A N/A N/A N/A

PAX4 PAX4 p.Arg190His rs2233580 7 127,253,550 T/C 0.029 1.36 1.25 1.481.8×10−12 1.38 1.26 1.51 4.2×10−13 0 N/A N/A N/A N/A N/A

SLC30A8 SLC30A8 p.Arg276Trp rs13266634 8 118,184,783 C/T 0.691 1.09 1.08 1.111.9×10−47 1.09 1.08 1.11 1.3×10−47 0.683 1.12 1.1 1.14 8.2×10−36 1

GPSM1 GPSM1 p.Ser391Leu rs60980157 9 139,235,415 C/T 0.771 1.06 1.05 1.083.2×10−16 1.06 1.05 1.08 6.6×10−16 0.756 1.06 1.04 1.09 8.3×10−8 3

KCNJ11-ABCC8 KCNJ11 p.Lys29Glu rs5219 11 17,409,572 T/C 0.364 1.06 1.05 1.075.7×10−22 1.07 1.05 1.08 1.5×10−22 0.381 1.07 1.05 1.09 8.1×10−16 1

CENTD2 ARAP1 p.Gln802Glu rs56200889 11 72,408,055 G/C 0.733 1.04 1.02 1.054.8×10−8 1.05 1.03 1.06 5.2×10−10 0.727 1.05 1.03 1.07 2.3×10−8 2

KLHDC5 MRPS35 p.Gly43Arg rs1127787 12 27,867,727 G/A 0.850 1.06 1.04 1.081.4×10−11 1.05 1.03 1.07 1.5×10−8 0.842 1.06 1.04 1.09 2.2×10−7 2

HNF1A
HNF1A p.Ile75Leu rs1169288 12 121,416,650 C/A 0.323 1.04 1.03 1.061.1×10−11 1.04 1.02 1.06 1.9×10−10 0.33 1.05 1.04 1.07 4.6×10−9 1

HNF1A p.Ala146Val rs1800574 12 121,416,864 T/C 0.029 1.11 1.06 1.156.1×10−8 1.10 1.06 1.15 1.3×10−7 0.03 1.16 1.1 1.21 5.0×10−9 1

MPHOSPH9 SBNO1 p.Ser729Asn rs1060105 12 123,806,219 C/T 0.815 1.04 1.02 1.065.7×10−7 1.04 1.02 1.06 1.1×10−7 0.787 1.04 1.02 1.06 3.6×10−5 2

CILP2 TM6SF2 p.Glu167Lys rs58542926 19 19,379,549 T/C 0.076 1.07 1.05 1.104.8×10−12 1.09 1.06 1.11 3.4×10−15 0.076 1.09 1.05 1.12 2.0×10−7 1

GIPR GIPR p.Glu318Gln rs1800437 19 46,181,392 C/G 0.200 1.03 1.02 1.057.1×10−5 1.06 1.04 1.07 6.8×10−12 0.213 1.09 1.06 1.12 4.6×10−9 1

HNF4A HNF4A p.Thr139Ile rs1800961 20 43,042,364 T/C 0.032 1.09 1.05 1.132.6×10−8 1.10 1.06 1.14 5.0×10−8 0.037 1.17 1.12 1.22 1.4×10−12 1
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Discovery meta-analysis using exome-array component: 81,412 T2D cases and 370,832 controls from diverse ancestries Fine-mapping meta-analysis using GWAS: 50,160 T2D cases and 465,272 controls from European ancestry

Locus Index variant rs ID Chr Pos
Alleles

RAF
BMI unadjusted BMI adjusted

RAF OR L95 U95 p-value Group
R/O OR L95 U95 p-value OR L95 U95 p-value

MTMR3-ASCC2 ASCC2 p.Asp407His rs28265 22 30,200,761 C/G 0.925 1.09 1.06 1.112.1×10−12 1.09 1.07 1.12 4.4×10−14 0.916 1.1 1.07 1.14 9.6×10−11 3

Novel T2D associated loci

FAM63A FAM63A p.Tyr95Asn rs140386498 1 150,972,959 A/T 0.988 1.21 1.14 1.287.5×10−8 1.19 1.12 1.26 6.7×10−7 0.986 1.15 1.06 1.25 0.00047 3

CEP68 CEP68 p.Gly74Ser rs7572857 2 65,296,798 G/A 0.846 1.05 1.04 1.078.3×10−9 1.05 1.03 1.07 6.6×10−7 0.830 1.06 1.03 1.08 6.6×10−7 2

KIF9 KIF9 p.Arg638Trp rs2276853 3 47,282,303 A/G 0.588 1.02 1.01 1.048.0×10−5 1.03 1.02 1.05 5.3×10−8 0.602 1.04 1.02 1.05 2.6×10−5 3

ANKH ANKH  p.Arg187Gln rs146886108 5 14,751,305 C/T 0.996 1.29 1.16 1.451.4×10−7 1.27 1.13 1.41 3.5×10−7 0.995 1.51 1.29 1.77 3.5×10−7 1

POC5 POC5 p.His36Arg rs2307111 5 75,003,678 T/C 0.562 1.05 1.04 1.071.6×10−15 1.03 1.01 1.04 2.1×10−5 0.606 1.06 1.05 1.08 1.1×10−12 1

LPL LPL p.Ser474* rs328 8 19,819,724 C/G 0.903 1.05 1.03 1.086.8×10−9 1.05 1.03 1.07 2.3×10−7 0.901 1.08 1.05 1.11 7.1×10−8 1

PLCB3† PLCB3 p.Ser778Leu rs35169799 11 64,031,241 T/C 0.071 1.05 1.02 1.081.3×10−5 1.06 1.03 1.09 1.8×10−7 0.065 1.07 1.04 1.11 3.8×10−5 1

TPCN2 TPCN2 p.Val219Ile rs72928978 11 68,831,364 G/A 0.890 1.05 1.02 1.075.2×10−7 1.05 1.03 1.07 1.8×10−8 0.847 1.03 1.00 1.05 0.042 2

WSCD2 WSCD2 p.Thr113Ile rs3764002 12 108,618,630 C/T 0.719 1.03 1.02 1.053.3×10−8 1.03 1.02 1.05 1.2×10−7 0.736 1.05 1.03 1.07 8.1×10−7 1

ZZEF1 ZZEF1 p.Ile402Val rs781831 17 3,947,644 C/T 0.422 1.04 1.03 1.058.3×10−11 1.03 1.02 1.05 1.8×10−7 0.407 1.04 1.02 1.05 2.1×10−5 2

MLX MLX  p.Gln139Arg rs665268 17 40,722,029 G/A 0.294 1.04 1.02 1.052.0×10−8 1.03 1.02 1.04 1.1×10−5 0.280 1.04 1.02 1.06 5.2×10−6 2

TTLL6 TTLL6  p.Glu712Asp rs2032844 17 46,847,364 C/A 0.754 1.04 1.02 1.061.2×10−7 1.03 1.01 1.04 0.00098 0.750 1.04 1.02 1.06 9.5×10−5 3

C17orf58† C17orf58 p.Ile92Val rs9891146 17 65,988,049 T/C 0.277 1.04 1.02 1.061.3×10−7 1.02 1.00 1.04 0.00058 0.269 1.05 1.03 1.07 1.7×10−7 2

ZHX3† ZHX3 p.Asn310Ser rs17265513 20 39,832,628 C/T 0.211 1.05 1.03 1.079.2×10−8 1.04 1.02 1.05 2.9×10−6 0.208 1.02 1.00 1.04 0.068 N/A

PNPLA3 PNPLA3 p.Ile148Met rs738409 22 44,324,727 G/C 0.239 1.04 1.03 1.052.1×10−10 1.05 1.03 1.06 2.8×10−11 0.230 1.05 1.03 1.07 5.8×10−6 1

PIM3 PIM3 p.Val300Ala rs4077129 22 50,356,693 T/C 0.276 1.04 1.02 1.051.9×10−7 1.04 1.02 1.06 3.5×10−8 0.280 1.04 1.02 1.06 8.7×10−5 3

Chr: chromosome. Pos: Position build 37. RAF: risk allele frequency. R: risk allele. O: other allele. BMI: body mass index. OR: odds ratio. L95: lower 95% confidence interval. U95: upper 95% confidence interval. GWAS: genome wide association studies.

†
Summary statistics from European ancestry specific meta-analyses of 48,286 cases and 250,671 controls. Fine-mapping group 1: signal is driven by coding variant, group 2: signal attributable to non-coding variants, and group 3: consistent with partial role for coding variants. 

p-values are based on the meta-analyses of discovery stage and fine-mapping studies as appropriate.
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Table 2

Posterior probabilities for coding variants within 99% credible set across loci with annotation-informed and functionally-unweighted prior based on fine-

mapping analysis performed using 50,160 T2D cases and 465,272 controls of European ancestry.

Locus Variant rs ID Chr Position
Posterior probability Cumulative posterior probability attributed to coding variants

PPA aiPPA PPA aiPPA

MACF1

MACF1 p.Ile39Val rs16826069 1 39,797,055 0.012 0.240

0.032 0.628MACF1 p.Met1424Val rs2296172 1 39,835,817 0.011 0.224

MACF1 p.Lys1625Asn rs41270807 1 39,801,815 0.008 0.163

FAM63A FAM63A p.Tyr95Asn rs140386498 1 150,972,959 0.005 0.129 0.012 0.303

GCKR GCKR p. Pro 446Leu rs1260326 2 27,730,940 0.773 0.995 0.773 0.995

THADA
THADA p.Cys845Tyr rs35720761 2 43,519,977 <0.001 0.011

0.003 0.120
THADA  p.Thr897Ala rs7578597 2 43,732,823 0.003 0.107

CEP68 CEP68 p.Gly74Ser rs7572857 2 65,296,798 <0.001 0.004 <0.001 0.004

GRB14 COBLL1 p.Asn901Asp rs7607980 2 165,551,201 0.006 0.160 0.006 0.160

PPARG PPARG p.Pro12Ala rs1801282 3 12,393,125 0.023 0.410 0.024 0.410

KIF9

SETD2 p.Pro1962Lys rs4082155 3 47,125,385 0.008 0.171

0.018 0.384NBEAL2 p.Arg511Gly rs11720139 3 47,036,756 0.005 0.097

KIF9 p.Arg638Trp rs2276853 3 47,282,303 0.003 0.059

IGF2BP2 SENP2 p.Thr291Lys rs6762208 3 185,331,165 <0.001 <0.001 <0.001 <0.001

WFS1 WFS1 p.Val333Ile rs1801212 4 6,302,519 <0.001 0.001 <0.001 0.004

ANKH ANKH  p.Arg187Gln rs146886108 5 14,751,305 0.459 0.972 0.447 0.972

POC5 POC5 p.His36Arg rs2307111 5 75,003,678 0.697 0.954 0.702 0.986

PAM-PPIP5K2
PAM p.Asp336Gly rs35658696 5 102,338,811 0.288 0.885

0.309 0.947
PPIP5K2 p.Ser1207Gly rs36046591 5 102,537,285 0.020 0.063

RREB1 p.Asp1171Asn RREB1 p.Asp1171Asn rs9379084 6 7,231,843 0.920 0.997 0.920 0.997

RREB1 p.Ser1499Tyr RREB1 p.Ser1499Tyr rs35742417 6 7,247,344 <0.001 0.013 0.005 0.111

LPL LPL p.Ser474* rs328 8 19,819,724 0.023 0.832 0.023 0.832

SLC30A8 SLC30A8 p.Arg276Trp rs13266634 8 118,184,783 0.295 0.823 0.295 0.823

GPSM1 GPSM1 p.Ser391Leu rs60980157 9 139,235,415 0.031 0.557 0.031 0.557

KCNJ11-ABCC8 KCNJ11 p.Val250Ile rs5215 11 17,408,630 0.208 0.412 0.481 0.951
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Locus Variant rs ID Chr Position
Posterior probability Cumulative posterior probability attributed to coding variants

PPA aiPPA PPA aiPPA

KCNJ11 p.Lys29Glu rs5219 11 17,409,572 0.190 0.376

ABCC8 p.Ala1369Ser rs757110 11 17,418,477 0.083 0.163

PLCB3 PLCB3 p.Ser778Leu rs35169799 11 64,031,241 0.113 0.720 0.130 0.830

TPCN2 TPCN2 p.Val219Ile rs72928978 11 68,831,364 <0.001 0.004 0.006 0.140

CENTD2 ARAP1 p.Gln802Glu rs56200889 11 72,408,055 <0.001 <0.001 <0.001 <0.001

KLHDC5 MRPS35 p.Gly43Arg rs1127787 12 27,867,727 <0.001 <0.001 <0.001 <0.001

WSCD2 WSCD2 p.Thr113Ile rs3764002 12 108,618,630 0.281 0.955 0.282 0.958

HNF1A p.Ile75Leu
HNF1A_Gly226Ala rs56348580 12 121,432,117 0.358 0.894

0.358 0.894
HNF1A p.Ile75Leu rs1169288 12 121,416,650 <0.001 <0.001

HNF1A p.Ala146Val HNF1A p.Ala146Val rs1800574 12 121,416,864 0.269 0.867 0.280 0.902

MPHOSPH9 SBNO1 p.Ser729Asn rs1060105 12 123,806,219 0.002 0.054 0.002 0.057

ZZEF1 ZZEF1 p.Ile402Val rs781831 17 3,947,644 <0.001 0.001 <0.001 0.018

MLX MLX  p.Gln139Arg rs665268 17 40,722,029 0.002 0.038 0.002 0.039

TTLL6

TTLL6 p.Glu712Asp rs2032844 17 46,847,364 <0.001 <0.001

0.016 0.305CALCOCO2 p.Pro347Ala rs10278 17 46,939,658 0.0100 0.187

SNF8 p.Arg155His rs57901004 17 47,011,897 0.005 0.092

C17orf58 C17orf58 p.Ile92Val rs9891146 17 65,988,049 <0.001 0.009 <0.001 0.009

CILP2
TM6SF2 p.Glu167Lys rs58542926 19 19,379,549 0.211 0.732

0.263 0.913
TM6SF2 p.Leu156Pro rs187429064 19 19,380,513 0.049 0.172

GIPR GIPR p.Glu318Gln rs1800437 19 46,181,392 0.169 0.901 0.169 0.901

ZHX3 ZHX3 p.Asn310Ser rs17265513 20 39,832,628 <0.001 0.003 0.003 0.110

HNF4A HNF4A p.Thr139Ile rs1800961 20 43,042,364 1.000 1.000 1.00 1.000

MTMR3-ASCC2

ASCC2 p.Asp407His rs28265 22 30,200,761 0.011 0.192

0.028 0.481
ASCC2 p.Pro423Ser rs36571 22 30,200,713 0.007 0.116

ASCC2 p.Val123Ile rs11549795 22 30,221,120 0.006 0.107

MTMR3 p.Asn960Ser rs41278853 22 30,416,527 0.004 0.065

PNPLA3
PNPLA3 p.Ile148Met rs738409 22 44,324,727 0.112 0.691

0.130 0.806
PARVB p.Trp37Arg rs1007863 22 44,395,451 0.017 0.103
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Locus Variant rs ID Chr Position
Posterior probability Cumulative posterior probability attributed to coding variants

PPA aiPPA PPA aiPPA

PIM3

IL17REL p.Leu333Pro rs5771069 22 50,435,480 0.041 0.419

0.047 0.475IL17REL p.Gly70Arg rs9617090 22 50,439,194 0.005 0.054

PIM3 p.Val300Ala rs4077129 22 50,356,693 <0.001 0.002

Chr: chromosome. Pos: Position build 37. PPA: functionally-unweighted prior; aiPPA: annotation informed prior. Index coding variants are highlighted in bold.
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