siduosnuely Joyny siapund ONd adoin3 g

siduosnuely Joyiny sispund ONd adoing g

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2018 June 11.

Published in final edited form as:
Nat Genet2018 January ; 50(1): 54-61. doi:10.1038/s41588-017-0005-8.

Molecular and functional variation in iPSC-derived sensory
neurons

Jeremy Schwartzentruber 1%, Stefanie Foskolou 2, Helena Kilpinen 3, Julia Rodrigues 1, Kaur
Alasoo 1, Andrew Knights 1, Minal Patel 1, Angela Goncalves 1, Rita Ferreira 2, Caroline
Louise Benn 2, Anna Wilbrey 2, Magda Bictash 2, Emma Impey 2, Lishuang Cao 2, Sergio
Lainez 2, Alexandre Julien Loucif 2, Paul John Whiting 24, HIPSCI Consortium
(www.hipsci.org ), Alex Gutteridge 2", and Daniel J. Gaffney 1.

Iwellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom

2pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United
Kingdom

SEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome
Campus, Hinxton, Cambridgeshire, United Kingdom

4AR-UK Drug Discovery Institute, Institute of Neurology, University College London, London,
United Kingdom

Abstract

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of usip://www.nature.com/authors/editorial_policies/license.html#terms

"Corresponding authors: Jeremy Schwartzentruber (jeremys@ebi.ac.uk), Alex Gutteridge (alex.x.gutteridge@gsk.com), Daniel
Gaffney (dgl3@sanger.ac.uk).

Present address for Jeremy Schwartzentruber: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome
Genome Campus, Hinxton, Cambridgeshire, United Kingdom

URLs

OpenTargetsyww.targetvalidation.org

CIBERSORTcibersort.stanford.edu

ENCODE,www.encodeproject.org

GTEXx, www.gtexportal.org

HIPSCI,www.hipsci.org

Author contributions

JS analyzed data, and JS and DJG wrote the manuscript. SF performed all differentiations. AGu analyzed data; AGu, DJG, and PJW
conceived and supervised the project. HK compared eQTLs with GTEx and identified tissue-specific eQTLs. JR and MP cultured
iPSC samples. AJK performed all ATAC-seq. KA and AGon assisted with data analysis. AW performed single-cell RNA work and
assisted with data analysis. RF and CLB performed RNA extraction and quantification. EI performed cell cultufé finel Ca

assays. MB assisted with experimental design artd @ax assays. LC, SL, and AJL performed electrophysiology measurements.

All authors reviewed the manuscript.

Conflicts of Interest
SF, RF, CB, AW, MB, ElI, LC, SL, AJL, PJW and AGu were all employees of Pfizer at the time the experiments were performed.

Code Availability
Code used for processing and analysing data is availabigat/github.com/js29/ipsdsn

Data Availability

RNA-seq and ATAC-seq data for open access samples are deposited in the European Nucleotide Archive under accession ERP020576.
These data for managed access samples are deposited in the European Genome Archive under accession EGAD00001003145.
Summary statistics and gene expression counts are availaiesatwww.ebi.ac.uk/biostudies/studies/S-BSST3@&mple genotypes

and accession numbers are availabletat//www.hipsci.org/data


http://www.hipsci.org/
http://www.nature.com/authors/editorial_policies/license.html#terms
http://www.targetvalidation.org/
http://cibersort.stanford.edu/
https://www.encodeproject.org/
https://www.gtexportal.org/home/
http://www.hipsci.org/
https://github.com/js29/ipsdsn
https://www.ebi.ac.uk/biostudies/studies/S-BSST16
http://www.hipsci.org/data

siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Schwartzentruber et al. Page 2

Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools to
model biological processes, particularly in cell types that are difficult to access from living donors.
We present the first map of regulatory variants in iPSC-derived neurons, based on 123
differentiations of iPSCs to a sensory neuronal fate. Gene expression was more variable across
cultures than in primary dorsal root ganglion, particularly in genes related to nervous system
development. Using single-cell RNA-sequencing, we found that the fraction of neuronal vs.
contaminating cells was influenced by iPSC culture conditions prior to differentiation. Despite
high differentiation-induced variability, using an allele-specific method we detected thousands of
guantitative trait loci (QTLs) influencing gene expression, chromatin accessibility, and RNA
splicing. Based on our QTLS, we estimate that recall-by-genotype studies using iPSC-derived cells
will require at least 20-80 individuals to detect the effects of regulatory variants with moderately
large effect sizes.

Introduction

Cellular disease models are critical for understanding the molecular mechanisms of disease
and for the development of novel therapeutics. In principle, induced pluripotent stem cell
(iPSC) technology enables the development of these models in any human cell type. Initial
uses of iPSCs for disease modelling have focused mostly on highly penetrant, rare coding
variants with large phenotypic effects1-5. However, there is growing interest in using iPSCs
to model the effects of the common genetic variants of modest effect size that drive complex
disease6. A key question is to what extent variability in directed differentiation is a barrier to
studying the effects of common disease-associated variants in iPSC-derived cells. In
addition, because cultured cells are imperfect models of primary tissues, not all common
disease-associated genetic variants also alter cell phenotypes in iPSC-derived systems.

Here, we present the first large-scale study of common genetic effects in a neuronal cell type
differentiated from human stem cells, iPSC-derived sensory neurons (IPSDSNs). Peripheral
sensory nerve fibres innervate the skin and other organs and are brought together at the
dorsal root ganglia (DRG) before synapsing with the spinal cord around the dorsal horn. The
development of efficient protocols to differentiate iPSCs into nociceptive (pain-sensing)
neurons? provides the opportunity to model common genetic effects on human sensory
neuron function, which may underlie individual differences in pain sensitivity and chronic
pain. We investigate how power to detect common genetic effects is affected by the
variability introduced by differentiation and demonstrate how initial iPSC growing

conditions influence cell phenotypes in IPSDSNs. We identify quantitative trait loci (QTLS)
for gene expression, RNA splicing, and chromatin accessibility and identify overlaps
between molecular QTLs and common disease associations. In generating this gene
regulatory map we establish effective techniques for using iPSC-derived neurons to model
molecular phenotypes relevant to common diseases.
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Results

Sensory neuron differentiation and characterisation

We obtained 107 IPS cell lines derived from unrelated apparently healthy individuals by the
HIPSCI resource8, and followed an established small molecule protocol7 to differentiate
these into sensory neurons of a nociceptor phenotype (Figure 1a , Supplementary Tables
1-3). We performed 123 differentiations; 13 using an early version of the protocol (P1)
which was subsequently refined (P2) to reduce the number of differentiation failures. After
QC exclusions (Supplementary Figure 1), we had gene expression data for 119
differentiations from 100 unique iPSC donors; all analyses apart from QTL calling focused
on the 106 P2 protocol samples only.

We clustered our gene expression data with 239 iPSC samples from the many of same
donors, 28 post-mortem DRG tissue samples from 10 donors, and 44 primary tissues from
the GTEX project9 (Figure 1b). Globally, IPSDSN samples showed greatest similarity to
iPSCs (gene expression correlation Spearnpr@ng9), followed by DRGH=0.84). Because
different gene expression quantitation methods were used in GTEX, we cannot be certain of
relative similarities between GTEX tissues and the samples we uniformly processed
(IPSDSNs, iPSCs, DRG). The similarity to iPSCs may reflect lack of maturity in IPSDSNs,
which is a well-recognized problem with iPSC-derived cells10-13. We also note that
because the same iPSCs were differentiated to IPSDSNs, both donor genetic background
and cell culture effects may contribute to the observed similarity. Despite this, key sensory
neuronal marker genes were highly expressed in IPSDSNs, while pluripotency genes were
not (Figure 1c). Using G4 flux measurements on a subset of differentiated cultures (n=31)
we confirmed that the cells consistently responded to sodium ion channel modulators
veratridine and tetrodotoxin (Supplementary Figure 2). Patch-clamp electrophysiology on
616 individual neurons from 31 donors (Supplementary Figures 3,4) showed that the
distribution of rheobases was comparable to those obtained from primary DRG cells, but
with significant variation between donors (Supplementary Figure 5).

Quantifying differentiation variability using single-cell RNA-seq

In previous work we showed that not all individual cells express neuronal marker genes after
differentiation7. Samples also appeared to differ visually in the fraction of cells with a
neuronal morphology. To characterize this heterogeneity, we sequenced 177 IPSDSN cells
from one individual and clustered them based on expression profiles using SC314. The data
were best explained by two clusters (Figure 2a and Supplementary Figure 6), with 63% of
cells forming a tight cluster expressing sensory-neuronal geneS@\A CHRNBJ,

and the remaining 37% of cells forming a looser cluster expressing genes typical of
fibroblasts (e.g. MSN, VIM). The two cell types also separated cleanly in a principal
components plot (Supplementary Figure 7), indicating that the cells differentiated to distinct
cell states. Gene expression in the neuronal cluster was most similar to DRG (Spearman’s
p=0.654), followed by iPSC$£0.609) (Supplementary Figure 8) while the fibroblast-like
cluster was most similar to GTEX fibroblagts(.683), DRG =0.662), and iPSCs

(p=0.653).
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Next, we used CIBERSORT15 to estimate the fraction of RNA from neuronal cells in our
bulk RNA-seq samples, using the single-cell gene expression counts as signatures of
neuronal or fibroblast-like expression. The estimated neuronal content correlated strongly
(R2=0.75) with the first principal component of gene expression, and this corresponded well
with a visual assessment of neuronal content from microscopy images (Figure 2b,
Supplementary Figures 9,10). Although CIBERSORT estimated relatively high fibroblast-
like content for many samples (mean 49%), a factor contributing to this may be the greater
RNA content (2.3-fold greater; Supplementary Figure 11) of fibroblast-like cells. Indeed
when the single-cell counts were pooled, CIBERSORT estimated the fibroblast content of
this “sample” as 60%, considerably higher than the 37% of single cells in the fibroblast-like
cluster. Despite this, IPSDSN samples estimated to have high fibroblast content still showed
greater similarity in genome-wide gene expression with DRG than with any GTEXx tissue,
including fibroblast cell lines (Supplementary Figure 12).

Heterogeneity in IPSDSN gene expression

A central issue for genetic studies in iPSC-derived cells is heterogeneity of cellular
phenotypes. This heterogeneity could arise from donor genetic background, effects of clonal
selection and effects of the cell culture environment during reprogramming and
differentiation. Genome-wide gene expression was highly correlated within lines
differentiated multiple times (median Spearnpa.96) and reduced slightly between

IPSDSNs from different donors (medipn0.93) (Supplementary Figure 13). However,
differentiation replicates within donor cell lines did not consistently cluster together
(Supplementary Figure 14), suggesting that variability due to differentiation was at least as
large as that due to donor genetic background and iPSC reprogramming together. Indeed, we
observed a high degree of heterogeneity in the expression levels of some genes compared
with DRG (Figure 1c and Supplementary Figure 15). These observations were independent
of sample size, and were robust when comparing with DRG samples from unique donors
only (Supplementary Figure 16).

Next, we compared between-sample variability in global gene expression of IPSDSNSs,
measured as the coefficient of variation (CV) for each gene, to other somatic tissues and cell
lines. The distribution of gene CVs in IPSDSNs (median CV=0.37) fell within the range of
most GTEX tissues (Figure 3a), but was considerably higher than in DRG (median
CV=0.23), indicating that IPSDSNs have greater between-sample variability in expression
than the primary tissue they are intended to model. Highly variable genes in IPSDSNs were
enriched for function in neuronal differentiation and development (Supplementary Table 4),
whereas developmental genes were not highly variable in DRG, iPSCs, or GTEx nervous
tissues (Supplementary Figure 17). Genes that were significantly upregulated between iPSCs
and IPSDSNSs, which includes those essential for sensory neuronal function, were also more
variable than remaining genes (Supplementary Figure 18). These results highlight that
expression of neuronal genes varies substantially more in IPSDSNSs than in somatic nervous
tissue, probably as a result of variability in differentiation. Consistent with this, variance
components analysis (Figure 3b, Supplementary Figure 19) showed that more variation was
explained by differentiation batch (median 24.7%) than donor/iPSC line of origin (median
23.3%), which includes both donor and reprogramming effects.
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iPSC culture conditions influence cell fate

Our variance components analysis suggested that starting iPSC cell culture conditions
influenced gene expression patterns in the IPSDSNs produced four weeks later (Figure 3).
Of the 106 successful P2 protocol differentiations, 27 were from iPSCs maintained on
mouse embryonic fibroblast (MEF) feeder cells (feeder-iPSCs), while the remaining 79 were
grown in Essential 8 medium (E8-iPSCs). The first principal component (PC) of iPSC gene
expression clearly differentiated feeder- and E8-iPSCs (Figure 3e), indicating that culture
conditions are among the largest global effects on transcription. Similarly, PC1 of gene
expression in IPSDSNSs distinguished samples originating from feeder- and E8-iPSCs;
moreover, IPSDSNs from E8-iPSCs had higher neuronal content (Figure 3f, 28% higher for
E8-iPSCs, t-test p=1.84xH). A possible technical explanation for these results is that
protocol implementation and batch effects changed subtly over the course of the project.
However, the difference in neuronal content between IPSDSNSs derived from E8 or feeder-
iPSCs remained when sample derivation date was included as an explanatory covariate
(linear regression p=6.5x1) 36% higher for E8-iPSCs, Supplementary Figure 20).

Next, we determined genes that were differentially expressed between E8- and feeder-iPSCs
(Figure 3c,d). Genes upregulated in feeder-iPSCs were strongly enriched for mesenchyme
development, stem cell differentiation, and Wnt and PG&#gnalling (Supplementary

Tables 5-7). Notably, inhibition of TGB,SMAD signalling is a key step in sensory

neuronal differentiation. Top differentially expressed genes include early developmental
regulatorsEMX1 (15-fold higher in E8-iPSCs), important for specific neuronal cell fates,

and BMPZ2(13-fold higher in feeders), which has been shown to suppress differentiation to
sensory cell fates by antagonizing Wnt/beta-catenin16 (Figure 3e). In addition, sensory
neuronal markerSCN9Aand TAC1 were expressed at low levels in iPSCs, with 2.2-fold

and 2.9-fold higher expression in E8-iPSCs. We also considered genes differentially
expressed between IPSDSNs derived from E8- and feeder-iPSCs (Figure 3d). Genes
upregulated in IPSDSN samples from feeder-iPSCs were overrepresented in extracellular
matrix components, pattern specification, and Wnt signalling (Supplementary Tables 8-10,
Figure 3f). Genes upregulated in IPSDSN samples from E8-iPSCs were overrepresented in
ion channel complexes, peripheral nervous system development, and synapse organisation.
These differences likely reflect the increased neuronal content of samples from E8-iPSCs.
Together these results suggest that iPSCs are primed towards different cell fates depending
on the iPSC culture medium.

Since iPSC culture conditions influenced differentiation outcomes, we examined gene
expression variability within subsets of IPSDSN samples. IPSDSNs differentiated from
feeder-iPSCs had somewhat higher global gene expression variability, yet those from E8-
iPSCs were still highly variable relative to DRG and iPSCs (Supplementary Figure 21), with
neuronal and developmental gene sets enriched for highly variable genes (Supplementary
Table 11).
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Genetic variants influence gene expression, splicing and chromatin accessibility in
Sensory neurons

Using a linear model (FastQTL17), we mapped 1,403 expression quantitative trait loci
(eQTLs) at FDR 10%. This humber of eQTLs was lower than in GTEXx tissues of
comparable sample size (Supplementary Figure 22), suggesting that we may have reduced
power for eQTL discovery due to variability introduced by differentiation. Using an allele-
specific method18 we detected 3,778 genes with expression-modifying genetic variants,
termed eGenes, at FDR 10% (Supplementary Table 12). Notably, the improvement in power
from using allele-specific signals was greatest among genes with high variability across
samples (Supplementary Figure 23).

We next compared our eQTLs with GTEX. When clustering tissues based on the pairwise
correlation in eQTL effect sizes, IPSDSNSs clustered most closely with GTEXx brain tissues,
while also showing elevated correlation with GTEX fibroblasts (Supplementary Figure 24).
Of all 3,778 eGenes, 954 showed little or no association in GTEx v6p (Supplementary Table
13), and these included genes with known involvement in pain or neuropathies, such as
SCNIA GRIN3A andNTRKZ, suggesting that these genes have regulatory variants with
IPSDSN-specific function.

Variants affecting gene splicing (sQTLs) often change either protein structure or context-
dependent gene regulation, and may be more enriched for complex trait loci than are
eQTLs19. Using the annotation-free method LeafCutter20 followed by FastQTL17 we
discovered QTLs for 2,079 alternative splicing clusters at FDR 10% (Supplementary Table
14). Notably, only 538 (26%) of the lead variants for these splicing associations were in
linkage disequilibrium (LD)#>=0.5 with an eQTL in our dataset, indicating that these
sQTLs are not merely proxies for gene-level eQTLs (or vice versa).

We collected ATAC-seq data for 31 samples21 and used this to map 6,318 chromatin
accessibility QTLs (caQTLs) at FDR 10% (Supplementary Table 15). Using the LOLA
Bioconductor package22 we found strong enrichment of our tissue-specific lead QTL SNPs
(relative to GTEx lead SNPs) within SMARCB1 and SMARCC2 peaks (odds ratios 5.8 and
14.1; p < 5x16, Supplementary Tables 16,17), which are both members of the neuron-
specific chromatin remodeling (nBAF) complex23. IPSDSN eQTLs and ATAC-seq peaks
were enriched for ELK1 and ELK4 bidning, as well as c-Fos, a target of ELK1 and ELK4
which is widely expressed but is known to have specific functions in sensory neurons24,25
(Supplementary Table 18).

Sensory neuron QTLs overlap with complex trait loci

While we were interested in comparing our QTLs with GWAS for pain, the largest such
GWAS to date included just 1,308 samples and found no associations at genome-wide
significance26. We therefore considered all GWAS catalog associations with p& that0

were in high LD (£ > 0.8) with a QTL in our dataset, to (a) determine whether any GWAS
traits are enriched overall for overlap with sensory neuron QTLS, and (b) to find individual
QTLs that were strong candidates to mediate a GWAS association. Overall, IPSDSN eQTLs
were enriched for overlap with GWAS catalog SNPs (p<0.001) relative to 1000 random sets
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of SNPs matched for minor allele frequency, distance to nearest gene, gene density, and
LD27, and the overlap was consistent with that seen for eQTL studies in other tissues
(Supplementary Figure 25). Although nociceptive neurons are specialized for sensing pain
signals, we might expect enrichment for traits known to involve the nervous system more
generally. However, among the 41 traits with at least 40 GWAS catalog associations, no trait
had significantly greater overlap with our QTLs than other traits after correcting for multiple
testing (Supplementary Table 19).

Across all traits, we found 156 eQTLs overlapping at least one GWAS association, and
similarly 129 sQTLs and 172 caQTLs with GWAS overlap (Supplementary Tables 20-22).
Among overlapping associations we found a number that relate to neuronal diseases. One
striking overlap is between an eQTL f8NCA encoding alpha synuclein, and Parkinson’s
disease, for which a likely causal variant was recently identified10. The lead GWAS SNP
and our lead eQTL are both in perfect LD with rs356168, in an intr&iiMafA Soldner et

al. used CRISPR/Cas9 genome editing in iPSC-derived neurons to show that rs356168 alters
both SNCAexpression and binding of brain-specific transcription factors10. In IPSDSN
cells we found that the G allele of rs356168 increa®® @A expression 1.14-fold, in line

with their report of 1.06- to 1.18-fold increases in neurons and neural precursors. Despite
residing in a visible ATAC-seq peak in our data, rs356168 was not a caQTL (raw p=0.22).
eQTLs for SNCA are reported in GTEXx (v6p), but none of the tissue lead SNPs are f1 LD (r
> 0.2) with rs356168, suggesting that this SNP’s effect can be more readily detected in
IPSDSNSs and the frontal cortex tissue and iPSC-derived neurons studied by Soldner et al.

We also found multiple compelling overlaps between splice QTLs and GWAS associations
(Figure 4). A strong sQTL foTNFRSF1A(p=9.9x10%) has the same lead SNP

(rs1800693) as a multiple sclerosis association. This SNP has been experimentally shown to
cause skipping of exon 6, which results in a truncated, soluble form of TNFR1 that appears
to reduce TNF287NFRSF1Ais highly expressed (>15 FPKM) in both IPSDSNs and in

DRG, as well as in cells of the immune system. TNF signalling has been shown to have both
inflammatory and neuroprotective effects in the CNS and, despite a large body of research,
the exact mechanisms and cell types responsible for the genetic risk associated with TNF
receptor polymorphisms remain unclear29.

An sQTL for S/PA1L2(rs16857578) is in LD with associations for both Parkinson’s disease
(rs10797576,%4=0.93) and blood pressure (rs115898280r94). An unannotated

noncoding exon (chr1:232533490-232533583) between alteri&’4l/ Zpromoters is
included in nearly 50% of transcripts in individuals with the reference genotype, but splicing
in of the exon is abolished by the variant (Figure 4b). SIPA1L2, also known as SPAR2, is a
Rap GTPase-activating protein expressed in the brain and enriched at synaptic spines30
though its function is not yet clear. Interestingly, the related protein SIPA1L1 exhibits an
alternative isoform with an N-terminal extension that is regulated post-translationally to
influence neurite outgrowth31.

A complex sQTL forAPOPT1(rs4906337) is in near-perfect LD with a schizophrenia
association (rs12887734). The splicing events involve skipping either of exon 3 only or both
exons 2 and 3 (Figure 4c). At least 20 variants are in high4.®@r9), including
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rs4906337, 40 bp from the exon 3 acceptor splice site, and rs2403197, 63 bp from the exon 4
donor splice site. APOPTL1 is localized to mitochondria, and homozygous loss-of-function
mutations lead to Cytochrome c oxidase deficiency, with affected individuals having variable
motor and cognitive impairments and peripheral neuropathy32.

Recall-by-genotype studies in iPSC-derived cells will require large sample sizes

One attractive use of iPSCs is to experimentally characterise GWAS loci using a “recall-by-
genotype” approach. Here, iPSC lines with specific genotypes are chosen from a large bank
and differentiated into target cell types (for example, see ref.12). Our observations suggested
that the cellular heterogeneity introduced by differentiation could impact the power of these
studies to detect the effects of common genetic variants. Importantly, our large set of
differentiations gave us accurate genome-wide estimates of effect size and expression
variability in an iPSC-derived cell type. We investigated the performance of iPSC-based
recall-by-genotype studies by bootstrap resampling from a stringent (FDR 1%) IPSDSN
eQTL call set. For each eGene we sampled expression counts from an equal number of
major and minor homozygotes for the lead SNP, sampling with replacement to achieve a
specific sample size. We then estimated power as the fraction of 100 bootstrap replicates
with a significant difference (p<0.05, two-tailed Wilcoxon rank sum test) in expression
between homozygotes.

Our results illustrate important trends. First, recall-by-genotype studies in iPSC-derived cells
are likely to require relatively large sample sizes, typically 20-80 unrelated individuals, for
variants with a 1.5 to 2-fold allelic fold change (Figure 5a). Second, highly variable genes
are more challenging, with power below 40% in a sample size of 20 for even moderately
variable genes (CV 0.5 - 0.75). While expression noise will not typically be known
accuratelya priorj an estimate of effect size may be available from previous eQTL studies,

in principle enabling estimation of the sample size required to achieve a desired power.

Note that these power estimates assume that a single gene is being tested, which implies a
very strong prior belief in the causal gene in the region. Where multiple genes are tested,
power will be further reduced. Large sample sizes will likely also be required when using
genome editing to identify causal GWAS-associated variants: although genetic background
can be controlled in such an experiment, differentiation noise will continue to be a major
contributor to gene expression variability.

Discussion

iPSC-derived cells enable the molecular mechanisms of disease to be studied in relevant
human cell types, including those which are inaccessible as primary tissue samples. Because
the effect sizes of common disease-associated risk alleles tend to be small, observing their
effects in cellular models is challenging10,11. In an iPSC-based system, this difficulty is
compounded by variability between samples in the success of differentiation, as described
for hepatocytes33, hematopoietic progenitors34, and neurons35,36.

Our study is the first that we are aware of to perform iPSC differentiation to a neuronal cell
type and functionally characterise the resulting cells at scale. Sample-to-sample variability in
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gene expression in the iPSC-derived cells was greater than in DRGs, with highly variable
genes enriched in processes relating to neuronal differentiation and development. This
highlights that genes likely to be of particular interest and relevance for the function of these
cells are also among the most variable, a challenge which may be broadly true of iPSC-
derived cells. We detected thousands of eQTLs, sQTLs, and caQTLs in IPSDSNSs, using a
model that combines allele-specific and between individual differences in expression to
improve power for association mapping. Some of these overlap known expression-

modifying variants associated with disease, such as an eQTL for SNCA associated with
Parkinson’s disease. However, for most of these disease overlaps the causal variants are not
known, and await in-depth dissection of individual loci in iPSC-derived neurons.

Our study highlights the potential power of iPSC-derived cells for studying human genetic
variation, but also illustrates the limitations of this approach. First, despite expressing key
marker genes and exhibiting neuronal morphology and electrophysiology, IPSDSNs are
transcriptionally distinct from DRG. This reflects a limitation of existing in vitro

differentiation protocols, which produce cells that are not as functionally or transcriptionally
mature as primary tissues. Second, our differentiations did not produce pure populations of
neurons. Although we used single-cell RNA-seq to estimate neuronal content in bulk
IPSDSN samples, we could not measure the purity of the resulting cultures precisely. Some
of the sample-to-sample variability that we observed is likely due to this mixture of cell
types, which varied across differentiations. Mature neurons can be labeled for marker genes,
but are not easily sorted by automated systems, which limits the high-throughput options
available for purifying neuronal populations. As a result, our QTLs do not represent those of
a pure sensory neuronal cell type. For many cell types, sorting could provide one solution to
the heterogeneity of differentiated cell populations.

The similarity of the fibroblast-like single cells to DRG raises the question of whether these
cells are immature sensory neurons. Single-cell sequencing at multiple time points during
MYOD-mediated myogenic reprogramming has suggested that some cells traverse a desired
course, while others terminate at incomplete or aberrant reprogramming outcomes37. Such
an approach in IPSDSNSs could reveal determinants of neuronal differentiation trajectories,
and may yield insights for protocol changes to improve the purity of differentiated neurons,
or to specify more precise neuronal subtypes. More generally, replacing bulk RNA-seq with
single-cell sequencing across many samples could eimaf#éco sorting of cells based on

their transcriptome, and better characterisation of the sources of variation within a
differentiated population of cells. Further, culturing cells from multiple donors in a pool,
along with an scRNA-seq readout, could reduce differentiation-related batch effects while
retaining the ability to identify donor-specific genetic effects on gene expression. These
advantages suggest to us that a move towards scRNA-seq will be extremely useful in iPSC-
derived cell models.

For iPSC models of common disease-associated variants to be used effectively, it is critical
to know which variants exhibit a detectable cellular phenofypetro. We estimated the

sample sizes needed to detect the effects of regulatory variants in iPSC-derived cells using a
recall-by-genotype design. Power above 80% is only achieved with surprisingly large (40+)
samples, even for alleles with a fold change of 1.5 to 2. Even larger samples will be needed
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when multiple genes in a GWAS interval are tested. These observations are consistent with a
recent genome-editing experiment that required 136 differentiations in hepatocyte-like cells
to discover an effect of rs12740374 SOWRTIgene expression12. Notably, the modest

effect of this variant on expression in hepatocyte-like cells (1.3-fold increase) stands in
contrast to the large effect of the variant (>=4-fold increase) observed previously in primary
liver38. Protocol changes that Where it is possible to use a coding SNP to assess the allele-
specific effect of a genome edit, as doneSAfCALO, this may prove a more efficient

approach to detecting causal effects of individual regulatory variants. In the future, improved
differentiation protocols that show reduced variability will also enhance the ability to detect
regulatory variant effects.

In summary, our catalog of QTLs reveals a large set of common variants and target genes
with detectable effects in iPSC-derived neurons. These associations provide promising
targets for functional studies to fine-map causal disease-associated alleles, such as by allelic
replacement using CRISPR-Cas9, and our study describes the importance of considering
differentiation-induced variability when planning these studies in iPSC-derived cells.

Online methods

IPS cell lines

A summary of iPSC lines used is available in Supplementary Table 2, and details of
processes and assays for these iPSCs generated by the HIPSCI project are available at
www.hipsci.org Briefly, 107 human iPSCs from 103 healthy donors were obtained from
HIPSCI8. Of these, 38 were initially grown in feeder-dependent medium and the remainder
were grown in feeder-free E8 medium. All HIPSCI samples were collected from consented
research volunteers recruited from the NIHR Cambridge BioResdutpe/(
www.cambridgebioresource.org)linitially under existing ethics for iPSC derivation (REC
Ref: 09/H0304/77, V2 04/01/2013), with later samples collected under a revised consent
(REC Ref: 09/H0304/77, V3 15/03/2013).

Sensory neuron differentiation

All differentiations in this study were performed by a single individual, and a summary of

the IPSDSN cell lines is in Supplementary Table 1. Two protocols were used, nhamed P1 (13
differentiations) and P2 (110 differentiations). P1 protocol samples were included for QTL
calling, and other analyses used P2 protocol samples exclusively. The P1 protocol (described
in7) involved the addition of “2i” inhibitors (LDN193189 and SB-431542) for 5 days,

followed by “5i” inhibitors (LDN193189, SB-431542, CHIR99021, DAPT, SU5402) for 6

days. When applying this protocol to a larger number of samples we observed excessive cell
death prior to obtaining neural progenitors (days 9-12). We altered the protocol to make it
more similar to that of Chambers et al.39, by:

. using E8 rather than mTeSR1 media when maintaining iPSCs prior to
differentiation;

. phasing in neurobasal media beginning at day 4, and gradually increasing this to
100% by day 11,
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. beginning addition of inhibitors 5i at day 3 rather than day 5;

. stopping addition of small molecule inhibitors LDN193189 and SB-431542
beginning at day 7 rather than day 11, referred to as “3i” for the 3 inhibitors that
continued to be added.

Functional assays (€aflux, response to Veratridine) confirmed that response of the
sensory neurons produced by each protocol was equivalent; however, the P2 protocol
performed more consistently across cell lines and culture parameters.

P2 protocol— All reagents were from Life Technologies unless otherwise indicated.
Clump-passaged iPSCs were single-cell seeded in E8 media on growth factor-reduced
Matrigel (BD Biosciences) 48 hours prior to neural induction (day 0). KSR Media was
prepared as 500ml DMEM-KO 130 ml Knockout Serum Replacement Xeno-Free, 1x
NEAA, 1x Glutamax, 0.01 mN¢-mercaptoethanol (Sigma). KSR media containing small
molecule inhibitors LDN193189 (100 nM) and SB-431542 (10 uM) was added to cells from
day 0 to 3 to drive anterior neuroectoderm specification. From day 3, CHIR99021 (3 uM),
DAPT (10 uM) and SU5402 (10 puM) were also added to further promote neural crest
phenotypes. N2B27 media was progressively phased in every two days from D4. N2B27
Media was prepared as 500 ml Neurobasal medium, 5 ml N2 supplement, 10 ml B27
supplement without vitamin A, 0.01lmptmercaptoethanol (Sigma) and 1x Glutamax. On
day 7, inhibitors LDN193189 and SB-431542 were no longer used, while CHIR99021,
DAPT, and SU5402 continued to be added. On day 11 cells were reseeded at 150,000
cells/cm2 in maturation media containing N2B27 media with human-b-NGF, BDNF, NT3
and GDNF (each at 25 ng/ml). Mitomycin-C treatment (1 pg/ml) was used once at day 14
for 2 hrs to reduce the non-neuronal population. Cells were differentiated in T25 flasks for
RNA and nuclei isolation, and onto coverslips and 96-well plates for electrophysiology and
Ca*-flux assays.

P1 protocol— All reagents and concentrations used were identical to the P2 protocol; the
difference was timing of addition. Clump-passaged iPSCs were single-cell seeded in
mTeSR1 iPSC (StemCell Technologies, Vancouver) media on growth factor-reduced
Matrigel (BD Biosciences) 48 hours prior to neural induction (day 0). KSR media
containing LDN193189 and SB-431542 was added to cells from day 0 to 5. From day 5,
CHIR99021, DAPT and SU5402 were also added. As for the P2 protocol, cells were
reseeded on day 11, and treated with Mitomycin-C on day 14.

Single-cell RNA sequencing

Full details are in the Supplementary Note. Briefly, blood-derived iPSCs from a single
individual, who was not a HIPSCI donor, were differentiated to IPSDSNs in 3 batches using
the P2 protocol, and were matured for 8 weeks. This differed from the bulk RNA-seq
samples, which were matured for 4 weeks. Although gene expression changes are minor
after 4 weeks maturation?, this difference in maturity may have influenced our estimates of
neuronal content in bulk samples. Dissociated cells were prepared using a Fluidigm C1 and
the lllumina Nextera XT kit, and sequenced by Illumina Nextseq500 (2x75bp). Reads were
aligned to GRCh38 and Ensembl 80 transcript annotations using STAR v2.4.0d with default
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Genotypes

parameters. We excluded 9 cells expressing fewer than 20% of the ~56,000 quantified genes,
and then used SC314 to cluster the remaining 177 cells based on expression counts. We
examined alternative numbers of clusters from k=2 to 5 (Supplementary Figure 6). With two
clusters, marker genes clearly identified one cluster (111 cells) as neuronal, whereas the
other cluster (66 cells) had high expression of extracellular matrix genes reminiscent of
fibroblasts. With 3 and 4 clusters, the sensory-neuronal cell cluster remained unchanged, and
the fibroblast-like cluster became further subdivided. This suggests that a majority of the

cells in this sample were terminally differentiated into sensory neurons, whereas the
remaining cells were more heterogeneous in their gene expression.

We obtained imputed genotypes for all of the samples from the HIPSCI project. We used
CrossMap lfttp://crossmap.sourceforge.ndtd convert variant coordinates from GRCh37 to
GRCh38, and used bcftoolstip://samtools.github.io/bcftoo)sto retain only bi-allelic
variants (SNPs and indels) with INFO > 0.8 and MAF > 0.05 in the 97 samples used for
QTL calling.

RNA sequencing

The 131 RNA samples corresponded with 103 unique HIPSCI donors, as some samples
were differentiation or RNA-extraction replicates. One sample failed in sequencing and was
excluded. For QTL analyses, reads for each sample were aligned to GRCh38 and Ensembl
79 transcript annotations using STAR v2.4.0j with default parameters. Using VerifyBamID
v1.1.2 40 we identified 5 mislabeled RNA samples for which the matching genotypes could
be determined, as well as two samples with no matching genotypes and which were thus
excluded. For comparisons among tissues, reads were aligned to the 1000 Genomes
GRCh37d5 reference with Gencode v19 transcript annotations using STAR 2.5.3a.

Gene expression quantification, quality control and exclusions

Gencode Basic transcript annotations, GRCh38 release 79, were downloaded from
www.gencodegenes.arGene expression was counted for uniquely mapping reads using
featureCounts (v1.5.0)41 with options (-s 2 -p -C -D 2000 -d 25). A median of 45 million
reads were generated per sample, with median 32.8 million reads (72%) uniquely mapping
and assigned to genes. After excluding short RNAs and pseudogenes, we normalised
expression counts for 35,033 genes using the R package cqn v5.0.242.

We determined pairwise correlation between samples using normalized counts for 14,215
expressed genes (CQN > 1) and the first five principal components of gene expression
against each other. We excluded four outlier samples from subsequent analyses
(Supplementary Figure 1), leaving 126 samples from 97 donors. For QTL calling, replicate
BAM files from same donor were merged together using samtools.

To assess gene expression replicability, we determined the spearman correlation coefficient
of CQN-normalized expression between samples across all genes for (a) extraction
replicates, (b) differentiation replicates, and (c) all possible pairs of samples from different
donors, and plotted the histogram of correlation coefficients in Supplementary Figure 13.
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DRG samples and sequencing

Human tissue acquisition and handling was performed at Pfizer Neuroscience and Pain
Research Unit in accordance with regulatory guidelines and ethical board approval.
Postmortem human DRG were obtained in dissected form from Anabios or as an
encapsulated sheath together with sensory/afferent axons from National Disease Research
Interchange and were subsequently dissected to isolate the cell-body rich ganglion. The
tissue was homogenised in QIAzol Lysis Reagent according to weight and processed
according to the manufacturer's instructions for the Qiagen RNeasy Plus lipid-rich kit. RNA
was prepared with the lllumina TruSeq Stranded mRNA Library Prep Kit and sequenced
(2x100 bp reads) on lllumina HiSeq 2500. Reads were aligned to GRCh37 using STAR and
gene counts and FPKMs obtained using featureCounts and Ensembl v75 gene annotations.

Highly variable genes in IPSDSNs and GTEXx

For each of the 44 GTEX tissues, as well as IPSDSNs, DRG, and HIPSCI iPSCs, we
calculated the coefficient of variation (CV) of each gene’s RPKM expression among

samples of the same tissue (SMTSD in GTEx metadata). In each tissue, we subsetted the
genes considered to those expressed at RPKM > 1. We plotted the distribution of CVs across
all genes for each tissue as Figure 3a.

We used GeneTrail2{tps://genetrail2.bioinf.uni-sb.jléo do a gene set over-representation
analysis for the top 1000 most variable genes in IPSDSNs by CV (Supplementary Table 4).
Similarly, gene set over-representation analysis in E8-IPSDSN subsets was done using
Genetrail2 and the top 1000 most variable genes with RPKM > 1 (Supplementary Table 11).

Variance components analysis

For Figure 3b, we selected the 106 P2 protocol IPSDSN samples after QC exclusions, and
used DESeq2 to get FPKM values for each gene after size factor normalization. We included
all genes with mean FPKM > 1, and input log2-transformed counts per sample into the
variancePartition R package, with design formula (1|donor) + (1|differentiation) + (1|gender)
+ (1|wasFeeder). We plotted the distribution of variance explained for each gene across the
four above factors, with unexplained variance shown as “residuals”. For Supplementary
Figure 19a, we included 119 QC-passed samples, and used variancePartition as above, but
with protocol in the design formula. For Supplementary Figure 19b, we used 18 samples, for
which we had 3 differentiation replicates from each of 6 donor cell lines; all 6 iPSC lines
were from females and had been cultured in E8 medium. We therefore included only donor
and differentiation in the design formula.

Estimation of neuronal purity

We used CIBERSORT15 to estimate the fraction of RNA from neuronal cells in our bulk
RNA-seq samples. We used the 14,786 genes with mean CQN expression > 0 in bulk RNA
samples, and retrieved raw counts for these genes in our scRNA-seq data. We labeled the
single-cell counts as “neuron” or “fibroblast-like” based on the SC3 clustering, and used
these as reference samples for CIBERSORT to generate custom signature genes. We used
raw expression counts for the same genes for our 126 bulk RNA-seq samples as the mixture
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file for CIBERSORT to use in estimating the relative fractions of neuron and fibroblast-like
cell RNA.

Correlation of iPSC and IPSDSN gene expression with cell culture conditions

QTL calling

We selected the 106 IPSDSN samples differentiated with the P2 protocol, as well as the 87
iPSC samples these were derived from and for which we had RNA-seq data, and we used
DESeq?2’s variance stabilising transformation on the raw gene expression counts. We
computed the first 5 principal components of gene expression separately in iPSC and
IPSDSNSs, and used corrplot to compute pairwise correlations among these PCs and sample
metadata: gender, iPSC passage number, iPSC culture conditions (wasFeeder), iPSC
PluriTest score, IPSDSN fibroblast content, and IPSDSN processing date.

We determined differentially expressed genes between feeder-iPSCs and E8-iPSCs using
DESeq2, using expression counts for genes with median FPKM > 0.1 across iPSC samples
(Supplementary Table 5). We removed associations driven by outliers, defined as a
maximum Cook’s distance >= 5. Similarly, we determined differentially expressed genes in
IPSDSNs derived from either feeder-iPSCs or E8-iPSCs (Supplementary Table 8), again for
genes with median FPKM > 0.1. We used GeneTrail®$://genetrail2.bioinf.uni-sb.)jio

do a gene set over-representation analysis for the 717 genes with expression at least 2-fold
higher in feeder-iPSCs than E8-iPSCs, and similarly for the 631 genes at least 2-fold higher
in E8-iIPSCs (Supplementary Tables 6, 7). We did an equivalent gene set over-representation
analysis for the 1,159 genes with expression at least 2-fold higher in IPSDSNs differentiated
from feeder-iPSCs, and also for the 958 genes at least 2-fold higher in IPSDSNs from E8-
iPSCs (Supplementary Tables 9, 10).

To determine genes upregulated on differentiation from iPSCs to IPSDSNs, we first selected
the 19,658 genes with expression FPKM > 1 in at least two samples (iPSC or IPSDSN). We
used DESeq2 as before, removing genes with maximum Cook’s distance > 5, identifying
4,246 differentially expressed genes at FDR 1%.

Full details of QTL calling are provided in the Supplementary Note. Briefly, to call cis-
eQTLs, we first determined allele-specific read counts for each SNP within gene exons
using GATK’s ASEReadCounter43. We used RASQUAL'’s makeCovariates.R to identify 12
gene expression PCs to use as covariates. We ran RASQUAL18 with option --no-posterior-
update for each of 35,033 genes, testing SNPs and indels (MAF > 0.05, INFO > 0.8) within
500 kb of the gene transcription start site. For each gene we applied Bonferroni correction to
the p values based on the number of independent tests estimated by EigenMT44. We ran
RASQUAL with option --random-permutation call QTLs after permuting sample labels, and
noted the minimum EigenMT-corrected p value per gene. To determine the FDR for eQTL
discovery at a given gene, we computed (#permuted data min pvalues < p) / (#real data min
p values < p), where p is the minimum p value among SNPs for the gene in question. For
QTL calling with FastQTL, we used CQN-transformed gene expression (cgn v5.0.242) with
a cis-window of 500 kb, including 20 PCs as covariates. We determined tissue-specific
IPSDSN genes (nhot in GTEX) using a protocol described for the HIPSCI project8.
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To call ATAC-seq QTLs, we used featureCounts v1.5.0 to count fragments overlapping
consensus ATAC-seq peaks and ASEReadCounter to count allele-specific reads at SNPs
within peaks. We ran RASQUAL for each of 381,323 peaks, testing SNPs and indels within

1 kb of the center of the peak. Since >99.9% of peaks were less than 2 kb in size, this meant
that we tested effectively all SNPs within peaks. We used an equivalent procedure to
determine FDR as for eQTLs.

Similarity of eQTLs with GTEXx

Both GTEx samples and IPSDSNs had QTLs called using FastQTL. We selected lead eQTL
variants in IPSDSNs for genes with expression >= 1 FPKM. We identified effect sizes for

the same variants in each GTEXx tissue, where these were available. We next determined the
pairwise similarity between tissues in effect sizes for these variants (in R, cor() with
“pairwise.complete.obs”). IPSDSNs were a significant outlier, having lower pairwise
similarity with all GTEXx tissues than they had with each other, likely due to the different
expression guantification methods used in the two projects. We therefore determined the
relative similarity of effect sizes across tissues by Z-scaling each row of the tissue
correlation matrix, and plotted the result in Supplementary Figure 24.

Motif enrichment analyses

We used the R package LOLA22 to identify enrichments in transcription factor binding sites
(TFBS) and motifs. We defined three sets of loci to consider for enrichment: 1) tissue-
specific eQTL SNPs with a window of 50 bp (+/- 25) around the SNP position, 2) all eQTL
SNPs (50 bp window), and 3) all ATAC-seq peaks. For the QTLs we used all GTEx eQTL
lead SNPs as the “universe” set against which we tested TFBS for enrichment. For this
loaded GTEx eQTLs in R and used the liftOver function from rtracklayer to convert their
coordinates to GRCh38. We tested for enrichment against the LOLA core database
considering only ENCODE TFBS enrichments (Supplementary Tables 16 and 17). We also
tested ATAC-seq peaks for enrichment relative to DNaseHS for many tissues from
Sheffield45, which are available in the LOLA catalog. Motif enrichments in ATAC-seq
peaks are reported in Supplementary Table 18.

Power simulations

Gene expression values were normalized to counts per million. We selected the 544 eGenes
discovered by RASQUAL at FDR 1% where:

. at least 10 P2-protocol samples homozygous for each allele of the lead eQTL
variant,
. mean expression among homozygous carriers was consistent with RASQUAL'’s

reported direction of effect, and
. Cv<2.

For each gene we resampled the normalized expression values, with replacement, from
IPSDSN samples to achieve a specified number of sampleq4,10,20,40}) with each
homozygous genotype. From 100 such resamplings, we defined the power to discover a
given variant’s effect as the fraction of cases with p < 0.05 from a Wilcoxon rank sum test
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comparing expression in each genotype category. We determined the allelic fold change
between genotypes using RASQUAL's effect size (pi), as:

fold change=max(pi/(1 — pi), (1 — pi)/pi)

QTL overlap with GWAS catalog

Full details of the method to determine QTL overlap are in the Supplementary Note. Briefly,
we used vcftools v0.1.1446 to compute the genotype correlafiaorBss our samples

between GWAS catalog variants and lead eQTL, sQTL, caQTL variants within 500 kb of
each other, and retained only overlaps wift>F.8. We report all overlaps with GWAS
associations having p < 5x#0n Supplementary Tables 20-22. To determine whether our
QTLs were enriched in specific GWAS catalog traits, we grouped related traits and
accounted for duplicate overlaps (see Supplementary Note), and counted the number of
unigue GWAS-QTL overlaps for eQTLs, sQTLs, and caQTLs (Table 1). For 41 traits with at
least 40 GWAS catalog associations, we then considered the binomial probability of the
observed overlap, with the expected frequency being the proportion of QTL overlaps among
all trait associations (6.2%). After correcting for multiple testing, no traits showed
significantly greater overlap with our QTL catalog than other traits.

To test for overall enrichment of QTLs overlapping with GWAS catalog SNPs, we used
vcftools to identify 1000 Genomes SNPs in LB>R0.8 with a GWAS catalog SNP. We

used our IPSDSN eQTL lead SNPs as input to SNPs$mags (/data.broadinstitute.org/mpg/
snpsnap), and computed 1000 random sets of SNPs matched for LD partners, MAF, gene
density, and distance to nearest gene. IPSDSN eQTL lead SNPs had more overlaps (92) with
GWAS catalog + R>0.8 SNPs than did any of the matched sets (median: 58, range 37-87).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of molecular phenotypes in iPSC-derived sensory neurons.
(a) Schematic of IPSDSN differentiation and assays. iPSCs were received in Essential 8

(E8) medium (N=82) or on mouse embryonic fibroblasts (MEFs, N=49), and transferred to
KSR-XF medium. Over 11 days, different inhibitor combinations were added (2i, 5i, 3i, see
Methods), and N2B27 medium phased in, followed by transfer to growth factor medium at
day 11 for neuronal maturatior)(PCA plot projecting IPSDSN, iPSC, and DRG samples
onto the first two principal components defined based on RNA-seq FPKMs in GTEX tissues.
Some GTEX tissues are unlabelled due to overlapping labeExgression of sensory

neuronal marker genes (SCN9A, DRGX) and key iPSC genes (NANOG, POU5F1).
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Figure 2. Single-cell sequencing of IPSDSN cells.
(a) A heatmap of RNA-seq data for ten marker genes of the two cell clusters identified by

SC3. Color scale denotes normalised gene expression Id)elhid first two principal
components (PCs) of IPSDSN gene expression, with estimated fibroblast-like percentage
from CIBERSORT, from samples derived using protocols 1 and 2 (P1 and P2).
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Figure 3. Gene expression variability in IPSDSNs is influenced by differentiation conditions.
(a) Density plot of the coefficient of variation of genes across samples, separately for each

GTEX tissue, IPSDSN samples (n=106, P2 protocol only), iPSC (n=239), and DRG (n=28).
(b) Violin plot showing, for each gene, the estimated fraction of total expression variability
across samples due to differentiation batch, donor genetics or iPSC reprogramming, culture
conditions (“wasFeeder”: feeder-dependent vs. E8 medium), and ge)d#ffdrentially
expressed genes (FDR 1%, blue and red points) between iPSC samples grown on feeders
(n=68) vs. E8 medium (n=171Q)(Differentially expressed genes (FDR 1%) between
IPSDSNs from feeder- (n=27) and E8-iPSCs (n=79). Neuronal differentiation genes, such as
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RETandL1CAM, are more highly expressed in samples from E8-iP&Lke(t boxplot:

global gene expression differences between feeder- and E8-iPSCs are captured in PC1. Right
two boxplots: selected differentially expressed gerieft boxplot: estimated neural

fraction of samples differs in IPSDSNs derived from feeder- and E8-iPSCs. Right two
boxplots: selected differentially expressed genes. Boxplots show the median, 25th and 75th
percentiles, with whiskers extending 1.5 times the interquartile range.
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Figure 4. Splicing QTLs overlapping GWAS.
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(a) An sQTL for TNFRSF1Aleads to skipping of exon 6, and overlaps with a multiple
sclerosis associatiofb) An sQTL for S/PA1LZleads to increased skipping of an

unannotated exon between alternative promoters, and overlaps with a Parkinson’s disease
association(c) An sQTL forAPOPT 1alters skipping of exons 2 and 3, and overlaps with a
schizophrenia association. P values are from the FastQTL beta approximation based on
10,000 permutations. Boxplots show the median, 25th and 75th percentiles, with whiskers

extending 1.5 times the interquartile range.
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Figure 5. Power to detect a genetic effect in a single-variant single-gene test depends on sample
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Table 1

Page 25

QTL associations. Columns show the number of associations and the number of unique o¥eriass (r
between lead QTL SNPs and GWAS catalog SNPs after removing duplicates for each GWAS trait.

Number | GWAS overlap
eQTLs 3778 156
sQTLs 2079 129
ATAC QTLs 6318 172
Joint ATAC/eQTLs | 177 14
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