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Abstract

Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological
guestions and engineering challenges ranging from interpretation of low-resolution structural data
to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta’s success is the
energy function: a model parameterized from small molecule and X-ray crystal structure data used
to approximate the energy associated with each biomolecule conformation. This paper describes
the mathematical models and physical concepts that underlie the latest Rosetta Energy Function,
REF15 Applying these concepts, we explain how to use Rosetta energies to identify and analyze
the features of biomolecular models. Finally, we discuss the latest advances in the energy function
that extend capabilities from soluble proteins to also include membrane proteins, peptides
containing non-canonical amino acids, small molecules, carbohydrates, nucleic acids, and other
macromolecules.
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Introduction

Proteins adopt diverse three-dimensional conformations to carry out the complex
mechanisms of life. Their structures are constrained by the underlying amino acid sequence
and stabilized by a fine balance between enthalphic and entropic contributions to non-
covalent interaction$ Energy functions that seek to approximate the energy of these
interactions are fundamental to computational modeling of biomolecular structures. The goal
of this paper is to describe the energy calculations used by the Rosetta macromolecular
modeling prograns:we explain the underlying physical concepts, mathematical models,
latest advances, and application to biomolecular simulations.

Energy functions are based on Anfinsen’s hypothesis that native-like protein conformations
represent unique, low-energy, thermodynamically stable conformétitimsse folded states
reside in minima on the energy landscape, and they have a net favorable change in Gibbs
free energy, which is the sum of contributions from both enthalpy &d entropy TAS

relative to the unfolded state. To follow these heuristics, macromolecular modeling programs
require a mathematical function that can discriminate between the unfolded, folded, and
native-like conformations. Typically, these functions are a linear combination of terms that
compute energies as a function of various degrees of freedom.

The earliest macromolecular energy functions combined a Lennard-Jones potential for van
der Waals interactiofs’ with harmonic torsional potenti&lthat were parameterized using
force constants from vibrational spectra of small molectii€sThese formulations were

first applied to investigating the structures of hemolySitrypsin inhibitor!3 and

hemoglobid* and have now diversified into a large family of commonly used energy
functions such as AMBERE DREIDING 16 OPLS17” and CHARMM18:19Many of these
energy functions also rely on new terms and parameterizations. For example, faster
computers have enabled the derivation of parametersdfomitioquantum calculation®

The maturation of X-ray crystallography and NMR protein structure determination methods
has enabled development of statistical potentials derived from per-residue, inter-residue,
secondary-structure, and whole structure featthe®Additionally, there are alternate

models of electrostatics and solvation, such as a Generalized Born approximation of the
Poisson-Boltzmann equati®hand polarizable electrostatic terms that accommodate varying
charge distribution3?

The first version of the Rosetta energy function was developed for proteins by &imons
al3 Initially, it used statistical potentials describing individual residue environments and
frequent residue-pair interactions derived from the Protein Databank @2DBier, the

authors added terms for packing of van der Waals spheres, hydrogen bonding, secondary-
structure, and van der Waals interactions to improve the performaadeitiostructure
prediction33 These terms were for low-resolution modeling, meaning that the scores were
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dependent on only the coordinates of the backbone atoms and that interactions between the
side chains were treated implicitly.

To enable higher resolution modeling, in the early 2000s, Kuhkmar®* implemented an
all-atom energy function that emphasized atomic packing, hydrogen bonding, solvation, and
protein torsion angles commonly found in folded proteins. This energy function first
included a Lennard-Jones tefina pairwise additive implicit solvation mod¥a
statistically-derived electrostatics term, and a term for backbone-dependent rotamer
preferences’ Shortly after, several terms were added, including and an orientation-
dependent hydrogen bonding téfin agreement with electronic structure calculati#hs.
This combination of traditional molecular mechanics energies and statistical torsion
potentials enabled Rosetta to reach several milestones in structure prediction and design
including accuratab initiostructure predictiofi hot-spot predictiod42protein—protein
docking#3 small molecule dockingf and specificity redesid as well as the firstle novo
designed protein backbone not found in ndiaad the first computationally designed new
protein—protein interfac&’

The Rosetta energy function has changed dramatically since it was last described in
complete detail by Rohér a*8 in 2004. It has undergone significant advances ranging from
improved models of hydrogen bondff@nd solvatiort? to updated evaluation of

backboné! and rotamer conformatio8.Along the way, these developments have enabled
Rosetta to address new biomolecular modeling problems including refinement of low-
resolution X-ray structures and use of sparse ¥atdand the design of vaccins,
biomineralization peptide® self-assembling materiaté,and enzymes that perform new
functions®8:>%Instead of arbitrary units, the energy function is now also fitted to estimate
energies in kcal/mol. The details of the energy function advances are distributed across code
comments, methods development papers, application papers, and individual experts, making
it challenging for Rosetta developers and users in both academia and industry to learn the
underlying concepts. Moreover, members of the Rosetta community are actively working to
generalize the all-atom energy function for use in different coffesnd for all

biomolecules including RNA2 DNA,63:64small-molecule ligand®-66non-canonical

amino acids and backbon®s8%and carbohydrate®,further encouraging us to reexamine

the underpinnings of the energy function. Thus, there is a need for an up-to-date description
of the current energy function.

In this paper, we describe the new default energy function, called the Rosetta Energy
Function 2015 (REF15). Our discussion aims to expose the physical and mathematical
details of the energy function required for rigorous understanding. In addition, we explain
how to apply the computed energies to analyze structural models produced by Rosetta
simulations. We hope this paper will provide critically needed documentation of the energy
methods as well as an educational resource to help students and scientists interpret the
results of these simulations.
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Computing the total Rosetta energy

The Rosetta energy function approximates the energy of a biomolecule conformation. This
guantity, called &5 is computed from a linear combination of energy tefnghich are
calculated as a function of geometric degrees of free@pomemical identities, aa, and

scaled by a weight on each tem,as shown in Eq. 1.

AEtotaIZZiwiEi(Qiyaai) @

Here, we explain the Rosetta energy function term by term. First, we describe energies of
interactions between non-bonded atom-pairs important for atomic packing, electrostatics,

and solvation. Second, we explain empirical potentials used to model hydrogen- and
disulfide-bonds. Next, we explain statistical potentials used to describe backbone and side-
chain torsional preferences in proteins. After, we explain a set of terms that accommodate
features not explicitly captured yet important for native structural feature recapitulation.
Finally, we discuss how the energy terms are combined into a single function used to
approximate the energy of biomolecules. For reference, itemsifim tle@ wi dt h f ont

are names of energy terms in the Rosetta code. The energy terms are summarized in Table 1.

Terms for atom-pair interactions

van der Waalsinteractions are short-range attractive and repulsive forces that vary with
atom-pair distance. Whereas attractive forces result from the cross-correlated motions of
electrons in neighboring non-bonded atoms, repulsive forces occur because electrons cannot
occupy the same orbitals by the Pauli exclusion principle. To model van der Waals
interactions, Rosetta uses the Lennard-Jones (LJ) 6—-12 pS&t€mtkith calculates the

interaction energy of atonisand/ in different residues given their summed atomic radii
a,;/-,aatom—pair distanceg];, and the geometric mean of well depthg,(Eq. 2). The atomic

radii and well depths are derived from small molecule liquid phase data optimized in context
of the energy modéP

[ o 12 o 6"|
st [(32)" (3]

Rosetta splits the LJ potential at the function’s minimafn= o;) into two components

that can be weighted separately: attracti/e_(at r ) and repulsive { a_r ep). By

decomposing the function this way, we can alter component weights without changing the
minimum-energy distance or introducing any derivative discontinuities. Many
conformational sampling protocols in Rosetta take advantage of this splitting by slowly

an Rosettagj j has the same definition as ﬂ'if’}“ variable in CHARMM.
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increasing the weight of the repulsive component to traverse rugged energy landscapes and
to prevent structures from unfolding during samplfig.

The repulsive van der Waals enengy, r ep, varies as a function of atom-pair distance. At
short distances, atomic overlap results in strong forces that lead to large changes in the

energy. The steel/d}g» term can cause poor performance in minimization routines and

overall structure prediction and design calculatith® To alleviate this problem, we

weaken the repulsive component by replacincl /d;” term with a softer linear term when
d<0.6 oj,. The term is computed using the atom-type specific parammstgesidb; ; which
are fit to ensure derivative continuity @t 0.60;; After the linear component, the function
transitions smoothly to the 6-12 form urdj} = o, where it reaches zero and remains zero
(Eq. 3; Fig. 1A).

mmgaﬁbi,j ) dij < 0.60;;
Erep(’iaj)zzmwf?jnn Eij {(%) -2 (2—;}1) +1} 0.605,;<di; < 0i
0 0ij<di; (3)

Rosetta also includes an intra-residue version of the repulsive comganeéntt r a_r ep,
with the same functional form as the _r ep term (Eq. 3). We include this term because the
knowledge-based rotamer enerdya( dun, below) under-estimates intra-residue collisions.

The attractive van der Waals enerigy, at r has a value of;; whend;; = 0 and then
transitions to the 6—12 potential as the distance increases (Eq. 4; Fig. 1B). For speed, we
truncate the LJ term beyond 6.0 A where the van der Waals forces are small. To avoid
derivative discontinuities, we use a cubic polynomial functigg,(dj,) after 4.5 Ato

transition the standard Lennard-Jones functional form smoothly to zero. These smooth
derivatives are necessary to ensure that bumps do not accumulate in the distributions of
structural features at inflections points in the energy landscape during conformational
sampling with gradient-based minimization (Sheffler 2006, Unpublished).

—€; dij < oy
" Fooly(di;) 45A <dij <604
0 6.0A < d;; 4)

conn

All three terms are multiplied by a connectivity weiw; ™" to exclude the large repulsive

energetic contributions that would otherwise be calculated for atoms separated by fewer than

four chemical bonds (Eqg. 5). This weight is common to molecular force fields that assume
covalent bonds are not formed or broken during a simulation. Rosetta uses four chemical

bonds as the “crossover” separation ww; ;™" transitions from zero to one (rather than the
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three chemical bonds used by traditional force fields) to limit the effects of double-counting
due to knowledge-based torsional potentials.

0 npods <3
wigm={ 02 nbonds—y

2] s
L 25 (g

The comparison between Eq. 2 and the modified LJ potential (Eq. 3—4) is shown in Fig. 1A
and Fig. 1B.

Electrostatics— Non-bonded electrostatic interactions arise from forces between fully and
partially charged atoms. To evaluate these interactions, Rosetta uses Coulomb’s Law with
partial charges originally taken from CHARMM and adjusted via a group optimization
scheme (Table S3f Coulomb’s law is a pairwise term commonly expressed in terms of the
distance between atomand, (gj)), dielectric constar#, partial atomic charges for each
atomg; andgj, and Coulomb’s constanty = 322 A kcal/mole 2 (with ebeing the

elementary charge) (Eqg. 6).

04495 1

Ecoulomb (7'7 .]): e dj (6)

To approximate electrostatic interactions in biomolecules, we modify the potential to
account for the difference in dielectric constant between the protein core and solvent-
exposed surfac& Specifically, we substitute the constarih Eq. 6 with a sigmoidal
function (g} ) that increases fromgre = 6 t0esovent= 80 when the atom-pair distance is
between 0 A and 4 A (Eq. 7-8):

E(di,j):g <le]> Ecore T (]-*g (dzj)) Esolvent (7)

g(x)= <1+x+%,2> exp(—x) ®)

As with the van der Waals term, we make several heuristic approximations to adapt this
calculation for simulations of biomolecules. To avoid strong repulsive forces at short
distances, we replace the steep gradient with the corRigiithin) whendj; < 1.45 A.

Next, since the distance-dependent dielectric assumption results in dampened long-range
electrostatics, for speed we truncate the potentidhat= 5.5 A and we shift the Coulomb

curve by subtracting1/42 . term to shift the potential to zero@ax (EQ. 9).
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— ; : d S dmax
Eeteo (i, j, dij)=soti®s {45 Tnax
i\J 0 dn a.x<d (9)

We use cubic polynomialfgiﬁ;’low(dm-) andf;ﬁ;’high(di,j) to smooth between the

traditional form and our adjustments while avoiding derivative discontinuities. The energy is
also multiplied by the connectivity weighv;;™" (Eq. 5). The final modified electrostatic
potential is given by Eq. 10 and compared to the standard form in Fig. 1C.

ECICC(ivjvdmin) d1]<145A
fosto¥(diy)  1.45A < dyj<1.85A

FEfa_ clcczzijwzﬁ}nn Eeiec(iy jydij)  1.85A <djj<4.5A
bl ) 454 < dyy<5.54

0 55A < dj (10)

Solvation— Native-like protein conformations minimize the exposure of hydrophobic side
chains to the surrounding polar solvent. Unfortunately, explicitly modeling all the
interactions between solvent and protein atoms is computationally expensive. Instead,
Rosetta represents the solvent as bulk water based upon the Lazaridis—Karplus (LK)
implicit Gaussian exclusion mod&i.Rosetta’s solvation model has two components: an
isotropic solvation energy, calléé_sol , that assumes bulk water is uniformly distributed
around the atoms (Fig. 2A) and an anisotropic solvation energy, tallédl | _wt d, that
accounts for specific waters nearby polar atoms that form the solvation shell (Fig. 2B).

The isotropic (Lazaridis-Karpus) mod@éis based on the functiofesoythat describes the
energy required to desolvate (remove contacting water) an/athien approached by a
neighboring atomj. In Rosetta, we exclude Lazaridis-KarplugZ&f term because we
implement our own reference energy (discussed later). The energy of the atom-pair
interaction varies with separation distamgg experimentally determined vapor-to-water
transfer free energies@®®, summed atomic radi;, correlation lengtti, and atomic
volume of the desolvating atoirj (Eq. 11).

free s 2
e ()
(11)

272 Aic72
i

At short distanced,a_r ep prevents atoms from overlapping; however, many protocols

briefly down-weight or disable tHea_r ep term. To avoid scenarios whefgson

encourages atom-pair overlap in the absenée afep, we smoothly increase the value of

the function to a constant at close distances when the van der Waals spheres@yerlap (

ojj). At large distances, the function asymptotically approaches zero; therefore, we truncate
the function at 6.0 A for speed. We also transition between the constants at short and long

J Chem Theory Compuuthor manuscript; available in PMC 2018 June 13.
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solv,low

distances using distance-dependent cubic polynoif;., andf;?j;’high with constants

@ =0.3 A andg = 0.2 A that define a window for smoothing. The overall desolvation
function is given by Eq. 12.

fdesolv (iv Js Ji,j) di»j < Oij—Co0
Fooy " (6G.dig)  oij—co<diy < oigrer
Jdesolv=— fdesoly(i’ ] dl,]) O'i’j+01 <di~,j < 4.5 A
foay (i d,dig)  45A<dij <6.0A
0 6.0 A<dj’j (12)

The total isotropic solvation energy (Eq. 13, sol , is computed as a sum including atom
J desolvating atomand vice-versa and scaled by the previously-defined connectivity
weight.

Efa_ SOI:Zi jw;ojnn (gdcsolv (Z j)+gdesolv (.7 Z)) (13)

Rosetta also includes an intra-residue version of the isotropic solvation energy,
fa_i ntra_sol, with the same functional form as the sol term (Eq. 13).

A recent innovation (2016) is the addition of an energy tdrk bal | _wt d) to model the
orientation-dependent solvation of polar atoms. This anisotropic model increases the
desolvation penalty for occluding polar atoms near sites where waters may form hydrogen
bonding interactions. For polar atoms, we subtract off part of the isotropic energy of Eq. 13
and then add the anisotropic energy to account for the position of the desolvating atom
relative to hypothesized water positions.

To compute the anisotropic energy, we first calculate the set of ideal water sites around atom
LW i={vj, vp,...}. This set contains 1 to 3 water sites, depending on the atom type of
atom/. Each site is 2.65 A from atonand has an optimal hydrogen-bond geometry, and we
consider the potential overlap of a desolvating atanth each water. The overlap is

considered negligible until the van der Waals sphere of the desolvating @émtusoy)

touches the van der Waals sphere of the water &t giteliusa,,), and then the term

smoothly increases over a zone of partial overlap of approximately 0.5 A. Thus, for each

water site &, with coordinates; s, we compute an occlusion measq;eo capture the gap
between the hypothetical water and the desolvating At&e. 14), using the offsé& = 3.7
A2 to Table provide the ramp-up buffer.

di=|rj—vikl*~(outo;)*+Q  (14)
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Next, we find the soft minimum «2 over all water sites i#’; by computing the log-
average:

dlznin(ivj):_ln (Zkewzexp<_d%)> (15)

Then,q2. andQ are used to compute a damping functii,c (Eq. 16) that varies from

min

zero when the desolvating atom is at least a van der Waals distance from any preferred water
site to one when the desolvating atom overlaps a water site by more than ~ 0.5 A.

1 d?mn(“7)<0
. 2 N2
fictrac (i, §)= (17 (W)) 0<d2 (i,7)<Q
0 Q< d?nin(iaj) (16)

We calculate the anisotropic energy of desolvating a polar &joy by scaling the
desolvation functio@yesoi/ by the damping functiofisac and an atom-type specific weight
Wanisothat is typically ~0.7 (Eq. 17). The amount of isotropic solvation energy subtracted is
GhesolvMultiplied by wig,, Wherewisq is an atom-type specific weight typically ~0.3 (Eqg. 18;
the total weight on the isotropic contribution through Bathsol andl k_bal | _wt d terms

is thus ~0.7). The isotropic and anisotropic components are then summed to yield a new
desolvation functionfigesoiy (EQ. 19).

B pan (ia .7) =Waniso,i Jdesolv (i7 J) fikfrac (’i, ]) (17)

Elk_ ball_ iso (Z j):_wiso,igdesolv (Z j) (18)

hdesolv (1, J)=Eik_ ball_ iso(%; J)+Eik_ van (i, 7)  (19)

Like f a_sol , the energy of desolvating atary atomy and thery by / aresummed to yield

the overall k_bal | _wt d energy (Eq. 20) but only counting the desolvation of polar,
hydrogen-bonding heavy atoms (O,N) defined as th@ skig. 2 shows a comparison

betweerf a_sol , thel k_bal | term (Eq. 17), and the sumfad_sol andl k_bal | _wt d

for the example of an asparagine NH2 desolvated from three different approach angles. As
the approach angle varies, the sumlofbal | _wt d andf a_sol creates a larger

desolvation penalty when waters sites are occluded and a smaller penalty otherwise, relative
to thef a_sol term alone.
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Elk- ball_ wtd :Zig » wg}lln hdesolv (i, ])+ ng @ wff;_nn hdesolv (.77 Z) (20)

Hydrogen bonding— Hydrogen bonds are partially covalent interactions that form when a
nucleophilic heavy atom donates electron density to a polar hydfédérshort ranges (<

2.5 A), they exhibit geometries that maximize orbital oveffiphe interactions between
hydrogen bonding groups are also partially described by electrostatics. While this hybrid
covalent-electrostatic character is complex, it is crucial for capturing the structural
specificity that underlies protein folding, function, and interactions.

Rosetta calculates the energy of hydrogen bonds @isingl ec and a hydrogen bonding

model that evaluates energies based on the orientation preferences of hydrogen bonds found
in high-resolution crystal structuré®#9To derive this model, we curated intra-protein polar
contacts from ~8,000 high resolution crystal structures (Top8000 d&jamed identified

features using adaptive density estimation. We then empirically fit the functional form of the
energy such that the Rosetta-generated polar contacts mimic the distributions from Top8000.
The resulting hydrogen bonding energy is evaluated for all pairs of donor hydréfens,
acceptorsd, as a function of four degrees of freedom (Fig. 3A): (1) the distance between

the donor and acceptat,, (2) the angle formed by the donor, acceptor, and donor-heavy
atom, 844p (3) the angle formed by the acceptor’s parent atom (“baeigceptor, and the
donor, g4 and (4) the torsiongz, 44, formed by the donor, acceptor, and two subsequent
parent atom® andB.. (Fig. 3A). B, the parent atom &4, is the first atom on the shortest

path to the root atom (e.g,IC The Boatom ofA is the parent atom @& (e.g., the spplane

is defined byB,, B, andA). For convenience, the hydrogen bonding energy is subdivided

into four separate terms: long range backbone hydrogen babdsd_| r _bb), short range
backbone hydrogen bondal{ond_sr _bb), hydrogen bonds between backbone and side

chain atoms fbond_bb_sc), and hydrogen bonds between side chain atdrhen(d_sc).

To avoid over-counting, side-chain to backbone hydrogen bonds are excluded if the
backbone group is already involved in a hydrogen bond. For speed, the component terms
have simple analytic functional forms (Fig. 3B—F; Supporting Information Eq. S1-7). The
term is also multiplied by two atom-type specific weigitg, and Wy, that account for the
varying strength of hydrogen bonds. The overall model is given by Eq. 21 where the

E252H term depends on the orbital hybridization of the accept@inally, the function is

also smoothed witi{x) (Eq. 22) to avoid derivative discontinuities and ensure that edge-
case hydrogen bonds are considered.

HA AHD BAH B2BAH
Ehbond :ZHAA wyw, f (Ehbond (A a)+Eipond (0 450)+ Eibond (0 541 )+ Eipona (P Ppypans Opan )>

(21)
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T r<—0.1
f(z)={ —0.025+2+2.52%2 —0.1 <<0.1

Disulfide bonding— Disulfide bonds are covalent interactions that link sulfur atoms in
cysteine residues. Typically, in Rosetta, we rely on a tree-based kinematic’Sfekeep
bond lengths and angles fixed so that we may sample conformation space changing only
torsions. For this reason, we do not generally need terms that evaluate bond-length and
bond-angle energetics. However, with disulfide bonds and proline (below), the extra bonds
cannot be represented with a tree (since a tree graph is acyclic), and thus must be treated
explicitly. Thus, disulfide bonds are a special case of inter-residue covalent contact that
requires a representation with more degrees of freedom. To evaluate disulfide bonding
interactions, Rosetta identifies pairs of cysteines that have covalent bonds linkihg the S
atoms. Then, Rosetta computes the energy of these interactions using an orientation-
dependent model calle| f _f a13.4° The model was derived by curating intra-protein
disulfide bonds from Top8000 and identifying features using kernel density estimates. For
speed, the feature distributions are modeled using skewed Gaussian functions and a mixture
of 1, 2, and 3, von Mises functions (Supporting Information Eq. S8-11).

The overall disulfide energy is computed as a function of six degrees of freedom (Fig. 4) that
map to four component energies. First, the geometry of the sulfur-sulfur digtasise

evaluated b‘Ed 3:(d). Second, the angle formed by eitt@&y; or Cg, with S—S bond is

evaluated byE ({7 (). Third, the dihedral formed by eith€},1 Cg or C;2Cgp with the S—

S bond is evaluated tEfS(ffCﬁSS(@. Finally, the dihedral formed b§s Cg and the S—S

bond is evaluated tEi‘ffssca(@. The complete disulfide bonding energy evaluated for all

S-S pairs is given by Eq. 23.

css css CaCpSS CaCpSS C585C
Basit. fa13= Z Edblf dss)+ET (9(:{,]ss> +E it (9( ﬂss) +Egqs (d)calcmss +E gy Do g “ss) +Egqs
(23)

Terms for Protein Backbone and Side Chain Torsions

Rosetta evaluates backbone and side-chain conformations in torsion space to greatly reduce
the search domain and increase computational efficiency. Traditional molecular mechanics
force fields describe torsional energies in terms of sines and cosines which have at times
performed poorly at reproducing the observed backbone-dihedral distributions in
unstructured regiorf&: Instead, Rosetta uses several knowledge-based terms for torsion
angles that are fast approximations of quantum effects and more accurately model the
preferred conformations of protein backbones and side-chains.
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Ramachandran— To evaluate backbongand y angles, we defined an energy term called
rama_pr epr o based on Ramachandran maps for each amino acid, using torsions from
3,985 protein chains with a resolution <1.8 A, R-factor <0.22 and sequence identity <
50%82 Amino acids with low electron density (in the botton'2&rcentile of each residue
type) were removed from the data set. The resulting ~581,000 residues were used in adaptive
kernel density estimatesof Ramachandran maps with a grid step of 10° for pathd y-.
Residues preceding proline are also treated separately because they exhibitgjstinct
preferences due to steric interactions with the proling’83@he energy, called

rama_pr epr o, is then computed by converting the probabilities to energies at the grid
points via the inverted Boltzmann relatf8Eq. 24; Fig 5). The energies are then evaluated
using bicubic interpolation. The Supporting Information includes a detailed discussion of
why interpolation is performed on the backbone torsiewalg/esather than the
probabilities(Fig. S3, Egs. S12-13).

> 72 —In[ Preg (¢4, %5]aa;)]  C- terminus or i4-1isnot a proline
rama- Pre- PrOL i | —In[ Pprepro (i, ilaa; )] 1+1isaproline (24)

Backbone design term— Rosetta also computes the likelihood of placing a specific
amino acid side chain given an existigigr backbone conformation. This term, called
p_aa_pp represents the propensity of observing an amino acid relative to the other 19
canonical amino acid®. The knowledge-based propensifaal, v) (Eq. 25) was derived
using the adaptive kernel density estimates<gyylaa) and Bayes’ rule. The equation for
p_aa_pp is given in Eq. 26 (Fig. 5D).

P(¢, ¢|aa) P(aa)

Plalo V)= P o) (25)

By s o=, ~ln | o252

Side-chain conformations— Protein side chains mostly occupy discrete conformations
(rotamers) separated by large energy barriers. To evaluate rotamer conformations, Rosetta
derives probabilities from the 2010 backbone-dependent rotamer library (dunbrack.fccc.edu/
bbdep2010), which contains the frequencies, means, and standard deviations of ingividual
angles for eacly anglek of each rotamer of each amino acid typ@he probability has

three components: (1) observing a specific rotamer given the backbone dihedral angles (2)
observing specifigy angles given the rotamer and (3) observing the termyirsaigle

distribution, which is either Gaussian-like or continuous when the terrpiaatle is sp
hybridized (Eq. 27). Herel represents the number of rotameyiengles + 1.
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P(xl¢.,aa)=P(rotlg, ,aa)([],_ POxrlé, v xot, aa)) P(xrld, v, vot,a0)

The 2010 rotamer library distinguishes between rotameric and non-rotameric torsions. A
torsion is rotameric when the third of the four atoms defining the torsioR is/bpidized

(i.e. preferring ~60°, ~180° and ~-60°, with steep energy barriers between the wells), If the
last y torsion is rotameric, probabilit( y 714, w,rot,aa) is fixed at one. On the other hand, a
torsion is non-rotameric if its third atom is’dpybridized: the library describes its

probability distribution continuously, instead. The category of semi-rotameric amino acids

with both rotameric and non-rotameric dihedrals encompasses eight amino acids: Asp, Asn,

GIn, Glu, His, Phe, Tyr, and T#S.

The probability of each rotamg(rot|¢, y,aa) is derived from the same dataset as the
Ramachandran maps described above. The probabilities were identified using adaptive
kernel density estimation and the same dataset is used to estimate the mean and standard
deviation for eacly dihedral in the rotamer, ang , ando,,, as functions of the backbone
dihedrals, allowing us to compute a probability for ghealues using Eq. 28.

2
P(xul6. . o) =exp (_1<><k—um<¢vwirot»aa>> )
(28)

2 Oy, (@, 1|rot, aa)

This formulation is reminiscent of the Gaussian distribution, except that it is missing the
normalization coefficient of (ﬂaxk(fl’f yf|rot,aa)71’2. After taking the log of this probability,

the term resembles Hooke’s law where the spring constant is gi\a;f(qx P|rot, aa).

The full form off a_dun is given by Eq. 29 as a sum over all residudhe difference
between the rotameric- and semi-rotameric models is also shown in Fig. 6.

Ef, . dun:Zr_ln (P(rOtrkbra Uy, aar)) +

Z 1 (Xk,rﬂxk (¢7’71/)7’|r0t7’7a3*'r')

0. (Or, Yr|rot,, aay)

2
fety 2 ) +—1In (P(XTr,r‘erswrar()tmaar))

(29)

The energy from —I{rot|¢, wrag)) is computed using bicubic-spline interpolation;

Rx 1,A¢rvrrot,ag) is computed using tricubic-spline interpolation. To save memory,
,uxk(;t,, W, rot,ag), andaxk(¢,, w,rot,ag) are computed using bilinear interpolation, though
this has the effect of producing derivative discontinuities at¢hg @rid boundaries. These
discontinuities, however, do not appear to produce noticeable arftacts.
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Terms for special case torsions

Peptide bond dihedral anglesw, remain mostly fixed in &/s-or trans-conformation and
depend on the backboeandy angles. Since the electron pair on the backbone nitrogen
donates electron density to the electrophilic carbonyl carbon, the peptide bond has partial
double bond character. To model this barrier to rotation, Rosetta implements a backbone-
dependent harmonic penalty centered near 0° for cis and 180° for trans (Fig. 7A). This
energy, callednega, is evaluated on all peptide bonds in the biomolecule (Eg. 30). The
means and standard derivationssofy, ando,, respectively, are backbong )

dependent, as given by kernel regressions ofi ¢ andy.”2

— 1 _ 1 (wr —pw (br 2rlaar))?
Eomega Zrln (em) In <ﬁw<q5r,rlf)r|aar)m> + 202 (¢rpraar) (30)

Most Rosetta protocols only search over simple torsions within chains and rigid-body
degrees of freedom between chains. Howeweline’s side chainrequires special
treatment because its ring cannot be represented by a kinemafit Treefore, Rosetta
implements a proline closure term, calfgd_cl ose (Fig. 7B). There are two components
to this energy, shown in Eq. 31. First, there is a torsional potential that operates on the

dihedral formed by &—C.1—NCs caIIedw; given the observed mean, ' and standard
deviationo w ’, where/ is the residue index. This term keeps tReat®m in the peptide
plane. Second, to ensure correct geometry for the two hydrogens boupdve laliild a
virtual atom, N, off Cs whose coordinate is controlled kg (Fig. 7B). Thepr o_cl ose

term seeks to align the virtual Mtom, directly on top of the real backbone nitrogen. The
N-Cs—C, bond angle and the Nz®ond length are restrained to their ideal values.

2
Nos? .
st INeNurlZ - jsnot N- terminus
o o3
Epro_ close=— E b W E’N”
Ny—Ny . .
repre INe Nor | ris N- terminus

”12\1«N1: (31)

!
(wyp—p 1)
w

Tyrosine also requires special treatment forjtsangle because the hydroxyl hydrogen
prefers to be in the plane of the aromatic do enforce this preference, Rosetta
implements a sinusoidal penalty to model the barrieryg angle that deviates from
planarity. This tyrosine hydroxyl penalty is cali@eh_pl anarity (Eq. 32; Fig. 7C).

1
Eyhh_ planarity:z:i§ [COS (W72X3,i) +1] (32)

Terms for modeling non-ideal bond lengths and angles

Cartesian bonding energy— Recently, modeling Cartesian degrees of freedom during
gradient-based minimization has been shown to improve Rosetta’s ability to refine low-
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resolution structures determined by X-ray crystallography and cryo-electron micr83copy,
as well as its ability to discriminate near-native conformations in the absence of
experimental dat® These data suggest that capturing non-ideal bond lengths and angles
can be important for accurate modeling of minimum-energy protein conformations. To
accommodate, Rosetta now allows these “non-ideal” angles and lengths to be included as
additional degrees of freedom in refinement and includes a Cartesian-minimization mode
where atom coordinates are explicit degrees of freedom in optimization.

To evaluate the energetics of non-ideal bond lengths, angles and planar groups, an energy
term calleccart _bonded represents the deviation of these degrees of freedom from ideal
using harmonic potentials (Eq. 32—34). He¥ds a bonded-atom-pair distance witly as

its ideal distanced; is a bond angle with); ¢ as its ideal angle, ar}is a bond torsion or
improper torsion withg; g as its ideal value ang} as its periodicity. The ideal bond lengths

and angle¥91were selected based on their ability to rebuild side chains observed in crystal
structures (Kevin Karplus & James J. Havranek, unpublished); they were subsequently
modified empirically?! The spring constants for the angle and length terms are from
CHARMM32 .19 Finally, all planar groups and theg Cpseudo-torsion” are constrained

using empirically derived values and spring constants:

n
Ecart_ length= é Zi:l ki,length (dL _di,O)2 (33)

m 2

Ecart_ angle:%Zi:lki,angle(eifei,o) (34)

Eeart_ torsion:%Zizlki‘torsion (fwrap (@_‘bieo’ %))2 (35)

The functionfy o X)) wrapsx to the range [§). To avoid double counting in the case of
Ecart_torsion the spring constanyorsioniS zero when the torsiogy is being scored by either
ther ama orf a_dun terms.

Terms for Protein Design

Design reference energy— The terms above are sufficient for comparing different

protein conformations with a fixed sequence. However, protein design simulations compare
the relative stability of different amino acid sequences given a desired structure to identify
models that exhibit a large free energy gap between the folded and unfolded states. Explicit
calculations of unfolded state free energies are computationally expensive and error prone.
Rosetta therefore approximates the relative energies of the unfolded state ensembles using
an unfolded state reference energy, called

Rosetta calculates the reference energy as a sum of individual constant unfolded state

reference energieAG:*!, for each amino acid, aéEq. 36)!
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Ercf:ZiAGgef(aai) (36)

The AG:e! values are empirically optimized by searching for values that maximize native
sequence recovery (discussed below) during design simulations on a large set of high-
resolution crystal structur@8:51 During design, this energy term helps normalize the
observed frequencies of the different amino acids. When design is turned off, the term
contributes a constant offset for a fixed sequence.

Bringing the energy terms together

The Rosetta energy function combines all the terms using a weighted linear sum to
approximate free energies (Table 1). Historically, we adjust the weights and parameters to
balance the energetic contribution from each term. This balance is important because the van
der Waals, solvation, and electrostatics energies partially capture torsional preferences and
overlap can cause errors as a result of double counting atomic or residue specific
contributions?2 More recently, we fix physics-based terms with weights of 1.0 and perturb
other weights and atomic-level parameters using a Nelder‘Meeldeme to optimize
agreement of Rosetta calculations with small-molecule thermodynamic data and high-
resolutions structural featur@$The energy function parameters have evolved over the years
by optimizing the performance of multiple scientific benchmarks (Tabt&2)%4These
benchmarks were chosen to test recovery of native-like structural features, ranging from
individual hydrogen bond geometries to thermodynamic properties and interface
conformations. In addition, and more recently, Seng/,%® Conwayet af® and O’Mearaet

al*® have fit intra-term parameters to recover features of the experimentally determined
folded conformations. An in-depth review of energy function benchmarking can be found in
Leaver-Fayer aP’ Table S3 lists the Rosetta database files containing the current full set of
physical parameters for each score term.

Energy Function Units

Initially, Rosetta energies were expressed in a generic unit, called the Rosetta Energy Unit
(REU). This choice was made because some original Rosetta energy terms were not
calibrated with experimental data, and the use of statistical potentials convoluted
interpretation of the energy. Over time, the physical meaning of Rosetta energies has been
extensively debated within and outside the community, and several steps have been taken to
clarify interpretation. The most recent energy functi@ 15 was parameterized on high
resolution protein structures and small molecule thermodynamic parameters that were
measured in kcal/mé&P The optimization data show a strong correlation between the
experimental data and values predicted by Rosett& (fdon mutation” = 0.994; small
molecule X, Fig. S2). As a result, Rosetta energies are now a stronger approximation of
energies in units of kcal/mol. Therefore, as is standard practice for molecular force fields
such as OPLS, CHARMM, and AMBER, we now also express energies in kcal/mol.
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Energies in action: Using individual energy terms to analyze Rosetta

models

Rosetta energy terms are mathematical models of the physics that governs protein structure,
stability, and association. Therefore, the decomposed relative energies of a structure or
ensemble of structures can expose important details about the biomolecular model. Now that
we have presented the details of each energy term, we here demonstrate how energies can be
applied to detailed interpretations of structural models. In this section, we discuss two

common structure calculations: (1) estimating the free energy chang® ¢nutatior?®

and (2) modeling the structure of a protein-protein interf8ge.

AAG of mutation— The first example demonstrates how Rosetta can be used to estimate
and rationalize thermodynamic parameters. Here, we present an exanghbé dvvtation
calculation for the T193V mutation in the RT-RH derived peptide bound to HIV-1 protease
(PDB 1kjg, Fig. 8A)19° The details of this calculation are provided in the Supporting
Information.

Rosetta calculates the &of the T193V mutation to be —4.95 kcal/mol, and the

experiment®® measured —1.11 kcal/mol. Both the experiment and calculation reveal that
T193V is stabilizing: yet, these numbers alone do not reveal which specific interactions are
responsible for the stabilization. To investigate, we used various analysis tools accessible in
PyRosett&% to identify important energetic contributions to the totatd\irst, we

decomposed the AAinto individual energy terms and observe the balance of terms, both
favorable and unfavorable, that sum to the total (Fig. 8B). To decompose the most favorable
term, Af a_sol , we used theri nt _resi due_pai r _ener gi es function to identify

residues that interact with the mutation site (in this case, residue 4) to produce a nonzero
residue pair solvation energy. With the resulting table, we found a hydrophobic pocket
around the mutation site formed by residues V27, 145, G46, and 180 on HIV peptidase and
residue F194 on the peptide made a large (> 0.05 kcal/mol) and favorable contribution to the
change in solvation energy (Fig. 8C).

We further investigated this result on the atomic level with the function

print_atom pair_energy_t abl e by generating atom-pair energy tables (Supporting
Information) for residues 5, 27, 45, 46, and 80 against both threonine and valine at residue
193 (Example for residue 80 in Table 3). Here, we find that the specific substitution of the
polar hydroxyl on threonine with nonpolar alkyl group on valine stabilizes the peptide in the
hydrophobic protease pocket. This result is consistent with chemical intuition and
demonstrates how breaking down the total energies can provide insight into characteristics
of the mutated structures.

Protein-protein docking— The second example shows how the Rosetta energies of an
ensemble of models can be used to discriminate between models and investigate the
characteristics of a protein—protein interface. Below, we investigate docked models of West
Nile Virus envelope protein and a neutralizing antibody (PDB 1ztx; Fig19/AFalculation
details can be found in the Supporting Information.
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To evaluate the docked models, we examine the variation of energies as a function of the
root mean squared deviation (RMS) between the residues at the interface in each model and
the known structure. For our calculation, interface residues are residues wititarCess

than 8.0 A away from thed®f a residue in the other docking partner. The plot of energies
against RMS values is called@ine/ plotand is intended to mimic the funnel-like energy
landscape of protein folding and binding.

Like the previous example, we decompose the energies to yield information about the nature
of interactions at the interface. Here, we observed significant changes in the following
energy terms upon interface formation relative to the unbound fstatetr , f a_r ep,
fa_sol,lk_ball_wd,fa el ec,hbond_Ir_bb, hbond_bb_sc, andhbond_sc (Fig.

9B). Change in the Lennard-Jones energy upon interface formation is due to the introduction
of atom-atom contacts at the interface. As more atoms come into contact near the native
conformation (RMS~>0), the favorable, attractive energfya_at r ) decreases whereas the
unfavorable, repulsive energy {A_r ep) increases. Change in the isotropic solvation

energy (f a_sol ) is positive (unfavorable), indicating that upon interface formation, polar
residues are buried. Balancing the desolvation penalty, the change in polar solvation energy
(1 k_bal I _wt d) and electrostaticsf(a_el ec) is negative due to polar contacts forming at

the interface. Finally, the three hydrogen bonding energdibsr(d_| r _bb, hbond_bb_sc,
andhbond_sc) reflect the formation of backbone—backbone, backbone—side-chain, and
side-chain—side-chain hydrogen bonds at the interface.

The Rosetta energy function represents our collaboration’s ongoing pursuit to model the
rules in nature that govern biomolecular structure, stability, and association. This paper
summarizes the latest version which brings together fundamental physical theories,
statistical mechanical models, and observations of protein structures. This work represents
almost 20 years of interdisciplinary collaboration in the Rosetta community, which in turn
builds on and incorporates decades of work outside the community.

After 20 years, we have improved physical theories, structural data, representations,
experiments, and computational tools; yet, energy functions are far from perfect. Compared
to the first torsional potentials, energy functions are also now vastly more complex. There
are countless ways to arrive at more accurate energy functions. Here, we discuss grand
challenges specific to development of the Rosetta energy function in the coming decade.

Modeling biomolecules other than proteins

The Rosetta energy function was originally developed to predict and design protein
structures. A clear artifact of this goal is the energy function’s dependence on statistical
potentials derived from protein X-ray crystal structures. Today, the Rosetta community also
pursues goals ranging from design of synthetic macromolecules to predicting interactions
and structures of other biomolecules such as glycoproteins and RNA. Accordingly, an active
research thrust is to generalize the all-atom energy function for all biomolecules.
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Many of the physically-derived terms (e.g. van der Waals) have already been made
compatible with non-canonical amino acids and non-protein biomolecules (Table S5).
Recently, Bhardwaj, Mulligan & Balgr af® adapted theama_pr epr o, p_aa_pp,

fa_dun, pro_cl ose, onega,dsl f_fal3,yhh_pl anarity andref terms to be

compatible with mixed-chirality peptides. Several of Rosetta’s statistical potentials are
validated against quantum mechanical calculations for evaluating for non-protein models
(Table 4). Early work by Meiler & Bak&? on Rosetta Ligand introduced new atom and
residue types for non-protein residues. The first non-protein-energy terms were added by
Havraneker aA%8 and Yuet a/*99 who modified the hydrogen bonding potential to capture
planar hydrogen bonds between protein side chains and nucleic acid bases. Benfrew
al$"1105dded molecular mechanics torsions and Lennard-Jones terms to model proteins
with non-canonical amino acids, oligosaccharigeqeptides, and oligo-peptoiég.

Labonteet a/’% implemented Woods’ CarboHydrate-Intrinsic (CHI) funclibhl12which
evaluates glycan geometries given the axial-equatorial character of the bondsabas
added a set of terms to model Watson-Crick base paitingg interactions in base stacking,
and torsional potentials important for predicting and designing RNA stru€fité%:115
Bazzoli & Karanicolad!® recently developed a new polar solvation model that evaluates the
penalty associated with displacing waters in the first solvation shell. In addition, @smbs
al. tested a small molecule force field based on electron orbital mdddtany of these

terms are presented in detail in the Supporting Information.

Expanding Rosetta’s chemical library brings new challenges. Currently, there are separate
energy function for various types of biomolecules. Typically, these functions mix physically-
derived terms from the protein energy function with molecule-specific statistical potentials,
custom weights, and possibly custom atomic parameters. If nature only uses one energy
function, why do we need so many? Some discrepancies may result from features that we do
not model explicitly, such as - = n-* and cations interactions. Efforts to converge on a

single energy function will therefore pose interesting questions about the set of universal
physical determinants of biomolecular structure.

Capturing the intra- and extra-cellular environment

Rosetta traditionally models the solvent surrounding the protein using the Lazaridis-Karplus
(LK) model, which assumes a solvent environment made of pure water. In contrast, biology
operates under various conditions influenced by pH, redox potential, temperature, solvent
viscosity, chaotropes, kosmotropes, and polarizability. Therefore, modeling more details of
the intra- and extra-cellular environment would enable Rosetta to identify structures
important in different biological contexts.

Currently, Rosetta includes two groups of energy terms to model alternate environments
(Table 5). Kilambiet a/A18 implemented a method to account for pH by including a term
callede_pH that calculates the likelihood of a protein side chain’s protonation state given a
user specified pH; it requires the inclusion of both protonated and deprotonated side chains
during side-chain rotamer packing. This model can predigivplues with an RMS error

under 1 unit18and it improves protein-protein docking, especially in acidic or basic

J Chem Theory Compuuthor manuscript; available in PMC 2018 June 13.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Alford et al.

Page 21

conditions®9 The accuracy of this model is limited by the distance-dependent Coulomb
approximation and sensitivity to fine backbone rearrangements.

In addition, Rosetta implements Lazaridis’ Implicit Membrane Model (IMM) for modeling
proteins in a lipid bilayer enviornme#f:119:120The IMM terms provide a fast
approximation of the nonpolar hydrocarbon core of the lipid bilayer and have been
successfully applied to membrane protein foldifbdocking, and early design tasidsThis
continuum model has a fixed thickness, omitting the detailed chemistry at the membrane
interface and any dynamic bilayer rearrangements.

The origin of energy models: top-down versus bottom-up development

Traditionally, energy functions are developed using a bottom-up approach: experimental
observables serve as building blocks to parameterize physics-based formulas. The advent of
powerful optimization techniques and artificial intelligence recently empowered the top-
down category where numerical methods are used to derive models and/or parameters. Top-
down approaches have been used to solve problems in various fields including structural
biology and bioinformatics. Recently, top-down development was also applied to optimizing
the Lennard-Jones, Lazaridis-Karplus, and Coulomb parameters in the Rosetta energy
function (parameters in Table S4-SB§3

Top-down approaches have enormous potential to improve the accuracy of biomolecular
modeling because more parameters can vary and the objective function can be minimized
with more benchmarks. These approaches also introduce new challenges. With any
computer-derived models, there is a risk of over-fitting as validation via structure prediction
datasets reflect observable states, whereas simulations are intended to predict features of
states that experiments cannot yet observe. Computer-derived parameters also introduce a
unique kind of uncertainty. Consider the following scenario: the performance of scientific
benchmarks improves as physical atomic parameters are perturbed away from the measured
experimental values. As there is less physical-basis for parameters, are the predictions and
interpretations still meaningful?

Top-down development will also provide power to develop more complicated energy
functions. Currently, the Rosetta energy function advances by incrementally addressing
weaknesses: with each new paper, we modify analytic formulas, add corrective terms, and
adjust weights. As this paper demonstrates, the energy function is significantly more
complicated than the initial theoretical forms. Given this complexity increase, an interesting
approach to leverage the power of top-down development would be to simplify and subtract
terms to evaluate individual benefits.

A highly interdisciplinary endeavor

The Rosetta energy function has advanced rapidly due to the Rosetta Community: a highly-
interdisciplinary collaboration between scientists with diverse backgrounds located in over
50 labs around the world. The many facets of our team enable us to probe different aspects
of the energy function. For example, expert computer scientists and applied mathematicians
have implemented algorithms to speed up calculations. Dedicated software engineers
maintain the code and maintain a platform for scientific benchmark testing. Physicists and
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chemists develop new energy terms that better model the physical rules found in nature.
Structural biologists maintain a focus on created biological features and functions. We look
forward to leveraging this powerful interdisciplinary scientific team as we head into the next
decade of energy function advances.

Conclusion: A living energy function

For the first time since 200% we have documented all of the mathematical and physical
details of the Rosetta all-atom energy function highlighting the latest upgrades to both the
underlying science and the speed of calculations. In addition, we illustrated how the energies
can be used to analyze output models from Rosetta simulations. These advances have
enabled Rosetta’s achievements in biomolecular structure prediction and design over the
past fifteen years. Still, the energy function is far from complete and will continue to evolve
long after this publication. Thus, we hope this document will serve as an important resource
for understanding the foundational physical and mathematical concepts in the energy
function. Furthermore, we hope to encourage both current and future Rosetta developers and
users to understand the strengths and shortcomings of the energy function as it applies to the
scientific questions they are trying to answer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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early pioneers of the Rosetta energy function who are not co-authors: Carol Rohl, Kim Simons, Charlie Strauss,
Ingo Ruczinski, William Sheffler, Jens Meiler, Ora Schuler-Furman, James Havranek, and lan Davis.

We also acknowledge individuals that contributed to assembling the manuscript. We thank Sergey Lyskov for
development of the benchmark server that enables continuous and transparent energy function testing. We thank
Morgan Nance, Henry Lessen, and Rocco Moretti for helpful comments on the manuscript.
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Figure 1. Van der Waals and electrostatics energies
Comparison between pairwise energies of non-bonded atoms computed by Rosetta and the

form computed by traditional molecular mechanics force fields. Here, the interaction
between the backbone nitrogen and carbon are used as an example. (A) Lennard-Jones van
der Waals energy with well-deptlgp, = 0.162 anccp, = 0.063 and atomic radiiypp =

1.763 andcpp = 2.011 (red) and Rosetta_r ep (blue). (B) Lennard-Jones van der Waals
energy (red) and Rosetta_at r (blue). As the atom-pair distance approaches 6.0 A, the
fa_atr term smoothly approaches zero and deviates slightly from the original Lennard-
Jones potential. (C) Coulomb electrostatics energy with a dielectric coastdrit, and

partial chargegnpp = —0.604 andjcpp = 0.090 (red) compared with Rosefitta el ec

(blue). Thef a_el ec model is shifted to reach zero at the cutoff distance 6.0 A.
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Figure 2. A two component Lazaridis-Karplus solvation model
Rosetta uses two energy terms to evaluate the desolvation of protein side chains: an isotropic

(fa_sol ) and anisotropicl(k_bal I _wt d) term. (A) and (B) demonstrate the difference
between isotropic and anisotropic solvation of the NH2 group by CH3 on the asparagine side
chain. The contours vary from low energy (blue) to high energy (yellow). The arrows
represent the approach vectors for the pair potentials shown in C-E. In the bottom panel, we
compard a_sol, |k_ball andl k_bal | _wt d energies for the solvation of the NH2

group on asparagine for three different approach angles: (C) in line with the 1HD2 atom, (D)
along the bisector of the angle between 1HD1 and 1HD2 and (E) vertically down from

above the plane of the hydrogens (out of plane).
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Figure 3. Orientation-dependent hydrogen bonding model

(A) Degrees of freedom evaluated by the hydrogen bonding term: acceptor—donor distance,
duya, angle between the base, acceptor and hydréggn, angle between the acceptor,
hydrogen, and donoé,4p, and dihedral angle corresponding to rotation around the base—
acceptor bondgg,gas. (B) Lambert-azimuthal projection of tiE254/ energy landscape

for an s hybridized acceptd® (C) £5254 energy landscape for an’dpybridized
acceptor. Example energies for the histidine imidazole ring acceptor hydrogen bonding with

a protein backbone amide: (D) energy vs. the acceptor—donor disg /4 . (E) energy
vs. the acceptor-hydrogen-donor anig;; 10, (F) energy vs. the base-acceptor—hydrogen

angle, 341
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Figure 4. Orientation-dependent disulfide bonding model
(A) Degrees of freedom evaluated by the disulfide bonding energy: sulfur—sulfur distance,

dss angle between thg-carbon and two sulfur atom8¢ss dihedral corresponding to
rotation about the -Carbon and sulfur bongc, s and dihedral corresponding to rotation

CaCpSS €880
about the S—S bonglss (B) £33, (C) ESSY (D) B 77 (E) EL 477
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Figure 5. Backbone torsion energies
The backbone-dependent torsion energies are demonstrated for the lysine residueg(A) The

angle is defined by the backbone atofis — N— C;— Cand they angle is defined by —
Cy— C — Ny (B) rama_pr epr o energy of lysine without a proline at. (C)
ranma_pr epr o energy of lysine with a proline atl. (D) p_aa_pp energy of lysine.
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Figure 6. Energies for side-chain rotamer conformations
The Dunbrack rotamer enerdy_dun, is dependent on both tigeand y backbone torsions

and they side-chain torsions. Here, we demonstrate the variatiba_afun when the
backbone is fixed in a-helical conformation withp = -57° andy = -47°, and they
values can varyy; is shown in bluey» shown in red ang, shown in green. (A)-
dependent Dunbrack energy of methionine wittsgirhybridized terminus (By-dependent
energy of glutamine with asy?-hybridizedg(z terminus.y1, y2 andy» of methionine and
1 andy, of glutamine express rotameric behavior whileof the latter expresses broad
non-rotameric behavior.
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Figure 7. Special case torsion energies
Rosetta implements three additional energy terms to model torsional degrees of freedom

with acute preferences. (A) Omega torsion corresponding to rotation about C-N (B) Proline
secondary omega torsion corresponding to rotation about C-N related tostimetiaz ring.

(C) Tyrosine terminajy torsion. (D) Omega energy (E) Proline closure energy (F) Tyrosine
planarity energy.
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Figu_rg 8. Structural model of the HIV-1 protease bound to the T4V mutant RT-RH derived

eptide

?A? Structural model of the native HIV-1 peptidase (teal and dark blue), bound to the native
peptide (gray) superimposed onto the T4V mutant peptide (magenta). (B) Contributions
greater thart 0.1 kcal/mol to the AL of mutation for T4V. The remaining contributions
are.dsl f _fal13 = 0 kcal/molhbond_I r _bb = -0.09 kcal/molhbond_bb_sc = -0.05,
hbond_sc =-0.0104fa_intra_rep=0.01fa_intra_sol =-0.07, and

yhh_pl anarity = 0. (C) Hydrophobic patch of residues surrounding position four on the
RT-RH peptide.
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Figure 9. Using energies to discriminate docked models of West Nile Virus and the E16

neutralizing antibody

(A) Comparison of the native E16 antibody (purple) docked to the lowest RMS model of the
West Nile Virus envelope protein and several other random models of varying energy to
show sampling diversity (gray, semi transparent). (B) Change in the interface energy relative

to the unbound state versus RMS to native. Models at low RMS to the native interface have a

low overall interface energy due to favorable van der Waals contacts, electrostatic
interactions, and side-chain hydrogen bonds, as reflected byftheaf\r, Af a_el ec, and

A hbond_sc energy terms.
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Table 1
Summary of terms in th®@EF15energy function for proteins.

Term Description Weight Units Ref.

fa_ atr Attractive energy between two atoms on different residyies.0 kcal/mol [5,6]
separated by distancé,

fa_rep Repulsive energy between two atoms on different resiqués55 kcal/mol [5,6]
separated by distancé,

fa_intra_rep Repulsive energy between two atoms on the same resjd@=005 kcal/mol [5,6]
separated by distancé,

fa sol Gaussian exclusion implicit solvation energy between | 1.0 kcal/mol [36]
protein atoms in different residues

Ik _ball _wd Orientation-dependent solvation of polar atoms assuming..0 kcal/mol [50,71]
ideal water geometry

fa_intra_sol Gaussian exclusion implicit solvation energy between | 1.0 kcal/mol [36]
protein atoms in the same residue

fa_elec Energy of interaction between two non-bonded chargegl 1.0 kcal/mol [50]
atoms separated by distance,

hbond_I r _bb Energy of short range hydrogen bonds 1.0 kcal/mol [38449]

hbond_sr_bb Energy of long range hydrogen bonds 1.0 kcal/mol [38,49]

hbond_bb_sc Energy of backbone-side chain hydrogen bonds 1.0 kcal/mol [34,49]

hbond_sc Energy of side chain to side chain hydrogen bonds 1.0 kcal/mol [3%,49]

dslf_fal3 Energy of disulfide bridges 1.25 kcal/mol [49]

rama_prepro Probability of backbong, y angles given amino acid typg ~ 0.45 kcal/mol/kT] kT [50,%1]

p_aa_pp Probability of amino acid identity given backbogigr 0.4 kcal/mol/kT kT [51]
angles

fa_dun Probability that a chosen rotamer is native-like given | 0.7 kcal/mol/kT KT [52]
backbonep, y angles

omega Backbone-dependent penalty for eiglihedrals that 0.6 kcal/mol/AU Arbitrary Units (AU)| [72]
deviate from 0° and trans dihedrals that deviate from
180°

pro_cl ose Penalty for an open proline ring and proliadonding 1.25 kcal/mol/AU Arbitrary Units [51]
energy

yhh_pl anarity | Sinusoidal penalty for non-planar tyrosipedihedral 0.625 kcal/mol/AU |  Arbitrary Units [49]
angle

r ef Reference energies for amino acid types 1.0 kcal/mol/Al Arbitrary Units [1,p1]
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Table 2

Common energy function benchmarking methods

Page 40

geometries

protein crystal structures

Test Description Ref.

Sequence Recovery Percentage of the native sequence recovered after backbone redesign [1,%1]
Rotamer Recovery Percentage of native rotamers recovered after full repacking [51]

AAG Prediction Prediction of free energy changes upon mutation [98]

Loop Modeling Prediction of loop conformations [99]
High-resolution refinement Discrimination of native-like decoys upon refinemeatt éfitioprotein models [100]

Docking Prediction of protein-protein, protein-peptide, or protein-ligand interfaces [44,1014103]
Homology Modeling Structure prediction incorporating homologous information from templates [104]
Thermodynamic properties Recapitulation of thermodynamic properties of protein side-chain analogueg [17]
Recapitulation of Xtal structure Recapitulation of features (e.g. atom-pair distance distribution) from high-resolutj6f]
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Change in atom pair energies between 180 and T4 versus V4 in kcal/mol

180 Atoms
T193— V193 Atoms
CcB CG1 CG2 CD1
N 0.000 0.000 0.000 0.00
CA 0.000 0.000| 0.00q 0.004
C 0.000 0.000 0.00q 0.008
0.000| 0.000 0.00g -0.01
CcB 0.000
OG1— CG1 0.008
CG2— CG2 0.000
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Table 4

New energy terms for biomolecules other than proteins

Page 42

Biomolecule Term Description Unit Ref.
. Repulsive van der Waals energy between two atomg
mmlj_intra_rep from the same residue kecal/mol | [67]
F— Attractive van der Waals energy between two atoms
mmlj _intra_atr from the same residue kcal/mol | [67]
; Molecular mechanics derived torsion term for all
mm tw st proper torsions kcal/mol | [67]
Non-Canonical Amino Acidg Energy of the unfolded state based on explicit unfoldeq
unf ol ded Energy of fur | 7
) One-body component of the two-component reference
split_unfol ded_1b | energy, lowest energy of a side chain in a dipeptide | AU In SI
model system
) Two-body component of the two-component referenge
split_unfol ded_2b | energy, median two-body interaction energy based gnAU In Sl
atom type composition
Carbohydrates sugar _bb Energy for carbohydrate torsions kcal/mpl  [70
DNA gb_el ec Generalized Born model of the electrostatics energyf kcaljmol  [108]
fa_stack n-nt stacking energy for RNA bases kT [114]
stack_el ec Electrostatic energy for stacked RNA bases KT [115]
RNA fa_el ec_rna_phos Electrostatic energyf(a_el ec) between RNA KT [62]
phosphate atoms
rna_torsion Knowledge-based torsional potential for RNA kT [62
rna_sugar _cl ose Penalty for opening an RNA sugar kT [62

*
AU, arbitrary units
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Table 5

Energy terms for structure prediction in different contexts

Page 43

Context Term Description Unit Ref.
fa_npsol v Sg;aggz:nergy dependent on the protein orientation relative to thq keal/mol | [119123
Membrane Environmen
One-body membrane environment energy dependent on the proteir] 119,12
fa_npenv orientation relative to the membrane keal/mol | [ 1
pH e_pH Likelihood of side chain protonation given a user-specified pH kcalfmpi'§

J Chem Theory Compuuthor manuscript; available in PMC 2018 June 13.



	Abstract
	Graphical Abstract
	Introduction
	Computing the total Rosetta energy
	Terms for atom-pair interactions
	Electrostatics
	Solvation
	Hydrogen bonding
	Disulfide bonding
	Terms for Protein Backbone and Side Chain Torsions
	Ramachandran
	Backbone design term
	Side-chain conformations
	Terms for special case torsions
	Terms for modeling non-ideal bond lengths and angles
	Cartesian bonding energy
	Terms for Protein Design
	Design reference energy
	Bringing the energy terms together
	Energy Function Units
	Energies in action: Using individual energy terms to analyze Rosetta models
	㌱㐠〠潢樊㰼 呩瑬攨﻿ΔΔ㌱㔠〠潢樊㰼 呩瑬攨偲潴敩渭灲潴敩渠摯捫楮�
	Discussion
	Modeling biomolecules other than proteins
	Capturing the intra- and extra-cellular environment
	The origin of energy models: top-down versus bottom-up development
	A highly interdisciplinary endeavor
	Conclusion: A living energy function
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

