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Abstract

A genome-wide survival analysis of 14,406 Alzheimer’s disease (AD) cases and 25,849 controls 

identified eight previously reported AD risk loci and fourteen novel loci associated with age at 

onset. LD score regression of 220 cell types implicated regulation of myeloid gene expression in 

AD risk. In particular, the minor allele of rs1057233 (G), within the previously reported CELF1 
AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in 

monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell 

development and function. AD heritability is enriched within the PU.1 cistrome, implicating a 

myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affect the 

expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse 
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microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating 

myeloid gene expression and cell function.

AD is the most prevalent form of dementia. While genome-wide association studies 

(GWAS) have identified more than twenty AD risk loci1–5, the associated disease genes and 

mechanisms remain largely unclear. To better understand these genetic associations, AD-

related phenotypes can be leveraged. For example, few studies6,7 have investigated the 

genetic basis of age at onset of AD (AAO). To date, APOE remains the only locus 

repeatedly associated with AAO8,9, but PICALM and BIN1 have also been reported to affect 

AAO6,10,11. Further, we have previously used CSF biomarkers to demonstrate that APOE 
genotype is strongly associated with these disease-relevant endophenotypes12,13.

Identifying causal genes and mechanisms underlying disease-associated loci requires 

integrative analyses of expression and epigenetic datasets in disease-relevant cell types14. 

Recent genetic and molecular evidence has highlighted the role of myeloid cells in AD 

pathogenesis. At the genetic level, GWAS and sequencing studies have found associations 

between AD and genes expressed in myeloid cells, including TREM2, ABCA7, and 

CD331,2,5,15–17. At the epigenetic level, genes expressed in myeloid cells display abnormal 

patterns of chromatin modification in AD mouse models and human samples18–20. Further, 

AD-risk alleles are polarized for cis-expression quantitative trait locus (cis-eQTL) effects in 

monocytes21. Herein, we show that AD heritability is enriched in functional annotations for 

cells of the myeloid and B-lymphoid lineage, suggesting that integrative analyses of AD loci 

with myeloid-specific expression and epigenetic datasets will uncover novel AD genes and 

mechanisms related to the function of these cell types.

In this study, we conducted a large-scale genome-wide survival analysis and subsequent 

endophenotype association analysis to uncover loci associated with AAO-defined survival 

(AAOS) in AD cases and non-demented elderly controls. We discovered an AAOS- and CSF 

A´42-associated SNP, rs1057233, in the previously reported CELF1 AD risk locus. Cis-
eQTL analyses revealed a highly significant association of the protective rs1057233G allele 

with reduced SPI1 expression in human myeloid cells. SPI1 encodes PU.1, a transcription 

factor critical for myeloid and B-lymphoid cell development and function, that binds to the 

cis-regulatory elements of several AD-associated genes in these cells. Moreover, we show 

that AD heritability is enriched in PU.1 ChIP-Seq binding sites in human myeloid cells 

across the genome, implicating a myeloid PU.1 target gene network in the etiology of AD. 

To validate these bioinformatic analyses, we show that experimentally altered PU.1 levels 

are correlated with phagocytic activity of mouse microglial cells and the expression of 

multiple genes involved in diverse biological processes of myeloid cells. This evidence 

collectively shows that lower SPI1 expression may reduce AD risk by modulating myeloid 

cell gene expression and function.
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Results

Genome-wide survival analysis

For the genome-wide survival analysis, we used 14,406 AD case and 25,849 control samples 

from the IGAP consortium (Table 1a). 8,253,925 SNPs passed quality control and were 

included for meta-analysis across all cohorts (Supplementary Table 1), which showed little 

evidence of genomic inflation (λ = 1.026). Four loci showed genome-wide significant 

associations (P < 5×10−8) with AAOS: BIN1 (P=7.6×10−13), MS4A (P=5.1×10−11), 

PICALM (P=4.3×10−14), and APOE (P=1.2×10−67) (Supplementary Fig. 1). While SNPs 

within BIN16, PICALM6,10, and APOE6,8–10,22 loci have previously been shown to be 

associated with AAO, this is the first time that the MS4A locus is reported to be associated 

with an AAO-related phenotype. The minor allele of rs7930318 near MS4A4A is associated 

with delayed AAO. Four other AD risk loci previously reported in the IGAP GWAS1 

showed associations that reached suggestive significance (P < 1.0×10−5): CR1 
(P=1.2×10−6), SPI1/CELF1 (P=5.4×10−6), SORL1 (P=1.8×10−7), and FERMT2 
(P=1.0×10−5). The direction of effects were concordant with the previous IGAP GWAS 

logistic regression analysis for AD risk1 at all suggestive loci: AD risk-increasing alleles 

were all associated with a hazard ratio above 1 and earlier AAO, whereas AD risk-

decreasing alleles were all associated with a hazard ratio below 1 and later AAO (Table 1b, 

Supplementary Table 2). We also identified 14 novel loci that reached suggestive 

significance in the survival analysis, 3 of which (rs116341973, rs1625716, and rs11074412) 

were nominally associated with AD risk (Bonferroni-corrected threshold: 

P=0.05/22=2.27×10−3) in the IGAP GWAS (Table 1b, Supplementary Fig. 2, 3).

Cerebrospinal fluid biomarkers associations

To further validate the 22 loci with at least suggestive associations to AAOS, we examined 

their associations with CSF biomarkers, including total tau, phosphorylated tau181, and Á 42 

in a dataset of 3,646 Caucasians extended from our previous report12 (Table 2). Two SNPs 

showed associations that reached the Bonferroni-corrected threshold (P < 2.27×10−3). 

Rs4803758 near APOE showed the most significant associations with levels of CSF 

phosphorylated tau181 (P=3.75×10−4) and CSF Á42 (P=3.12×10−5), whereas rs1057233 in 

the SPI1/CELF1 locus was significantly associated with CSF A´42 (P=8.24×10−4). Of note, 

a SNP adjacent to VLDLR , rs7867518, showed the most significant association with CSF 

total tau (P=3.02×10−3), but failed to pass the Bonferroni-corrected threshold. The protective 

and deleterious effects in the survival analysis of these three SNPs were concordant with 

directionalities of their CSF biomarker associations; for example, the protective rs1057233G 

allele was associated with higher CSF A´42 levels and the risk rs1057233A allele was 

associated with lower CSF Á42 levels.

Cis-eQTL associations and colocalization analysis

Multiple disease-associated GWAS SNPs have been identified as cis-eQTLs of disease genes 

in disease-relevant tissues/cell types23. We investigated cis-eQTL effects of the 22 AAOS-

associated SNPs and their tagging SNPs (R2 ≥ 0.8, listed in Supplementary Table 3) in the 

BRAINEAC dataset. We identified 4 significant associations (Bonferroni-corrected 

threshold: P=0.05/292,000 probes = 1.7×10−7): rs1057233 was associated with MTCH2 
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expression in the cerebellum (P=1.20×10−9); rs7445192 was associated with SRA1 
expression averaged across brain regions (P=7.0×10−9, 1.6×10−7 for two probes 

respectively), and rs2093761 was associated with CR1/CR1L expression in white matter 

(P=1.30×10−7, Supplementary Table 4). Further analysis using the GTEx dataset24 identified 

50 unique, associated snp-gene pairs across 44 tissues, including 11 snp-gene pairs in 

various brain regions (Supplementary Table 5).

Recently, genetic and molecular evidence has implicated myeloid cells in the etiology of 

AD, including our finding that AD risk alleles are enriched for cis-eQTL effects in 

monocytes but not CD4+ T-lymphocytes21. To extend this finding and identify relevant cell 

types in AD, we used stratified LD score regression to estimate enrichment of AD 

heritability (measured by summary statistics from IGAP GWAS1) partitioned by 220 cell 

type–specific functional annotations as described by Finucane et al.25. We found a 

significant enrichment of AD heritability in hematopoietic cells of the myeloid and B-

lymphoid lineage (e.g., 14.49 fold enrichment, P=3.49×10−5 in monocytes/CD14 enhancers/

H3K4me1 and 12.33 fold enrichment, P=1.41×10−6 in B-cells/CD19 enhancers/H3K4me1). 

In contrast schizophrenia (SCZ) heritability was not enriched in hematopoietic cells (1.24 

fold enrichment, P=0.53, as measured by summary statistics from the Psychiatric Genomics 

Consortium [PGC] GWAS26) but was significantly enriched in brain (18.61 fold enrichment, 

P=1.38×10−4 in fetal brain promoters/H3K4me3, Supplementary Table 6). These results 

suggest that myeloid cells specifically modulate AD susceptibility.

Based on these observations, we hypothesized that cis-eQTL effects of some AD-associated 

alleles may be specific to myeloid cells and thus not easily detectable in cis-eQTL datasets 

obtained from brain homogenates where myeloid cells (microglia and other brain-resident 

macrophages) represent a minor fraction of the tissue. Therefore, we analyzed cis-eQTL 

effects of the AAOS-associated SNPs and their tagging SNPs in human cis-eQTL datasets 

composed of 738 monocyte and 593 macrophage samples from the Cardiogenics 

consortium27. We identified 14 genes with cis-eQTLs significantly associated with these 

SNPs (Table 3). Notably, the protective rs1057233G allele, located within the 3′ UTR of 

SPI1, was strongly associated with lower expression of SPI1 in both monocytes 

(P=1.50×10−105) and macrophages (P=6.41×10−87) (Fig. 1a, 1b, 2a). This allele was also 

associated with lower expression of MYBPC3 (monocytes: P=5.58×10−23; macrophages: 

P=4.99×10−51), higher expression of CELF1 in monocytes (P=3.95×10−8) and lower 

NUP160 expression in macrophages (P=5.35×10−22). Each of these genes lies within the 

SPI1/CELF1 locus, suggesting complex regulation of gene expression in this region. Within 

the MS4A locus, which contains many gene family members, the minor allele (C) of 

rs7930318 was consistently associated with lower expression of MS4A4A in monocytes 

(P=8.20×10−28) and MS4A6A in monocytes (P=4.90×10−23) and macrophages 

(P=1.25×10−9, Fig. 1b). Among the novel AAOS-associated loci, rs5750677 was 

significantly associated with lower expression of SUN2 in both monocytes (P=3.66×10−58) 

and macrophages (P=3.15×10−36), rs10919252 was associated with lower expression of 

SELL in monocytes (P=7.33×10−35), and rs1625716 was associated with lower expression 

of CISD1 in macrophages (P=5.98×10−23, Table 3).
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We then sought evidence of replication in an independent dataset of primary CD14+ human 

monocytes from 432 individuals28. We replicated cis-eQTL associations with expression of 

SPI1, MYBPC3, MS4A4A, MS4A6A, and SELL (Bonferroni-corrected threshold: 

P=0.05/15421 probes = 3.24×10−6). We found strong evidence for the association between 

rs1057233 and SPI1 expression (P=6.39×10−102) as well as MYBPC3 expression 

(P=5.95×10−33, Supplementary Table 7). Rs1530914 and rs7929589, both in high LD with 

rs7930318 (R2 = 0.99 and 0.87, respectively), were associated with expression of MS4A4A 
and MS4A6A (P=3.60×10−8, 6.37×10−15), respectively. Finally, rs2272918, tagging 

rs10919252, was significantly associated with expression of SELL (P=8.43×10−16). 

Interestingly, the minor allele of all of these SNPs showed protective effects in both AD risk 

and survival analyses, as well as lower expression of the associated genes. Further, SPI1, 
MS4A4A, MS4A6A, and SELL are specifically expressed in microglia based on RNA-Seq 

data29–31 (Fig. 2b, Supplementary Fig. 4). However, MYBPC3/Mybpc3 (a myosin binding 

protein expressed at high levels in cardiac muscle cells) is either not expressed or expressed 

at low levels in human and mouse microglia, respectively. Amongst all genes probed, 

MYBPC3 (ILMN_1781184) expression is the most highly and significantly correlated with 

SPI1 (ILMN_1696463) expression in both Cardiogenics datasets (Spearman’s rho = 0.54, 

qval = 0.00 in monocytes and Spearman’s rho = 0.42, qval = 0.00 in macrophages) 

suggesting that low levels of MYBPC3 expression in human myeloid cells are possibly due 

to leaky transcription driven by the adjacent highly expressed SPI1 gene.

We performed the coloc test32 to determine whether AAOS-associated SNPs co-localize 

with myeloid cis-eQTLs at the SPI1/CELF1, MS4A and SELL loci. These analyses 

(Supplementary Table 8) highlighted SPI1 at the SPI1/CELF1 locus as the strongest and 

most consistent colocalization target, and the only gene where the AD survival and gene 

expression association signals are likely (posterior probability ≥ 0.8) driven by the same 

causal genetic variant, in both monocytes and macrophages (PP.H4.abf of 0.85 and 0.83, 

respectively). MYBPC3 in the SPI1/CELF1 locus and MS4A6A in the MS4A locus also 

showed evidence of colocalization in both myeloid cell types albeit not surviving posterior 

probability cutoff in one of them. MS4A4A and MS4A6E in the MS4A locus showed 

evidence of co-localization only in monocytes, while SELL did not show evidence of 

colocalization.

In light of the strong cis-eQTL effects and colocalization results described above, we 

decided to focus subsequent analyses on SPI1 as the strongest candidate gene underlying the 

disease association in myeloid cells.

Conditional and SMR analysis of the SPI1/CELF1 locus

The AAOS-association landscape shows that highly associated SNPs at the SPI1/CELF1 
locus span multiple genes (Fig. 1a). In the previous IGAP GWAS1, rs10838725 showed the 

strongest association at this locus (P=6.7×10−6, 1.1×10−8 vs. rs1057233: P=5.4×10−6, 

5.9×10−7 in IGAP stage I, stage I and II combined, respectively). Rs10838725 is located in 

the intron of CELF1, which was assigned as the putative causal gene at this locus1 based on 

proximity to the index SNP, a criterion that has often proven to be erroneous14. In our 

survival analysis, however, rs10838725 showed weak association (P=0.12, HR=1.02, 95% 
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CI=0.99–1.05) whereas rs1057233, located in the 3′UTR of a neighboring gene, SPI1, 
showed the strongest association (Table 1, P=5.4×10−6). The two SNPs exhibit only 

moderate linkage disequilibrium in the ADGC subset of the IGAP GWAS (R2=0.21, 

D’=0.96). Applying conditional logistic regression analysis of AD risk in the ADGC dataset, 

we found that rs1057233 remained significantly associated with AD after adjusting for 

rs10838725 (P=3.2×10−4), whereas rs10838725 showed no evidence of association after 

adjusting for rs1057233 (P=0.66). This suggests that rs1057233 is in stronger LD with the 

AD risk causal variant.

The association landscape in the AD survival analysis highly resembles that of SPI1 cis-
eQTL analysis in myeloid cells (Fig. 1a). We reasoned that the associations of rs1057233 

with AD-related phenotypes may be explained by the regulation of SPI1 expression in 

myeloid cells, and that conditional analysis of the cis-eQTL signal could help us further 

dissect this complex locus. Therefore, we conducted conditional cis-eQTL analyses in both 

Cardiogenics datasets as we did above using rs1057233 (the top SNP for AD survival) and 

rs10838725 (the top SNP for AD risk). In addition, we also examined rs10838698 (a SNP in 

high LD with rs1057233 that was directly genotyped in the Cardiogenics dataset) and 

rs1377416, a SNP in high LD with rs10838725 proposed to be a functional variant in an 

enhancer near SPI1 that is active in human myeloid cells and in the brain of a mouse model 

of AD19. It should be noted that rs1057233 is a functional variant that has been shown to 

directly affect SPI1 expression by changing the target sequence and binding of miR-56933. 

Rs1057233 and rs10838698 remained significantly associated with SPI1 expression when 

adjusting for either of the other two SNPs in both monocytes and macrophages (P < 

8.33×10−3). However, conditioning for either of these two SNPs abolished the associations 

of rs1377416 and rs10838725 with SPI1 expression (Supplementary Table 9). Thus, the 

functional variant(s) mediating the effect on SPI1 expression and AD risk likely reside(s) in 

the LD block that includes rs1057233 and rs10838698 but not rs10838725 and rs1377416 

(Supplementary Fig. 5).

Using HaploReg34 to annotate the top AAOS-associated SNP (rs1057233) and its tagging 

SNPs (R2 >= 0.8, Supplementary Table 3), we identified multiple SNPs (e.g, rs10838699 

and rs7928163) in tight LD with rs1057233 that changed the predicted DNA binding motif 

of SPI1 (PU.1), raising the possibility of altered self-regulation associated with the minor 

allele. Based on these results, one or more of these or other SNPs in very high LD with 

rs1057233, could explain the observed associations with SPI1 expression and AD-related 

phenotypes.

We also conducted Summary-data-based Mendelian Randomization (SMR) and 

Heterogeneity In Dependent Instruments (HEIDI) tests23 to prioritize likely causal genes and 

variants by integrating summary statistics from our AAOS GWAS and the Cardiogenics 

study (Supplementary Table 10). SMR/HEIDI analysis was performed for the SPI1/CELF1 
locus using rs1057233, rs10838698, rs10838699, rs7928163, rs10838725 and rs1377416 as 

candidate causal variants. In both monocytes and macrophages, SPI1 was consistently 

identified as the most likely gene whose expression levels are associated with AD survival 

because of causality/pleiotropy at the same underlying causal variant (rs1057233, 

rs10838698, rs10838699, or rs7928163 in the same LD block) (SMR P < 4.90E-04, 
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Bonferroni-corrected threshold for 6 SNPs tested against 17 probes and HEIDI P ≥ 0.05, 

Supplementary Fig. 6). Neither conditional analysis nor SMR/HEIDI analysis could 

definitively identify a single functional variant among this set of 4 SNPs in high LD. 

Functional analyses will be necessary to determine which SNPs in this LD block directly 

affects SPI1 expression. Overall, rs1057233 and tagging SNPs are associated with AD risk 

and survival, and CSF Á42. The strong cis-eQTL effects and colocalization results point to 

SPI1 as the most likely candidate gene underlying the disease association at the SPI1/CELF1 
locus.

SPI1 (PU.1) cistrome and functional analysis in myeloid cells

SPI1 encodes PU.1, a transcription factor essential for the development and function of 

myeloid cells. We hypothesize that it may modulate AD risk by regulating the transcription 

of AD-associated genes expressed in microglia and/or other myeloid cell types. First, we 

tested AD-associated genes for evidence of expression in human microglia29 as well as 

presence of PU.1 binding peaks in cis-regulatory elements of these genes using ChIP-Seq 

datasets obtained from human monocytes and macrophages35. We specifically investigated 

112 AD-associated genes, including the 104 genes located within IGAP GWAS loci36 and 

APOE, APP, TREM2 and TREML2, TYROBP, TRIP4, CD33, and PLD3. Among these 

genes, 75 had evidence of gene expression in human brain microglial cells, 60 of which also 

had evidence of association with PU.1 binding sites in human blood myeloid cells35 

(Supplementary Table 11). Further examination of PU.1 binding peaks and chromatin 

marks/states in human monocytes confirmed that PU.1 is bound to cis-regulatory elements 

of many AD-associated genes, including ABCA7, CD33, MS4A4A, MS4A6A, PILRA, 

PILRB, TREM2, TREML2, and TYROBP (as well as SPI1 itself, but notably not APOE) 

(Fig. 2c, Supplementary Fig. 7). Together, these results suggest that PU.1 may regulate the 

expression of multiple AD-associated genes in myeloid cells.

To further support that PU.1 target genes expressed in myeloid cells may be associated with 

AD risk, we used stratified LD score regression25 to estimate enrichment of AD heritability 

(as measured by summary statistics from the IGAP GWAS1) partitioned on the PU.1 

cistrome, as profiled by ChIP-Seq in human monocytes and macrophages35. We found a 

significant enrichment of AD heritability in both monocytes (47.58 fold enrichment, 

P=6.94×10−3) and macrophages (53.88 fold enrichment, P=1.65×10−3), but not SCZ 

heritability [as measured by summary statistics from the PGC GWAS26] (Supplementary 

Table 12). Thus, the contribution of the myeloid PU.1 target gene network to disease 

susceptibility is specific to AD. However, since PU.1 is a key myeloid transcription factor 

that regulates the expression of a large number of genes in myeloid cells, the enrichment of 

AD risk alleles in PU.1 binding sites could simply reflect an enrichment of AD GWAS 

associations for genes that are expressed in myeloid cells rather than specifically among PU.

1 target genes. To attempt to address this issue, we performed stratified LD score regression 

of AD heritability partitioned by functional annotations obtained from SPI1 (marking the 

PU.1 cistrome) and POLR2AphosphoS5 (marking actively transcribed genes) ChIP-Seq 

experiments, performed in duplicate, using a human myeloid cell line (HL60) by the 

ENCODE Consortium37. We observed a significant enrichment for SPI1 (PU.1) (34.58 fold 

enrichment, P=1.31×10−3 in first replicate; 58.12 fold enrichment, P=4.95×10−3 in second 
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replicate) much stronger than that for POLR2AphosphoS5 (15.78 fold enrichment, 

P=1.71×10−2 in first replicate; 16.34 fold enrichment, P=1.25×10−1 in second replicate), 

consistent with our hypothesis (Supplementary Table 12).

PU.1 target genes are implicated in various biological processes of myeloid cells that may 

modulate AD risk. For example, a microglial gene network for pathogen phagocytosis has 

been previously implicated in the etiology of AD18. We modulated levels of PU.1 by Spi1 
cDNA overexpression or shRNA knock-down in BV2 mouse microglial cells, and used 

zymosan bioparticles labeled with pHrodo (a pH-sensitive dye that emits a fluorescent signal 

when internalized in acidic vesicles during phagocytosis) to measure pathogen engulfment. 

Analysis of zymosan uptake by flow cytometry revealed that phagocytic activity is 

augmented in BV2 cells overexpressing PU.1 (Fig. 3a), while knock-down of PU.1 resulted 

in decreased phagocytic activity (Fig. 3a). We confirmed overexpression and knock-down of 

PU.1 expression levels by western blotting and qPCR (Fig. 3). Phagocytic activity was not 

changed in untransfected cells when analyzed by flow cytometry (Supplementary Fig. 8d, 

8e, 8f, 8g). These data suggest that modulation of PU.1 expression levels significant changes 

microglial phagocytic activity in response to fungal targets (mimicked by zymosan).

To further explore the functional impact of variation in SPI1 expression, we performed 

qPCR to test whether differential Spi1 expression in BV2 cells can modulate expression of 

genes thought to play important roles in AD pathogenesis and/or microglial cell function 

(Fig. 3, Supplementary Fig. 9, Supplementary Table 13, 14). We found that levels of some of 

these genes were affected in opposing directions by overexpression and knock-down of Spi1 
(Fig. 4a), while other genes were affected only by overexpression (Fig. 4b) or knock-down 

(Fig. 4c) or not affected at all (Supplementary Fig. 9). After knock-down of Spi1 in BV2 

cells, expression of Cd33, Tyrobp, Ms4a4a and Ms4a6d decreased and expression of Apoe 
and Clu/ApoJ increased (Fig. 4a, 4c). These data demonstrate that multiple microglial genes, 

some already implicated in AD, are selectively perturbed by altered expression of Spi1.

Discussion

By performing a large-scale genome-wide survival analysis, we discovered multiple loci 

associated with AAOS (Table 1). The four genome-wide significantly associated loci, BIN1 
(P=7.6×10−13), MS4A (P=5.1×10−11), PICALM (P=4.3×10−14), and APOE (P=1.2×10−67), 

have been previously reported to be associated with AD risk1. Notably, this is the first study 

showing that the MS4A locus is associated with AAOS. The most significantly AAOS-

associated SNP at this locus, rs7930318, shows a protective effect (HR = 0.93, 95% CI = 

0.90–.95) in the survival analysis, consistent with the previous IGAP GWAS logistic 

regression analysis for AD risk (OR = 0.90, 95% CI = 0.87–.93).

By combining AAOS and CSF biomarker GWAS results, we provide evidence of AD 

association at additional loci (Table 2). In particular, rs7867518 at the VLDLR  locus shows 

suggestive associations with both AAOS (P=9.1×10−6) and CSF tau (P=3.03×10−3). An 

adjacent SNP (rs2034764) in the neighboring gene, KCNV2, has been previously reported to 

have suggestive association with AAO22. VLDLR is a receptor for lipoproteins containing 

APOE38 and CLU/APOJ39, another AD risk gene. Additionally, the VLDLR -5-repeat allele 
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was found to be associated with dementia38. This genetic and biochemical evidence suggests 

VLDLR  may be linked to AD.

Cis-eQTL analyses of AAOS-associated SNPs revealed limited associations when using data 

from brain tissue homogenates, yet identified multiple candidate genes when using data 

from myeloid cells, the top candidate causal cell types for AD based on the stratified LD 

score regression analysis of AD heritability presented here. This calls attention to careful 

selection of relevant cell types in eQTL studies of disease associations. In particular, by 

conducting cis-eQTL analyses using monocyte and macrophage datasets, we discovered 

associations of AAOS-associated SNPs with the expression of SELL, SPI1, MYBPC3, 

NUP160, MS4A4A, MS4A6A and SUN2 (Table 3). Furthermore, we replicated the cis-
eQTL associations of rs1057233 with SPI1, MYBPC3, rs7930318 with MS4A4A, MS4A6A 
and rs2272918 with SELL in an independent monocyte dataset. We further showed that SPI1 
myeloid cis-eQTLs and AAOS-associated SNPs are not likely to be colocalized by chance 

and thus may be in the causal path to AD (Fig. 1). Notably, the minor allele of rs1057233 

(G) is suggestively associated with lower AD risk (P=5.4×10−6, 5.9×10−7 in IGAP stage I, 

stage I and II combined, respectively)1, later AAO (P=8.4×10−6) and significantly associated 

with higher CSF Á42 (P=4.11×10−4), which likely reflects decreased A´ aggregation and 

´-amyloid deposition in the brain. Furthermore, it is strongly associated with lower SPI1 
expression in human monocytes (P=1.50×10−105) and macrophages (P=6.41×10−87, Table 

3).

Colocalization analyses using coloc32 and SMR/HEIDI23 support the hypothesis that the 

same causal SNP(s) influence SPI1 expression and AD risk. However, neither conditional 

nor SMR/HEIDI analyses were able to pin-point an individual SNP; both approaches 

identified an LD block tagged by rs1057233, in which one or more SNPs may individually 

or in combination influence both SPI1 expression and AD risk. rs1057233 changes the target 

sequence and binding of miR-56933, and its tagging SNPs alter binding motifs of 

transcription factors including PU.1 itself (Supplementary Table 3 and Supplementary Fig. 

7d). rs1377416, is located in a predicted enhancer in the vicinity of SPI1 and altered 

enhancer activity when assayed in vitro using a reporter construct transfected in BV2 cells19. 

However, rs1057233 remained significantly associated with AD after conditioning for either 

rs1377416 (P=1.2×10−3) or the previously reported IGAP GWAS top SNP rs10838725 

(P=3.2×10−4) in the ADGC dataset. Further, the cis-eQTL association between rs1057233 

and SPI1 expression remained significant after conditioning for either of these SNPs, 

whereas conditioning for rs1057233 abolished their cis-eQTL associations with SPI1 
(Supplementary Table 9). Thus, rs1057233 and its tagging SNPs likely represent the 

underlying disease locus and may modulate AD risk through variation in SPI1 expression. 

Interestingly, rs1057233 was previously found to be associated with systemic lupus 

erythematosus33, body mass index40 and proinsulin levels41 and may contribute to the 

connection between AD, immune cell dysfunction, obesity and diabetes.

PU.1 binds to cis-regulatory elements of several AD-associated genes expressed in human 

myeloid cells, including ABCA7, CD33, MS4A4A, MS4A6A, TREM2, and TYROBP (Fig. 

1e, Supplementary Fig. 7). Further, PU.1 binds to active enhancers of Trem2 and Tyrobp in 

ChIP-Seq experiments using mouse BV2 cells42 or bone marrow-derived mouse 
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macrophages43. PU.1 is required for the development and function of myeloid and B-

lymphoid cells44,45. In particular, PU.1 expression is dynamically and tightly controlled 

during haematopoiesis to direct the specification of CD34+ hematopoietic stem and 

progenitor cells toward the myeloid and B-lymphoid lineage by progressively partitioning 

into CD14+ monocytes/macrophages, CD15+ neutrophils, and CD19+ B cells46, which are 

the cell types highlighted by our stratified LD score regression analysis. Given its selective 

expression in microglia in the brain (Fig. 2b), PU.1 may modify microglial cell function 

through transcriptional regulation of target genes that act as downstream modulators of AD 

susceptibility, as evidenced by the significant enrichment of AD heritability partitioned on 

the PU.1 cistrome in human myeloid cells (Supplementary Table 12).

In support of this hypothesis, we also demonstrate that changes in PU.1 expression levels 

alter phagocytic activity in BV2 mouse microglial cells (Fig. 3, Supplementary Fig. 8). 

Knock-down of PU.1 expression reduced engulfment of zymosan, whereas overexpression 

of PU.1 increased engulfment of zymosan, a Toll-like receptor 2 (TLR2) agonist that mimics 

fungal pathogens. This is in line with previous data showing decreased uptake of A´42 (also 

a TLR2 agonist) in primary microglial cells isolated from adult human brain tissue and 

transfected with siRNA targeting SPI147. Interestingly, several AD-associated genes (e.g., 

CD33, TYROBP, TREM2, TREML2, CR1, ABCA7, APOE, CLU/APOJ) have been shown 

to be involved in the phagocytic clearance of pathogens or host-derived cellular material 

(e.g., ́ -amyloid, apoptotic cells, myelin debris, lipoproteins, etc.), suggesting a strong link 

between perturbation of microglial phagocytosis and AD pathogenesis. In addition to Cd33, 
Tyrobp, Apoe and Clu/ApoJ, several genes with roles in phagocytosis are dysregulated by 

altering Spi1 expression, i.e. Cd36, Fcgr1, P2ry12, Itgam, Cx3cr1, Axl , Ctsb (Fig. 4a, 4b, 

4c), suggesting a collective and coordinated effect of Spi1 on the phagocytic activity of BV2 

cells.

Our genetic analyses show that the protective allele at the MS4A locus is associated with 

lower expression of MS4A4A and MS4A6A in human myeloid cells, and the BV2 

experiment demonstrated that lower expression of Spi1 (which is protective in humans) led 

to lower expression of Ms4a4a and Ms4a6d (mouse ortholog of MS4A6A), which are also 

associated with reduced AD risk in humans. Transcriptomic and proteomic analyses of 

microglial cells suggested a microglial homeostatic signature that is perturbed during aging 

and under pathological conditions48. It will be valuable to test whether genetically altered 

SPI1 levels prime microglia to exacerbate or alleviate transcriptional responses that occur 

during aging or disease development. Together with genetic variation in myeloid genes 

associated with AD as an amplifier, SPI1 may be a master regulator capable of tipping the 

balance toward a neuroprotective or neurotoxic microglial phenotype.

PU.1 expression levels regulate multiple myeloid/microglial cell functions47, including 

proliferation, survival and differentiation, that could also modulate AD risk. Indeed, 

expression of Il34 and Csf1, soluble factors that bind to Csf1r and required for microglial 

development and maintenance in vivo49, were elevated after knock-down of Spi1, while 

expression of Csf1r was reduced (Fig. 4a, 4c). Interestingly, inhibition of Csf1r in a 3xTg-

AD mouse model led to a reduction in the number of microglia associated with ´-amyloid 

plaques and improved cognition50. These findings suggest the importance of analyzing cell 
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proliferation, survival, differentiation, and migration phenotypes with differential Spi1 
expression, because Spi1 levels modulate expression of Ccl2 and Cxcl2 (Fig. 4a), which are 

MCP1 and MIP2³ proteins that help recruitcirculating monocytes and neutrophils to the 

brain to promote neuroinflammation. In addition, knocking down Spi1 reduced expression 

of a microgliosis marker Aif1  (Iba1) along with Il1b, Nos2, Ptgs2, Arg1 and Nlrp3 (Fig. 4a, 

4c), suggesting that decreased Spi1 expression may blunt the pro-inflammatory response of 

microglial cells to improve disease outcomes. Interestingly, expression of Cx3cr1 and Axl 
were elevated upon knock-down of Spi1 (Fig. 4c), raising the possibility that beneficial 

effects of changes in Spi1 expression are exerted through modulation of synaptic or neuronal 

clearance. Further experimental investigation of these phenotypes may shed light on the 

mechanisms of SPI1 modulation of AD risk. Of note, overexpression and knock-down of 

Spi1 in BV2 cells produce different and often opposite changes in expression of the genes 

profiled here, possibly driving alternative phenotypes that may underlie detrimental and 

protective roles of PU.1.

In summary, by combining AD survival and endophenotype GWAS analyses, we replicated 

and discovered multiple genetic loci associated with AAOAAOS. Specifically, we nominate 

SPI1 as the gene responsible for disease association at the previously reported CELF1 locus. 

SPI1 encodes PU.1, a transcription factor expressed in microglia and other myeloid cells that 

directly regulates other AD-associated genes expressed in these cell types. Our data suggest 

that lower SPI1 expression reduces risk for AD, suggesting a novel therapeutic approach to 

the treatment of AD. Furthermore, we demonstrate that AAOS-associated SNPs within the 

MS4A gene cluster are associated with eQTLs in myeloid cells for both MS4A4A and 

MS4A6A. Specifically, the allele associated with reduced AD risk is associated with lower 

MS4A4A and MS4A6A expression. This is consistent with the observation that lowering 

SPI1 expression, which is protective for AD risk, also lowers MS4A4A and MS4A6A 
expression. These results reinforce the emerging genetic and epigenetic association between 

AD and a network of microglial expressed genes2,5,17–21, highlighting the need to dissect 

their functional mechanisms.

Online Methods

Genome-wide survival association study datasets

The final meta-analysis dataset consists of samples from the Alzheimer’s Disease Genetics 

Consortium (ADGC), Genetic and Environmental Risk in Alzheimer’s Disease (GERAD), 

European Alzheimer’s Disease Initiative (EADI), and Cohorts for Heart and Aging Research 

in Genomic Epidemiology (CHARGE). The study cohorts consist of case-control and 

longitudinal cohorts. For all studies, written informed consent was obtained from study 

participants or, for those with substantial cognitive impairment, from a caregiver, legal 

guardian, or other proxy, and the study protocols for all populations were reviewed and 

approved by the appropriate Institutional review boards. Details of ascertainment and 

diagnostic procedures for each dataset extend from details previously described1–5 and are 

documented below:
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(1) Alzheimer’s Disease Genetics Consortium (ADGC)— The imputed ADGC 

sample that passed quality control procedures comprised of 8,617 AD cases and 9,765 

control subjects from GWAS datasets assembled by the Alzheimer’s Disease Genetics 

Consortium (ADGC). Details of ascertainment and diagnostic procedures for each data set 

were as previously described2.

(2) Genetic and Environmental Risk in Alzheimer’s Disease (GERAD)— Data 

used in the preparation of this article were obtained from the Genetic and Environmental 

Risk for Alzheimer’s disease (GERAD) Consortium. The imputed GERAD sample 

comprised 3,177 AD cases and 7,277 controls with available age and gender data. A subset 

of this sample has been used in this study, comprising 2,615 cases and 1,148 elderly 

screened controls. Cases and elderly screened controls were recruited by the Medical 

Research Council (MRC) Genetic Resource for AD (Cardiff University; Institute of 

Psychiatry, London; Cambridge University; Trinity College Dublin), the Alzheimer’s 

Research UK (ARUK) Collaboration (University of Nottingham; University of Manchester; 

University of Southampton; University of Bristol; Queen’s University Belfast; the Oxford 

Project to Investigate Memory and Ageing (OPTIMA), Oxford University); Washington 

University, St Louis, United States; MRC PRION Unit, University College London; London 

and the South East Region AD project (LASER-AD), University College London; 

Competence Network of Dementia (CND) and Department of Psychiatry, University of 

Bonn, Germany; the National Institute of Mental Health (NIMH)AD Genetics Initiative. 

6,129 population controls were drawn from large existing cohorts with available GWAS 

data, including the 1958 British Birth Cohort (1958BC) (http://www.b58cgene.sgul.ac.uk), 

the KORA F4 Study and the Heinz Nixdorf Recall Study. All AD cases met criteria for 

either probable (NINCDS-ADRDA, DSM-IV) or definite (CERAD) AD. All elderly 

controls were screened for dementia using the MMSE or ADAS-cog, were determined to be 

free from dementia at neuropathological examination or had a Braak score of 2.5 or lower. 

Genotypes from all cases and 4,617 controls were previously included in the AD GWAS by 

Harold and colleagues (2009). Genotypes for the remaining 2,660 population controls were 

obtained from WTCCC2. Imputation of the dataset was performed using IMPUTE2 and the 

1000 genomes (http://www.1000genomes.org/) Dec2010 reference panel (NCBI build 37.1). 

The imputed data was then analysed using logistic regression including covariates for 

country of origin, gender, age and 3 principal components obtained with EIGENSTRAT 

software based on individual genotypes for the GERAD study participants.

GERAD Supplementary Acknowledgements: This study incorporated imputed summary 

results from the GERAD1 genome-wide association study. GERAD Acknowledgements: 

Cardiff University was supported by the Wellcome Trust, Medical Research Council (MRC), 

Alzheimer’s Research UK (ARUK) and the Welsh Assembly Government. Cambridge 

University and Kings College London acknowledge support from the MRC. ARUK 

supported sample collections at the South West Dementia Bank and the Universities of 

Nottingham, Manchester and Belfast. The Belfast group acknowledges support from the 

Alzheimer’s Society, Ulster Garden Villages, N. Ireland R&D Office and the Royal College 

of Physicians/Dunhill Medical Trust. The MRC and Mercer’s Institute for Research on 

Ageing supported the Trinity College group. The South West Dementia Brain Bank 
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acknowledges support from Bristol Research into Alzheimer’s and Care of the Elderly. The 

Charles Wolfson Charitable Trust supported the OPTIMA group. Washington University 

was funded by NIH grants, Barnes Jewish Foundation and the Charles and Joanne Knight 

Alzheimer’s Research Initiative. Patient recruitment for the MRC Prion Unit/UCL 

Department of Neurodegenerative Disease collection was supported by the UCLH/UCL 

Biomedical Centre and NIHR Queen Square Dementia Biomedical Research Unit. LASER-

AD was funded by Lundbeck SA. The Bonn group was supported by the German Federal 

Ministry of Education and Research (BMBF), Competence Network Dementia and 

Competence Network Degenerative Dementia, and by the Alfried Krupp von Bohlen und 

Halbach-Stiftung. The GERAD Consortium also used samples ascertained by the NIMH AD 

Genetics Initiative.

The KORA F4 studies were financed by Helmholtz Zentrum München; German Research 

Center for Environmental Health; BMBF; German National Genome Research Network and 

the Munich Center of Health Sciences. The Heinz Nixdorf Recall cohort was funded by the 

Heinz Nixdorf Foundation (Dr. jur. G. Schmidt, Chairman) and BMBF. Coriell Cell 

Repositories is supported by NINDS and the Intramural Research Program of the National 

Institute on Aging. We acknowledge use of genotype data from the 1958 Birth Cohort 

collection, funded by the MRC and the Wellcome Trust which was genotyped by the 

Wellcome Trust Case Control Consortium and the Type-1 Diabetes Genetics Consortium, 

sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, National 

Institute of Allergy and Infectious Diseases, National Human Genome Research Institute, 

National Institute of Child Health and Human Development and Juvenile Diabetes Research 

Foundation International.

(3) European Alzheimer’s Disease Initiative (EADI)— All AD cases were ascertained 

by neurologists from Bordeaux, Dijon, Lille, Montpelier, Paris, and Rouen, with clinical 

diagnosis of probable AD established according to the DSM-III-R and National Institute of 

Neurological and Communication Disorders and Stroke-Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) criteria51,52. Controls were recruited from Lille, 

Rouen, Nantes and from the 3C Study51. This cohort is a population-based, prospective 

study of the relationship between vascular factors and dementia. It has been carried out in 

three French cities: Bordeaux (southwest France), Montpelier (southeast France) and Dijon 

(central eastern France). A sample of non-institutionalized, subjects over 65 years was 

randomly selected from the electoral rolls of each city. Between January 1999 and March 

2001, 9,686 subjects meeting the inclusion criteria agreed to participate. Following 

recruitment, 392 subjects withdrew from the study. Thus, 9,294 subjects were finally 

included in the study (2,104 in Bordeaux, 4,931 in Dijon and 2,259 in Montpellier). At 8 

years of follow up, 664 individuals suffered from AD with 167 prevalent and 497 incident 

cases. The other individuals were considered as controls. 9863 DNA samples that passed 

DNA quality control were genotyped with Illumina Human 610-Quad BeadChips. Following 

quality control procedures, a final sample size of 5,803 3C individuals (387 AD cases and 

5,416 controls, cohort dataset) and 2,298 non-3C individuals (1,420 AD cases and 878 

controls, case-control dataset) was included in this study.
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(4) Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE)—Cardiovascular Health Study (CHS): The CHS is a prospective population-

based cohort study of risk factors for vascular and metabolic disease that in 1989–90, 

enrolled adults aged ≥65 years, at four field centers located in North Carolina, California, 

Maryland and Pennsylvania. The original predominantly Caucasian cohort of 5,201 persons 

was recruited from a random sample of people on Medicare eligibility lists and an additional 

687 African-Americans were enrolled subsequently for a total sample of 5,8882. DNA was 

extracted from blood samples drawn on all persons who consented to genetic testing at their 

baseline examination in 1989–90. In 2007–2008, genotyping was performed at the General 

Clinical Research Center’s Phenotyping/Genotyping Laboratory at Cedars-Sinai using the 

Illumina 370CNV Duo ® BeadChip system on 3,980 CHS participants who were free of 

cardiovascular disease (CVD) at baseline. The 1,908 persons excluded for prevalent CVD 

had prevalent coronary heart disease (n=1,195), congestive heart failure (n=86), peripheral 

vascular disease (n=93), valvular heart disease (n=20), stroke (n=166) or transient ischemic 

attack (n=56). Some persons had more than one reason to be excluded and for these 

individuals only the initial exclusionary event is listed. Because the other cohorts were 

predominantly white, the African American CHS participants were excluded from this 

analysis to limit errors secondary to population stratification. Among white participants 

genotyping was attempted in 3,397 participants and was successful in 3295 persons. After 

excluding persons that had either died prior to the start of the CHS cognition study in 1992 

(see section 3 for details), could not be evaluated completely for baseline cognitive status, 

and persons that had dementia other than AD, a sample of 2,049 persons was available. The 

CHS study protocols were approved by the Institutional review boards at the individual 

participating centers.

The AD sample for this study included all prevalent cases identified in 1992 and incident 

events identified between 1992 and December 20063. Briefly, persons were examined 

annually from enrollment to 1999. The examination included a 30 minute screening 

cognitive battery. In 1992–94 and again, in 1997–99, participants were invited to undergo 

brain MRI and detailed cognitive and neurological assessment as part of the CHS Cognition 

Study. Persons with prevalent dementia were identified, and all others were followed until 

1999 for the development of incident dementia and AD. Since then, CHS participants at the 

Maryland and Pennsylvania centers have remained under ongoing dementia surveillance53.

Beginning in 1988/89, all participants completed the Modified Mini-Mental State 

Examination (3MSE) and the DSST at their annual visits, and the Benton Visual Retention 

Test (BVRT) from 1994 to 1998. The Telephone Interview for Cognitive Status (TICS) was 

used when participants did not come to the clinic. Further information on cognition was 

obtained from proxies using the Informant Questionnaire for Cognitive Decline in the 

Elderly (IQCODE), and the dementia questionnaire (DQ). Symptoms of depression were 

measured with the modified version of the Center for Epidemiology Studies Depression 

Scale (CES-D). In 1991–94, 3,608 participants had an MRI of the brain and this was 

repeated in 1997–98. The CHS staff also obtained information from participants and next-

of-kin regarding vision and hearing, the circumstances of the illness, history of dementia, 
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functional status, pharmaceutical drug use, and alcohol consumption. Data on instrumental 

activities of daily living (IADL), and activities of daily living (ADL) were also collected.

Persons suspected to have cognitive impairment based on the screening tests listed above 

underwent a neuropsychological and a neurological evaluation. The neuropsychological 

battery included the following tests: the American version of the National Reading test 

(AMNART), Raven’s Coloured Progressive Matrices, California Verbal Learning Test 

(CVLT), a modified Rey-Osterreith figure, the Boston Naming test, the Verbal fluency test, 

the Block design test, the Trails A and B tests, the Baddeley & Papagno Divided Attention 

Task, the Stroop, Digit Span and Grooved Pegboard Tests. The results of the 

neuropsychological battery were classified as normal or abnormal (>1.5 standard deviations 

below individuals of comparable age and education) based on normative data collected from 

a sample of 250 unimpaired subjects. The neurological exam included a brief mental status 

examination, as well as a complete examination of other systems. The examiner also 

completed the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Hachinski 

Ischemic Scale. After completing the neurological exam, the neurologist classified the 

participant as normal, having mild cognitive impairment (MCI), or dementia.

International diagnostic guidelines, including the NINCDS-ADRDA criteria for probable 

and possible AD and the ADDTC’s State of California criteria for probable and possible 

vascular dementia (VaD) with or without AD, were followed. CHS identified 3 subtypes: 

possible/probable AD without VaD (categorized as pure AD, included in all AD) and mixed 

AD (for cases that met criteria for both AD and VaD, included in all-AD), and, possible/

probable VaD without AD (excluded from current study).

Framingham Heart Study (FHS): The FHS is a three-generation, single-site, community-

based, ongoing cohort study that was initiated in 1948. It now comprises three generations of 

participants including the Original cohort followed since 1948 (n=5,209)54, their Offspring 

and spouses of the offspring (n=5,216) followed since 197155; and children from the largest 

Offspring families enrolled in 2000 (Gen 3)56. Participants in the Original and Offspring 

cohorts are used in these analyses, but Gen 3 participants were not included since they are 

young (mean age 40±9 years in 2000) and none had developed Alzheimer’s Disease (AD). 

The Original cohort enrolled 5,209 men and women who comprised two-thirds of the adult 

population then residing in Framingham, Massachusetts. Survivors continue to receive 

biennial examinations. The Offspring cohort comprises 5,124 persons (including 3,514 

biological offspring) who have been examined approximately once every 4 years. Almost all 

the FHS Original and Offspring participants are white/Caucasian. FHS participants had 

DNA extracted and provided consent for genotyping in the 1990s. All available eligible 

participants were genotyped at Affymetrix (Santa Clara, CA) through an NHLBI funded 

SNP-Health Association Resource (SHARe) project using the Affymetrix GeneChip ® 

Human Mapping 500K Array Set and 50K Human Gene Focused Panel ®. In 272 persons, 

small amounts of DNA were extracted from stored whole blood and required whole genome 

amplification prior to genotyping. Cell lines were available for most of the remaining 

participants. Genotyping was attempted in 5,293 Original and Offspring cohort participants, 

and 4,425 persons met QC criteria. Failures (call rate <97%, extreme heterozygosity or high 

Mendelian error rate) were largely restricted to persons with whole-genome amplified DNA 
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and DNA extracted from stored serum samples. In addition, since the persons with whole 

genome amplified DNA represent a group of survivors who may differ from the others we 

included whole genome amplified status as a covariate in FHS analyses. After exclusion of 

prevalent dementia, dementia other than AD, and missing values, a sample of 2,208 

participants was available for this project. The FHS component of this study was approved 

by the Institutional Review Board of the Boston Medical Center.

The Original cohort of the FHS has been evaluated biennially since 1948, was screened for 

prevalent dementia and AD in 1974–76 and has been under surveillance for incident 

dementiaand AD since then57–59. The Offspring have been examined once every 4 years and 

have been screened for prevalent dementia with a neuropsychological battery and brain 

MRI60,61. In order to be consistent with the sampling frame for the AGES and CHS samples, 

we excluded FHS subjects with a baseline age <65 yrs at the time of DNA draw which was 

in the 1990s. To minimize survival biases, Original cohort and Offspring participants who 

developed dementia prior to the date of DNA draw were treated as prevalent cases, and 

subsequent events in the Original cohort occurring prior to December 2006 were included in 

the incident analyses.

At each clinic exam, participants receive questionnaires, physical examinations and 

laboratory testing; between examinations they remain under surveillance (regardless of 

whether or not they live in the vicinity) via physician referrals, record linkage and annual 

telephone health history updates. Methods used for dementia screening and follow-up have 

been previously described57,62. Briefly, surviving cohort members who attended biennial 

examination cycles 14 and 15 (May 1975-November 1979) were administered a 

standardized neuropsychological test battery to establish a dementia-free cohort. Beginning 

at examination cycle 17 (1982), the MMSE was administered biennially to the cohort. A 

MMSE score below the education-specific cutoff score,a decline of 3 or more points on 

subsequent administrations, a decline of more than 5 points compared with any previous 

examination, or a physician or family referral prompted further in-depth testing. The 

Offspring cohort that was enrolled in 1971 has undergone 8 re-examinations, one 

approximately every 4 years. Starting at the 2nd Offspring examination, participants were 

questioned regarding any subjective memory complaints and since the 5th Offspring 

examination participants have been administered the MMSE at each visit. In addition 

concurrent with the 7th and 8th Offspring examinations (between 1999 and 2004 and then 

again between 2005 and 2009) surviving Original cohort and all eligible and consenting 

Offspring participants have undergone volumetric brain MRI and neuropsychological 

testing60,61. The neuropsychological test battery included the Reading subtest of the Wide 

Range Achievement Test (WRAT-3), the Logical Memory and the Paired Associates 

Learning tests from the Wechsler Memory Scale, the Visual Reproduction and Hooper 

Visual Organization Tests, Trails A and B, the Similarities subtest from the Wechsler Adult 

Intelligence test, the 30-iterm version of the Boston Naming Test and at the second 

assessment only, the Digit Span, Controlled Word Association and Clock Drawing Tests. 

Offspring participants suspected to have cognitive impairment based on their MMSE scores, 

participant, family or physician referral, hospital records or performance in the 

neuropsychological test battery described above were referred for more detailed 

neuropsychological and neurological evaluation.
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Each participant thus identified underwent baseline neurologic and neuropsychological 

examinations. Neurologists (trained in geriatric behavioral assessment) supplemented their 

clinical assessment with a few structured cognitive tests and administered the Clinical 

Dementia Rating (CDR). Persons were reassessed systematically for the onset of at least 

mild dementia. A panel consisting of at least 1 neurologist (S.A., P.A.W., or S.S.) and 1 

neuropsychologist (R.A.) reviewed all available medical records to arrive at a final 

determination regarding the presence or absence of dementia, the date of onset of dementia, 

and the type of dementia. For this determination, we used data from the neurologist’s 

examination, neuropsychological test performance, Framingham Study records, hospital 

records, information from primary care physicians, structured family interviews, computed 

tomography and magnetic resonance imaging records, and autopsy confirmation when 

available. All individuals identified as having dementia satisfied the DSM-IV criteria, had 

dementia severity equivalent to a CDR of 1 or greater, and had symptoms of dementia for at 

least 6 months. All individuals identified as having Alzheimer-related dementia met the 

NINCDS-ADRDA criteria for definite, probable, or possible AD. Vascular Dementia was 

diagnosed using the ADDTC criteria but the presence of vascular dementia did not 

disqualify a participant from obtaining a concomitant diagnosis of AD if indicated. The 

recruitment of Original cohort participants at FHS had occurred long before the DNA 

collection with the result that the majority of dementia events in the FHS (although 

ascertained prospectively) were prevalent at the time of DNA collection or these persons had 

died prior to DNA draw and were thus excluded from analyses of incident disease. Due to 

the limited number of incident dementia and AD events in the Framingham Offspring only 

the Original cohort were included in our analyses of incident events.

Rotterdam Study: The Rotterdam Study enrolled inhabitants from a district of Rotterdam 

(Ommoord) aged ≥55 years (N=7,983, virtually all white) at the baseline examination in 

1990–93 when blood was drawn for genotyping63. It aims to examine the determinants of 

disease and health in the elderly with a focus on neurogeriatric, cardiovascular, bone, and 

eye disease. All inhabitants of Ommoord aged ≥55 years (n = 10,275) were invited and the 

participation rate was 78%. All participants gave written informed consent to retrieve 

information from treating physicians. Baseline measurements were obtained from 1990 to 

1993 and consisted of an interview at home and two visits to the research center for physical 

examination. Survivors have been re-examined three times: in 1993–1995, 1997–1999, and 

2002–2004. All persons attending the baseline examination in 1990–93 consented to 

genotyping and had DNA extracted. This DNA was genotyped using the Illumina Infinium 

II HumanHap550chip v3·0 ® array in 2007–2008 according to the manufacturer’s protocols. 

Genotyping was attempted in persons with high-quality extracted DNA (n=6,449). From 

these 6,449, samples with low call rate (<97.5%, n=209), with excess autosomal 

heterozygosity (>0.336, n=21), with sex-mismatch (n=36), or if there were outliers identified 

by the IBS clustering analysis (>3 standard deviations from population mean, n=102 or IBS 

probabilities >97%, n=129) were excluded from the study population with some persons 

meeting more than one exclusion criterion; in total, 5,974 samples were available with good 

quality genotyping data, 42 persons were excluded since they did not undergo cognitive 

screening at baseline, hence their cognitive status was uncertain. An additional 61 persons 

were excluded because they suffered from dementia other than AD at baseline. After 

Huang et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exclusion of prevalent dementia, a sample of 5752 persons was available. The Rotterdam 

Study (including its brain magnetic resonance imaging (MRI) and neurological components) 

has been approved by the institutional review board (Medical Ethics Committee) of the 

Erasmus Medical Center and the Netherlands Ministry of Health, Welfare and Sports 

Participants were screenedfor prevalent dementia in 1990–93 using a three-stage process; 

those free of dementia remained under surveillance for incident dementia, a determination 

made using records linkage and assessment at three subsequent re-examinations. We 

included all prevalent cases and all incident events up to 31st December 2007.

Screening was done with the MMSE and GMS organic level for all persons. Screen-

positives (MMSE <26 or Geriatric Mental Schedule (GMS) organic level >0) underwent the 

CAMDEX. Persons who were suspected of having dementia underwent more extensive 

neuropsychological testing. When available, imaging data were used. In addition, all 

participants have been continuously monitored for major events (including dementia) 

through automated linkage of the study database with digitized medical records from general 

practitioners, the Regional Institute for Outpatient Mental Health Care and the municipality. 

In addition physician files from nursing homes and general practitioner records of 

participants who moved out of the Ommoord district were reviewed twice a year. For 

suspected dementia events, additional information (including neuroimaging) was obtained 

from hospital records and research physicians discussed available information with a 

neurologist experienced in dementia diagnosis and research to verify all diagnoses. 

Dementia was diagnosed in accordance with internationally accepted criteria for dementia 

(Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition, DSM-III-R), 

and AD using the NINCDS-ADRDA criteria for possible, probable and definite AD. The 

National Institute of Neurological Disorders and Stroke–Association Internationale pour la 

Recherche et l’Enseignement en Neurosciences (NINDS-AIREN) criteria were used to 

diagnose vascular dementia. The final diagnosis was determined by a panel of a neurologist, 

neurophysiologist, and research physician and the diagnoses of AD and VaD were not 

mutually exclusive.

(5) Power Calculation— To determine the power to detect genetic variants associated with 

age at onset, we ran analyses using Proc Power in SAS. The analysis was run using minor 

allele frequencies ranging from 0.05 to 0.50, OR 1.1 to 1.75 and sample size of 45,000. 

Other factors, such as genetic heterogeneity and gene-environment interaction are likely to 

affect these estimates. Alpha was adjusted to 5×10−8. For variants with a MAF of 0.15, we 

would have approximately 80% power to detect effects for OR > 1.23 or < 0.81; for variants 

with a MAF of 0.3, we would have approximately 80% power to detect effects for OR > 

1.18 (or < 0.85).

CSF biomarker datasets

CSF samples were obtained from the Knight-ADRC (N=805), ADNI-1 (N=390), ADNI-2 

(N=397), the Biomarkers for Older Controls at Risk for Dementia (BIOCARD) (N=184), 

Mayo Clinic (N=433), Lund University (Swedish) (N=293), University of Pennsylvania 

(Penn) (N=164), University of Washington (N=375), The Parkinson’s Progression Markers 

Initiative (500) and Saarland University (German) (N=105).
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Cases were diagnosed with dementia of the Alzheimer’s type (DAT) according to the 

NINCDS-ADRDA20. Control individuals were evaluated using the same criteria and showed 

no symptoms of cognitive impairment. All participants provided written informed consent 

and the ethics committee approved the informed consent procedure (IRB ID #: 201105364). 

787 additional samples with biomarker data used in the analyses were obtained from the 

ADNI database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). CSF in all studies was collected in a 

standardized manner12,64–67. Biomarker measurements within each study were conducted 

using internal standards and controls to achieve consistency and reliability. However, 

differences in the measured values between studies were observed which are likely due to 

differences in the antibodies and technologies used for quantification (standard ELISA with 

Innotest for Knight-ADRC, UW, Swedish, German, and Mayo versus Luminex with 

AlzBio3 for ADNI-1, ADNI-2, BIOCARD and Penn), ascertainment and/or handling of the 

CSF after collection. CSF Á42 and ptau181 values were log transformed in order to 

approximate a normal distribution. Because the CSF biomarker values were measured using 

two different platforms (standard ELISA with Innotest and Luminex with AlzBio3), we did 

not combine the raw data. For the combined analyses, we standardized the mean of the log-

transformed values from each dataset to zero. No significant differences in the transformed 

and standardized CSF values were found between cohorts. We also performed meta-analyses 

for the most significant SNPs by combining the P values for each independent dataset using 

METAL68. No major differences were found between the joint-analyses and the meta-

analyses.

Quality Control

For survival analysis, we excluded cases with AAO below 60 and cases with prevalent 

stroke. For CSF analysis, individuals under age 45 years were removed because prior studies 

have demonstrated that the relationship between CSF A´42 levels and age appears to differ 

in individuals below 45 years vs. those above 45 years69. Of the remaining individuals in 

both analyses, we excluded individuals who had > 5% missing genotype rates, who showed 

a discrepancy between reported sex and sex estimated on the basis of genetic data, or who 

showed evidence of non-European ancestry based on principal component analysis using 

PLINK1.970. We identified unanticipated duplicates and cryptic relatedness using pair-wise 

genome-wide estimates of proportion identity by descent (IBD) using PLINK. When 

duplicate samples or a pair of samples with cryptic relatedness was identified, the sample 

with the lower genotyping call rate was removed. We excluded potentially related 

individuals so that all remaining individuals have kinship coefficient below 0.05. Finally, we 

excluded individuals with missing disease status, age or gender information.

To control for genotype quality, we excluded SNPs with missing genotypes in > 5% of 

individuals in each dataset for survival analysis, and > 2% for CSF association analysis. For 

the EADI cohort, variants with minor allele frequency < 1%, Hardy-Weinberg P value < 
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1×10−6 and missingness > 2% were removed prior to imputation. Genome-wide genotype 

imputation was performed using IMPUTE271 with 1000 Genomes reference haplotypes. We 

excluded imputed SNPs with an IMPUTE2 quality score < 0.5 for survival analysis. For 

CSF association, we excluded SNPs with an IMPUTE2 quality score of < 0.3 since the 

dataset was only used for follow-up. In the ADGC, GERAD, CHARGE, and CSF datasets, 

we then removed SNPs that failed the Hardy-Weinberg equilibrium in controls calculated 

based on the imputed best-guess genotypes using a P value threshold of 1×10−6. We 

excluded SNPs with minor allele frequency ≤ 0.02. Finally, we excluded SNPs with 

available statistics in only one consortium dataset in the meta-analysis. The number of 

filtered samples and SNPs in each of the above steps are recorded in Supplementary Table 1.

Genome-wide survival association study

We conducted a genome-wide Cox proportional hazards regression72 assuming an additive 

effect from SNP dosage. The Cox proportional hazard regression was implemented in the R 

survival analysis package. We incorporated sex, site and the first three principal components 

from EIGENSTRAT30 in all our regression models to control for their effects. For EADI, 

sex and four principal components were included in the model. For the Cox model, the time 

scale is defined as age in years, where age is age at onset for cases and age at last assessment 

for controls. The formula applied is as followed:

where X = (X1, X2, …, Xp) are the observed values of covariates for subject i. The Cox 

model has previously been shown to be applicable to case-control datasets without an 

elevated type 1 error rate nor overestimation in effect sizes73,74. The model assumes log-

linearity and proportional hazards. The assumption of log-linearity is common in the 

additive logistic regression used in a typical GWAS. We validated the assumption of 

proportional hazards assumed by the Cox model by conducting the Schoenfeld test in the 22 

prioritized SNPs. None of the SNPs has a Schoenfeld P value, which is the P value for 

Pearson product-moment correlation between the scaled Schoenfeld residuals and time, 

lower than 0.035 (multiple test correction threshold = 0.00227) in any of the 7 cohorts. 

Further, only 3 out of the 148 P values were less than 0.05, suggesting that the time 

proportionality assumption is unlikely to be violated in these associations (Supplementary 

Table 1). Similarly, the Schoenfeld test was conducted for all 22 SNP association models on 

the covariates in the ADGC and GERAD cohort (Supplementary Table 1). We also 

examined the effect sizes of our candidate SNPs in these cohorts and found consistent effect 

sizes (Supplementary Fig. 3) in the 3 retrospective case-control cohorts (ADGC, GERAD, 

EADI case-control) and 4 prospective cohorts (EADI-prospective, CHARGE FHS, CHS and 

Rotterdam).

After the analysis of each dataset, we carried out an inverse-variance meta-analysis on the 

results using METAL26, applying a genomic control to adjust for inflation in each dataset. 

Of the 751 suggestive SNPs (P < 1×10−5), we found these SNPs to show lower standard 

errors and confidence intervals with the increasing number of cohorts showing consistent 
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directionalities of effect. Particularly, the average standard error for SNPs showing 1 to 7 

consistent directionalities ranges from 0.171, 0.109, 0.0744, 0.0346, 0.0234, 0.0173 to 

0.01795 (Supplementary Fig. 1b). Thus, we limited our final analysis to SNPs that showed 

consistent directionalities of effect in at least 6 out of the 7 datasets included in the meta-

analysis. The association graphs of results from loci of interest were plotted using 

LocusZoom75.

CSF biomarker association analysis

For the CSF datasets, we performed multivariate linear regression for CSF A´42 and tau, and 

ptau181 association adjusting for age, gender, site, and the first three principal components 

using PLINK.

eQTL analysis

We examined the effect of top survival and CSF SNPs on gene expression using published 

databases. For general brain expression eQTL analysis, we queried the BRAINEAC eQTL 

data provided by the UK human Brain Expression Consortium (see URLs).

We conducted leukocyte-specific analysis using the Cardiogenics dataset27 composed of 738 

monocytes and 593 macrophages samples. For each probeset – imputed SNP pair, a simple 

linear regression was used to analyze the data separately for monocytes and macrophages:

where i is the subject index, x is the effective allele copy number, and yi is the covariates-

adjusted, inverse-normal transformed gene expression. Significance of cis (SNP within 

±1Mb of the closest transcript end) eQTL effects were quantified with a Wald test on the 

ordinary Least Squares (OLS) estimator of the coefficient ´, obtained with R. The 

distribution of the Wald test P values under the null hypothesis of no correlation between 

genotype and gene expression was estimated by rerunning the same analysis on a null 

dataset obtained by permuting the expression samples identifiers. For additional monocyte 

eQTL analysis, we queried statistics from Fairfax et al.28 to validate findings in the 

Cardiogenics dataset.

For conditional analysis, we performed analysis for SPI1 (probe: ILMN_1696463) against 

all SNPs within ±2Mb from the closest transcript end, by including the following SNPs 

effective allele copy numbers as covariates in the linear regression model, one at a time: 

rs1057233, rs10838698, rs7928163, rs10838699, rs10838725, rs1377416. Significance was 

again assessed with a two-sided Wald test on the OLS estimator of the coefficient ´.

Gene expression analysis in human and mouse brain cell types

Cell-type specific gene expression in the human and mouse brain was queried from brain 

RNA-Seq databases described in Zhang et al.29,30 and Bennett et al.31 and plotted using 

custom R scripts (see URLs). The mouse astrocytes-FACS and astrocytes-immunopanned in 

mouse were collapsed into a single astrocyte cell type.
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Epigenetic analysis in human myeloid cell types

We utilized HaploReg34 to annotate the regulatory element of the significantly associated 

SNPs and their tagging SNPs. The myeloid chromatin marks/states and PU.1 ChIP-Seq data 

at genetic loci were further examined through the Washington University Epigenome 

browser76 using the public Roadmap Epigenomics Consortium public tracks hub as well as 

custom track hubs for human monocytes and macrophages (hg19) (see URLs).

Colocalization (coloc and SMR/HEIDI) analyses

Colocalization analysis of genetic variants associated with AD and myeloid gene expression 

was performed using AAOS GWAS SNP and myeloid (monocyte and macrophage) eQTL 

datasets from Cardiogenics as inputs. Overlapping SNPs were retained within the hg19 

region chr11:47100000-48100000 for the SPI1/CELF1 locus, chr11:59500000-60500000 for 

the MS4A locus, and chr1:169300000-170300000 for the SELL locus. Colocalization 

analysis of AD- and gene expression-associated SNPs was performed using the ‘coloc.abf’ 

function in the ‘coloc’ R package (v2.3-1). Default settings were used as prior probability of 

association: 1×10−4 for trait 1 (gene expression), 1×10−4 for trait 2 (AD) and 1×10−5 for 

both traits. SMR/HEIDI (v0.65) analysis was performed as described in Zhu et al.23 and the 

companion website (see URLs). The ADGC subset of the IGAP GWAS dataset was used to 

perform the LD calculations.

Partitioned heritability analysis using LD score regression

We used LDSC (LD SCore, v1.0.0) regression analysis25 to estimate heritability of AD and 

schizophrenia from GWAS summary statistics (excluding the APOE [chr19:45000000–

45800000] and MHC/HLA [chr6:28477797–33448354] regions) partitioned by PU.1 ChIP-

Seq binding sites in myeloid cells, as described in the companion website (see URLs) and 

controlling for the 53 functional annotation categories of the full baseline model. GWAS 

summary statistics for ADand schizophrenia (SCZ) were downloaded from the IGAP 

consortium1 (stage 1 dataset) and the Psychiatric Genomics Consortium (PGC)26 

(pgc.cross.scz dataset), respectively (see URLs). SPI1 (PU.1) bindings sites were 

downloaded as filtered and merged ChIP-Seq peaks in BED format from the ReMap 

database77 (GEO:GSE31621, SPI1, blood monocyte and macrophage datasets35). SPI1 (PU.

1) and POLR2AphosphoS5 binding sites were downloaded as broad ChIP-Seq peaks in BED 

format from the Encode portal7837 (DCC:ENCSR037HRJ; GEO:GSE30567; HL60 dataset) 

(see URLs).

Phagocytosis assay

BV2 mouse microglial cell line was kindly provided by Marc Diamond (UT Southwestern 

Medical Center). BV2 cells were cultured in DMEM (Gibco 11965) supplemented with 5% 

FBS (Sigma F4135) and 100 U/ml penicillin-streptomycin (Gibco 15140). Routine testing of 

cell lines using MycoAlert PLUS mycoplasma detection kit (Lonza) showed that BV2 cells 

were negative for mycoplasma contamination. pcDNA3-FLAG-PU.1 was a gift from 

Christopher Vakoc79 (Addgene plasmid 66974). pGFP-V-RS with either non-targeting 

shRNA or PU.1-targeting shRNAs was purchased from OriGene Technologies (TG502008). 

The pHrodo red zymosan conjugate bioparticles from Thermo Fisher (P35364) were used to 
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assess phagocytic activity. For transient transfections, 200,000 cells were seeded in a 24-well 

plate. On the next day, cells were washed with PBS (Gibco 14190) and medium was 

changed to 400 µl DMEM supplemented with 2% FBS without antibiotic. Transfection 

mixes of 0.5 µg pcDNA3 or 0.5 µg pcDNA3-FLAG-PU.1 with 0.5 µg pCMV-GFP for 

overexpression of mouse PU.1 and 1µg pGFP-V-RS-shSCR, -shA, -shB and -shD for knock-

down of mouse PU.1 were prepared with 2 µl of Lipofectamine 2000, incubated for 20 min 

at room temperature and added to each well. After 8 hours of incubation 1 ml of growth 

medium was added to each well and plates were incubated for 2 days. Then the medium was 

replaced with 500 µl of fresh medium, and 25 µg of bioparticles were added to cells for 3 

hour incubation. Bioparticles uptake was verified with a fluorescent microscope; then the 

cells were collected with trypsin (Gibco #25200), washed with PBS once and re-suspended 

in 500 µl PBS with 1% BSA. Cells were kept on ice and phagocytic activity was analyzed on 

an LSR II flow cytometer (BD Biosciences). At least 30,000 events were collected in each 

experiment, gated on FSC-A/SSC-A and further on FSC-A/FSC-W dot plot to analyze 

populations of viable single cells. Data were quantified using FCS Express 5 (De Novo 

Software) and GraphPad Prism 7 (GraphPad Software). Cells pretreated with 2 µM 

Cytochalasin D for 30 minutes before and during the uptake of bioparticles were used as a 

negative control. The population of GFP+/pHrodo+ cells in each condition was used to 

quantify the phagocytic index: percentage of pHrodo+ cells in GFP+ gated population × 

geometric mean pHrodo intensity/106; and represented as phagocytic activity. Three 

independent experiments were performed with two technical replicates without 

randomization of sample processing, n = 3. Researcher was not blinded to the samples 

identification. Differences between the means of preselected groups were analyzed with one-

way ANOVA and Sidak’s post hoc multiple comparisons test between selected groups, with 

a single pooled variance. Values of Cytochalasin D-treated cells were excluded from the 

statistical analysis. Adjusted P values for each comparison are reported, non-significant 

differences are not reported.

Western blotting

BV2 cells transiently transfected as described for the phagocytosis assay were collected with 

trypsin after 48 hours of incubation, washed with PBS and re-suspended in PBS with 1% 

BSA. Cells from the same treatment were pooled and sorted on FACSARIA III (BD 

Biosciences) into GFP+ and GFP− populations, pelleted at 2,000 rpm and lysed in RIPA 

buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 

0.1% SDS and Complete protease inhibitor tablets (Roche)) with one freeze-thaw cycle and 

1 hour incubation on ice. Protein concentration was quantified using the BCA kit (Thermo 

Fisher #23225). Equal amounts of protein were separated by electrophoresis in Bolt 4 – 12% 

Bis-Tris Plus gels with MOPS SDS running buffer and transferred using the iBlot 2 

nitrocellulose transfer stack. Membranes were blocked and probed with antibodies against 

PU.1 (Cell Signaling #2266) and ´-Actin (Sigma #A5441) in 3% non-fat dry milk in TBS/

0.1% Tween-20 buffer. Secondary antibody staining was visualized using WesternBright 

ECL HRP Substrate Kit (Advansta K-12045) and ChemiDoc XRS+ (BioRad). Images were 

quantified using ImageJ (NIH) and GraphPad Prism 7 (GraphPad Software). Two 

independent experiments were performed without randomization of sample processing, n = 

2. Researcher was not blinded to the samples identification. Differences between every 
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group mean were analyzed with one-way ANOVA and Sidak’s post hoc multiple variance 

test between selected groups, with a single pooled variance. Adjusted P values for each 

comparison are reported.

Quantitative PCR

Sorted GFP+ BV2 cells after overexpression or knock-down of PU.1 were collected as 

described for western blotting. Cell pellets were lysed in QIAzol reagent and RNA was 

isolated with RNAeasy Mini kit according to the manufacturer’s instructions (Qiagen) 

including the Dnase treatment step with RNase-free DNase set (Qiagen). Quantities of RNA 

were measured using Nanodrop 8000 (Thermo Scientific) and reverse transcription was 

performed with 1–2 µg of total RNA using High-Capacity RNA-to-cDNA kit (Thermo 

Fisher Scientific). qPCR was performed on QuantStudio 7 Flex Real-Time PCR System 

(Thermo Fisher Scientific) using Power SYBR Green Master Mix (Applied Biosystems) 

with one-step PCR protocol. 3 ng of cDNA was used for all genes except Ms4a4a when 24 

ng of cDNA was used in a 10 µl reaction volume. Primers were from PrimerBank80 or 

designed using Primer-BLAST program (NCBI) and are listed in Supplementary Table 14. 

Ct values were averaged from two technical replicates for each gene. Geometric mean of 

average Ct for the housekeeping genes GAPDH, B2M and ACTB was used as a reference 

that was subtracted from the average Ct for a gene of interest (dCt). Gene expression levels 

were log transformed (2−dCt) and related to the combined mean values of pcDNA3 and 

pGFP-V-RS-shSCR control samples in each sort giving relative expression for each gene of 

interest. Data were visualized in GraphPad Prism 7 (GraphPad Software). Four independent 

experiments were performed without randomization of sample processing, n = 4. Researcher 

was not blinded to the sample identity. Differences between means were analyzed using one-

way ANOVA and Dunnett’s post hoc multiple comparisons test between experimental and 

control groups, with a single pooled variance. Adjusted P values for each comparison are 

reported in Supplementary Table 13.

Data availability

Summary statistics for the genome-wide survival analyses are posted on the NIA Genetics of 

Alzheimer’s Disease Data Storage (NIAGADS, see URLs).

Code availability

Codes for analyses are available at a public GitHub repository (https://github.com/

kuanlinhuang/AD_SPI1_project).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic and eQTL fine-mapping of AD
(a) The AD-survival association landscape at the CELF1/SPI1 locus resembles that of SPI1 
eQTL association in monocytes and macrophages. (b) The AD-survival association 

landscape resembles that of MS4A4A/MS4A6A eQTL association in monocytes and 

macrophages.
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Figure 2. SPI1 (PU.1) expression and ChIP-Seq analysis
(a) Rs1057233G is associated with reduced SPI1 expression in a dosage-dependent manner. 

(b) The mouse homolog of SPI1, Sfpi1 or Spi1, is selectively expressed in microglia and 

macrophages in mouse brains based on the brain RNA-Seq database29–31. OPCs contain 5% 

microglial contamination. (c) SPI1 (PU.1) binds to the promoter and regulatory regions of 

CD33, MS4A4A, MS4A6A, TREM2, and TREML2 in human CD14+ monocytes based on 

ChIP-Seq data35.
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Figure 3. PU.1 modulates the phagocytic activity of BV2 microglial cells
(a) Phagocytosis of zymosan labeled with red pHrodo fluorescent dye in BV2 cells with 

transient overexpression and knock-down of PU.1 was measured by flow cytometry. 

Cytochalasin D treatment was used as a negative control. Mean phagocytic index ± SD is 

shown: pcDNA 0.7373 ± 0.1772, pcDNA + 1 µM Cyt 0.0236 ± 0.0242, FLAG-PU.1 1.2630 

± 0.2503, shSCR 1.014 ± 0.3656, shA 0.4854 ± 0.1209, shB 0.2579 ± 0.06967, shD 0.2002 

± 0.05168. F(6,13) = 14.82, pcDNA vs pcDNA + 1 µM Cyt P=0.0078, pcDNA vs FLAG-

PU.1 P=0.0295, shSCR vs shA P=0.0283, shSCR vs shB P=0.0020, shSCR vs shD 
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P=0.0010, n = 3. (b) BV2 cells were transiently transfected with pcDNA3 (pcDNA) or 

pcDNA3-FLAG-PU.1 (FLAG-PU.1) and pCMV-GFP as described for phagocytosis assay. 

Note a shift in mobility of the band for exogenous FLAG-PU.1 in overexpression condition 

compared to endogenous PU.1 in control. (c) BV2 cells were transiently transfected with 

shRNA targeting PU.1 (shA, shB and shD) or non-targeting control (shSCR) in pGFP-V-RS 

vector. GFP+ cells were sorted with flow cytometer and analyzed for levels of PU.1 in 

western blotting in two independent experiments (b, c). (d) Quantification of PU.1 levels in 

c normalized to ́-Actin as a loading control. Values are presented as mean ± SD: shSCR 

100 ± 2.10, shA 50.34 ± 9.52, shB 16.03 ± 14.72, shD 12.13 ± 10.03. F(3,6) = 70.55, shSCR 

vs shA P=0.0014, shSCR vs shB P < 0.0001, shSCR vs shD P < 0.0001, n = 2. * P < 0.05, 

** P < 0.01, *** P < 0.001, one-way ANOVA with Sidak’s post hoc multiple comparisons 

test between selected groups.
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Figure 4. Genes regulated with differential expression of Spi1 in BV2 microglial cells
qPCR analysis in transiently transfected and sorted GFP+ BV2 cells with overexpression 

(FLAG-PU.1) and knock-down (shB) of Spi1. Changes in expression levels are grouped for 

genes with altered levels after overexpression and knock-down of Spi1 in (a) and genes with 

variable expression in BV2 cells either with overexpression (b) or knock-down (c) of Spi1. 
Values are presented as mean ± SD, n = 4 samples collected independently. * P < 0.05, ** P 

< 0.01, *** P < 0.001, one-way ANOVA with Dunnett’s post hoc multiple comparisons test 

between experimental and control groups, detailed statistical analysis is reported in 

Supplementary Table 11.
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Table 1
Genome-wide survival analysis of Alzheimer’s Disease

(a) Description of Consortia samples with available phenotype and genotype data included in the genome-wide survival analysis. AAO: age at onset. 

AAE: age at last examination. (b) Summary of loci with significant (P < 5×10−8) or suggestive (P < 1×10−5) associations from the genome-wide survival 

analysis.

a

Cases Controls

Dataset N Percent
women

Mean AAO yrs
(s.d.)

N Percent
women

Mean AAE yrs
(s.d.)

ADGC 8617 58.9 74.2 (8.1) 9765 60.1 77.1 (8.4)

GERAD 2615 63.4 73.0 (8.5) 1148 62.1 76.5 (7.0)

EADI case-control study 1420 67.2 72.1 (7.1) 878 61 72.2 (7.8)

EADI longitudinal study 387 61.8 81.3 (5.6) 5416 61.1 79.3 (5.3)

CHARGE FHS 229 65.5 85.7 (6.3) 1979 54.1 80.7 (7.5)

CHARGE CHS 374 69.2 82.2 (5.0) 1675 60.6 81.1 (5.2)

CHARGE Rotterdam 764 73.2 83.1 (6.6) 4988 57.8 81.4 (6.9)

Total 14406 61.7 74.8 25849 59.6 79.0

b

SNP Major/minor Alleles MAF CHRa BP Closest Gene Logistic ORb Logistic
P value

Survival HR
(95% CI)c

Survival
P value

Heterogeneity
P value

Previously reported associated loci

rs2093761 G/A 0.2019 1 207786542 CR1 1.16 (1.12–1.20) 2.6×10−14 1.07 (1.04–1.10) 1.2×10−6 0.25

rs6431219 C/T 0.4163 2 127862133 BIN1 1.12 (1.09–1.15) 7.6×10−13 1.08 (1.06–1.10) 3.9×10−10 0.16

rs1057233 A/G 0.3194 11 47376448 SPI1/CELF1d 0.93 (0.89–0.96) 5.4×10−6 0.94 (0.91–.97) 8.4×10−6 0.86

rs7930318 T/C 0.4004 11 60033371 MS4A 0.90 (0.87–0.93) 5.1×10−11 0.93 (0.90–.95) 2.3×10−9 0.6

rs567075 C/T 0.3097 11 85830157 PICALM 0.88 (0.85–0.91) 4.3×10−14 0.91 (0.89–.94) 9.1×10−12 0.74

rs9665907 G/A 0.1133 11 121435470 SORL1 0.88 (0.83–0.93) 1.8×10−7 0.92 (0.88–.95) 5.5×10−6 0.96

rs17125944 T/C 0.0924 14 53400629 FERMT2 1.13 (1.08–1.18) 1.0×10−5 1.10 (1.06–1.14) 2.3×10−6 0.31

rs4803758 G/T 0.3551 19 45327423 APOEe 1.33 (1.30–1.37) 1.2×10−67 1.21 (1.18–1.23) 7.8×10−52 0.32
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b

SNP Major/minor Alleles MAF CHRa BP Closest Gene Logistic ORb Logistic
P value

Survival HR
(95% CI)c

Survival
P value

Heterogeneity
P value

Novel loci reaching suggestive significance

rs10919252 C/G 0.3275 1 169802956 C1orf112 1.04 (1.01–1.08) 1.1×10−2 1.10 (1.06–1.14) 8.2×10−7 0.92

rs1532244 A/G 0.0925 3 28057905 CMC1 0.95 (0.90–1.01) 6.9×10−2 0.86 (0.80–.93) 9.7×10−6 0.99

rs116341973 A/G 0.0227 3 63462893 SYNPR 1.20 (1.09–1.30) 5.4×10−4 1.23 (1.15–1.31) 2.5×10−7 0.62

rs71602496 A/G 0.1453 4 661002 PDE6B 1.02 (0.98–1.06) 3.6×10−1 1.08 (1.05–1.11) 5.0×10−6 0.11

rs1689013 T/C 0.2493 4 181048651 LINC00290 1.02 (0.98–1.06) 2.7×10−1 1.07 (1.04–1.09) 4.7×10−6 0.31

rs7445192 A/G 0.461 5 140138701 PCDHA1 NA NA 1.06 (1.03–1.08) 7.9×10−6 0.77

rs12207208 T/C 0.1034 6 40301379 LINC00951 1.07 (1.02–1.20) 1.2×10−2 1.09 (1.05–1.13) 6.8×10−6 0.78

rs17170228 G/A 0.0623 7 33076314 NT5C3A 1.07 (1.01–1.14) 2.5×10−2 1.13 (1.08–1.18) 1.0×10−6 0.94

rs2725066 A/T 0.4872 8 4438058 CSMD1 1.03 (1.00–1.06) 7.3×10−2 1.10 (1.06–1.14) 1.0×10−6 0.6

rs7867518 T/C 0.476 9 2527525 VLDLR 0.97 (0.94–1.00) 6.8×10−2 0.95 (0.92–.97) 9.1×10−6 0.79

rs1625716 T/G 0.0643 10 59960083 IPMK 0.87 (0.80–0.94) 1.0×10−4 0.88 (0.82–.94) 7.7×10−6 0.95

rs1118069 T/A 0.2805 12 84739181 SLC6A15 0.98 (0.94–1.01) 2.0×10−1 0.90 (0.86–.95) 2.7×10−6 0.8

rs11074412 A/G 0.2087 16 19833001 IQCK 0.94 (0.90–0.98) 1.9×10−3 0.93 (0.90–.96) 7.0×10−6 0.48

rs5750677 C/T 0.2885 22 39147715 SUN2 0.97 (0.93–1.00) 5.1×10−2 0.94 (0.91–.97) 5.2×10−6 0.51

a
Build 37, assembly hg19.

b
Summary statistics of the logistic regression were obtained from stage 1 of the IGAP GWAS.

c
Calculated with respect to the minor allele.

d
SPI1 is the nearest gene to rs1057233. The same locus was previously labeled as CELF1 in the 2013 IGAP GWAS paper1.

e
The nearest gene to rs4803758 is APOE.

N
at N

eurosci. A
uthor m

anuscript; available in P
M

C
 2018 January 09.



Author ManuscriptAuthor ManuscriptAuthor ManuscriptAuthor Manuscript

H
uang et al.

P
age 37

Table 2
Summary of CSF biomarker-associations of suggestive and significant AAOS-associated SNPs

Associations reaching the significance threshold after Bonferroni correction for multiple testing (P < 2.27×10−3) are bolded.

SNP CHR Closest gene Betatau Ptau Betaptau Pptau Betaab42 Pab42

Previously reported associated loci

rs2093761 1 CR1 – >0.05 1.46×10−2 2.87×10−2 – >0.05

rs6431219 2 BIN1 – >0.05 – >0.05 – >0.05

rs1057233 11 CELF1 −1.11×10−2 6.55×10−2 −1.25×10−2 2.76×10−2 1.45×10−2 8.24×10−4

rs7930318 11 MS4A −1.24×10−2 3.27×10−2 – >0.05 – >0.05

rs567075 11 PICALM −1.32×10−2 3.22×10−2 −1.24×10−2 3.13×10−2 9.10×10−3 3.88×10−2

rs9665907 11 SORL1 −1.74×10−2 4.28×10−2 −1.94×10−2 1.57×10−2 – >0.05

rs17125944 14 FERMT2 2.50×10−2 8.71×10−3 2.09×10−2 2.09×10−2 −1.79×10−2 8.90×10−3

rs4803758 19 APOE 1.61×10−2 7.42×10−3 2.01×10−2 3.75×10−4 −1.79×10−2 3.12×10−5

Novel candidate loci

rs10919252 1 C1orf112 – >0.05 – >0.05 – >0.05

rs1532244 3 CMC1 – >0.05 2.41×10−2 1.23×10−2 – >0.05

rs116341973 3 SYNPR – >0.05 – >0.05 – >0.05

rs71602496 4 PDE6B – >0.05 – >0.05 – >0.05

rs1689013 4 LINC00290 – >0.05 – >0.05 – >0.05

rs7445192 5 PCDHA1 – >0.05 1.38×10−2 9.98×10−3 – >0.05

rs12207208 6 LINC00951 – >0.05 – >0.05 – >0.05

rs17170228 7 NT5C3A – >0.05 – >0.05 – >0.05

rs2725066 8 CSMD1 1.20×10−2 4.53×10−2 – >0.05 – >0.05

rs7867518 9 VLDLR −1.58×10−2 5.83×10−3 – >0.05 – >0.05

rs1625716 10 IPMK – >0.05 – >0.05 – >0.05

rs1118069 12 SLC6A15 – >0.05 – >0.05 −1.07×10−2 1.56×10−2

rs11074412 16 IQCK – >0.05 – >0.05 – >0.05

rs5750677 22 SUN2 1.30×10−2 3.55×10−2 – >0.05 – >0.05
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Table 3
Significant cis-eQTL associations of the 22 suggestive and significant AAOS-associated SNPs

Significance threshold is determined to be 2.52×10−6 based on Bonferroni correction for multiple testing. The minor alleles are considered as the effective 

allele.

SNPID CHR Probe_Id Gene

Monocyte Macrophage

P value Beta P value Beta

rs10919252 1 ILMN_1724422 SELL 7.33×10−35 −0.65 – –

rs71602496 4 ILMN_1769751 PIGG 5.19×10−10 −0.46 9.11×10−13 −0.58

rs1625716 10 ILMN_2122953 CISD1 5.98×10−23 −1.09 7.82×10−8 −0.67

rs1057233 11 ILMN_1696463 SPI1 1.50×10−105 −1.11 6.41×10−87 −1.11

rs1057233 11 ILMN_1781184 MYBPC3 4.99×10−51 −0.83 5.58×10−23 −0.62

rs1057233 11 ILMN_1686516 CELF1 3.95×10−8 0.32 – –

rs1057233 11 ILMN_2382083 CELF1 1.13×10−7 0.31 1.31×10−4 0.25

rs1057233 11 ILMN_1652989 NUP160 1.42×10−5 −0.26 5.35×10−22 −0.62

rs7930318 11 ILMN_2370336 MS4A4A 8.20×10−28 −0.56 – –

rs7930318 11 ILMN_1721035 MS4A6A 4.90×10−23 −0.52 1.25×10−9 −0.35

rs7930318 11 ILMN_1741712 MS4A4A 1.48×10−11 −0.36 1.54×10−4 −0.22

rs7930318 11 ILMN_2359800 MS4A6A 1.94×10−10 −0.34 3.77×10−9 −0.34

rs11074412 16 ILMN_1783712 LOC400506 6.49×10−17 0.54 – –

rs11074412 16 ILMN_2081883 IQCK – – 1.22×10−12 −0.52

rs4803758 19 ILMN_2337336 PVRL2 1.52×10−8 0.30 – –

rs5750677 22 ILMN_2099301 SUN2 3.66×10−58 −0.90 3.15×10−36 −0.80

rs5750677 22 ILMN_1730879 CBY1 1.80×10−9 −0.37 – –
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