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Abstract

Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved
cellular models of human disease. However, variable genetic and phenotypic characterisation of
many existing iPSC lines limits their potential use for research and therapy. Here, we describe the
systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy
individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSigi:/

www.hipsci.org. Our study outlines the major sources of genetic and phenotypic variation in
iPSCs and establishes their suitability as models of complex human traits and cancer. Through
genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including
differentiation capacity and cellular morphology, arises from differences between individuals.
Additionally, we assess the phenotypic consequences of rare, genomic copy humber mutations that
are repeatedly observed in iPSC reprogramming and present a comprehensive map of common
regulatory variants affecting the transcriptome of human pluripotent cells.

Introduction

Induced pluripotent stem cells (iPSCs) are important model systems for human diseasel. A
major open question is whether iPSCs can be used to study the functions of genetic variants
associated with complex traits and normal human phenotypic variation. Previous work has
suggested that individual iPSC lines are highly heterogeneous2-5, although some of these
differences may arise due to genetic background of the donor6,7. Nonetheless, high
variability could make iPSCs unsuitable cellular models for genetic variants with small
effects. Existing iPSC lines also frequently have limited genetic and phenotypic data of
variable quality, or are derived from individuals with severe genetic disorders, limiting their
utility for studying other phenotypes.

The Human Induced Pluripotent Stem Cells Initiative (HipSeiw.hipsci.org was

established to generate a large, high-quality, open-access reference panel of human iPSC
lines. A major focus of the initiative is the systematic derivation of iPSCs from hundreds of
healthy volunteers using a standardised and well-defined experimental pipeline. The lines
are extensively characterised and available to the wider research community along with the
accompanying genetic and phenotypic data. Here, we report initial results from the
characterization of the first 711 iPSC lines derived from 301 healthy individuals. We provide
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a high-resolution map of recurrent copy number aberrations in iPSCs, identify putative
candidate genes under selection in these regions, and assess the functional consequences of
these changes. We show that common genetic variants produce readily detectable effects in
iPSCs and provide the most comprehensive map of regulatory variation in human iPSCs to
date. We also demonstrate that differences between donor individuals have pervasive effects
at all phenotypic levels in iPSCs, from the epigenome, transcriptome and proteome to cell
differentiation and morphology.

Sample collection and iPSC derivation

Samples were collected from healthy, unrelated research volunteers via the NIHR
Cambridge BioResource (Methods). We established 711 lines from 301 donors (>1 line for
82% of donors, >2 lines for 50%), which were profiled using an initial set of ‘Tier 1* assays
(Fig. 1a). These included array-based genotyping and gene expression profiling of the iPSCs
and their fibroblast progenitors, as well as an assessment of the pluripotency and
differentiation properties of the iPSCs. Using immunohistochemistry followed by

guantitative image analysis (hereafter ‘Cellomics’), we measured protein expression of
pluripotency markers in 307 lines and differentiated 372 lines into neuroectoderm,
mesoderm, and endoderm8 measuring expression of three lineage-specific markers in each
germ layer (Fig. 1a; Extended Data Fig. 1). We then selected 1-2 lines per donor to minimise
the number of genetic abnormalities and performed further phenotyping (hereafter ‘Tier 2’)
using RNA-seq, DNA methylation arrays, quantitative proteomics and cell morphological
imaging in 239, 27, 16 and 24 lines, respectively (Supplementary Table 1).

Pluripotency and genetic stability

Using Tier 1 expression data, 84% of our lines were classified as pluripotent by PluriTest9
(score > 20) and 97% had a pluripotency score of >10, which yields almost identical
sensitivity and specificity in the PluriTest training set (Fig. 1b). Most lines with a
pluripotency score <20 (69%) had been cultured on feeder free Essential 8 media (@R 5.4,
< 8x1013, Fisher's exact test), which likely reflects that PluriTest was primarily trained
using lines grown in feeder-dependent conditions (Extended Data Fig. 2). Using the
Cellomics imaging data we quantified the fraction of cells expressing each pluripotency
marker individually and estimated that, on average, between 18% and 62% of cells in the
iPSC lines co-expressed all three marké®VOG, POUSF1(OCT4 and SOX2(Fig. 1c).
Almost all lines (>99%) successfully produced cells from all three germ layers during
directed differentiation with the average line producing up to 70%, 84% and 77% of cells
expressing all three markers of dEN, dME and dEC, respectively (Fig. 1d). We assessed
correlations of differentiation capacity between different germ layers and found a positive
correlation between endoderm and mesoderm marker expression (Spearman P=<0.36,
0.001), and between endoderm and pluripotency marker expression (Spearman P=<0.21,
0.008) (Extended Data Fig. 1c). Taken together, our data indicate that virtually all of the
iPSC lines we have derived are pluripotent, although we observed some variability in
differentiation between lines.

Next, we used genotyping arrays to detect copy number alterations (CNAs) between the
iPSC lines and their progenitor fibroblasts. For this purpose, we developed a computational
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approachl0 that can detect genetic abnormalities of >200 Kb occurring in 20% or more
cells. We identified trisomies in 4% of lines (none of the selected lines), and 41% of lines
(18% of the selected lines) harboured one or more CNAs of, on average, 7.15 Mb in length
with duplications outnumbering deletions by 2.8 to 1 (Fig. 1e, Supplementary Table 2).
Although the majority of CNAs were unique to single iPSC lines, 22% were also observed
in at least one replicate line from the same donor (at least one base pair overlap), and 15%
were identified in all replicates (Fig. 1f). We found no significant association between the
number of CNAs and either passage number, donor age, gender or PluriTest score of a line
(P> 0.09, Fig. 1g, Extended Data Fig. 3).

CNAs observed in pluripotent stem cells (PSCs) are known to recur at certain genomic
locations11-13. We observed 35 regions where CNAs occurred significantly more often than
expected under a uniform genomic distribution, including whole chromosome duplication of
the X chromosomeR= 1.5x109), 20 sub-chromosomal duplications, 11 deletions and three
regions with both duplications and deletions (Fig. 2a, Supplementary Table 2). The three
most frequent CNAs (X trisomy, chromosome 17 and 20) have been previously observed in
PSCs12,14,15, but others are newly identified, to our knowledge.

Although recurrent CNAs could be due to mutational hotspots we did not find a significant
overlap between our recurrent CNA set and annotated chromosome fragile sites16 (17%
overlap,P= 0.075). Recurrent CNAs could also arise if duplication or deletion of specific
genes led to a selective advantage. To identify potential targets of selection, we defined peak
regions of amplification (regions of maximum recurrence e.g. Fig. 2c and Extended Data

Fig. 4) within each CNA and identified expressed genes (FPKM>0 in >10% of lines).
Fourteen candidate regions contained fewer than six expressed genes including genes with
establised roles in cancer progressiDOCK1, FATS, WWOX, STAGAnd XIAP)17-21.

In regions with larger numbers of genes we searched for: (i) significant differential
expression between lines with copy number 2 and 3 (ii) reported oncogenes from
COSMIC20 and (iii) high scoring genes (top 2%) in a genome-wide siRNA screen for hESC
cell proliferation22 (Fig. 2c, Extended Data Fig. 4; Supplementary Table 2). This approach
identified BCL2L 112 on chr20q11.21£/F4A3 NOL11and seven other genes on chrl7q
andUTP6and SUZ120n chrl7g11.2. One candidaf®F4A3 scored more highly than
BCL2L1in reducing ESC proliferation (Fig. 2c, top 0.1% of genes), was highly expressed in
iPSCs, and over-expressed in lines with increased copy number, at both the @RNA (

2x10°) and protein level (Extended Data Fig. 5). Finally, we compared lines from the same
donor with and without CNAs to test for genome-wide effects on gene expression levels and,
in a subset of cases, for effects on cell growth, proliferation and apoptosis (Fig. 2b, Extended
Data Fig. 5). The recurrent duplication on chromosome 17 was associated with the largest
number of changes in gene expression, including 1,098 genes (FDR < &&#jsiacated

on other chromosomes, which were enriched for ‘Neural Crest Differentiation’ and ‘DNA
strand elongation’ pathways (PathCards23, Supplementary Table 2). We also detected
significant increases and decreases in cell growth rate associated with CNAs on chromosome
17 and 20 (Extended Data Fig. 5).
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Sources of iPSC heterogeneity

Characterisation of multiple lines per donor enabled us to quantify the variance contributed
by between-individual differences (hereafter, ‘donor effects’) and systematically compare
this with variance from other factors, substantially extending previous analyses in smaller
cohorts6,7 (Fig. 3a-c). We identified consistent donor effects for most measured iPSC
phenotypes, ranging from DNA methylation, through mRNA and protein abundance to
pluripotency, differentiation, and cell morphology (Fig. 3b,c). After accounting for assay-
specific batch factors (full list in Methods), donor effects explained 5.2-26.3% of the
variance in the genome-wide assays (Fig. 3a), 21.4-45.8% in protein immunostaining (Fig.
3b), and 7.8-22.8% in cellular morphology (Fig. 3c). Collectively, these results indicate that
differences between donor individuals affect most iPSC cellular traits.

We further partitioned iPSC gene expression variation using the Tier 1 expression array data,
the assay with the largest number of donors and lines. Of the 25,434 probes analysed
(16,829 genes) (Supplementary Table 3), donor effects explained the largest proportion of
variation in 46.4% of probes (53.3% of genes), substantially more than any other factor,
including copy number status (23.4%), culture conditions (26.2%), passage (2%) and gender
(1.9%, Fig. 3d). Donor effects were common, and consistent across large numbers of genes,
while others such as CNA status had larger effects on a smaller number of genes (Fig. 3d).
We observed minor effects of gender and line passage number on RNA-seq, methylation and
protein immunofluorescence (Fig. 3d, Extended Data Fig. 6). Likewise, we did not observe
substantial changes in PluriTest scores, or pluripotency marker expression across passages
(P> 0.3, Extended Data Fig. 6), reflecting that pluripotency was maintained during culture.

In principle, the estimated donor variation could arise due to shared reprogramming
environment because lines were derived from the same population of fibroblast cells.
However, expression quantitative trait locus (eQTL) effect sizes mapped using Tier 1
expression data (Supplementary Table 4, Extended Data Fig. 6) revealed that higher donor
variation was associated with larger effect sizes of lead eQTL variants (Fig. 3e), suggesting
that donor variance primarily reflects genetic differences.

Identification and characterization of iPSC-specific regulatory variants

Using RNA-seq data from 166 unrelated donors (median sequencing depth 38M reads), we
next mapped eQTLs in a 1 Mizswindow from the gene start. We identified 6,631 genes

with an eQTL (FDR 5%, hereafter ‘eGenes’), 598 of which had a significant secondary
eQTL (Supplementary Table 4). Power to discover eGenes in iPSCs was comparable to that
in somatic tissues24 given our sample size, and iPSC eQTLs showed similar genomic
properties to eQTLs in cell lines and tissues (Extended Data Fig. 7; Supplementary Table 5).

As many eQTLs are shared among tissues9,25,26, we sought to place iPSC eQTLs in the
broader context of somatic tissues. We assessed iPSC eQTL replication across 44 GTEXx
tissues (lead eQTLs and proxy variants; 0.8, defining replication as P < 0.01/45;

Methods), revealing 2,131 eQTLs that were specific to iPSCs (Fig. 4a). We also considered
secondary eQTLs, identifying a similar proportion of iPSC-specific genetic effects (both
32%). Most tissue-specific signals (72%) occurred in genes with at least one GTEx eQTL
that was not in high linkage disequilibrium (LD) with the lead iPSC eQTL variant,
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suggesting that iPSC-specific eQTLs are frequently driven by alternative regulatory variants.
Only 11% of the iPSC-specific eQTLs could be attributed to tissue-specific gene expression
(Fig. 4b), despite greater numbers of expressed genes in iPSCs compared with somatic
tissues (Extended Data Fig. 7). Similarly, most somatic tissue-specific eQTLs were also
driven by alternative regulatory variants, with only testis showing a substantial fraction
(16%) of eQTLs attributable to tissue-specific gene expression (Fig. 4b). Using alternative
methods for eQTL detection and assessing the extent of sharing between eQTLs in iPSCs
and GTEXx tissues, we confirmed that our conclusions were robust to methodological
differences between GTEx and our study (Extended Data Fig. 8). However, due to variation
in sample size, we cannot rule out that a fraction of the iPSC-specific eQTLs may have a
weak effect on gene expression in some somatic tissues.

The transcriptional regulatory networks that maintain pluripotency are unique to stem cells.
We next investigated how common genetic variants modulate these networks to produce
iPSC-specific genetic effects on expression. We used chromatin state annotations from 127
reference epigenomes from the Roadmap Epigenomics Project27 to quantify the fold
enrichment of iPSC-specific and nonspecific eQTL sets across 25 chromatin states (using
matched null variants; Methods). iPSC-specific eQTLs were enriched in active enhancers
and poised promoters in PSCs and PSC-derived cell types, while shared eQTLs were
enriched for active promoters and transcribed regions in somatic tissues (Fig. 4c). iPSC-
specific eQTLs were also enriched for binding site8lANOG, POU5F1(OCT4, and

multiple other pluripotency factors9,28 (Fig. 4d; Extended Data Fig. 8). Our results suggest
that common genetic differences between individuals may affect expression regulation
during early stages of development.

iPSC eQTLs tag common disease variants

We next identified iPSC eQTLs that may be associated with disease. iPSC eQTLs tagged
322 variants associated in genome-wide association studies with 145 different disease traits,
corresponding to a 1.4-fold global enrichment over control variants (Fisher's exact P =
1.4x109%), and trait-specific enrichments for seven traits (Supplementary Table 6), a
comparable level of enrichment to eQTLs from most somatic tissues (Extended Data Fig. 9).
We also observed that iPSC eQTLs tagged a larger number of known cancer genes
(COSMIC cancer census 27/04/201620) than somatic tissue eQTLs, with only cancer eQTLs
tagging more (Extended Data Fig. 9).

Next, we used statistical colocalisation29 to identify loci where the same causal variant
appeared to be driving both an iPSC eQTL and an association with one of 14 complex traits,
identifying 233 loci where the posterior probability of a joint association exceeded 0.5
(Supplementary Table 6). Of these, 45 were iPSC-specific, incliii#V.2 an iPSC-

specific eQTL that strongly colocalised with risk variants for four autoimmune disorders

(Fig. 5a). Previous eQTL studies in both immune cells30-32 and GTEX tissues have not
identified aPTPNZ2eQTL (Extended Data Fig. 9), suggesting that disease risk variants at
PTPNZmay function in stem cells, or early development.

Statistical colocalisation analysis is limited to instances where full summary statistics are
available for both traits. For other disease traits available in the GWAS catalogue, we
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searched for sharing of lead iPSC-specific eQTL and GWAS SNPs. We found six variants
where the lead eQTL variant was identical to a catalogued GWAS variant, with no other
common variants in LD fr< 0.8). One example was rs10069690, the lead eQTL variant for
the TERT (Telomerase Reverse Transcripfagene (Fig. 5b). Although this variant is
associated with germline predisposition to seven cancers33-35, this eQTL is not reported in
cancer eQTL studies36—38 nor in any GTEX tissue. Previous studies have reported aberrant
splicing of TERT caused by rs1006969039. We quantifi/@d@RTintron retention rates and

found that the minor allele of rs10069690 increased the fracti@& /7 transcripts in

which intron four is retainedg= 1.7x10°, Bonferroni adjusted) (Fig. 5d, Extended Data

Fig. 10). SomaticZERT promoter mutations only manifest in differentiated cells, resulting

in increased telomerase activity40. We speculate that the gernffiRéeQTL we

identified in iPSCs results in genotype-dependent variability in telomerase activity in
somatic cell types, leading to differential cancer susceptibility.

Discussion

Here we present the most comprehensive analysis yet of genetic and phenotypic data from
human iPSC lines. Our study substantially extends on previous work6,7 by demonstrating
widespread functional consequences of genetic variation for many molecular and cellular
phenotypes in human pluripotent stem cell lines, including in the efficiency with which iPS
cells differentiate41-43. This is potentially a consequence of variation in core components
of the regulatory networks controlling cellular differentiation and responses to external
environmental stimuli, as observed previously in hematopoietic cells and mouse and fly
embryos44-46.

We have also created a high-resolution map of recurrent genetic abnormalities in hiPSCs and
identified plausible candidate targets of selection. The majority of these recurrent loci are
rare and were not reliably identified in previous studies with smaller sample sizes.

Compared to previous work11,12, we observed substantially lower levels of genetic
aberrations. One possible explanation is that access to donor-matched reference samples
helped us more accurately identify germline CNAs that would otherwise have inflated our
estimates, while previous studies in ESCs were unable to perform similar comparisons.

Our study provides the highest resolution map to date of common regulatory variation in
human PSCs. We show that variation in local gene regulation in iPSCs is similar to that in
somatic tissues, with eQTLs driving cell-type specific expression profiles through distal
tissue-specific regulatory elements. We have identified eQTLs that function primarily in
pluripotent cells, a subset of which tag loci associated with disease. These loci may drive
disease-susceptibility through molecular changes early in development or, more generally, in
cells with ‘stem-like’ characteristics, which are not well captured by studies of differentiated
primary tissues from adult individuals. A compelling example of this is the iPSC-specific
eQTL regulatingTERT expression. In human tissues, telomerase activity is mainly restricted
to stem cells, with most somatic tissues silendiage7 expression. However, cancer cells
bypass this tumour suppressive mechanism by reactivating telomerase activity47. This result
highlights how iPSCs could be used to study the genetic effects of diseases that manifest in
transient states during cellular growth and differentiation, including in cancer48.
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The analysis of the recurrence of CNAs and the eQTL map we present are based on a large
sample, providing a high-confidence map of molecular associations in iPSCs. We have
presented preliminary experimental characterisation of some of the CNAs and eQTLs we
detected, however our results are inconclusive. An important next step will be to perform
more extensive functional characterisation to understand how iPSC cellular phenotypes are
influenced by CNAs and iPSC eQTLs. We anticipate that the lines and data we have
generated here will be a valuable starting point for future studies to understand how
germline and somatic genetic variation influences iPSC growth and differentiation.

In summary, our study provides a detailed picture of the genetic and phenotypic variability
in human pluripotent stem cells, including the major drivers of this variation. Data and cell
lines from this study are being made available througtwv.hipsci.org the European

Collection of Authenticated Cell Cultures (ECACC) and the European Bank for Induced
Pluripotent Stem Cells (EBIiSC). As the HipSci resource continues to expand in sample size
and assays, it will enable the study of subtler genetic effects, under a wider range of
conditions, in an increasing range of disease-relevant differentiated cell types.

Generation of iPSC lines

All samples for the HipSci resource were collected from consented research volunteers
recruited from the NIHR Cambridge BioResourcg(://
www.cambridgebioresource.org)lSamples were collected initially under ethics for iPSC
derivation (REC Ref: 09/H0304/77, V2 04/01/2013), with later samples collected under a
revised consent (REC Ref: 09/H0304/77, V3 15/03/2013).

Fibroblast isolation— Primary fibroblasts were derived from 2 mm skin punch biopsies
from each donor. Biopsies were collected in fibroblast growth medium (Advanced DMEM,
10% FBS, 1% L-Glutamine, 0.007% 2-mercaptoethanol and 1% Pen/Strep) in falcon tubes
at room temperature. Biopsies were manually dissected using a microscope under a drop of
fibroblast medium using sterile scalpels. The biopsy fragments were transferred onto a 60
mm Petri dish containing several drops of fibroblast growth medium. Sterile cover slips were
placed onto the dissected pieces of tissue to hold them in place against the bottom of the
plate. The explants were cultured for five days and the spent media was removed and
replaced with a few drops of media (1 ml) to prevent dehydration. The explants were fed
every five days with 1 ml fibroblast media until fibroblast outgrowths appeared. The

explants were screened for presence of mycoplasma using a standard PCR kit (EZ-PCR Kit,
Gene flow (41106313-001)). On average outgrowths appeared within 14 days, with a small
fraction of samples failing to produce outgrowths (12% of cases). Failures were due to
contamination (0.5%) or lack of observed outgrowths after 30 days (11%). Approximately
30 days post dissection, when the fibroblasts had reached confluence, the culture was
trypsinized and passaged into a 25 ¢issue culture flask. When 80-90% confluent, the
fibroblasts were further passaged into a 73 flask. Cells were then expanded to

confluency in 225 crhflasks (at a split ratio of 1:3) and either cryopreserved at 1-2 million
cells per vial in FBS and 10% DMSO or seeded immediately for reprogramming.
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iPSC derivation— Fibroblasts were transduced in one well of a six-well plate using Sendai
vectors expressing hOCT3/4, hSOX2, hKLF4, and hc-MYC 50 (CytoTune™, Life
Technologies, Cat. no. A1377801). The transduced cells were cultured on an irradiated
mouse embryonic fibroblast (MEF-CF1) feeder layer on a Rtissue culture dish in iPSC
medium consisting of Advanced DMEM (Life technologies, UK) supplemented with 10%
Knockout Serum Replacement (KOSR, Life technologies, UK), 2 mM L-glutamine (Life
technologies, UK) 0.007% 2-mercaptoethanol (Sigma-Aldrich, UK), 4 ng/mL of

recombinant Zebrafish Fibroblast Growth Factor-2 (CSCR, University of Cambridge), and
1% Pen/Strep (Life technologies, UK). Cells with an iPSC morphology appeared
approximately 25 to 30 days post-transduction. The undifferentiated colonies (six per donor)
were picked between days 30-40, transferred onto 12-well MEF-CF1 feeder plates and
cultured in iPSC medium with daily media change until ready to passage. Cells were
passaged every five to seven days, depending on the confluence and morphology of the cells,
at a maximum 1:3 split ratio until established — usually at passage five or six. Once the iPSC
lines were established in culture, three of the six lines were selected based on morphological
qualities (undifferentiated, roundness and compactness of colonies) and expanded for
banking and characterisation.

Transfer to feeder-free culture— Between passages four to eight, selected feeder-
dependent iPSC lines were transferred to feeder-free culture. The feeder-dependent iPSC
lines were split and passaged onto both feeder-dependent and feeder-free conditions. The
feeder dependent lines continued to be cultured on MEF-CF1 feeder plates in iPSC medium,
whilst the feeder free lines were cultured in Essential 8 (E8) medium on tissue culture dishes
coated with 10 pg/ml Vitronectin XF (StemCell Technologies, UK, 07180). E8 complete
medium consists of basal medium DMEM/F-12(HAM) 1:1(Life technologies, UK,

A1517001) supplemented with E8 supplement (50X) (Life technologies, UK, A1517001)

and 1% Pen/Strep (Life technologies, UK, 15140122). Media was changed daily. To passage
feeder-free iPSC lines, cells were washed with PBS and incubated with PBS-EDTA solution
(0.5 mM) for 5-8 minutes. PBS-EDTA solution was removed, and cells were resuspended in
E8 medium and seeded at split ratios ranging from 1:3 to 1:6 onto Vitronectin coated tissue
culture dishes. Cells were passaged every four to seven days (depending on the confluence
and morphology of the cells). Once the feeder-free iPSC lines were established in culture,
the cells were expanded for banking and characterisation.

iPSC line selection and molecular assays— Each iPSC line was passaged on average
16 times before being expanded for the collection of initial molecular data for quality

control (‘Tier 1 assays’). These included genotyping (‘gtarray’), gene expression data
(‘gexarray’), and an assessment of the pluripotency and differentiation potential of each line
(‘Cellomics’). Pluripotency of the lines was additionally verifiadsilico, using the

PluriTest assay 9. Following Tier 1 assays, one or two lines were selected from a subset of
donors (hereafter ‘selected lines’) and further expanded to enable collection of a richer set of
molecular data (‘Tier 2 assays’). The criteria for line selection were: (i) level of pluripotency,
as determined by the PluriTest assay (ii) number of copy number abnormalities and (iii)
ability to differentiate into each of the three germ layers. These included proteomics, DNA
methylation (‘mtarray’), RNA-sequencing and high-content cellular imaging. Once Tier 1
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genotyping data were collected (see below) cell lines originating from the same donor were
checked for possible sample swaps using BCFtools (bcftools gtcheck -G1).

Nucleic acid extraction

DNA and RNA from iPSC lines were extracted using Qiagen Chemistry on a QlAcube
automated extraction platform. Sample volume was checked using a BioMicroLab
automated volume check system. The PicoGreen assay was used to measure the
concentration of the samples, using both Beckman FX liquid handling platforms and
Molecular Devices plate readers. Invitrogen E-Gels were run to check sample integrity; the
loading of these gels was automated using Beckman FX/NX liquid handling platforms. A
standard Fluidigm genotyping assay containing 24 SNPs (22 autosomal and 2 gender
markers) was performed to produce a fingerprint of the samples, which was used to confirm
sample identity after sequencing or genotyping. The gender markers also allowed for sample
swaps and plate orientation issues to be identified prior to downstream analysis. Samples
that passed quality control were quantified to 50 ng/ul by the onsite sample management
team prior to submission for sequencing.

Genotyping (‘gtarray’)

Experimental processing of arrays—  Samples were hybridised to the Illumina
HumanCoreExome-12 Beadchip according to the manufacturer's guidelines. Four
microlitres (200 ng) of DNA is required for the pre-amplification reaction using a Tecan
Freedom Evo. The process is automated except for manual agitation/centrifugation step
midway through and at the end of the process. Post-amplification processes (fragmentation,
precipitation, resuspension, hybridization to beadchip and xStaining) were completed over
three days as per lllumina protocol. Following the staining process, beadchips were coated
for protection and dried completely under vacuum before scanning on the Illlumina iScan
paired with lllumina Autoloader 2.x. Prior to downstream analysis, all samples were
subjected to initial quality control to establish that the assay was successful. Sample call-
rates below 92.5% were flagged before loading samples into lllumina’s GenomeStudio
software. Using lllumina’s QC dashboard, sample performance was assessed by measuring
dependant and non-dependent controls that are manufactured onto each beadchip during
production.

Genotype calling and imputation—  After primary quality control, the Genotyping (GT)
module of the GenomeStudio software (lllumina, CA, USA) was used to call the genotypes.
For each probe, the GT module estimates the Log R ratio and B-allele frequency for each
sample using a clustering model applied to the distribution of signal intensities. These
statistics are used internally by GenomeStudio to assign the sample genotypes for each
marker. Variant coverage was further increased using statistical imputation and phasing. We
constructed a reference panel of haplotypes from a combination of SNPs and small
insertions and deletions (indels) in the UK10K cohorts and 1000 Genomes Phase 1 data
51,52. Samples were independently imputed using IMPUTEZ2 v2.3.1 53 and subsequently
phased using SHAPEIT v2.r790 54. This analysis was done in chunks of average 5 Mb, with
300 Kb buffer regions on each side. IMPUTE2 was used with its default MCMC options (-
Ne 20000 -k 80) for autosomes and -Ne 15000 -k 100 for X chromosome. SHAPEIT was
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run without MCMC iteration (-no-mcmc) so that each sample was phased independently
using the reference panel as the haplotype scaffold regardless of the phasing of the other
samples. Single-sample VCFs were merged together and INFO scores were re-calculated
from genotype posterior probabilities (GPs). Variants with INFO score less than 0.4 were
excluded from further analysis. Cell lines originating from the same donor were checked for
possible sample swaps using BCFtools (bcftools gtcheck -G1). Swapped samples typically
had large number of discordant genotypes (>20%), whereas in samples from the same donor
the number of discordant genotypes was low (<0.3%), even in the presence of large copy
number variation.

Gene expression arrays (‘gexarray’)

Experimental processing of arrays— 500 ng of total RNA for each sample was

amplified and purified using the Illumina TotalPrep-96 RNA Amplification kit (Life
Technologies, UK), according to the manufacturer’s instructions. Biotin-Labelled cRNA was
then normalized to a concentration of 150 ng/ul and 750 ng was hybridised to lllumina
Human-12 v4 BeadChips (lllumina, CA, USA) for 16 hours (overnight) at 58°C. Following
hybridisation, BeadChips were washed and stained with streptavidin-Cy3 (GE Healthcare,
UK). BeadChips were then scanned using the BeadArray reader and image data was then
processed using GenomeStudio software (lllumina, CA, USA).

Re-mapping of array probes— Prior to analysis, array probe sequencgsdids=
47,230; length 50 bp) were re-mapped against the human genome build 37 using BWA
version 0.7.5 55.

We first mapped the sequences allowing no mismatches (-n 0, seeding disabled) and kept
uniquely mapping probes with a minimum mapping quality (MAPQ) of 10 (-g 10). These
sequences were then mapped again, this time allowing one mismatch (-n 1). Again, only
uniquely mapping probes with MAPQ > 10 were retained, resulting in a total of N = 37,740
probes. We further removed all probes that overlapped with any variant with a minor allele
frequency greater than 0.05 in the main imputed dataggi{i858). Remaining probes

were annotated with Gencode version 19 gene annotations 56 and only probes mapping
uniquely to a single gene were kept (final probesggidds= 25,604, representing 17,116
unigue genes of which 14,569 are protein coding.

Pre-processing and normalization of data—  Gene expression profiles were measured
with lllumina HumanHT-12 v4 Expression BeadChips. After limiting the dataset to iPSC
lines derived from fibroblast of healthy donors, we obtained data from 711 iPSC lines and
301 somatic fibroblast lines. Probe intensity estimates were normalised separately for the
two cell types using the variance-stabilizing transformation implemented in the R/
Bioconductorvsnpackage 57. After normalization, the datasets were limited to the final
remapped set of probes{ihes 25,604). We refer to this version of the “gexarray” data by
vsnlog2 (iPSC/somatic).
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Cellular differentiation assay (‘Cellomics’)

Differentiation potential assay— Selected iPSC lines were assessed for their
pluripotency and differentiation properties by culturing the cells under conditions favouring
the formation of the three embryonic germ layers, and subsequent immunostaining with
markers specific for pluripotency and differentiation. Differentiation was performed as
described previously 58. Briefly, iPSCs grown in feeder-dependent or feeder-free conditions
were harvested using either collagenase and dispase or EDTA, respectively. Colonies were
collected, washed in media and mechanically broken up before being re-plated onto 24-well
mouse embryonic fibroblast (MEF) feeder plates or pre-coated gelatine/FBS plates. For
pluripotency assays, feeder-dependent colonies were seeded on MEF feeder plates and
feeder-free colonies onto Vitronectin plates. For the differentiation assay, colonies were
grown on gelatine/FBS plates. Prior to differentiation to mesoderm (dME), endoderm (dEN),
and neuroectoderm (dEC), cells were cultured overnight in pre-differentiation media CDM-
PVA supplemented with recombinant Activin-A (10 ng/ml; CSCR, University of

Cambridge) and zebrafish FGF2 (12 ng/ml; CSCR, University of Cambridge).

For differentiation into mesoderm following culture in pre-differentiation media, spent

media was removed and replaced with fresh CDM-PVA media containing bone morphogenic
protein 4 (BMP4, 10 ng/ml, R&D Systems Inc.), FGF2 (20 ng/ml; CSCR, University of
Cambridge), recombinant Activin-A (10 ng/ml; CSCR, University of Cambridge), LY29004
(10 mM, Promega, UK.), CHIR99021 (5 mM, Selleckchem) and subsequently cultured for
three days. Media was changed daily.

For differentiation into endoderm, following culture in pre-differentiation media cells were
further cultured in differentiation media for three days. Briefly, day one media was removed
and replaced with fresh CDM-PVA media supplemented with recombinant Activin-A (100
ng/ml; CSCR, University of Cambridge), zebrafish FGF2 (80 ng/ml; CSCR, University of
Cambridge), BMP4 (10 ng/ml R&D Systems Inc.), LY29004 (10 mM), and CHIR99021 (3
mM). Day two media was removed and replaced with fresh CDM-PVA supplemented with
recombinant Activin-A (100 ng/ml), zebrafish FGF2 (80 ng/ml), BMP4 (10 ng/ml), and
LY29004 (10 mM). Day three media was removed and replaced with RPMI media
supplemented with B27 (1x, Life Technologies UK), recombinant Activin-A (100 ng/ml),
zebrafish FGF2 (80 ng/ml), and Non-Essential Amino Acids (1x, Life Technologies UK).

For differentiation to neuroectoderm, iPSCs were grown for 12 days in CDM-PVA
supplemented with SB431542 (10mM; Tocris Bioscience), FGF2 (12 ng/ml, CSCR
University of Cambridge), and Noggin (150 ng/ml, R&D Systems Inc.). Media was changed
daily.

Immunostaining for pluripotency and differentiation markers— For the detection

of pluripotency and differentiation markers, cells grown in 24-well plates were fixed with

4% paraformaldehyde for 20 minutes. Cells were permeabilized and blocked with 10%
donkey serum and 0.1% Triton X-100 in PBS. Subsequently, cells were stained with primary
antibodies overnight at 4°C and finally incubated with fluorochrome-labeled secondary
antibodies (Invitrogen, UK). The primary antibodies used for detecting pluripotency markers
were: anti-OCT4 (SC-5279, Santa Cruz Biotech, USA), anti-SOX2 (AF2018, R&D, UK),
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anti-NANOG (AF1997, R&D, UK). The primary antibodies used for detecting endoderm
markers were: anti-SOX17 (AF1924, R&D, UK), anti-CXCR4 (MAB173-100, R&D, UK
and anti-GATA4 (SC-25310, Santa Cruz Biotech, USA). The primary antibodies used for
detecting mesoderm markers were: anti-Brachyury (AF2085, R&D, UK), anti-EOMES
(Ab23345, Abcam, UK) and anti-MIXL1 (SC-98664, Santa Cruz Biotech, USA). The
primary antibodies used for detecting neuroectoderm markers were: anti-NESTIN
(AB22035, Abcam, UK), and anti-SOX1 (AF3369, R&D, UK) anti-SOX2 (AF2018, R&D,
UK). The secondary antibodies used were: Donkey anti-goat AF488 (Invitrogen, UK),
Donkey anti-mouse AF488 (Invitrogen, UK), Donkey anti-rabbit AF488 (Invitrogen, UK).
Additionally, DAPI staining was used to label cell nucleus in order to facilitate cell
segmentation.

Images were captured and quantified using a Cellomics Array Scan imaging system. Briefly,
images were taken in 24-well plates. Individual plates were used to either measure
pluripotency markers or markers to assess differentiation for one of the germ layers. Each
plate contained cells from one or two cell lines, as well as technical replicates for each
measurement. Three types of plate layouts were considered throughout the project: Two-
channel, three-channel, and three-channel with single staining. For all layouts, the signal
from the DAPI staining was read in the first channel. The first columns of each plate were
used for marker staining; subsequent columns (one or two) were stained with the secondary
antibody to measure background signal (Extended Data Fig. 1).

Processing of images on the Cellomics instrument— Individual wells in the plate

were imaged consecutively, either until the whole plate was imaged or until 10,000

individual cells were detected. Cell detection was performed based on nucleus segmentation
from DAPI staining. All considered markers except for CXCR4 are nuclear markers, so their
signal intensities were measured in the segmented nucleus area. The cell surface marker
CXCR4 was quantified in a circle around the segmented nucleus. For each cell and marker,
we used the average intensity within the respective quantification area as final readout. Each
batch of lines for staining included the reference line (‘CTRL0214pf-iely’). This reference

line was used to determine parameter values for cell size (usually around 30-400) and an
approximate intensity threshold for detecting responding cells.

To quantify Cellomics phenotypes, we fit a Gamma mixture model to the Cellomics raw
intensities (Supplementary Information). Briefly, this model was fit to primary wells as well
as background wells (Extended Data Fig. 1), thereby estimating both the proportion of
responding cells as well as the overall intensity (expression) of the corresponding cells.

For downstream analyses, technical replicates on each plate were aggregated using average
values. Analogously to the processing steps for gene expression arrays, we regressed out
batch (derived from the date of staining), media type, gender, passage number, plating
technician, fixation technician, and the technician in charge of the staining. Analyses of
proportions of responding cells are based on estimates of the proportion of responding cells
(Fig. 1c,d). Analyses that consider intensities were based on quantitative expression
estimates, averaged across individual markers for a given layer (Extended Data Fig. 1c).
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Sample preparation— Frozen iPSC pellets were thawed and washed with PBS twice prior
to lysis. The protein content of the cells was extracted by re-dissolving the pellets in 8 M
urea, 100 mM TEAB, pH 8.5 and mixing at room temperature for 15 minutes. Next, the

DNA content of the cells was sheared using ultrasonication. The protein amount was
determined using a fluorescence based assay (EZQ, Life Technologies) prior to double
digestion using mass spectrometry grade lysyl endopeptidase (Wako, Japan) and trypsin
(Pierce) in a substrate-to-enzyme ratio of 1:50; w:w, at a final urea concentrations of 2 M
and 0.8 M, respectively. The digested proteins were desalted using sepak vacuum cartridges
(waters) and dried in vacuo. The desalted peptides were redissolved in (10 mM borate at pH
9.3 : acetonitrile; 80:20; v:v) for hSAX fractionation using a 40 minute gradient. A total of

16 fractions were collected, desalted and dried. The hSAX fractions were redissolved in 5%
formic acid for label-free LC-MS analysis. In addition to individual samples, a composite
reference sample (‘HPSI_composite_1503") was constructed by pooling together protein
lysates from 43 iPSC lines. 2 mg of protein was used for each. All samples in this reference
were of fibroblast origin and reprogrammed with sendai virus.

For Tandem Mass Tag (TMT)-based quantification, the dried peptides were re-dissolved in
100mM TEAB (50 uL) and their concentration was measured using a fluorescent assay
(CBQCA) (Life Technologies). 100 ug of peptides from each cell line to be compared, in
100 pL of TEAB, were labelled with a different TMT tag (20 pgtrim 40 pL acetonitrile)
(Thermo Scientific), for two hours at room temperature. After incubation, the labelling
reaction was quenched using 8 pl of 5% hydroxylamine (Pierce) for 30 minutes and the
different cell lines/tags were mixed and drigd/acuo

The TMT samples were fractionated using off-line high pH reverse phase chromatography:
samples were loaded onto a 4.6 x 250 mm Xbridge™ BEH130 C18 column with 3.5 um
particles (Waters). Using a Dionex bioRS system, the samples were separated using a 25-
minute multistep gradient of solvents A (10 mM formate at pH 9) and B (10 mM ammonium
formate pH 9 in 80% acetonitrile), at a flow rate of 1 ml/min. Peptides were separated into
48 fractions, which were consolidated into 24 fractions. The fractions were subsequently
dried and the peptides re-dissolved in 5% formic acid and analysed by LC-MS.

LC-MS/MS

Label-free analysis:RP-LC was performed using a Dionex RSLC nano HPLC (Thermo
Scientific). Peptides were injected onto a 75 um x 2 cm PepMap-C18 pre-column and
resolved on a 75 um x 50 cm RP- C18 EASY-Spray temperature controlled integrated
column-emitter (Thermo) using a four-hour multistep gradient from 5% B to 35% B with a
constant flow of 200 nL min-1 as described previously 59,60. The mobile phases were: 2%
ACN incorporating 0.1% FA (Solvent A) and 80% ACN incorporating 0.1% FA (Solvent B).
The spray was initiated by applying 2.5 kV to the EASY-Spray emitter and the data were
acquired on a Q-Exactive Orbitrap (Thermo Scientific) under the control of Xcalibur
software in a data dependent mode selecting the 15 most intense ions for HCD-MS/MS.
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TMT-based analysis:5% of the material was analysed using an orbitrap fusion tribrid mass
spectrometer (Thermo Scientific), equipped with a Dionex ultra high-pressure liquid
chromatography system (hano RSLC). RP-LC was performed using a Dionex RSLC nano
HPLC (Thermo Scientific). Peptides were injected onto a 75 pm x 2 cm PepMap-C18 pre-
column and resolved on a 75 um x 50 cm RP- C18 EASY-Spray temperature controlled
integrated column-emitter (Thermo), using a four-hour multistep gradient from 5% B to
35% B with a constant flow of 200 nL minThe mobile phases were: 2% ACN

incorporating 0.1% FA (Solvent A) and 80% ACN incorporating 0.1% FA (Solvent B). The
spray was initiated by applying 2.5 kV to the EASY-Spray emitter and the data were
acquired under the control of Xcalibur software in a data dependent mode using top speed
and 4 s duration per cycle. The survey scan is acquired in the orbitrap covermgtarge
from 400 to 1400 Th, with a mass resolution of 120,000 and an automatic gain control
(AGC) target of 2.0 e5 ions. The most intense ions were selected for fragmentation using
CID in the ion trap with 30 % CID collision energy and an isolation window of 1.6 Th. The
AGC target was set to 1.0 e4 with a maximum injection time of 70 ms and a dynamic
exclusion of 80 s.

During the MS3 analysis for more accurate TMT quantifications, 5 fragment ions were co-
isolated using synchronous precursor selection using a window of 2 Th and further
fragmented using HCD collision energy of 55%. The fragments were then analysed in the
orbitrap with a resolution of 60,000. The AGC target was set to 1.0 e5 and the maximum
injection time was set to 105 ms.

Quantification— Label-free proteomics samples were analysed with MaxQuant v. 1.3.0.5
software 61 as a single batch against a Uniprot reference database, constructed from all
Swissprot entries (N = 20,043) and their isoforms (N = 21,914). Run parameters have been
deposited to PRIDE along with the data and the full MaxQuant quantification output
(PXD003903).

For the selected TMT-based experiments (Extended Data Fig. 5b), the TMT-labelled samples
were analysed using Maxquant v. 1.5.3.30. Proteins and peptides were identified using the
UniProt human reference proteome database (Swiss Prot). Run parameters have been
deposited to PRIDE along with the full MaxQuant quantification output (PXD005506).

Pre-processing and normalization of data—  Data for analysis was obtained from the
“ProteinGroups.txt” output of MaxQuant. Contaminant and reverse hits (N = 3,419) were
excluded from analysis. For each sample, the total protein abundance was calculated by
summing up protein intensity (‘Intensity’) values across all proteins and protein groups. This
value was then used to scale all quantification values ('iBAQ’) per sample. For a protein or a
protein group to be considered, we required at least one unique peptide mapping to it.
Overall, we quantified 10,097 protein groups (4,877 unique proteins) in at least one of the
samples. Only unique protein entries quantified in at least half of the samples were used in
the subsequent analyses (3,435 proteins). The mean pair-wise correlation of samples was
0.87 for unique proteins (Spearman rank correlation). Based on the clustering of samples
(principal component analysis and pairwise correlation of protein quantification; data not
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shown), one sample appeared as an outlier (‘(HPSI0713i-darw_1") and was excluded from
further analyses.

DNA methylation (‘mtarray’)

Sample preparation and experimental processing of arrays— 500 ng of DNA was
used for bisulfite conversion using the Zymo Research EZ-96 DNA Methylation Kit. The
bisulfite converted DNA extracts were hybridized to Infinium 450K BeadChips (lllumina).
Due to the differences in sample plates between the completed Zymo assay and the Illumina
assay, pre-amplification was performed manually by following the Illumina MSA4 SOP.
Once complete, sample and reagent barcodes were simmed through the lllumina LIMS
tracking software. Four microlitres (200 ng) of sample is required (lllumina guidelines) for
the pre-amplification reaction using the Tecan Freedom Evo. No further quantification step
was performed after the completion of the Zymo assay. Labelling was performed
automatically during the post-amplification xStain process with Biotin and DNP labelled
antibodies. The HumanMethylation450_ 15017482 _v.1.1 arrays were scanned with iScan
(Ilumina) in accordance with the manufacturer’s protocol.

Quantification and normalization of data—  Methylation profiles were measured with
HumanMethylation450_15017482_v.1.1 arrays. GenomeStudio v2011.1 (Methylation
Module 1.9.0; lllumina) was used to export the raw data as. idat files, which were then
processed with the minfi Bioconductor package 62. Samples were normalised using the
stratified quantile normalisation implemented in the ‘preprocessQuantile’ function and
probes were annotated to genomic locations using the
llluminaHumanMethylation450kanno.iimn12.hg19 Bioconductor annotation package.
Subsequently, genotyping probes or probes overlapping any dbSNP or 1000 Genomes
variant loci were discarded. M-values, defined as the logarithm of the fraction of the
methylated and unmethylated channels M = log( Meth / Unmeth ), were used in the variance
component and other downstream analysis.

RNA-sequencing

Library preparation and sequencing— mMRNA in total RNA was isolated and

converted into non-stranded or stranded libraries. Non-stranded libraries were produced
manually using reagents provided in the lllumina TruSeq RNA Sample Preparation Kit v2 in
accordance with manufacturer’'s recommendations. The protocol was modified to produce
size-selected libraries by modifying the fragmentation conditions and using a Caliper
LabChip XT instrument. Stranded libraries were prepared using a NeoPrep Library Prep
System and the reagents provided in the Illumina TrueSeq Stranded mRNA Library
Preparation kit. The stranded library prep workflow is similar to the non-stranded workflow,
except that it involves additional ribosomal reduction chemistry to maximise the percentage
of uniquely mapped reads. Following purification, the RNA was fragmented and synthesised
into cDNA using a reverse transcriptase process. The products were then enriched with PCR
(maximum 10 cycles) to create the final cDNA library. Enriched libraries were subjected to
75 base paired-end sequencing using lllumina HiSeq 2000 v3 kits following manufacturer’s
instructions.
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Pre-processing of sequence data— Raw RNA-seq reads were aligned using STAR

v2.4.0 63 against the 1000 Genomes Phase2 reference genome assembly that integrates the
GRCh37 primary assembly with the human decoy sequence 37d5. Exon-intron junctions
derived from Gencode v19 transcript annotations 56 were used to improve the alignments.

The same approach was taken to re-align data for two tissues from the GTEx Project
(Extended Data Fig. 8). Raw fastg-files were obtained from dbGap (accession
phs0004242.v6.pl.cl) for Adrenal Gland (N=126 samples) and Esophagus
Gastroesophageal Junction (N=127 samples; limited to 126 unique samples used in the
GTEx V6p map).

Quantification and normalization of data—  Mapped reads were quantified on the level

of genes using HTSeq version 0.6.1p1 64 and annotations from Gencode v19 56. We used
the ‘union’ method of ‘htseq-count’ for unstranded libraries (-s no) and considered only
uniquely mapping reads (-a 255; with 255 indicating uniquely mapped reads from the STAR
aligner). Of note, STAR only outputs properly paired reads. Raw gene counts were scaled
across individuals with scaling factors obtained with DESeq 65. The same approach was
used to generate ‘probe-level’ counts using the final re-mapped set of gexarray probes.
These were used to filter expressed probes in the CNA analysis. Finally, an alternative set of
gene-level quantifications was generated for quality control purposes using RNA-SeQC
v1.1.8 66. To match the original GTEx v6p quantifications as closely as possible, we ran
RNA-SeQC with the -strictMode flag and used custom exon annotations generated and used
by GTEx (gencode.v19.genes.v6p_model.patched_contigs.gtf.gz) to obtain gene RPKMs.
The same RNA-SeQC quantification pipeline was applied to the two re-mapped GTEx
tissues.

High-content cellular imaging

Sample preparation and cellular imaging—  Each line was cultured and plated as
previously described 67. Briefly, 96-well plates were coated with three concentrations of
Fibronectin in alternated columns in a randomised fashion. Cell lines were seeded also in
rows in a randomised fashion. 3,000 cells were plated and fixed after 24 hours. EAU was
incorporated 30 minutes before fixation. Plates were then fixed and stained with DAPI and
cell mask and EdU staining. Images were acquired using the Operetta (Perkin Elmer) high
content device. Using the Harmony software, measurements were derived for each cell.
Measurements included intensity features (DAPI, EdU), morphology features (cell area, cell
roundness, cell width to length ratio, nucleus area, nucleus roundness, nucleus width to
length ratio) and context features related with cell adhesion properties (number of cells per
clump). Processing quantification and normalization of data was performed as previously
described 67. The Cellomics fluorescence imaging data was used to quantify the fraction of
cells expressing each protein marker independently. In the absence of co-staining
information we sought to use the marginal fractions of cells expressing each marker to
calculate lower and upper bounds for the fractions of cell estimating all markers
simultaneously. Let be the fraction of cells expressing protein marker and the fraction of
cells expressing all n markers simultaneously, then this value is bounded by:
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maxs <iP(Az‘) - n+1,0> < P((n]Az- < min(P(A1),...,P(Ay))
=1 i=1

Variance component analysis— Feature (gene, protein, or probe) intensity estimates for
each of the assays were pre-processed and normalised as described in the individual assay
sections and subsequently transformed into a standard normal distribution across lines. For
each feature in each assay, variance was partitioned using a linear mixed model
(implemented in the Ime4 R package) fitted with all metadata variables as random effects.
Only lines with complete metadata information were included in each one of the analyses,
these numbers are shown in parenthesis in Fig. 3a-c. The variance components were
normalized to sum to one and subsequently averaged across the different sets of features
considered (Fig. 3). The fraction of non-technical variance explained by each biological or
experimental factor refers to the variance explained by the factor, divided by the total
variance minus the variance explained by assay batches (see below for a definition of
experimental and assay batch factors). Confidence intervals for the Cellomics variance
components were obtained with the ‘profile’ method implemented in the ‘confint’ function

of the Ime4 package. The following random effects were included for each assay:

. Methylation - Donor. Experimental factors (summed up to produce Fig. 3a):
gender, passage interval at time of assay. Assay batches (summed up to produce
Fig. 3a): sentrix id, sentrix array (within sentrix id), bisulfite conversion plate,
year and month of assay, year and month of Tier 1 assays.

. Expression microarrays - Donor. Experimental factors: gender, passage interval
at the time of assay, culture system at time of assay, trisomy status, recurrent
CNA status. Assay batches: array batch, year and month of assay, beachip id,
beadchip array (within beadchip id), technician id, assay performed before or
after April 2014.

. RNA-seq - Donor. Experimental factors: gender, passage interval at time of
assay, trisomy status, recurrent CNA status, culture system at time of assay.
Assay batches: year and month of assay, year and month of Tier 1 assays.

. Proteomics (uniquely identified proteins) - Donor. Experimental factors: gender.
Assay batches: year and month of QC assays, instrument, year and month of
analysis.

. Cellomics - Donor. Experimental factors: gender, culture system at the time of

assay, passage interval at time of assay. Assay batches: date of staining, plating
technician id, fixation technician id, staining technician id, primary antibody lot
and secondary antibody lot.

. Cellular morphology assays (cell area, roundness, EDU, PC1 cellmorph) -
Donor. Experimental factors: gender, cell line, fibronectin concentration. Assay
batches: plate, row.
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Pairwise fibroblast-iPSC CNA detection— Copy number differences between

fibroblast and iPSC lines from the same donor were checked using a HMM algorithm
implemented in BCFtools/cnv for this purpose 10. In order to distinguish between normal
and novel copy number variation as well as to reduce the number of false calls, the program
was run in the pairwise mode (bcftools cnv -¢ <donor> -s <derived>) with default
parameters. The CNA calls were filtered to exclude calls with quality score smaller than 2,
deletions with fewer than 10 markers, and duplications with fewer than 10 heterozygous
markers. Three sets of CNA calls were generated: a more lenient set containing all calls >=
0.2 Mb in length, a set with all calls >= 0.5 Mb and a stricter subset of the previous with
calls >= 1 Mb.

Statistical significance of recurrent CNAs was estimated from the complementary
cumulative distribution function of the binomial distribution, and the significance of sub-
chromosomal events was estimated using a permutation test (Supplementary Information).

Overlap with annotated regions— To assess the significance of the overlap between

CNAs and annotated regions (namely chromatin fragile sites 16 and recurrent somatic copy
number altered regions in cancer 68 we randomly generated a set of 2,000 matched control
regions for each CNA. Control regions were generated so that they had the same size as the
CNA, did not overlap with telomeres or centromeres, and did not overlap the original CNA.
Overlaps were determined between the CNA and the annotated regions and between the
matched control regions and the annotated regions to calculate an enipiabat.

Association between CNAs and gene expression—  To determine the functional
consequence of CNAs with regards to gene expression we first selected CNAs for which five
(~1%) or more of the cell lines had a copy number different from two (regardless of copy
number in the corresponding somatic cells). For each of these CNAs we took the copy
number at the region of peak coverage for each cell line (see CNA coverage plots in Fig. 2¢
and Extended Data Fig. 4). We then defined the set of expression array probes to test by
choosing only expressed probes. Here a probe was defined as expressed if the number of
RNA-seq fragment counts (normalised between samples for sequencing depth) mapping to
the genomic regions targeted by the probe is greater than 0 in 10% or more of the lines.
Finally, we used a linear mixed model to independently test for association between copy
number of each CNA and the intensity of each probe. We included culture condition, gender
and an interaction between copy number and culture condition as fixed effects; and used
donor and assay batch as random effegtgalues were obtained for each CNA using
Benjamini Hochberg to adjust for multiple testing. The same approach was employed to test
for association between X chromosome copy number and gene expression, but we limited
the tests to female samples and to probes on the X chromosome.

Gene set enrichment analysis— Pathway enrichment analysis of the genes regulated by
chrl7 was performed with GSEA 69 on the full list of genes ordered by effects size of
association between gene expression with copy humber and with a custom set of pathways.
The custom set of pathways considered comprised 1,156 super pathways from the PathCards
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database 23 filtered to exclude pathways relating to infectious diseases and
pharmacokinetics. Multiple testing correction was performed as described in 69.

Expression quantitative trait loci (eQTL)
eQTL mapping

Pre-processing of genotype datavariants in the original VCF files were renamed to

format “type_chr_pos” (e.g. ‘snp_1_ 236887241’ or ‘indel:2D_1_18847945’), and filtered

for polymorphic and bi-allelic sites with VCFtools v.0.1.12b 70 (vcftools —gzvcf IN --mac 1
--min-alleles 2 --max-alleles 2 --recode --recode-INFO-all —out OUT). The resulting VCF
files were then converted to ‘012’ format (vcftools --gzvcf IN --012 --out OUT.012), where

0, 1, and 2 represent the number of non-reference alleles, and further to HDF5 format using
a converter function (-g012) from LIMIX (). This resulted in a set of N = 14,644,791 variant
sites. To obtain allele dosages, genotype likelihoods (GL) in the original VCF were
converted to genotype probabilities (GP) with BCFtools (bcftools +tag2tag IN -O z -0 OUT
-- --gp-to-gl) and used to define allele dosage as follows: Dosage of alternative allele =
GP(REF/ALT) + 2*GP(ALT/ALT). Genotype dosage information was converted to HDF5
format using LIMIX converter (LIMIX converter, --g012_dosage). For eQTL mapping, we
included autosomal variants with a minimum minor allele frequency of 1% in our samples
and maximum 10% missing values across individuals. Variant sites were further required to
have a minimum IMPUTE2 INFO score of 0.4 to assure good imputation quality. Missing
genotypes were mean imputed and the dosage of the alternative allele used for mapping.

Pre-processing of expression dataéscaled gene counts were filtered for missing values
(maximum 90% missing values, i.e. zero counts, allowed per gene). Zero values were offset
by 1, after which the data was log10 transformed and quantile normalized across individuals
using R limma normalizeQuantiles function 71. We then ran PEER 72 with full pre-
normalized dataset with the following parameters: K=30; covariates = gender, iPSC growth
condition (feeder-dependent/E8), mean expression (‘addMean=True’ in PEER); maximum
iterations = 10,000. Residuals for each gene were gaussianised, i.e. converted to the
guantiles of a standard normal distribution and finally mean centered and standardized prior
to mapping. In total, we had 26,936 and 17,116 genes available for mapping (RNA-seq and
‘gexarray’, respectively).

Linear mixed model: Expression quantitative trait loci (eQTL) were identified using a

linear mixed model implemented in LIMIX 73,74. eQTLs were mappezsirconsidering a
window of 1Mb around the gene start (as defined by Gencode v19 annotations). We
modelled the genotype as a fixed effect, with population structure included as random effect.
Population structure was modelled with a kinship matrix, calculated as the dot product of the
genotypes irtransfor eachciswindow (realized relationship).

eQTL mapping was performed with the following datasets (Supplementary Table 4):
1) iPSC, 166 donors (239 lines), RNA-seq data (hereon the ‘main’ eQTL map)
2) iPSC, 301 donors (711 lines), ‘gexarray’ data
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When multiple lines were available for a donor, the mean expression value of lines was used.
In the array-based iPSC dataset, which had the largest number of replicate lines available per
donor (246 donors with multiple lines), we additionally mapped the eQTLs using two
randomly drawn sets of individual lines per donor to assess the replicability of the iPSC
eQTLs (Extended Data Fig. 6f-h). In the main RNA-seq based map, we identified both
primary and secondary eQTL effects. To identify secondary effects, we repeated the

mapping with the genotypes of the lead eQTL variant included as a covariate in the model.
Finally, an alternative version of the main eQTL map was generated using a pipeline

matched with GTEx V6p eQTLs for quality control purposes (See Supplementary
Information).

Multiple testing correction: For ciseQTLs (primary and secondary), to adjust for multiple
testing, we permuted genotype sample labels in eastindow 10,000 times, keeping
everything else in the model constant. To derive an empfealue distribution, the test
statistic of the most significant variant in each permutation round was stored. A region-wise
adjustedc/s Pvalue was derived from the proportion of permuted test statistics that were
larger than the most significant observed test statistic in the region. These threghloies

were further adjusted for genome-wide analysis using the Benjamini-Hochberg (BH)
correction. A gene was considered an eGene if its final BH-adjébtatlie was less than

0.05.

Identification of tissue-specific  cis eQTLs—In this study, tissue-specific eQTLs were
defined as eQTL effects not replicating in any of the 44 tissues analysed by the GTEx
Project 24. Replication was tested on the level of individual eQTL variants between all pairs
of tissues. For this analysis, we considereddisleQTL output of iPSC eQTLs from HipSci

and 44 tissues from GTEx (V6p results; 2,025 tissue pairs). The included tissues and cell
lines are detailed in Supplementary Table 5a. For each discovery tissue, we tested for the
replication of all lead eQTL effects (lead eQTL variant - target eGene; hereon referred to as
‘ePair’) originally reported (FDR 5% in both HipSci and GTEx; Supplementary Table 5a).
Ideally, the exact same ePair would have been tested across all tissues. However, due to
differences in genotyping methods and allele-frequency due to sample size it was not always
possible to query the exact same ePair in all tissues. To account for this, if the original lead
variant was not available to test in the query tissue, a proxy variant was tested instead. We
note that the selected proxy may differ across the replication tissues. The approach to define
the proxy variant is summarized in the Supplementary Information.

Replication was defined as the query variant (original lead or proxy) having a nominal eQTL
P< 2.2x10% for the same eGene (corresponding’0.01 / 45, where 45 refers to the

total number of tissues tested). A lenient threshold was chosen in order to rule out any
evidence of replication. High-LD proxies for a lead were defined as h&/ing.8 in the

UK10K European reference panel and located in the sasméndow. All available LD-

proxies were tested for replication and the variant with the most significant £9dlue in

the discoverptissue was stored as the proxy. If no LD-proxies could be testedistragiant

with the most significant eQTIRvalue in thediscoverptissue overall was selected. Overall,

the same lead variant was available to test in 95% of tests across tissues (median of
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discovery tissues, with each discovery tissue represented as the median of tests across all
replication tissues; 90% for iPSC eQTLSs). A high-LD proxy for the lead was tested 3.6% of
the time (7.3% in iPSC), while the best availabkevariant was tested only 1.1% of the time
(2.7% in iPSC). Of the rare cases when the best available variant was tested, the selected
variant was independent of the original eQTL effects(©.1) 0.2% of the time (1.2% in

iPSC), indicating that in the vast majority of cases, the same eQTL effect was tested for
replication and the choice of variant is unlikely to have a marked effect on the results.
Statistics of the replication of the iPSC eQTLs, including numbers of selected proxy
variants, are provided in Supplementary Table 5b. If a gene was not tested for eQTLs in the
query tissue (for e.g. due to gene not expressed), replication information was defined as
missing. A replication profile was derived for each eGene in the discovery tissue, indicating
whether the lead eQTL effect replicated (yes | no) or could not be tested (‘NA’). We then
extracted eGenes, for which the lead eQTL effect did not show evidence of replication in
any other tissueR> 2.2x10%) or could not be tested (hereon referred to as 'tissue-specific
eQTLs’). Of note, in this analysis, for an eQTL effect to replicate, it has to affect the
expression of the same gene in both tissues. It the same variant is an eQTL for two different
genes in the two tissues, it is not considered replicating. We also investigated the impact of
the specific replication threshold, considering a threshof6f01 and0.05 (Extended

Data Fig. 8c). This analysis showed that the ability to replicate an eQTL signal in a second
tissue is primarily determined by the sample size of the replication tissue and not the specific
choice of threshold. This dependency needs to be taken into account when interpreting
tissue-specific eQTL effects.

As an alternative strategy for comparing eQTLs among different tissues, we also calculated
ther statistic 1 = 1 -mg; 75) for all pairs of tissues (Extended Data Fig. 8b) using the
gvaluepackage in R. Theq statistic provides a global measure of similarity between a pair
of tissues by estimating the proportion of eQTL signal discovered in one tissue that shows
evidence of replication in a second tissue. For this analysis, for each discovery tissue, we
queried all significant variants per eGene in the digbutput of all other tissues and

estimated gwith the ‘bootstrap’ method of thevaluepackage.

Functional annotation of eQTLs

Matched sets of variants:For all functional enrichment analyses, 100 matched sets of
variants (hereon ‘control variants’) were used as the null. These sets were generated with
SNPsnap 76 using unique lead eQTL variants from different datasets as the input. Variants
were matched for minor allele frequency, number of SNPs in LD (‘LD buddfes'0r5),
distance to the nearest gene, and gene density, allowing for maximum deviation of +/- 50%
for each criterion. HLA SNPs (defined as falling between positions 25,000,000 and
35,000,000 on chromosome 6) were excluded from the analysis and all matched sets were
non-overlapping with the input variants. 1000 Genomes Phase 3 European population was
used as the genotype reference panel. Both target and control sets of variants were further
expanded with their high-LD proxies? (¢ 0.8) derived from the European UK10k reference
panel. These expanded sets form the basis for all subsequent enrichment analyses.
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Overlap with chromatin state annotations:Functional enrichment of eQTLs was assessed
using chromatin state data from the Roadmap Epigenomics Project 27. The data comprised
of 25 chromatin states derived from reference epigenomes from 127 cell types. We
overlapped target eQTL variants separately with each chromatin state and cell type. We also
overlapped 100 sets of control variants with the same annotations and derived an empirical
Rvalue for each enrichment. This was defined as the number of control variant sets (N) that
showed a higher overlap with the target annotation than the eQTL lead vaflaritg100).

The empirical”values were further adjusted for the number of tests (25 states x 127 cell
types) within each eQTL set using t@evalue 75 package in R. Annotations witiParalue

< 0.05 were considered significantly enriched. We tested two sets of eQTLs for enrichment:
iPSC-specific eQTLs (N = 2,131) and non-specific eQTLs (N = 4,500).

For visualization purposes we aggregated the 127 cell types into five clusters, using k-means
clustering. The number of clusters was chosen based on the number of different sample
types annotated by Roadmap (primary cell, primary culture, primary tissue, cell line, ESC
derived). A heatmap of the difference in fold enrichment between iPSC-specific and non-
specific eQTLs (DIFF = Ffpecific- FEnonspecifid Was generated with thehearmapackage

in R (Fig. 4d) in order to assess how well our definition of iPSC-specific enriches for
functional elements active in stem cells.

Overlap with transcription factor binding sites: Functional enrichment of eQTLs was
additionally assessed using ChlP-seq based transcription factor (TF) binding sites (TFBS)
from the ENCODE Project 49. Specifically, we used a set of proximal and distal TFBSs,
where proximal is defined as a 2,000 bp window centered on Gencode v19 annotated
transcription start sites (TSS). These sets were constructed by overlaying TF ChlP-seq peaks
from all available cell types with DNase peaks. We limited our analysis to those peaks that
overlapped with H1-ESC derived TF peaks. As with chromatin state annotations, we
overlapped target and control eQTL variants with binding sites for each individual factor (all
sites where the given factor is bound or co-bound). An emp#galue for the enrichment

was derived based on the control sets and adjusted for multiple testing using the Benjamini-
Hochberg method. Factors with an adjusi®d0.05 were considered enriched. Plotted in

Fig. 4 are factors with at least 10 observed overlaps.

Overlap with the GWAS catalogue:The NHGRI-EBI GWAS catalogue was downloaded

on 2016-04-18 (release 2016-04-10). Entries with missing positiofValue information

were removed and the positions of the remaining entries were converted to hg19 with the
UCSC liftOver function in the “rtracklayer” R/Bioconductor package 77 and the
‘hg38ToHg19’ chain file. This resulted in 24,861 catalogue entries, corresponding to 18,446
unique variants of which 6,681 were significantly associated to a/&ib100°9).

However, many studies included in the complete catalogue are not reliable, so we parsed the
sample size information in the catalogue and excluded studies that did not report effect sizes
(odds ratio or regression coefficient), had a sample size below 1,000, or assayed fewer than
100,000 variants. Then, following the approach taken in 78, we further filtered the set of
remaining associations to retain only traits that had at least six significantly associated
variants, and kept all associations witk: 1x1006 for these traits. This approach yielded a
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filtered set of 9,562 associations for 6,059 variants with 358 diseases and traits. Each variant
position was then parsed for trait overlap (all traits associated to the given variant). If a
variant - trait association was reported multiple times (e.g. by different studies), the most
significant association was kept.

We first tested whether eQTLs in iPSCs and somatic tissues (lead variants and their high-LD
proxies, control variants as before) showed global enrichment in this final set of disease-
associated variants compared with matched sets of variants (Extended Data Fig. 9b). Fold
enrichments were derived from a comparison to 100 sets of matched controls (mean of
control overlaps per tissue). For iPSCs, we additionally tested enrichment for individual
traits, deriving an empiricaRvalue. Traits with an adjusted< 0.05 (Benjamini-Hochberg)

and minimum five observed overlaps were considered enriched (Supplementary Table 6c).

Lastly, we parsed each disease variant position for overlap with iPSC eQTLs, again
considering lead variants and their high-LD proxies for each tissue as follows. We report all
disease variants that were tagged by iPSC eQTLs (lead or proxy) and the eGene(s) regulated
by the eQTL lead/proxy (Supplementary Table 6a). We additionally report a subset of these
variants that are exact matches with iPSC lead eQTL variants and highlight the number of
high-LD proxies (f > 0.8) each variant has (Supplementary Table 6b).

Colocalisation analysis:We used coloc v2.3-1 29 to test for colocalisation between

molecular QTLs and GWAS hits from Alzheimer’s disease 79, celiac disease 80,
inflammatory bowel disease, ulcerative colitis, and Crohn’s disease 81, multiple sclerosis 82,
83, narcolepsy 83, primary biliary cirrhosis 84, psoriasis 85, rheumatoid arthritis 86,
schizophrenia 87, systemic lupus erythematosus 88, type 1 diabetes 89 and type 2 diabetes
90. We ran coloc on a 250 Kb region centered on the eQTL gene for all eQTL variants that
were less than 100 Kb away from at least one GWAS variant with nof#nak 10°. We

then applied a set of filtering steps to identify a stringent set of eQTLs that colocalised with
GWAS hits. We removed all cases with <50 SNPs irctheegion and selected only loci

where PP3 + PP4> 0.5 and PP4/(PP3+PP4) > 0.5 to only keep loci where coloc strongly
preferred a model of QTL for both traits, of a single shared causal variant driving both
association signals over a model of two distinct causal variants. We excluded all
colocalisation results from the MHC region (GRCh37: 6:28477897-33448354) because
these could exhibit an elevated false positives rate due to the complicated LD patterns in this
region. We kept only results where the minimal GWA@alue was < 5x18.

Overlap with the COSMIC genes:To assess the overlap of iPSC eQTLs with known

cancer genes in the context of somatic and cancerous tissues, we calculated the cumulative
number of cancer genes (COSMIC cancer census 27/04/2Q46sN571 20) regulated by
eQTLs in iPSCs, somatic tissues (GTEx V6p), and three different cancers (ER positive and
negative breast cancer, colorectal cancer) 36,37 (Extended Data Fig. 9a).

Splicing of TERT: Alternative splicing of the’ ERTgene was analysed using Leafcutter 91,
which focuses on introns and quantifies both known and novel alternative splicing events by
guantifying reads mapping to exon-exon junctions. Annotations were derived from Gencode
v19. Introns supported by fewer than 30 reads (-m 30; default) across all samples were

Nature Author manuscript; available in PMC 2017 November 10.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Kilpinen et al.

Page 25

removed. We obtained quantifications for eight intron clusters within TERT. After removing
individual introns with a mean intron usage of zero, we had a total of 22 introns to test. We
used the intron excision proportions to assess genotype-dependent effect of rs10069690 on
TERTsplicing (linear model between genotype and excision proportion, Bonferroni
correction ofPvalues for the total number of introns tested). One intron showed evidence of
a splicing-QTL effect £< 0.05, Bonferroni adjusted; Extended Data Fig. 10).

Data availability

The assay data used in this publication are listed in the Biostudies afghige/(
www.ebi.ac.uk/biostudies/stud)ewith accession identifier S-BSMS5. All data can be
accessed via the HipSci data portaty{://www.hipsci.org, which references to EMBL-EBI
archives that are used to store the HipSci data. Managed access data from all assays are
accessible via EGA under the study EGAS00001001465. Open access genotyping array data
and RNA-seq data are available from ENA under the studies PRJEB11752 and PRJEB7388.
Open access gene expression array data are available in the ArrayExpress database under
accession number E-MTAB-4057. The mass spectrometry proteomics data have been
deposited to ProteomeXchange via the PRIDE repository with the dataset identifiers
PXD003903 and PXD005506. Data types from specialized assays for which none of the
existing archives are appropriate are available from the HipSci FTRsite (
ftp.hipsci.ebi.ac.uk/vol1/fip Intermediate result files for this study, such as processed gene
expression levels, can be foundfgt://ftp.hipsci.ebi.ac.uk/voll/ftp/datd&or full details see
Supplementary Information.

Code availability

Scripts that were used to process the raw data and for implementing the statistical analyses
presented are available framips://github.com/hipsci/Nature2017
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Extended Data
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Extended Data Figure 1. Overview of the Cellomics assay.

(a) Example plate layout for the cellular differentiation assay. Images are shown for the
pluripotency markers@ct4 SoxZ2 andNanog as they are measured in the Cellomics

imaging device. Each line is measured in two rows of the same plate as technical replicates.
The secondary antibody used for each marker is shown in parenthesis. Each plate also has
measurements for staining with the secondary antibody only, which serves as a means to
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assess background fluorescence. The red channel shows the signal from the DAPI staining,
the green channel the marker signal. As expected, there is only little signal from the green
channel in the wells stained only for the secondary antibody. Image acquisition stops as soon
as 10,000 cells have been detecfbiiDetailed variance components of the Cellomics

markers (Methods). Substantial proportions of the marker variance could be attributed to
batch factors, including staining, technician effects and antibody lots. These effects mean
that the fraction of cells expressing particular markers need to be interpreted with caution
(Fig. 1c,d).(c) Pairwise correlation between quantitative expression scores derived from
immunostaining for pluripotency and differentiation and the PluriTest score.
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Extended Data Figure 2. Pluritest scores in the two culture conditions
(a-c) Comparison of PluriTest novelty score versus pluripotency score for the 711 lines

generated. Lines grown on feeder-free conditions (E8 media) scored systematically lower
than Feeder-dependent ling2=1.62x10%3 t-test, for pluripotency score). We note that,

while we cannot rule out that Feeder-free lines are less pluripotent, Feeder-free conditions
are not well represented in the PluriTest training dataset, which may explain this result (of
the 204 ESC/IPSC lines in the pluriTest paper that have media metadata available, none
were on E8 and only 37 were on a variety of other feeder free formulations such as
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MTSER).(d) Despite lower pluripotency scores, lines grown on Feeder-free conditions have
higher fractions of cells expressing canonical protein markers of pluripotency.
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Extended Data Figure 3. Extended CNA analysis.
Relationship between the number of CNAs using three CNA minimum length thresholds for

calling CNAs: 200 Kb, 500 Kb and 1,000 Kb and other experimental factors. Values on the
x-axis have been ‘jittered’ (i.e. small random ‘noise’ has been added to the true values) to
enhance the visualisation. Data points underlying the boxplots are shown as semi-transparent
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blue dots(a) Number of CNAs per line versus passage nunm®ealues shown are from a
generalized linear mixed model (Poisson regression) with donor random (@ff&xdxplot

of the number of autosomal CNAs per line versus growth métlialues are for a Poisson
regression on culture conditioft-d) Number of autosomal CNAs per line versus PluriTest
pluripotency and novelty scoreBvalues are for a linear mixed model on the number of
autosomal CNAs per line with a donor random effef) Number of CNA counts per

donor versus gender and donor age. CNA counts refer to the total number of unique CNAs
across all lines derived from the same donor. CNAs that are shared between lines of the
same donor (overlap by at least one base) are counted onlyRrataes shown are for a
Poisson regression on either gender or age.
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Exten)ded Data Figure 4. Location and consequence of the recurrent CNA on chr20 (related to

Fig. 2).

Téqp panel shows genomic location versus number of lines with CN three (grey) and with a
CNA (black). Bottom panel shows the NAV gene score from ref22 andyjkerge expression

fold change between the iPSC lines with CN two and three (color scale), in the region
highlighted in red in the top panel. Highlighted genes are up-regulated when copy number
increases, known onco/tumour-suppressor genes and/or genes with NAV score in the top 2%.
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Extended Data Figure 5. Functional assessment of CNAs using growth assays.
Cell growth ratga), proliferation(b) and apoptosié) in cell lines with copy humber two

(“wild type”, blue dots) or copy number three (“mutant”, red dots) in a recurrently

duplicated region in iPSCs on chromosome 1, 17 or 20. Plot titles show the donor name and
the genomic coordinates of the CNA) Shown are cell counts taken on successive days in
culture, for pairs of lines (one mutant, one wild type) grown on the same 24-well plates. Star
symbols denote significance levels for statistical interactions between day and copy number
in a linear mixed model, using fixed effects to fit day and copy number, and random effects

Nature Author manuscript; available in PMC 2017 November 10.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Kilpinen et al.

Page 32

to account for culture plate effects. “EIF4A3” denotes whether a copy number variant
overlaps one of the suspected candidate genes on chromosomePk 0%05; ** - P<

0.01; *** - P<0.001.(b) Protein expression level measured using Tandem Mass Tag
(TMT)-based quantitation on the Q-exactive plus (labelled “QE Plus”) orbitrap and a fusion
(labelled “Fusion”) orbitrap MS platforméc) Estimated fraction of fluorescing nuclei
following EdU assay in mutant and wild type lines, following exposure to mitomycin
("Treated"), or in a control sample ("Untreatedt). Estimated fraction of fluorescing

nuclei following Terminal deoxynucleotidyl transferase dUTP nick end labelling assay
(TUNEL) in mutant and wild type lines, following exposure to mitomycin (“Treated"), or in
a control sample ("Untreated"). Solid trend lines are least squares regress@udites in

b andc denote the significance of statistical interactions between copy number and
mitomycin treatment condition (“Treated” or “Untreated”).
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Extended Data Figure 6. Effect of passage on Tier 1 and Tier 2 data and overview of iPEE
eQTLs mapped with ‘Tier 1’ gene expression array data.

(a,b) Passage number versus PluriTest pluripotency and novelty scores shows no significant
association between passage number and pluripotency. Trend lines shown are fit using linear
regression of PluriTest scores on passage number (Bcede66, noveltyP= 0.21).

Association was also not deemed significant when including gender and media as fixed
effects and batch variables and donor as random effects @Bede3, novelty” =0.14).(c)
Passage number versus log10 RNA-seq expression of pluripotency filetmgand

Pou5f1(Oct4 shows no significant association between passage number and pluripotency.
Trend lines are fit using linear regression of log10 expression on passage Narzy £

= 0.5, Pou5f1 P 0.15). Association was also not deemed significant when considering the
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two genes together and when including gender and media as fixed effects and batch
variables and donor as random effects (pas£xg6.28, passage-gene interactn 0.96).

(d,e) Variance component analysis for Tier 2 assays, showing that for the majority of genes
gender and passage explained little of the total varighgeComparison of eQTL effect

sizes (squared beta) at lead variants of the main gexarray eQTL map (derived using mean
expression levels per donor). Plotted are the effect sizes for all tested genes (FDR < 5%
eGenes indicated in blue) derived fr@dniPSC line replicate sets 1 and 2, one per donor,
drawn randomly (rho = 0.47 genome-wide, rho = 0.80, FDR < 5% eG@rea 2e-16;

Spearman rank correlation) afg) replicate set 1 and the main map (rho = 0.57 genome-
wide, rho = 0.88, FDR < 5% eGené3s 2.2e-16). Pandl)) shows that the effect sizes

obtained using the mean expression values per donor are higher than when using individual
lines.(h) Pairwise correlation between gene expression levels in iPSCs measured with RNA-
seq and gexarray. Plotted are the Spearman rank correlation coefficients of either gene (pink)
or gexarray probe (blue) region based read counts, demonstrating higher correlation of

probe-based counts.
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Extended Data Figure 7. Properties of iPS@is eQTLs in comparison to somatic eQTLSs.
Plotted is the power to detect eQTLs, comparing 44 somatic tissues from GTEx 24 (V6p)

and the HipSci RNA-seq -based eQTL map (purple triangle), considering either the absolute
(a) or relative(b) number of eQTLs identified (eGenes, FDR < 5%). The major determinant
of eQTL detection power is sample sige). Cumulative fraction of RNA-seq reads relative
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to the number of protein coding genes expressed. Plotted is the mean read count derived
from 20 iPSC lines (10 donors, two lines each), five fibroblast lines, and two embryonic
stem cell (ESC) lines. In iPSCs, half of the reads are explained by the expression of 1,071
genes, while 75% and 90% of the reads are explained by the expression of 3,159 and 5,814
genes, respectively (total protein coding genes with non-zero counts N = 1{(332).
Distribution of iPSC eQTLs around the annotated gene start position. Plotted is the -log10
(eQTL P-valug against the distance (bp) from the gene start for lead eQTL variants
genome-wide, highlighting significant eQTLs (FDR < 5%) in oraggeComparison of the
magnitude of eQTL effect size (absolute beta; left panel) and minor allele frequency (MAF;
right panel) between iPSC-specific (N = 2,131, labelled as ‘S’) and non-specific eQTLs (N =
4,500; labelled as ‘NS’), demonstrating that overall, iPSC-specific eQTLs have smaller
effects on the transcriptome than eQTLs shared among multiple tigga&sq7x106%:

Wilcox test) and have a lower minor allele frequen®@y: (1.08x10%°, Wilcox test).
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Extended Data Figure 8. Comparison of eQTL mapping pipelines between HipSci and GTEXx

V6p).

Ea) ICI)D)roportion of tissue-specific eQTLs as a function of the discovery sample size. For iPSC,
shown are the two sets of tissue-specific eQTLs obtained with the two different mapping
pipelines (Methods), nhamely the standard HipSci pipeline (‘iPSC’; purple triangle) and the
alternative ‘GTEXx-like’ pipeline (‘iPSC2’; purple triangle). Points other than iPSC are from
the GTEx Consortium (44 somatic tissues and cell linesp24Heatmap of pairwise,

values ft; = 1 -mg) between iPSCs and GTEX tissues, with rows representing the discovery
tissue and columns the replication tissue. Clustering of tissues is based on euclidean distance
(R Aclust method=averagejc) Effect of eQTL replication threshold on the definition of
tissue-specific effects. Shown is the replication profile of iPSC eQTLs across GTEX tissues
relative to discovery sample size in each replication tissue. Plotted is the proportion of iPSC
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lead eQTLs that replicate in each tissue, with replication defined using two different
replication thresholds (TH1: nominal eQR< 0.01/N_tissues; TH5?< 0.05/N_tissues;

plotted as dots and triangles, respectivdly) Enrichment of alternative iPSC eQTLs
(‘GTEx-like") at promoter proximal and distal (defined as less than or greater than 2 Kb
from the transcription start site) transcription factor binding sites (TFBS) in H1-hES cells
from the ENCODE Project 49. Fold enrichments per factor are shown for iPSC-specific and
non-specific eQTLs (minimum 10 observed overlaps) (Methods). Pluripotency-associated
factors are indicated with an asterisk. The profile of enrichments is comparable to that
obtained with the standard HipSci pipeline (Fig. 4d).
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Extended Data Figure 9. iPSC eQTLs and disease.
(a) Cumulative number of cancer genes (COSMIC cancer census 27/04/2Q4&-N671

20) regulated by eQTLs in iPSCs, somatic tissues (GTEx V6p), and three different cancers
(ER positive and negative breast cancer, colorectal cancer) @38, &hrichment of iPSC

and somatic eQTLs (lead variants and their high-LD proxies) at disease-associated variants
in the NHGRI-EBI GWAS catalogue (2016-04-10). Plotted is the fold enrichment of eQTLs
over 100 random sets of matched variants for each tissue relative to eQTL discovery sample
size. The tissues showing the highest fold enrichment are liver and brain (cerebellar
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hemisphere; ‘BrainCH")(c) Somatic eQTL signal foPTPNZ Protein Tyrosine

Phosphatase, Non-Receptor TypéoBus on chromosome 18. This locus contains a

colocalising association signal f®7PN2gene expression in iPSCs and five immunological

disease phenotypes (Fig. 5@)) Somatic eQTL signal fof ERT (Telomerase Reverse

Transcriptasdocus on chromosome 5 (Fig. 5b). In b{thand(d), the lead eQTL variant

locations are indicated with red and orange vertical lines for iPSC and somatic tissues,

respectively. The focal gene regions are indicated in solid grey and gene start positions of

other protein-coding genes on the same strand with vertical grey lines.
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Extended Data Figure 10. Tissue expression and alternative splicing results at fRERT locus.
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(a,b) Normalised RNA-seq per-base coverage acrosZf#e7 locus stratified by

rs10069690 genotype. Plotted in the full loa)s while (b) shows a zoomed view of the

region around the lead eQTL and cancer risk variant rs10069690, indicated with a dotted
line on each plot. Grey regions indicate annotated exons from Ensembl v75. Coverage was
computed from indexed BAM files using tmeverageBeflinction from thebedtools

(v2.25.0) 92. Raw coverage was divided by total library size in millions (total number of
mapped reads) per sample to obtain normalised coverage, which was then averaged over
samples with the same rs10069690 genotype to obtain mean normalised coverage for each
genotype group(c) Profile of TERTexpression in iPSCs and across somatic tissues from
GTEx. Shown are gene FPKM values obtained with RNA-SeQC (GTEx Whplicing-

QTL of TERT. We quantified7ERTintron retention rates using Leafcutter {Li, 2016 #443}
and identified one alternative splicing event associated with rs10069690, the lead iPSC
eQTL variant forTERT(Fig. 5b). Shown iFERTIintron 4 retention ratio (PSI, percent

spliced in) in iPSC lines of all individual donors stratified by their genotype at rs10069690.
This variant affects the splicing of the intron where it is located, with the minor allele (T)
increasing the fraction ofERTtranscripts in which intron 4 is retaine@£ 1.7x10°,

Bonferroni adjusted linear regression).
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Figure 1. iPSC line generation and quality control.
Throughout light blue = not selected, dark blue = selected [@agsDF: human dermal

fibroblasts; dEN: differentiated endoderm; dME: differentiated mesoderm; dEC:
differentiated neuroectoderm. The x-axis shows the median number of days, including
freeze/thaw cycles (snowflakes), at each pipeline stage, with stage-specific succeéy rates.
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Figure 2. Locations and consequences of recurrent CNA regions.
(a) Genomic locations of CNAs. Colours denote the significance level of recurtbhce.

Genes differentially expressed between lines with CN 2 and 3 for the recurrent chrl7 CNA.
Horizontal bar denotes 1% FDR threshold (Benjamini-HochbgJop panel shows

genomic location versus number of lines with CN 3 (grey) and with a CNA (black). Bottom
panel shows the NAV gene score from ref22 ang tpame expression fold change between
the iPSC lines with CN 2 and 3 (color scale), in the region highlighted in red in the top
panel. Highlighted genes are up-regulated when copy number increases, known onco/
tumour-suppressor genes and/or genes with NAV score in the top 2%.
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Figure 4. Comparison of iPSC and somatic tissue eQTLs.
(a) Proportion of tissue-specific eQTLs in iPSCs and 44 GTEX tissu@s2¥lost likely

source of tissue-specific eQTLs in iPSCs (lead and secondary), testis and somatic tissues in
GTEX (averaged; including cell lines, excluding testis). Breakdown: gene not expressed
(red); gene expressed but no eQTL (blue); eQTL effect is driven by distinct lead vafiants (r

< 0.8; green)(c) Heatmap of the fold enrichment (FE) difference between iPSC-specific and
non-specific eQTLs at chromatin states from the Roadmap Epigenomics Project27, shown
for five aggregated clusters representing 127 cell types (SOM, somatic; PSCd, PSC-derived).
Colouring: enriched for iPSC-specific eQTLs (blue), enriched for non-specific eQTLs (red).
(d) Enrichment of iPSC eQTLs at promoter proximal and distal transcription factor binding
sites in H1-hES cells from the ENCODE Project49. Fold enrichments per factor are shown
for iPSC-specific and non-specific eQTLs. Pluripotency-associated factors are indicated

with an asterisk.
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Figure 5. iPSC eQTLs tag disease-associated variation.
(a) Colocalised association signal for iPSC expressioRT#NAtop) and five common

diseases (bottom; inflammatory bowel disease, IBD; rheumatoid arthritis, RA; Crohn’s
disease, CD; celiac disease, CEL; and type 1 diabetes, T1D). PP4 is the posterior probability
that the disease and gene expression associations are driven by the same causal variant29.
(b) An iPSC-specific eQTL foTERT (rs10069690) that is associated with risk for breast,
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ovarian and other cancers.33,34 The lead variant is indicated with a red triangle, the focal
gene region in solid grey, and other protein-coding gene start positions by vertical grey lines.
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