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A B S T R A C T

UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It

is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI,

carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR,

susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first

10,000 imaged subjects has recently been released for general research access. To help convert this data into

useful summary information we have developed an automated processing and QC (Quality Control) pipeline that

is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief

overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative in-

vestigations carried out as part of the development of both the imaging protocol and the processing pipeline.

Introduction

Biobank project

UK Biobank is a prospective cohort study of over 500,000 individuals

from across the United Kingdom (Sudlow et al. (2015)). Voluntary par-

ticipants, aged between 40 and 69 when recruited in 2006–2010, were

invited to one of 22 centres across the UK. Blood, urine and saliva sam-

ples were collected, samples for genetic analysis and physical measure-

ments were taken, and each individual answered an extensive

questionnaire focused on aspects of health and lifestyle. This valuable

data resource will provide insight into how the health of the UK popu-

lation develops over many years and will enable researchers to improve

the diagnosis and treatment of common diseases which will inevitably

occur in sub-groups of the population.

In 2014, UK Biobank began the process of inviting back 100,000 of

the original volunteers for brain, heart and body imaging. Imaging data

for 10,000 volunteers has already been processed and made available for

further research (Biobank, 2016, 2017). Due to the wide scope (in pop-

ulation size and number of imaging modalities) of the brain imaging
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acquisitions, UK Biobank will become an important resource for the

research community. The included modalities are T1 (Section T1 pipe-

line), T2 FLAIR (Section T2 FLAIR pipeline), swMRI (susceptibility-

weighted MRI, Section swMRI pipeline), dMRI (diffusion MRI, Section

dMRI pipeline), rfMRI (resting-state functional MRI, Section Resting

fMRI pipeline) and tfMRI (task fMRI, Section Task fMRI pipeline). It is

hoped that ASL (arterial spin labelling, a measure of blood flow in the

brain) can be added to the protocol in the near future. Section Acquisition

overview briefly describes the acquisition protocol and the acquired

modalities.

Other large-scale imaging projects include the Maastricht Study with

10,000 subjects (Schram et al. (2014)), the German National Cohort with

30,000 subjects (GNC (2014)) and the Rhineland Study with 30,000

subjects (Breteler et al., 2014).

The full potential of UK Biobank stems from its access to NHS (UK

National Health Service) records; participants have agreed for their

future health outcome information to be linked into the UK Biobank

database. Thanks to this, researchers can aim to find novel biomarkers for

early diagnosis of different diseases. As described in Sudlow et al. (2015),

1800 of the imaged participants are expected to develop Alzheimer's

disease by 2022, rising to 6000 by 2027 (diabetes: 8000 rising to 14,000;

stroke: 1800 to 4000; Parkinson's: 1200 to 2800).

Greater detail regarding the background to the UK Biobank brain

imaging study is given in Miller et al. (2016), a resource paper that also

provides an introduction to the types of biological information that can

be extracted from the different brain imaging modalities, as well as

example results from early analyses from the first 5000 subjects' data, and

detailed discussions of the challenges of analysing and interpreting such

datasets. In contrast, here we focus more specifically on the methodo-

logical advances and implementation details in the image processing and

QC pipeline that we have developed for UK Biobank; we describe here

version 1.0 of “FBP” (FMRIB's Biobank Pipeline), used to generate the

first 10,000 subjects' processed and released data, as of January 2017.We

also include several investigations relating to acquisition and analysis

pipeline decisions (such as B0 shimming approaches and registration

method for dMRI data), with analyses designed to evaluate relative

merits of different approaches.

Automated pipeline

Brain imaging data is not immediately usable for extracting

biologically-meaningful information in its raw form. It needs to be pro-

cessed using a wide variety of software tools, optimised and combined

together into a processing pipeline.

There are many excellent examples of processing pipelines in the

literature. Tools such as those described in Wei et al. (2002) (segmenta-

tion), Cook et al. (2006) (diffusion) or Song et al. (2011) (resting-state), are

specific solutions for the processing of specific imagemodalities. However,

for the UK Biobank we need a robust pipeline that can process and inte-

grate across many different functional and structural modalities. The

minimal preprocessing pipelines developed by the Human Connectome

Project (HCP) (Glasser et al., 2013) are good examples of pipelines opti-

mised for the specific needs of a project with very special characteristics.

Following the same philosophy, we have developed a fully automated

processing pipeline primarily based around FSL software (Jenkinson et al.,

2012). In section Automated processing pipelines we describe the pipeline

in detail, as well as the choices we have made in its development.

Imaging-derived phenotypes and Quality Control

A goal of UK Biobank is to identify new relationships between

different phenotypic features and human diseases, in the hope that they

may be used as biomarkers for early diagnosis. Therefore, in addition to

preprocessing the brain imaging data (e.g., aligning modalities and

removing artefacts), our pipeline also generates approximately 4350

“imaging-derived phenotypes” (IDPs). These IDPs include summary

measures such as subcortical structure volumes, microstructural mea-

sures in major tracts (DTI and NODDI measures (Zhang et al., 2012)), and

structural/functional connectivity metrics. IDPs for the first 10,000

subjects have been publicly released1 and can be used in combination

with other non-imaging data from Biobank to identify disease risk factors

and biomarkers. Each IDP is presented as a separate data field within the

UK Biobank showcase (except for the rfMRI netmats and node ampli-

tudes, which are saved en masse within “bulk” variables in the database).

A detailed description of all IDPs is available in Section S3 of the sup-

plementary material, and the complete list is given online.2

Quality Control (QC) is a very important issue in brain imaging, as

poorly executed application (or lack thereof) can compromise the trust-

worthiness of a study (Bennett and Miller, 2010). This topic has been

explored in the literature, although very often research is mostly focused

on Quality Assurance (QA) rather than QC. QA is focused on avoiding the

occurrence of problems by improving a process while QC is focused on

finding possible problems in the output of that process. For example, the

Function Biomedical Informatics Research Network (FBIRN) set of rec-

ommendations (Glover et al., 2012) is solely focused on QA. In a similar

vein, Friedman and Glover (2006) explore an interesting set of quality

metrics, but they focus on stability, signal-to-noise ratio (SNR), drift, and

other hardware performance issues related to MR scanners, not specif-

ically on the type of artefacts3 that can be found in MR imaging even

when complying with the best QA policies.

The scale of a typical brain imaging study to date (up to 100 subjects)

allows researchers to largely performQCmanually, by visually inspecting

the data at each step in the processing pipeline. Even the HCP, while

having a relatively large number of subjects (1200), relies primarily upon

visual inspection for their T1 QC process (Marcus et al., 2013). However,

the sheer quantity of imaging data which will be produced by UK Bio-

bank (100,000 subjects) makes QC via visual inspection unfeasible. Thus,

the development of reliable QC metrics to detect artefacts specific to the

imaging acquisition and analysis process is essential.

Various imaging-related QC metrics have been proposed (e.g. Desh-

mukh and Bhosale (2010), Moorthy and Bovik (2010)) but, as they are not

specific to MR or brain imaging they do not fulfill the needs of our study.

More specific proposals can be found in other studies. Woodard and

Carley-Spencer (2006) suggests a metric based on Natural Scene Statistics

to detect noise in structural images. Following the same idea, Mortamet

et al. (2009) suggests two metrics to detect noise (based on investigating

the ratio of artefactual voxels relative to the background, or the noise

distribution in the background). Those proposals, although extremely

useful, refer to a very specific problem in structural images, and hence are

unlikely to detect artefacts due to other sources, or in other modalities.

Similarly, there have been proposed metrics for dMRI (Hasan, 2007;

Liu et al., 2010), fMRI (Greve et al., 2011; Power et al., 2012; Nichols,

2013; Afyouni and Nichols, 2017), and more recent multimodal ap-

proaches (Abe et al., 2015), but the extent to which these metrics may

capture the majority of artefacts that could arise is yet to be proven.

Finally, PCP QAP (Preprocessed Connectors Project Quality Assess-

ment Protocol)4 is a concerted effort to create a unified platform for

Quality Control that attempts to incorporate different QC pipelines and

their associated metrics. The QC tools to come out of our work are

designed to be easily integrated into MRIQC (Esteban et al., 2016, 2017),

a project affiliated to PCPQAP.

Due to the uncertainty about the suitability of the QC metrics dis-

cussed above to successfully assess image quality objectively and to

detect the majority of brain artefacts, we propose a machine learning

1 The raw and processed imaging data, IDPs and non-imaging measures in UK Biobank

are available to researchers worldwide following a data access application procedure.
2 http://www.fmrib.ox.ac.uk/datasets/ukbiobank/nnpaper/IDPinfo.txt.
3 A comprehensive list of possible artefacts and proposed qualitative quality recom-

mendations can be found in CBS (2016).
4 http://preprocessed-connectomes-project.org/quality-assessment-protocol/(Craddock

et al., 2016).
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approach to automatically identify problematic images based on a wide

range of imaging derived metrics. For this study, the generated IDPs are

combined with a collection of additional QC-specific metrics (e.g.,

measures of asymmetry, normalised intensity per subcortical structure,

metrics to detect alignment that classifies images as usable or non-

usable). This has been developed for, and tested on, T1 images, and

will be further developed in future work so that it can be applied to all

modalities. Section Automated Quality Control further describes the QC-

specific metrics and the machine learning system. The main reason for

our heavy focus to date on QC for the T1 data is that the entire processing

pipeline (for all modalities) relies heavily on having a usable T1 struc-

tural image.

Data acquisition

Acquisition overview

UK Biobank brain imaging has been described as a resource in Miller

et al. (2016), where the reader can find a number of examples describing

how it can be accessed and used for research. The data is available online.5

Three dedicated imaging centres are equipped with identical scanners

(3T Siemens Skyra, software VD13) for brain imaging scanning using the

standard Siemens 32-channel receive head coil. As shown in multiple

studies (Focke et al., 2011; Chen et al., 2014), having the same scanner

and protocol is advantageous for a multi-site study.

The scanners operate 7 days per week, each scanning 18 subjects per

day. These acquisition rates demand an extremely time-efficient protocol

- each minute of scanning (added into the protocol) in effect costs £1

million, so scanning time has been a key criterion in the protocol

development. The total scanning time has been established as 31 min

(plus 5 min for subject adjustment, shimming, etc). The optimised order

of acquisition is: (1) T1, (2) resting fMRI, (3) task fMRI, (4) T2 FLAIR, (5)

dMRI, (6) swMRI (Biobank, 2014).

During the acquisition process, if a significant artefact is observed

while scanning, and there is enough time to restart the sequence, then the

acquisition may be repeated. The most common reason for these artefacts

is excessive head movement.

Likewise, as mentioned in Miller et al. (2016), in case of a possible

health-related incidental finding noted by the radiographer during the

imaging process, a formal radiologist review is undertaken and, if it is

confirmed as potentially serious, feedback is given to the participant and

their doctor.

To date, our processing pipeline has been applied to 10,129 UK

Biobank volunteers scanned from 2014 to 2016 at just the first imaging

centre. The main acquisition parameters for each modality are listed

in Table 1.

A usable T1-weighted image was obtained for 98% of these ~10,000

subjects (the same figure that was reported in Miller et al. (2016) for the

initial ~6000 subjects, confirming the stability of the acquisition process).

This is an important point, as a T1 image is a crucial part of the processing

pipeline, being essential for making full use of data from the other mo-

dalities. At this stage, an image was deemed unusable only after careful

manual quality checks across all modalities.6 A set of manual classification

categories, specific to each modality, were assigned to every image; these

categories are described in section QC categories. Data for all modalities

were acquired and usable in 8211 subjects (81.06%).

Throughout the development of the Biobank imaging procedures, the

imaging acquisition has been divided into different protocol phases, with

each phase corresponding to (generally minor early) adjustments in the

acquisition protocol. The original aim in the UK Biobank brain imaging

component was to maintain a fixed acquisition protocol during the 5–6

years that the scanning will need or, at least, to have maximum

compatibility with eventual changes. There have been a number of

protocol optimisations, particularly during the very earliest scanning

periods (and hence covering a relatively small number of the earliest

participants). There also have been a number of minor software upgrades

(for obvious reasons the imaging study seeks to minimise any major

hardware or software changes). Detailed descriptions of every protocol

change, along with thorough investigations of the effects of these on the

resulting data, will be the subject of a future paper. In Section S1 of

supplementary material we describe one protocol change for which we

carried out specific custom analyses to help verify the protocol change

decision (relating to field shimming).

Acquired modalities overview

T1-weighted structural imaging (“T1”, Mugler and Brookeman

(1990)) provides information relating to volumes and morphology of

brain tissues and structures. It is also critical for calculations of

cross-subject and cross-modality alignments, needed in order to process

all other brain modalities. Acquisition details are: 1 mm isotropic reso-

lution using a 3D MPRAGE acquisition. The superior-inferior field-of--

view is large (256 mm), at little cost, in order to include reasonable

amounts of neck/mouth, as those areas hold interest for some

researchers.

T2-weighted FLAIR imaging (“T2 FLAIR”, Mugler (2014)) is a

structural technique with contrast dominated by signal decay from in-

teractions between water molecules (T2 relaxation times). T2 images

depict alterations to tissue properties typically associated with certain

pathology (e.g., white matter lesions). In this modality, signal from fluid

(CSF) is suppressed and hence it appears dark (unlike either PD or

T2w images).

After early piloting, a standard T2/PD-weighted acquisition was

dropped due to a combination of factors such as overall value and timing

practicalities. However the T2-weighted FLAIR image is still acquired,

Table 1

UK Biobank brain MRI protocol (31 min total scan time).

Modality Duration Voxel, Matrix Key Parameters #Volumes/

#Timepoints

T1 4:54 1� 1� 1 mm

208� 256� 256

3DMPRAGE, sagittal,

R ¼ 2, TI/TR ¼ 880/

2000 ms

1

T2

FLAIR

5:52 1:05� 1:0� 1:0

mm

192� 256� 256

FLAIR, 3D SPACE,

sagittal, R ¼ 2, PF 7/

8, fat sat, TI/

TR ¼ 1800/5000 ms,

elliptical

1

swMRI 2:34 0:8� 0:8� 3:0

mm

256� 288� 48

3D GRE, axial, R ¼ 2,

PF 7/8 TE1/TE2/

TR ¼ 9.4/20/27 ms

2

dMRI 7:08 2:0� 2:0� 2:0

mm

104� 104� 72

MB ¼ 3, R ¼ 1, TE/

TR¼ 92/3600 ms, PF

6/8, fat sat, b ¼ 0

s=mm2 (5x þ 3�

phase-encoding

reversed), b ¼ 1 000

s=mm2 (50�),

b ¼ 2000 s=mm2

(50�)

105 þ 6

(AP þ PA)

rfMRI 6:10 2:4� 2:4� 2:4

mm

88� 88� 64

TE/TR ¼ 39/735 ms,

MB ¼ 8, R ¼ 1, flip

angle 52�, fat sat

490

tfMRI 4:13 2:4� 2:4� 2:4

mm

88� 88� 64

Acquisition same as

rfMRI. Task is faces/

shapes “emotion”

task.

332

R ¼ in-plane acceleration factor, MB ¼ multiband factor, PF ¼ partial Fourier. All non-EPI

scans are pre-scan normalised (on-scanner bias-field corrected). Gradient distortion

correction is deselected on the scanner and applied in post-processing. SNR, tSNR and

motion plots are shown in Figs. S10 and S11 of the supplementary material.

5 https://amsportal.ukbiobank.ac.uk/SitePages/Sign%20In.aspx.
6 Manual QC was possible because at that stage, we were dealing with the initial phase

(6% of final dataset size).
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which is generally of good quality and which shows strong contrast for

white matter hyperintensities.

Susceptibility-weighted imaging (“swMRI”, Haacke et al. (2004);

Duyn (2013)) is a structural technique that is sensitive to “magnetic”

tissue constituents (magnetic susceptibility). Data from one scan

(including phase and magnitude images from two echo times) can be

processed in multiple ways to reflect venous vasculature, hemosiderin

microbleeds, quantitative susceptibility mapping or aspects of micro-

structure (e.g., iron, calcium and myelin). Voxel size for this modality is

0:8� 0:8� 3:0 mm. Anisotropic voxels enhance contrast in the signal

magnitude from sources of signal dephasing, such as iron in veins or

microbleeds, but are less ideal for other susceptibility-based processing.

Ultimately, however, the decision to acquire anisotropic voxels was

motivated by the desire for whole brain coverage in the face of very

limited scan time (2.5 min).

Diffusion-weighted imaging (“dMRI”, Sotiropoulos et al. (2013a);

Xu et al. (2013); Sotiropoulos et al. (2013b)) measures the ability of

water molecules to move within their local tissue environment. Water

diffusion is measured along a range of orientations, providing two types

of useful information. Local (voxel-wise) estimates of diffusion properties

reflect the integrity of microstructural tissue compartments (e.g., diffu-

sion tensor and NODDI measures). Long-range estimates based on tract-

tracing (tractography) reflect structural connectivity between pairs of

brain regions. For the two diffusion-weighted shells, 50 diffusion-

encoding directions were acquired (with all 100 directions being

distinct). Acquisition phase-encoding direction for the dMRI data is AP

(Anterior-to-Posterior). In order to generate appropriate fieldmaps to

carry out geometric distortion correction for EPI images (See Section

Fieldmap generation pipeline), a reverse (PA: Posterior-to-Anterior)

phase-encoding dMRI is also acquired.

Resting-state functional MRI (“rfMRI”)measures changes in blood

oxygenation associatedwith intrinsic brain activity (i.e., in the absence of

an explicit task or sensory stimulus). It can generate valuable estimations

of the apparent connectivity between pairs of brain regions, as reflected

in the presence of spontaneous co-fluctuations in signal. As implemented

in the CMRR multiband acquisition (Moeller et al., 2010), a separate

“single-band reference scan” (SBRef) is acquired. This has the same ge-

ometry (including EPI distortion) as the timeseries data, but is not part of

a low-TR timeseries, and hence, without the corresponding T1 saturation

effects, has higher between-tissue contrast; this is used as the reference

scan in head motion correction and alignment to other modalities. In

cases where the SBRef image is missing, the alignments use an average

image generated from the first 5 vol from the fMRI timeseries and

selecting the one that correlates most highly with the others (after

co-alignment). This procedure is similar to the selection of the best b ¼ 0

image described in section Fieldmap generation pipeline.

Task functional MRI (“tfMRI”) uses the same measurement tech-

nique as resting-state fMRI, while the subject performs a particular task or

experiences a sensory stimulus. The task used is the Hariri faces/shapes

“emotion” task (Hariri et al., 2002; Barch et al., 2013), as implemented in

the HCP, but with shorter overall duration and hence fewer total stimulus

block repeats. The participants are presented with blocks of trials and

asked to decide either which of two faces presented on the bottom of the

screen match the face at the top of the screen, or which of two shapes

presented at the bottom of the screen match the shape at the top of the

screen. The faces have either angry or fearful expressions. This task was

chosen to engage a range of sensory, motor and cognitive systems.

Automated processing pipelines

All processing was performed on a dedicated cluster composed of CPU

servers (typical speed 2.66 GHz per core, average RAM 10 GB per core) as

well as GPU servers for the GPU-optimised parts of the processing pipe-

line (NVidia Tesla K40/K80 GPUs for processing with Cuda 5.57).

Image reconstruction from k-space is performed on the scanner using

standard Siemens reconstructions, except for multiband EPI (recon-

structed using custom CMRR code). Partial bias field correction in

structural data is performed via the on-scanner “pre-scan normalise”

option. No on-scanner gradient distortion correction is applied. After

reconstruction and on-scanner preprocessing, image data is received (in

DICOM format) by the pipeline. An overview of the processing pipeline

can be seen in Fig. 2 (legend for the flowcharts can be see seen in Fig. 1).

The source code for the pipeline can be found online.8

Initial preprocessing steps

Data conversion: DICOM to NIFTI

All DICOM image files are converted to NIFTI format using dcm2niix

(Li et al., 2016). This tool also generates the diffusion-encoding b-value

and b-vector files, as well as a JSON file for each NIFTI image with

meta-information such as: acquisition date and time, echo time, repeti-

tion time, effective echo spacing, encoding direction, magnetic field

strength, flip angle and normalisation by scanner.

Image data is available from UK Biobank in both DICOM and (sepa-

rately) NIFTI formats. Both forms include the raw (non-processed) image-

space data, the only differences being that the NIFTI-version T1/T2

structural images are defaced for subject anonymity (as described

below), and the multi-coil (pre-combination) swMRI data is only avail-

able in the DICOM downloads. Researchers download individual zipfiles

corresponding to one modality from one subject for one data format

(DICOM or NIFTI).

The NIFTI versions are the recommended option, partly because for

each modality a small number of simply and consistently named images

are provided (e.g., “T1”, “rfMRI”), as opposed to thousands of separate

DICOM files (with complex naming and somewhat variable conventions

dictated by the scanner). Also, the NIFTI downloads, while overall only

being 40% larger than pure-raw DICOM downloads, include not just the

raw images, but also images output by the processing pipeline, for

example after gradient distortion correction (for all modalities), and

correction for eddy currents and head motion (dMRI data), and artefact

removal (rfMRI data).

Data organization

The directory tree structure of the processed data is available online.9

For each subject, the raw and processed imaging data files are auto-

matically organised into subfolders according to the different modalities,

with a uniform naming scheme for files and directories. To achieve this,

we need to check all the files that have been converted from DICOM to

NIFTI, find the ones that correspond to each modality (by matching a set

of naming patterns), sort out the possible problems with the number of

files found per modality (missing files or havingmore files than expected)

and finally, renaming the result according to the naming scheme. To

resolve problems regarding the number of found files, we developed the

logical rules defined in Algorithms 1 to 4 in Section S2 of the supple-

mentary material.

This file organisation can be converted to BIDS file-naming format

(Gorgolewski et al., 2016) with a conversion script included in

the pipeline.

After the main file organisation, a basic Quality Control (QC) tool is

used to check if every raw dataset in each modality has the correct di-

mensions. When raw data has the wrong dimensions, is corrupted,

missing or otherwise unusable, it is moved into a sub folder called “un-

usable” (inside the given modality's folder), and not processed any

further (apart from defacing applied to the raw T1 and T2 FLAIR).

7 GPU processing is used for the FSL eddy and bedpostx tools, with further tools being

ported to GPU in the future.

8 https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1.
9 http://www.fmrib.ox.ac.uk/ukbiobank.
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Fig. 1. Flowcharts legend. All linear registrations shown in the pipeline are rigid body transformations (6 degrees of freedom) in intra-subject operations and affine transformations (12 degrees of freedom) when registering to MNI template.
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This “unusable” data is included in the NIFTI packages in Biobank

database because some researchers may be interested in working with it,

for example, to developmethods for detecting or even possibly correcting

such data.

In the case of unusable T1 data, the raw imaging data for all other

modalities is deemed unusable (because the pipeline cannot function

without a usable T1). However, as with the T1 data, all such raw data is

still available for NIFTI download, but without any processing applied.

Image anonymisation

To protect study participant anonymity, the header data does not

contain sensitive information such as name and any other information

that could be used to identify the participant.

Furthermore, the high resolution structural images (T1 and T2) are

automatically “defaced” by masking out voxels in the face and ear re-

gions. This is accomplished by estimating a linear transformation be-

tween the original data and a standard co-ordinate system (an expanded

Fig. 2. General flowchart for the pipeline.
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MNI152 template space)10, and back-projecting a standard-space mask of

the face and ear regions into the native data. This process is depicted in

Fig. 3. To ensure that this process did not unduly remove within-brain

voxels, we calculated the overlap between non-defaced brain masks

and the defacing masks. Overlap was present in only 0.5% of the sub-

jects11 and, within these subjects, there was nearly no loss of brain voxels

(worst case having 68 overlap voxels out of 1,725,983 brain voxels).

This defacing procedure is similar to common practice such as in the

HCP. The raw, non-defaced DICOM T1 and T2 data is classified as

“sensitive” by UK Biobank; researchers requiring raw DICOM non-

defaced T1/T2 data should contact UK Biobank to discuss special ac-

cess requirements.

Gradient distortion correction

Full 3D gradient distortion correction (GDC) is not available on the

scanner for EPI data (gradient distortions are only corrected within-plane

for 2D EPI data), so GDC is entirely applied within the process-

ing pipeline.

GDC is a necessary step, as shown in Fig. 4. Tools developed by the

FreeSurfer and HCP teams are used for applying the correction, available

through the HCP GitHub account.12 Running these tools also requires a

proprietary Siemens data file that describes the gradient nonlinearities.13

T1 pipeline

T1 structural images are used as a reference for all other modalities.

Processing performed on these images should avoid any kind of unnec-

essary smoothing or interpolation. Therefore, all linear and non-linear

pipeline transformations are estimated, but not applied until as late as

possible in the processing pipeline when all transforms can be combined

and applied with a single interpolation.

As can be seen in Fig. 5, the pipeline runs a GDC, cuts down the field

of view (FOV), calculates a registration (linear and then non-linear) to the

standard atlas, applies brain extraction, performs defacing and finally

segments the brain into different tissues and subcortical structures.

In more detail: the pipeline first applies GDC for the original T1 image

as described above. The FOV is then cut down to reduce the amount of

non-brain tissue (primarily empty space above the head and tissue below

the brain) to improve robustness and accuracy of subsequent registra-

tions. Tools used to achieve this include BET (Brain Extraction Tool,

Smith (2002)) and FLIRT (FMRIB's Linear Image Registration Tool,

Jenkinson and Smith (2001); Jenkinson et al. (2002)),14 in conjunction

with the MNI152 “nonlinear 6th generation” standard-space T1 tem-

plate.15 This results in a reduced-FOV T1 head image.

The next step is a non-linear registration to MNI152 space using

FNIRT16 (FMRIB's Nonlinear Image Registration Tool Andersson et al.

(2007b, a)). This is a critical step in the pipeline, as many subsequent

processing steps depend on accurate registration to standard space. We

used the 1 mm resolution version of MNI152 template as the refer-

ence space.

A particular issue for the non-linear registration was the fact that T1

images in UK Biobank have brighter internal carotid arteries than those

the in MNI152 template. This affects the non-linear registration pro-

cedure, resulting in distortion in the temporal lobes. Hence, we created a

custom reference brain mask to exclude this part of the image when

estimating the transformation (see Fig. S8 of the supplemen-

tary material).

All of the transformations estimated above (GDC, linear and non-

linear transformations to MNI152) are then combined into one single

non-linear transformation, which allows the original T1 to be trans-

formed into MNI152 space (or vice versa) in a single step.

Using the inverse of the MNI152 alignment warp, a standard-space

brain mask is transformed into the native T1 space and applied to the

T1 image to generate a brain-extracted T1; this brain extraction replaces

the earlier brain-extraction output created by BET (which was needed

just for the initial registration stages). Similarly, as discussed above, a

defacing mask (defined as a set of boxes removing eyes, nose, mouth and

ears) is transformed into T1 space using the linear transformation and

applied for anonymisation purposes. Only the linear transformation is

used for defacing, as non-linear registration is performed on brain-

extracted images, meaning that the warp field in out-of-brain regions is

poorly conditioned. This process is shown in Fig. 6.

Next, tissue-type segmentation is applied using FAST (FMRIB's

Automated Segmentation Tool Zhang et al. (2001)). This estimates

discrete and probabilistic segmentations for CSF (cerebrospinal fluid),

grey matter and white matter. As part of the segmentation, intensity bias

is estimated, and so this step is also used to generate a fully

bias-field-corrected version of the brain-extracted T1.

These data are then used to carry out a SIENAX17 analysis Smith et al.

(2002). The external surface of the skull is estimated from the T1, and

used to normalise brain tissue volumes for head size (compared with the

MNI152 template). Volumes of different tissue types and total brain

volume, both unnormalised and normalised for head size, are

then generated.

Subcortical structures (shapes and volumes) are modelled using

FIRST (FMRIB's Integrated Registration and Segmentation Tool Pate-

naude et al. (2011)). The shape and volume outputs for 15 subcortical

structures are generated and stored. A single summary image, with a

distinct value coding for each structure is also generated.

From the T1 structural image, several global volume measures from

SIENAX are reported as distinct IDPs, both normalised for overall head size

as well as not normalised: total brain (grey þ white matter) volume; total

white matter volume, total grey matter volume, ventricular (non-periph-

eral) CSF (cerebrospinal fluid) volume; peripheral cortical grey matter

volume. The overall volumetric head-size scaling factor is also recorded as

an IDP. Several subcortical structures’ volumes from FIRST segmentation

(not normalised for brain/head size, although that normalisation can be

easily done, as the total brain volume is an IDP) are also reported, in

general with separate IDPs for left and right, such as left thalamus and right

thalamus. Total volume of grey matter (using the grey matter partial vol-

ume estimates from FAST) within 139 GM ROIs18 and total volume of

white matter hyperintensities (WMHs) calculated with BIANCA (Griffanti

et al., 2016) (using both T1 and T2 FLAIR) are also included as IDPs.

T2 FLAIR pipeline

The T2 FLAIR processing pipeline is very similar to the T1 pipeline,

although we use the non-linear T1-to-MNI152 transformation to trans-

form T2 FLAIR to MNI152 space. For this reason and to assist other

combined analyses (e.g., white-matter hyperintensity segmentation), the

T2 FLAIR image is first transformed to T1 space as described below.

As shown in Fig. 7, the original T2 FLAIR image is first corrected for

gradient distortions (GDC) and then a rigid-body (6 degrees of freedom)

linear registration using FLIRT is applied to transform the corrected T2

FLAIR into corrected T1 space. After this step, the T1 brain and defacing

masks are applied to the T2 FLAIR image (see Fig. 8). Finally, anMNI152-

version of T2 FLAIR is also generated using the previously calculated

warp from T1 to MNI152.

10 See section T1 pipeline.
11 33 out of 5822.
12 https://github.com/Washington-University/Pipelines.
13 More information about this file can be found in: https://github.com/Washington-

University/Pipelines/wiki/FAQ.
14 Default cost function: Correlation ratio.
15 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6.
16 Configuration file for optimal registration is distributed with the pipeline code.

17 Structural Image Evaluation using Normalisation of Atrophy: Cross-sectional.
18 The ROIs are defined by combination of parcellations from several atlases: Harvard-

Oxford cortical and subcortical atlases, and Diedrichsen cerebellar atlas.
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As a last step, we use the estimated bias field previously calculated by

FAST on the T1 image to correct the residual bias field inhomogeneities

in the T2 FLAIR image. This approach performs as well as estimating the

bias field directly from the T2 FLAIR that have not been removed by the

on-scanner ”pre-scan normalise” processing. To validate this approach,

we confirmed that the histograms for white matter intensity in 78

(randomly chosen) subjects improved, i.e., the distribution of WM in-

tensity (as measured by the Inter Quartile Range [IQR]) was tightened in

a similar way for T1 and T2 FLAIR after using on-scanner bias-field

correction and T1's FAST bias field correction. Fig. 9 (panels A and B)

shows the intensities for a typical subject, with similar improvement for

T1 and T2 FLAIR evident. Fig. 9C shows the different inter-quartile-

ranges for all 78 subjects, with the results further summarised in Table 2.

swMRI pipeline

The processing pipeline for this modality is shown in Fig. 10.

Combining phase images across coils requires care due to anomalous

phase transitions in regions of focal signal dropout for a given coil.

Currently, all coil channels are saved separately to enable combination of

phase images inpost-processing. Eachcoil channelphase image isfirst high-

passfiltered to remove low-frequency phase variations (including both coil

phase profiles and field distortion from bulk shape). A combined complex

image is generatedas the sumof the complexdata fromeachcoil (unfiltered

magnitude andfiltered phase), and thefinal phase image is the phase of the

summation of the second echo, since it has greater venous contrast. Careful

inspection of a small number of subjects found no anomalous phase tran-

sitions from individual channels in the final combined image.

Venograms were calculated using an established reconstruction

(Haacke et al., 2004), in which magnitude images are multiplied by a

further filtering of the phase data to enhance the appearance of veins.

The filtering consists of thresholding the phase image to set the phase to

zero in voxels indicating diamagnetic susceptibility, and to take the phase

to the fourth power in voxels indicating paramagnetic susceptibility. The

chosen power represents a trade-off between venous-tissue contrast and

noise in the phase data. This enhances image contrast around veins,

which are the source of strongest paramagnetic susceptibility.

Additionally, T2* values are calculated from the magnitude data.

First, the inverse of T2*, termed R2*, is calculated from the magnitude

images from the two echo times (TE1 and TE2). The log of the ratio of

these two echo time images is calculated, and scaled by the echo time

difference, to give the R2*.

T2* is calculated as the inverse of R2*. The T2* image is then spatially

filtered to reduce noise (3 � 3 � 1 median filtering followed by limited

dilation to fill small holes of missing data) and transformed into the space

of the T1 (via linear registration of the bias-field-normalised first-echo

magnitude image). The median (across ROI voxels) T2* value is then

estimated as a separate IDP for each of the subcortical structure ROIs (left

thalamus, right caudate, etc.) obtained from the T1.

Fieldmap generation pipeline

Fieldmap images reflect variations in the static magnetic field. These

are needed to correct geometric distortions in the phase encoding di-

rection in EPI images (Jezzard and Balaban, 1995).

In the fieldmap generation pipeline (see Fig. 11) we estimate the

fieldmaps from the b¼ 0 images19 in the dMRIdata using the opposingAP -

PA phase-encoding acquisitions mentioned above. The reasons for doing

so, rather than measuring the field using a dual echo-time gradient echo

acquisition, are numerous. Firstly, “traditional” fieldmaps (based on dual

echo-time gradient-echo images) are not free of problems (Andersson and

Skare, 2010). The choice of echo-time difference represents a trade off

between wanting a large echo-time difference to get a large effect to

calculate the field from, and wanting a small echo-time difference which

results in fewer phase-wraps that may be hard to unwrap. Furthermore,

such afieldmapwill not automaticallybe in the same space (position) as the

images one wants to correct. Therefore the fieldmap needs to be registered

to those images and that is not a trivial task as they are differently distorted.

Also, as mentioned in Smith et al. (2013), fieldmaps estimated with

reversed encoding direction acquisitions produce an “equivalently good

distortion correctionaccuracy” to that achievedwith traditionalfieldmaps,

while being faster to acquire. This reduction in time, aside frommaking the

acquisition less susceptible to within-scan head motion, saves acquisition

time, which is a valuable resource in UK Biobank.

All b ¼ 0 dMRI images (interspersed with the high-b images) with

opposite phase-encoding direction (AP and PA) are analysed to identify

the most suitable pair of AP and PA images20. This is achieved by aligning

all AP images to each other with a rigid-body registration (6 degrees of

freedom) and then calculating the correlation of each b ¼ 0 image with

all others. The volume that best correlates with all others is selected21 as

the “target”, subject to the following additional criterion.

As the chosen b¼ 0 image determines the space for later processing we

want that space to be as close to the space of the first image with diffusion

encoding (b > 0) as possible. The movement estimation between the b¼ 0

image (no diffusion weighting) images and the two shells with diffusion

encoding is not carried out until the end of the eddy current correction, so

if the fieldmap is far away from that first dMRI, the movement estimation

process will be less optimal. Furthermore, dMRI images are acquired

shortly after the fMRI images, so the case for selecting an early b¼ 0 image

is stronger.22 Hence, we apply a selection bias towards the first b ¼ 0

image: if the first b¼ 0 image has sufficient quality (correlation of 0.98 or

higher to the other images) we would select it as the “best b ¼ 0 image”

(the same selection bias is applied to PA).

Fig. 3. Example of defacing. Left: Original T1 volume (non-Biobank subject). Center: Applying defacing masks. Right: Defaced T1 volume.

19 b ¼ 0 images (also called b0) have a b-value below 50.
20 Differences between b ¼ 0 images in each encoding direction can occur due to subject

movement.
21 All steps applied to images in the AP direction are also applied to images in the PA

direction.
22 The fieldmaps will be used to correct both fMRI and dMRI data.
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Fig. 4. One volunteer was scanned for testing purposes at different positions on the scanning table, depicting the effect of gradient distortion (note the warping in the neck). Correction for

gradient distortion (C and D) substantially improves alignment. i: Subject placed low in the scanner (Baseline). ii: Subject placed in the centre of the scanner. iii: Subject placed higher into

the scanner. A: ii (red outline) linearly registered to i (background) (Cross correlation: 0.90). B: iii (red outline) linearly registered to i (background) (Cross correlation: 0.83). C: ii (red

outline) linearly registered to i (background) after GDC (Cross correlation: 0.98). D: iii (red outline) linearly registered to i (background) after GDC (Cross correlation: 0.96). Regions

highlighting the largest effect (i.e. improved alignment of the ventricle) of the GDC have been zoomed to a 3:1 scale.
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This optimal AP/PA pair is then fed into topup23 (Andersson et al.

(2003)) in order to estimate the fieldmap and associated dMRI EPI

distortions.

The full generation method of the fieldmap magnitude is explained in

section S5 of the supplementary material. GDC is applied to this

magnitude image before registering it to the T1 (which has already been

gradient-distortion corrected). The result is linearly aligned to the T1

(using boundary-based-registration [BBR] as the cost function as

described in Greve and Fischl (2009)) for later use in unwarping the fMRI

data. The resulting transformation is applied to the fieldmap and also

inverted to get the dilated structural brain mask in fieldmap (dMRI)

space. Finally, the fieldmap image in structural space is brain-masked and

converted to radians per second for later use for fMRI unwarping.

dMRI pipeline

As can be seen in Fig. 12, in the first step of this part of the pipeline the

dMRI data (AP encoding direction) is corrected for eddy currents and

head motion, and has outlier-slices (individual slices in the 4D data)

corrected using the eddy tool (Andersson and Sotiropoulos, 2015, 2016;

Andersson et al., 2016). This step requires knowing the “best” b ¼ 0

image in the AP direction as discussed above. The primary corrections

carried out by eddy need to be done in-plane, and applying the GDC

before eddy would move data out of plane. Therefore, GDC is applied

after eddy to produce a more accurate correction, as explained in Glasser

et al. (2013).

The output is fed into two complementary analyses, one based on

tract-skeleton (TBSS) processing, and the other based on probabilistic

tractography (bedpostx/probtrackx). Both analysis streams then report a

range of dMRI-derived measures within different tract regions: A) mea-

sures derived from diffusion-tensor modelling, and B) measures derived

from microstructural model fitting.

Fig. 5. Flowchart for the T1 processing pipeline.

23 After making sure that the number of slices in the Z direction is a multiple of topup's

sub-sampling level (See https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/TopupUsersGuide/

#A–subsamp), defined in topup configuration file, by removing the appropriate number

of slices from the top of the image.
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Diffusion-tensor-image fitting and NODDI

The b ¼ 1000 shell (50 directions) is fed into the DTI fitting (Basser

et al., 1994) tool DTIFIT, creating outputs such as fractional anisotropy,

tensor mode and mean diffusivity.

In addition to the DTI fitting, the full two-shell dMRI data is fed into

NODDI (Neurite Orientation Dispersion and Density Imaging) (Zhang

et al., 2012) modelling, using the AMICO (Accelerated Microstructure

Imaging via Convex Optimization) tool (Daducci et al., 2015). This aims

to generate meaningful voxelwise microstructural parameters, including

ICVF (intra-cellular volume fraction - an index of white matter neurite

density), ISOVF (isotropic or free water volume fraction) and ODI

(orientation dispersion index, a measure of within-voxel tract

disorganisation).

WM tract skeleton analysis

The DTI Fractional Anisotropy (FA) image is fed into TBSS (Smith

et al., 2006), which aligns the FA image onto a standard-space white--

matter skeleton, with alignment improved over the original TBSS

skeleton-projection methodology through utilisation of a

high-dimensional FNIRT-based warping (de Groot et al., 2013). This

decision was re-validated along the lines of de Groot et al. (2013) after a

thorough comparison of 14 different alignment methods applied to UK

Biobank data (see Fig. 13). The resulting standard-space warp is applied

to all other DTI/NODDI output maps. For each of the DTI/NODDI maps,

the skeletonised images are averaged within a set of 48 standard-space

tract masks defined by the group of Susumu Mori at Johns Hopkins

University Mori et al. (2005) and Wakana et al. (2007), (similar to the

TBSS processing applied in the ENIGMA project Jahanshad et al. (2013)),

to generate a set of dMRI IDPs.

Probabilistic-tractography-based analysis

In addition to the TBSS analyses, the preprocessed dMRI data is also

fed into a tractography-based analysis. This begins with within-voxel

modelling of multi-fibre tract orientation structure via the bedpostx

tool (Bayesian Estimation of Diffusion Parameters Obtained using Sam-

pling Techniques),24 which implements a model-based spherical decon-

volution and estimates up to 3 fibre orientations per voxel. This is

followed by probabilistic tractography (with crossing fibre modelling)

using probtrackx (Behrens et al., 2003, 2007; Jbabdi et al., 2012;

Hern�andez et al., 2013). The bedpostx outputs are suitable for running

tractography from any (voxel or region) seeding; the pipeline has already

automatically mapped a set of 27 major tracts using standard-space start/

stop ROI masks defined by AutoPtx de Groot et al. (2013). In order to

reduce the amount of processing time for those tracts, AutoPtx was

modified to reduce the number of seeds per voxel (the relationship be-

tween the number of seeds per voxel and processing time is linear) to 0.3

times the number of seeds specified in the original version of AutoPtx.

Fig. 14 illustrates the process we used to select this factor.

Although eddy and bedpostx outputs are in the space and resolution

of the (GDC-unwarped) native diffusion data, the nonlinear trans-

formation between this space and 1 mm MNI standard space (as esti-

mated by TBSS above) is used to create tractography results in 1 mm

standard space. For each tract, and for each DTI/NODDI output image

type, we compute the weighted-mean value of the DTI/NODDI parameter

within the tract (the weighting being determined by the tractography

probabilistic output) to generate a further set of dMRI IDPs.

Fig. 6. Flowchart for the defacing of the T1.

24 Model 2: Deconvolution with sticks and a range of diffusivities.
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Resting fMRI pipeline

This section of the pipeline uses several outputs from the T1 pipeline

(T1, brain-extracted T1, linear and non-linear warp of T1 to MNI152

space and binary mask of the white matter in T1 space). See Fig. 15 for

the flowchart.

Using this information and a previously calculated GDC warp for the

rfMRI data, a configuration file is generated in a format suitable for use

by Melodic (Beckmann and Smith, 2004). Melodic is a complete pipeline

in itself which here performs EPI unwarping (utilising the fieldmaps as

described above), GDC unwarping, motion correction using MC-FLIRT

(Jenkinson et al., 2002), grand-mean intensity normalisation of the

entire 4D dataset by a single multiplicative factor, and highpass temporal

filtering (Gaussian-weighted least-squares straight line fitting, with

sigma ¼ 50.0s). To reduce interpolation artefacts, the EPI unwarping,

GDC transformation, and motion correction are combined and applied

simultaneously to the functional data. The combination of these warps

can be seen in Fig. 16.

Finally, structured artefacts are removed by ICA þ FIX processing

independent component analysis followed by FMRIB's ICA-based X-

noiseifier (Beckmann and Smith, 2004; Salimi-Khorshidi et al., 2014;

Griffanti et al., 2014). FIX was hand-trained on 40 Biobank rfMRI data-

sets following the methodology described in Griffanti et al. (2017), and

leave-one-out testing showed (mean/median values across subjects)

99.1/100.0% classification accuracy for non-artefact components and

98.1/98.3% accuracy for artefact components. At this point no lowpass

temporal or spatial filtering has been applied.

We evaluated the effect that FIX had on the relationship between 1/

tSNR and amount of head motion (summarised to a single average value

for each subject). Before FIX cleanup, the correlation was very high

(r ¼ 0.75), indicating strong corruption of data in general by head mo-

tion, even after standard (geometric) head motion correction. However,

after FIX cleanup, this correlation dropped dramatically (r ¼ 0.1, i.e.,

only 1% of variance explained by head motion), indicating high effec-

tiveness of FIX in removing residual motion artefacts.

The EPI unwarping is a combined step that includes GDC and align-

ment to the T1, though the unwarped data is stored in native (unwarped)

fMRI space (and the transform to T1 space stored separately). This T1

alignment is carried out by FLIRT, using BBR as the cost function. After

the fMRI GDC unwarping, a final FLIRT realignment to T1 space is

applied, to take into account any shifts resulting from the GDC

unwarping. The previously described transform from T1 space to stan-

dard MNI space is utilised when fMRI data is needed in standard space.

To be able to identify RSNs (Resting-State Networks) in individual

subjects, we first identify a set of RSNs which are common across the

entire group. Therefore, group-average RSN analysis was carried out

using 4100 datasets.

First, each subject's preprocessed (as above) timeseries dataset was

resampled into standard space, temporally demeaned and had variance

normalisation applied according to Beckmann and Smith (2004).

Group-PCA was then carried out by MIGP (MELODIC's Incremental

Group-PCA) from all subjects. This comprises the top 1200 weighted

spatial eigenvectors from a group-averaged PCA (a very close approxi-

mation to concatenating all subjects' timeseries and then applying PCA)

Smith et al. (2014). The MIGP output was fed into ICA using FSL's

MELODIC tool Hyv€arinen (1999); Beckmann and Smith (2004), applying

Fig. 7. Flowchart for the T2 FLAIR processing pipeline.
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spatial-ICA at two different dimensionalities (25 and 10025). The

dimensionality determines the number of distinct ICA components; a

higher number means that distinct regions within the spatial component

maps are smaller. The group-ICA spatial maps are available online in the

UK Biobank showcase.26 The sets of ICA maps can be considered as

“parcellations” of (cortical and sub-cortical) grey matter, though they

lack some properties often assumed for parcellations - for example, ICA

maps are not binary masks but contain a continuous range of values; they

can overlap each other; and a given map can include multiple spatially

separated peaks/regions. Any group-ICA components that are clearly

identifiable as artefactual (i.e., not neuronally driven) are discarded for

the network modelling described below. A text file is supplied with the

publicly available group-ICA maps, listing the group-ICA components

kept in the final network modelling. From the 25-dimensional group-ICA,

21 components were kept as non-artefactual, and from the 100-dimen-

sional group ICA, 55 were kept.

For a given parcellation (group-ICA decomposition of D components),

the set of ICA spatial maps was mapped onto each subject's rfMRI

timeseries data to derive one representative timeseries per ICA compo-

nent (for these purposes each ICA component is considered as a network

“node”). For each subject, these D timeseries can then be used in network

analyses, described below. This is the first stage in a dual-regression

analysis Filippini et al. (2009).

The node timeseries are then used to estimate subject-specific

network-matrices (also referred to as “netmats” or “parcellated con-

nectomes”). For each subject, the D node-timeseries were fed into

network modelling after regressing the timeseries of the artefactual

nodes out of all others, and then discarding them, leaving Dg nodes. This

results in a Dg � Dg matrix of connectivity estimates. Network modelling

was carried out using the FSLNets toolbox.27 Network modelling is

applied in two ways:

� Using full normalised temporal correlation between every node time

series and every other. This is a common approach and is very simple,

but it has various practical and interpretational disadvantages

including an inability to differentiate between directly connected

nodes and nodes that are only connected via an intermediate node

(Smith, 2012), as well as being more corrupted (than partial corre-

lation) by residual shared/global artefacts.

� Using partial temporal correlation between nodes' timeseries. This

aims to estimate direct connection strengths better than achieved by

full correlation. To slightly improve the estimates of partial correla-

tion coefficients, L2 regularization is applied (setting rho ¼ 0.5 in the

Ridge Regression netmats option in FSLNets).

Fig. 8. Flowchart for the defacing of the T2 FLAIR.

25 The reasoning behind these dimensionalities is:

� 25 results in large scale network decomposition which matches much of the canonical

RSN literature (Smith et al., 2009).

� 100 corresponds to a more finely detailed parcellation. We found empirically that it

was not useful to go even higher because, with volumetrically aligned data, raising the

number of components did not significantly raise the number of non-artefact group

level components as opposed to using surface based analysis where the number of well-

aligned small components can be much higher (Smith et al., 2013).

26 http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=9028. 27 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets.
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Fig. 9. Histogram of WM intensities for a typical subject, showing that use of the bias field estimated from the T1 image can be applied to the T2 FLAIR image with similar improvement in

IQR range to the one obtained in T1. Also, the histogram of this method is not very different to the one obtained by applying FAST directly to T2 FLAIR. A: T1. B: T2 FLAIR. C: Distribution

of WM intensity Inter Quartile Ranges (IQRs) using different normalization methods in 78 subjects.
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Netmat values were transformed from Pearson correlation scores (r-

values) into z-statistics, including empirical correction for temporal

autocorrelation. Group-average netmats are also available online.

As the matrices are symmetric, only values above the diagonal are

kept, and unwrapped (taken column-wise) into a single row of Dg x (Dg-

1)/2 values per subject. This results in one “compound” IDP (containing

all network matrix values for a given subject) for each original dimen-

sionality (D ¼ 25 and 100) and for each network matrix estimation

method (full correlation and partial correlation).

Task fMRI pipeline

The same preprocessing and registration was applied as for the rfMRI

described above, except that spatial smoothing (using a Gaussian kernel

of FWHM 5 mm) was applied before the intensity normalisation, and no

ICA þ FIX artefact removal was performed, both decisions being largely

driven by the shorter timeseries in the tfMRI (than the rfMRI) and

because of the greater general reliance in tfMRI analysis on voxelwise

timeseries modelling (as opposed to multivariate spatiotemporal ana-

lyses common in resting-state fMRI).

Pre-processing and task-induced activation modelling was carried out

using FEAT (FMRI Expert Analysis Tool); time-series statistical analysis

was carried out using FILM with local autocorrelation correction Wool-

rich et al. (2001). The timings of the blocks of the two task conditions

(shapes and faces) are defined in 2 text files. 5 activation contrasts were

defined (Shapes, Faces, Shapes þ Faces, Shapes-Faces, Faces-Shapes),

and an F-contrast also applied across Shapes and Faces.

The 3 contrasts of most interest are: 1 (Shapes), 2 (Faces) and 5

(Faces-Shapes), with the last of those being of particular interest with

respect to amygdala activation. Group-average activation maps were

derived from analysis across all subjects, and used to define ROIs for

generating tfMRI IDPs. Four ROIs were derived; 1 (Shapes group-level

fixed-effect z-statistic, thresholded at Z > 12028); 2 (Faces group-level

fixed-effect z-statistic, thresholded at Z > 120); 5 (Faces-Shapes group-

level fixed-effect z-statistic, thresholded at Z > 120); 5a (Faces-Shapes

group-level fixed-effect z-statistic, thresholded at Z > 120, and further

masked by an amygdala-specific mask). The group-average activation

maps and ROIs are available online in the UK Biobank showcase

mentioned above.

The Featquery tool was used to extract summary statistics for these 4

contrast/mask combinations, for both activation effect size (expressed as

a % signal change relative to the overall-image-mean baseline level) and

statistical effect size (z-statistic), with each of these summarised across

the relevant ROI in two ways - median across ROI voxels and 90th

percentile across ROI voxels.

Display of the task video and logging of participant responses is

carried out by ePrime software, which provides several response log files

from each subject. These are not used in the above analyses (as the

timings of the task blocks are fixed and already known, and the cor-

rectness of subject responses are not used in the above analyses), but are

available in the UK Biobank database.

Table 2

Descriptive statistics of WM intensity Inter Quartile Ranges (IQRs) using 3 normalisation

methods (78 subjects).

Normalisation method IQR Typical

Subject

Mean

IQR

Median

IQR

Std

IQR

T1 not normalised 0.3274 0.3232 0.3191 0.0418

T1 normalised by scanner 0.0797 0.0893 0.0872 0.0086

T1 normalised by scanner þ FAST 0.0508 0.0550 0.0535 0.0058

T2 FLAIR not normalised 0.3106 0.3181 0.3163 0.0365

T2 FLAIR normalised by scanner 0.1429 0.1386 0.1356 0.0181

T2 FLAIR normalised by

scanner þ FAST from T1

0.1116 0.1162 0.1138 0.0136

T2 FLAIR normalised by

scanner þ FAST from T2 FLAIR

0.1154 0.1144 0.1123 0.0137

Fig. 10. Flowchart for the swMRI processing pipeline.

28 Both mixed-effects and fixed-effects generate huge z-statistics with this many subjects,

so we are choosing here to simply work with the “average” activation given by using fixed-

effects.
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Automated Quality Control

We have developed an automated Quality Control tool to identify

images with problems either in their acquisition or in later processing

steps. This uses machine learning methods with supervised learning. We

first categorise the different problems that we may find in the images and

manually classify many datasets accordingly. We then generate a set of

QC features aiming to characterise those images. Finally, we feed that

information into a supervised learning classifier. With this approach we

aim to have a classifier capable of detecting problematic images with

acceptable accuracy. To date we have concentrated just on automated QC

for the T1 images, as the entire processing pipeline depends on having a

usable T1.

QC categories

Table 3 shows the categories for QC that were developed to classify

issues that may be found in T1 images. This list was compiled as new

issues were identified (through manual inspection) in the data, and is not

intended to cover every possible problem in any MR image, but rather to

cover all of the problems that we have observed to date in the Biobank

data set. For this study, we define a “problem” as any issue that makes

subsequent processing steps impossible or unreliable, while an “imper-

fection” is an issue which must be noted, but does not necessarily impede

further processing. Some issues (e.g., bad head motion) appear in both

categories (“problem” and the less serious “imperfection”), where the

distinction is to be made on the basis of the seriousness of the image

artefacts. Table S2 in the supplementary material shows a similar table

for all modalities. Fig. S9 in the supplementary material shows the dif-

ference in the IDPs between “problematic”, “imperfect” and “good”

datasets. Fig. S12 in the supplementary material shows some examples of

some datasets from these categories.

QC features

We developed a set of 190 features (for use in the trained machine

learning automated classifier) to find issues in T1 structural images. A

more detailed description can be found in Section S4 of the supplemen-

tary material. The features that were developed are focused on

characterizing:

Fig. 11. Flowchart for the fieldmap generation pipeline.
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� Discrepancy between the T1 (after alignment into MNI standard

space) and the MNI template.

� Signal-to-noise ratio.

� Total brain volume and segmented tissue volumes.

� Subcortical structures, volumes.

� Asymmetry between the subcortical structures.

� Global brain asymmetry.

� Normalised intensity of the subcortical structures.

� Volume of grey matter (Using a different brain extraction method)

outside the brain mask.

� Amount of segmented tissue in the border of the brain mask.

� “Volume” of the edges (derived using Canny filter and excluding

certain borders) of each segmented tissue.

� Comparison with different brain extraction tools.

� Intensity in the internal and external border of the brain mask.

� Volume of holes in grey and white matter.

� Magnitude of warp field from the non-linear registration to the MNI

template.

� Volume of White Matter Hyperintensities.

� Distance (per lobe) between the border of the brain mask and the

border of the MNI template.

Fig. 12. Flowchart for the dMRI processing pipeline.
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Automated QC tool

We used the Weka machine learning toolbox (Hall et al., 2009), with

3 separate classifiers' outputs fused together. The ensemble classifier

used for the fusion was a voting system that combines the a posteriori

probabilities of the different classifiers using the ‘Minimum Probability’

combination rule (Kuncheva, 2004; Kittler et al., 1998). This rule was

chosen29 among 5 different options based on our goal of reducing the

FNR (False Negative Rate: rate of missing “problems”) as much as

possible without increasing the FPR (False Positive Rate: rate of

incorrectly flagging “good” cases as “problems”) to impractical levels30.

The three combined classifiers were:

� Bayes Network classifier (Bouckaert, 2008): This classifier first finds

the Bayesian network (as a directed acyclic causal graph) that best fits

the data by using the training dataset to create the network structure

(running conditional independence tests to find the causal structure

of the network, using local score metrics on quality of nodes/edges,

and performing global score metrics by estimating classification ac-

curacy) and then assigning probabilities to each node using the dis-

tribution of the same training dataset; the inference is later performed

by using the maximum a posteriori decision rule for the node of in-

terest (i.e., the variable being predicted) for a new instance (a vector

of features).

Fig. 13. Comparison of 14 different alignment methods of FA to MNI space. We used the same methodology as de Groot et al. (2013). For each registration method, we used its estimated

warp field in autoPtx to transform 27 automatically defined tracts into standard space; as discussed in de Groot et al. (2013), judging cross-subject alignment through similarity of tracts can

be considered a test of alignment success that is reasonably independent of the images and cost functions used to drive the alignments. Each box plot shows the average cross-correlation

over the 27 tracts for the 4950 combinations of pairs of 100 subjects. Figs. S13–S16 the supplementary material show this same plot, at the tract level.

1: FA linearly aligned to T1 þ T1 non-linearly aligned to MNI.

2: FA linearly aligned to T1 þ T1’s WM non-linearly aligned to MNI’s WM.

3: FA linearly aligned to T1 þ T1’s GM non-linearly aligned to MNI’s GM.

4: Corrected b ¼ 0 linearly aligned (BBR) to T1 þ T1 non-linearly aligned to MNI.

5: Corrected b ¼ 0 linearly aligned (BBR) to T1 þ T1’s WM non-linearly aligned to MNI’s WM.

6: Corrected b ¼ 0 linearly aligned (BBR) to T1 þ T1’s GM non-linearly aligned to MNI’s GM.

7: FA non-linearly aligned to T1 þ T1 non-linearly aligned to MNI.

8: FA non-linearly aligned to T1 þ T1’s WM non-linearly aligned to MNI’s WM.

9: FA non-linearly aligned to T1 þ T1’s GM non-linearly aligned to MNI’s GM.

10: FA linearly aligned (BBR) to T1 þ T1 non-linearly aligned to MNI.

11: FA linearly aligned (BBR) to T1 þ T1’s WM non-linearly aligned to MNI’s WM.

12: FA linearly aligned (BBR) to T1 þ T1’s GM non-linearly aligned to MNI’s GM.

13: FA non-linearly aligned to FA FMRIB58 atlas via an FA study-specific template (created by aligning all the FAs to FA FMRIB58 and then averaging).

14: FA non-linearly aligned to FA FMRIB58 atlas using high-dimensional FNIRT-based warping.

29 By testing on a reduced version of the final training set.
30 As all the cases flagged as “problems” would need a posterior visual inspection.
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� Naive Bayes classifier (John and Langley, 1995): This classifier is a

simpler version of the above one in the sense that it assumes strong

(naive) independence between the features (in the sense that there is

no correlation between the different features) and therefore does not

need to generate a graph structure. The maximum a posteriori deci-

sion rule for the parent node is also used here for the inference.

� MetaCost classifier (Domingos, 1999): MetaCost is a meta-classifier

that allows the use of different costs for penalising (e.g.) FPR vs

FNR. for a certain base classifier. In our case, as the primary goal was

to try to minimise the False Negatives (subjects that are actually un-

usable but were classified as usable) we created a cost matrix that

penalised greatly this kind of misclassification. This cost matrix was

calculated using a grid search of different parameters and can be seen

in Table S1 of the supplementary material. The base classifier was

another Bayes Network classifier.

Combining classifiers usually tries to compensate for possible over-

fitting (or lack of fitting) of individual classifiers. The reason for choosing

Fig. 14. Degree of correlation and similarity of tracts after reducing the number of seeds per voxel in probtrackx. A: Average over 27 tracts and 5 subjects of the correlation between 2

different runs of probtrackx; this is reduced when we reduce the number of seeds per voxel. X axis is the reduction in the number of seeds with respect to the original AutoPtx configuration.

Y axis is the average correlation of the pairs of tracts. When we reach 0.1� seeds per voxel, the median correlation drops below 0.999 for some tracts. Right plot is a zoom of left plot. B:

Worst instance (in terms of correlation) of probtrackx in the forceps major tract with a factor of 0.1� seeds per voxel. The results remain robust even using a reduced number of seeds per

voxel. Correlation between the maps for these two runs was 0.929. Tracts were binarised for visualization using a threshold of 10% of the 99th percentile. The overlap of the 2 runs is

shown in blue. The difference is shown in red. FMRIB58 FA atlas is shown in the background. C: Same tract (forceps major) from the same subject with a factor of 0.3� seeds per voxel. The

results improve by increasing the number of seeds per voxel. Correlation between the maps for these two runs was 0.985. FMRIB58 FA atlas is shown in the background. The final

decision was to use 0.3x.
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this combination of algorithms was that they allowed us to weigh the

importance of type I vs type II errors, besides exhibiting a satisfactory

accuracy in earlier stages of the classification (again, with a reduced

version of the current training set).

Results

UK Biobank as a resource

So far, the pipeline has been applied to 10,129 subjects. In November

2015, there was a public release of the imaging datasets and IDPs from

the first 5822 subjects (Miller et al., 2016); a new set of 4282 subjects has

recently been processed and publicly released in February 2017 (Bio-

bank, 2017). The number of datasets from every modality that were

deemed suitable for processing are listed in Table 4.

Expanding on the analyses made in Miller et al. (2016), we have run

~8 million univariate correlations between IDPs and non-brain-imaging

variables, to illustrate the statistical power of this resource. This analysis

(see Fig. 17A) not only shows results largely compatible with the ones

presented in Miller et al. (2016), but also that correlations with a P value

smaller than 10�100 are possible due to the large number of subjects.

Fig. 17B demonstrates more directly that the new set of 4282 subjects

show very similar characteristics to the first set of 5822 subjects.

Fig. 18A shows a very simple example of the biological relevance of

IDPs. In this case, the volume of White Matter Hyperintensities (WMHs)

can be used to explore the relationship between age and WMHs. Fig. 18B

shows an example of the WMH segmentation using BIANCA. This metric

also correlates with known health biomarkers, such as systolic and dia-

stolic blood pressure. The positive correlation between total WMH vol-

ume and systolic blood pressure (after correcting for the usual

confounds31) has a Bonferroni-corrected significance of P<10�20,

r ¼ 0:13, while the correlation with diastolic blood pressure has a

Bonferroni-corrected significance of P<10�15, r ¼ 0:11. These signifi-

cant associations are consistent with the literature (Liao et al., 1996;

Gunstad et al., 2005).

Performance of the automated QC tool

In order to validate our QC system, image quality for 5816 subjects

was manually assessed. Problems were identified in 103 subjects. Table 5

shows the performance of the classifier in a stratified32 10-fold cross

validation.

The majority of problems found in the processing are related to non-

linear registration, which likely therefore also affect the brain extraction.

The 103 subjects were deemed unusable due to irreconcilable problems

with non-linear registration, in many cases caused by poor data quality

(for example, where the T1 is corrupted by bad subject head motion, as

can be seen in Fig. S12, panel 4 in the supplementary material). The QC

system we have developed aims to detect problems like this.

Fig. 15. Flowchart for the fMRi processing pipeline.

31 Age, age2, sex, age � sex, age2 � sex, average head motion during tfMRI, average head

motion during rfMRI and head size.
32 The proportion of the classes to classify is maintained in the folds, which is important

in unbalanced situations.
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The number of false negatives (that is, subjects that are actually un-

usable but were classified as usable), is low (9 subjects, i.e. 0.15%),

though in future work we will aim to reduce this even further. Choosing

parameters/thresholds to drive this number of false negatives so low

comes at the cost of a much higher false positive rate (912/5713¼ 16%).

Nevertheless, these results guarantee a considerable reduction in the

number of subjects in future data sets that will then require manual QC

assessment (i.e., manually checking 1006 subjects instead of 5816).

This automated QC tool was used on the second release of 4282

subjects, significantly reducing the manual checking to approximately

750 subjects, resulting in the detection of 71 unusable datasets.

Fig. 16. Flowchart for the FEAT part of the pipeline.

Table 3

Classification of problems/imperfections for T1.

Problem code Imperfection code

0 ¼ No problem

1 ¼ Multiple/Unknown problems

2 ¼ Missing or incomplete modality

3 ¼ Bad FOV

4 ¼ Bad registration: Bad head motion/Noise

5 ¼ Bad registration: Structurally atypical:

Important lesions

6 ¼ Bad registration: Structurally atypical: Big

Ventricles

7 ¼ Bad registration: General Registration failure

8 ¼ Bad registration: Bad brain mask on the top

9 ¼ Bad registration: Bad brain mask on the

temporal lobe

10¼ Bad registration: Brain mask out of the brain

1 ¼ Multiple/Unknown

imperfections

2 ¼ Bad head movement

3 ¼ Movement-related ringing/

blurring

4 ¼ Bias field/contrast problem

5 ¼ Structurally atypical

6 ¼ Problem on top (brain mask)

7 ¼ Problem on temp. lobe

(brain mask)

Incomplete ¼ The expected number of images or any of the dimensions (including the

temporal dimension) is incorrect.

Structurally atypical: The subject is anatomically atypical. This may be due to a pathology

although there was no clinical assessment to confirm this. The problem may be so severe

that registration is strongly affected (and thus, the image is deemed unusable for the

automated processing pipeline).

Table 4

UK Biobank usable modalities in acquisition order. Total subjects: 10,129.

Modality Available Usable

T1 10,102 9933 (98.06%)

rfMRI 10,034 9558 (94.36%)

tfMRI 9620 9182 (90.65%)

T2 FLAIR 9756 9045 (89.30%)

dMRI 9566 8839 (87.26%)

swMRI 9396 9153 (90.36%)

All 8996 8211 (81.06%)

Very early improvements in the dMRI and T2 FLAIR protocols were found to be valuable,

resulting in large enough data improvements to outweigh the priority of keeping the

protocol fixed (and taking into account the relatively small numbers of datasets affected).

This change was made at the beginning of protocol.
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Discussion and future work

The UK Biobank brain imaging data and IDPs can be used to create

models that describe the population, and in combination with the

healthcare outcomes (which will feed into UK Biobank over coming

years), be able to identify risk factors and biomarkers for early diagnosis

of many diseases. In this paper we provided the first detailed description

of the core processing pipeline being developed to process the raw im-

aging data and generate the IDPs. We also described several in-

vestigations necessary to feed into decisions made during the

development of the acquisition protocol and the analysis pipeline.

The huge number of subjects makes the need for a completely auto-

mated tool evident, including the detection of inadequate datasets or

failures in processing. For this reason, the development of an adequate

Fig. 17. A: Manhattan plot summarising the significance of 8 million univariate association tests between IDPs and non-brain-imaging variables in the UK Biobank database from 10,000

subjects. For each non-imaging variable (i.e., each column in the plot), only the strongest association is plotted for each class of IDP, for clarity. Plotted p-values are not corrected for

multiple comparisons, but the thresholds for both false-discovery-rate and Bonferroni correction are shown as dotted lines. B: High reproducibility (r ¼ 0.62) of these associations in the

original vs. new groups of subjects; each point is a given IDP - non-brain-variable pairing. The small number of points along the y ¼ 0 axis relate to a non-imaging measure which (as a

result of investigating these points in this plot) was found to be badly drifting over time.
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automated QC tool is an absolute necessity, and we have presented here

an approach for automated QC of T1 data.

The study of possible drifts in imaging data over time will be

important, and will be the subject of a future paper. We will investigate

the possible effects of minor scanner software upgrades and minor pro-

tocol changes, as well as inter-site imaging consistency. We will also

investigate the extent to which simple adjustment for such drifts may

be effective.

A long-term future challenges will be data analysis and population

modelling. The application of new unsupervised learning methods for

finding new data-driven IDPs or QC metrics is potentially interesting

(Duff et al., 2015). This could also evolve to consider health outcomes as

noisy/weak labels (Fr�enay and Verleysen, 2014) in such a way that the

learning process considers their uncertainty and reliability.

Future versions of the processing pipeline will incorporate new

functionalities from other sources into the pipeline (such as the HCP,

Glasser et al. (2013)). This will include surface generation via Freesurfer

(Dale et al., 1999), adding morphometric measures such as cortical

thickness or cortical surface area, mapping resting fMRI and dMRI onto

the cortical surface, and using Multimodal Surface Matching (Robinson

et al., 2014) for surface-based registration. As the resolution, quality and

quantity (e.g., number of fMRI timepoints) in UK Biobank data cannot

match that in the HCP (with its 4 h of scanning per subject) each of these

steps will involve careful evaluation and potential reworking in the

context of our data. For example, projection of the lower-resolution fMRI

data onto the cortical surface vertices, including the HCP approach of

removing “noise” voxels, will need careful optimisation.

Another new path to explore would be evaluating how using different

modalities for some processing steps may improve some results. These

operations may include: using T1 þ FLAIR versus T1 in Freesurfer; using

T1 þ FLAIR versus T1 in FAST; using T1 þ FLAIR þ dMRI versus

T1 þ FLAIR in BIANCA.

The development of the QC tool allowed us to find problematic steps

in the processing pipeline (i.e., non-linear registration to the MNI tem-

plate). Even though the number of subjects with this problem is not large

(103/5816 ¼ 1.8%, compared to the 2–13% failure rate for the acqui-

sitions), and we can detect them fairly consistently, improving this step

will be a future line of work. Possible improvements may involve a

combination of the following:

� Generating a study-specific T1 template and registering subject im-

ages to it instead of to the MNI template.

� Improving brain extraction and using the resulting brain mask to

guide registration. Possibilities include running FNIRT with much

lower degrees of freedom to initialise brain extraction, and/or

developing a classifier that works directly on each voxel to classify

them as brain/non-brain. See the Appendix for more details on the

brain extraction method we have used to date.

� Combining T1þdMRI (and possibly more modalities) in the regis-

tration in a more integrated manner; for example, taking advantage of

the richer signal within white matter available from the diffusion

imaging.

A possible way to improve QC accuracy would be in the development

of better features to drive the classification. These new features may be

created by finding new heuristics that better describe the problems or by

using unsupervised machine learning techniques to model the data, e.g.,

using ICA-like techniques (Hyv€arinen, 1999; Beckmann and

Smith, 2004).

In addition, we need the development of metrics to describe the

discrepancy between the T1 image (for a given subject) and each of the

other modalities (for that same subject), after linear alignment of the

other modalities to the T1. Therefore, we are planning to extend the

automated QC system to reliably find problems in the acquisition and

processing steps for all modalities (not just T1). Again, ICA-like tech-

niques may be useful here, as well as methods based on the Hidden

Markov Model (Baker et al., 2014; Vidaurre et al., 2016) to interrogate

the network dynamics.

Having a fixed acquisition protocol and a core processing pipeline in

UK Biobank is a key feature of this project (Gronenschild et al., 2012;

Glatard et al., 2015). Providing a core pipeline that generates both pro-

cessed data (e.g., with images artefact-cleaned and aligned across mo-

dalities and subjects) as well as IDPs will hopefully be valuable to both

imaging researchers and non-imaging experts (healthcare researchers,

epidemiologists, etc.). Having said that, the intention is not to discourage

other imaging researchers from developing their own image processing

Fig. 18. A: Relationship between age and total volume of white matter hyperintensities. Red cross shows the subject on the right. B: WMH segmentation using BIANCA on one example

dataset Age: 68.5 years. Total WMH volume: 5049 mm3.

Table 5

Automated QC tool performance for T1 images.

Positive Negative

Classified Positive TP: 94 FP: 912 P. Precision: 9%

Classified Negative FN: 9 TN: 4801 N. Precision: 99.8%

Sensitivity: 91% Specificity: 84%

Positive ¼ Unusable datasets.

Negative ¼ Usable datasets.

Datasets flagged for manual review: 1006/5816 (17.29%).

Unusable datasets missed: 9/5816 (0.15%).
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and IDP generation approaches and software; indeed, UK Biobank en-

courages all researchers to feed quantitative research outputs back into

the central database. Considering the invaluable connection of the out-

puts from processing the brain imaging data with the rest of UK Biobank

resources and NHS records, the possibilities for future research

are massive.
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