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Chronic sleep disturbances, associated with cardio-metabolic diseases, psychiatric disorders 

and all-cause mortality1,2, affect 25-30% of adults worldwide3. While environmental factors 

contribute importantly to self-reported habitual sleep duration and disruption, these traits are 

heritable4-9, and gene identification should improve our understanding of sleep function, 

mechanisms linking sleep to disease, and development of novel therapies. We report single 

and multi-trait genome-wide association analyses (GWAS) of self-reported sleep duration, 

insomnia symptoms including difficulty initiating and/or maintaining sleep, and excessive 

daytime sleepiness in the UK Biobank (n=112,586), with discovery of loci for insomnia 

symptoms (near MEIS1, TMEM132E, CYCL1, TGFBI in females and WDR27 in males), 

excessive daytime sleepiness (near AR/OPHN1) and a composite sleep trait (near INADL 
and HCRTR2), as well as replication of a locus for sleep duration (at PAX-8). Genetic 

correlation was observed between longer sleep duration and schizophrenia (rG=0.29, 

p=1.90×10-13) and between increased excessive daytime sleepiness and increased adiposity 

traits (BMI rG=0.20, p=3.12×10-09; waist circumference rG=0.20, p=2.12×10-07).

Rather than being ‘secondary’, evidence suggests disordered sleep may play an important 

role in the etiology and maintenance of physical and mental health1,2. Heritability has been 

estimated at ∼40% for sleep duration4,6-8, 25-45% for insomnia9 and 17% for excessive 

daytime sleepiness9, but few genetic factors are known. A Mendelian short sleep mutation in 

BHLHE41 (P385R) has been identified, and confirmed in mouse models10. GWAS for sleep 

duration have been reported11-14, but only an association at the PAX8 locus reached 

genome-wide significance and was confirmed across ethnic groups12. There are several 

reported loci for restless legs syndrome (RLS) and narcolepsy, but no known robust genetic 

loci for insomnia symptoms or excessive daytime sleepiness15,16.

We and others performed a GWAS for chronotype in the UK Biobank17,18 and a 23&me 

participant sample19. To identify genetic variants that contribute to self-reported sleep 

duration, insomnia symptoms, and excessive daytime sleepiness and link them with other 

conditions, we performed GWAS using phenotype measures in UK Biobank participants of 

European ancestry. Variation in sleep duration, insomnia symptoms and excessive daytime 
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sleepiness was associated significantly with age, sex, principal components of ancestry 

(PCs), genotyping array, depression, psychiatric medication use, self-reported sleep apnea, 

and BMI (Supplementary Table 1), as previously reported20-23. Together age, sex, and PCs 

explained 0.4%, 3.0% and 1.3% of variation in sleep duration, insomnia symptoms, and 

excessive daytime sleepiness respectively. Strong and significant pair-wise phenotypic 

correlation was seen between the traits overall and within each sex, with limited correlation 

observed with chronotype. (Fig. 1a; Supplementary Fig. 1).

GWAS analyses of sleep duration, insomnia symptoms and excessive daytime sleepiness 

were performed using linear/logistic regression adjusting for age, sex, 10 PCs and 

genotyping array. Nine genome-wide significant (p<5×10-8) and 14 suggestive (p<5×10-7 to 

p=5×10-8) loci were identified (Fig. 2, Table 1, Supplementary Figs. 2 and 3). For sleep 

duration (n=111,975), the strongest association was observed at the PAX-8 locus 

(rs62158211T, β(se)=2.34(0.30) mins/allele, p=4.7×10-14, effect allele frequency (EAF) 

0.213, Fig. 2a), confirming a previously reported association (r2=0.96, D'=1 to lead SNP 

rs1823125 in 1KG CEU)12. For insomnia symptoms (n=32,155 cases, 26,973 controls), 

significant associations were observed within MEIS1 (rs113851554T, OR 

[95%CI]=1.26[1.20-1.33], p=9.1×10-19, EAF 0.057, Fig. 2b), a homeobox gene implicated 

in motor neuron connectivity in Drosophila24,25, retinal and lens development in mouse26, 

and Substance P expression in the amygdala27, near TMEM132E (rs145258459C, 

1.23[1.13-1.35], p=2.1×10-8, EAF 0.983, Fig. 2c), a gene family with roles in brain 

development28, panic/anxiety29 and bipolar disorder30, suggesting a link between insomnia 

symptoms and an underlying broader sensitivity to anxiety and stress, and near CYCL1 
(rs5922858G, OR [95%CI]=1.12[1.07-1.16], p=1.28 ×10-8, EAF 0.849, Fig 2d) a locus 

previously associated (p=10-6) with alcohol dependence co-morbid with depressive 

symptoms31. Sex-stratified analyses identified an additional female-specific signal near 

TGFBI (rs3792900C 1.10[1.07-1.14], p=2.16×10-8, EAF 0.470; Table 1, Supplementary Fig. 

3q, 3r, Supplementary Table 2), an extracellular matrix protein responsible for human 

corneal dystrophy32 and a male-specific signal near WDR27, a scaffold protein 

(rs13192566G OR [95%CI]=1.14[1.09-1.20], p=3.2×10-8, EAF 0.860)(Table 1, 

Supplementary Fig. 3s, 3t, 4; Supplementary Table 2). Independent associations at both loci 

are observed with type 1 diabetes, suggesting an immune role33-35. For excessive daytime 

sleepiness (n=111,648), we identified a signal near the androgen receptor AR (rs73536079T, 

β=0.634, p=3.94×10-8, EAF 0.002, Fig. 3e), with no sex-specific effects. Secondary analyses 

after additional adjustment for depression or BMI identified a signal near ROBO1, 
(depression adjustment n=107,440, rs182765975T, beta=0.099, p=3.33×10-8, EAF 0.003, 

Table 1, Supplementary Figure 3o), a neuronal axon guidance receptor previously implicated 

in dyslexia36, and a signal near another member of the TMEM132 family, TMEM132B 
(BMI adjustment n=75,480, rs142261172A, β=0.106, p=9.06×10-9, EAF 0.004, Table 1, 

Supplementary Figure 3p). Conditional analyses did not identify independent association 

signals (Supplementary Table 3). Sensitivity analyses adjusting for factors influencing sleep 

traits, including self-reported sleep apnea, depression, psychiatric medication use, smoking, 

socio-economic status, employment status, marital status, and snoring did not significantly 

alter results for primary association signals (Supplementary Table 4).
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The leading associations overlap interesting candidate genes enriched in murine/zebrafish 

hypocretin expressing neurons37,38, differentially expressed in sleep-deprived rats39, and/or 

regulate sleep in Drosophila40. Credible set analyses41 highlighted a number of potential 

causal variants at each locus (Table 1) and future experimental studies will be necessary. 

Bioinformatic annotations42 offer an initial opportunity at in silico functional interpretation 

(Supplementary Table 5; Supplementary Fig. 5). For example, multiple variants for all three 

traits are predicted to disrupt binding of FOXP1, a neural transcriptional repressor 

implicated in intellectual disability, autism and language impairment43. Interestingly, the 

PAX-8 sleep duration association is adjacent to the only chromosomal fusion site since 

divergence of humans from other hominids ∼5 million years ago44,45, and the novel genomic 

structure created by this unique evolutionary history may play a causal role. Pathway 

analysis46 of significant and suggestive loci revealed enrichment of genes associated with 

immune, neuro-developmental, pituitary and communication disorders (p<0.01), and 

enriched for transcription factor-binding sites for stress-responsive heat-shock-factor 1 

(HSF1) and endoplasmic reticulum stress/unfolded protein-responsive factor HERPUD1 

(Supplementary Tables 6&7).

Aside from the lead PAX-8 SNPs and a DRD2 region variant47 for sleep duration, limited 

evidence of association was observed for previously published candidate gene or GWAS 

signals (pmeta<5×10-5; Supplementary Table 8), or for regions encompassing core clock 

genes (Supplementary Fig. 6). Our findings for sleep duration GWAS largely overlap with 

Jones et al.18, despite differences in exclusion criteria and analytic approach. Particularly, 

our study excluded shift workers (n=6,557), sleep medication users (n=1,184) and first-to-

third degree relatives (n=7,980), whereas the linear mixed-model analyses by Jones et al. 

included these populations, leading to a larger sample size (n=127,573). Likely due to this 

increase in power, Jones et al. identified two additional signals at VRK2 that did not attain 

genome-wide significance in our study (rs1380703A β(se)=1.5(0.30) mins/allele, 

p=8.43×10-8 and rs17190618T, β(se)=1.60(0.34) mins/allele, p=3.80×10-6).

Trait heritability calculated as the proportion of trait variance due to additive genetic factors 

measured here (observed scale SNP heritability, h2 (S.E.)) was 10.3 (0.006)% for sleep 

duration, 20.6 (0.011)% for insomnia symptoms and 8.4 (0.006)% for sleepiness (BOLT-

REML variance components analysis48). LD-score regression analysis49 confirmed no 

residual population stratification (Intercept (SE): Sleep Duration 1.012 (0.008), Insomnia 

Symptoms 1.003 (0.008), Excessive Daytime Sleepiness 1.005 (0.007). Tests for enrichment 

of heritability by functional class using an LD-score regression approach50 identified excess 

heritability across active transcriptional regions for insomnia symptoms and genomic 

regions conserved in mammals for all three sleep traits. Consistently, heritability enrichment 

in conserved regions was seen for traits demonstrating significant genetic correlation with 

sleep (Fig. 3, Supplementary Table 9).

Sleep duration, insomnia symptoms, excessive daytime sleepiness, and chronotype, are 

significantly correlated both at the phenotype and genetic level (Fig. 1), with greater pair-

wise correlations in males as compared to females (Supplementary Fig.1). Thus, in order to 

find loci common to sleep traits, we performed a multi-trait GWAS51. We identified two 

novel association signals near HCRTR2 and INADL , and revealed that PAX-8 and MEIS-1 
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associations influence multiple sleep traits (Fig. 2; Table 2, Supplementary Fig. 7). HCRTR2 
encodes hypocretin receptor 2, the main receptor of two receptors for wake-promoting 

orexin neuropeptides52 involved in narcolepsy and regulation of sleep. Notably, the minor 

allele at rs3122163 (C) showed sub-threshold association with shorter sleep duration and 

morningness chronotype, suggesting gain of function, but no association with insomnia 

symptoms. Assessment of objective sleep measures, functional and physiologic follow-up 

should yield important insights into orexin receptor signaling, a pathway important for the 

pharmacological treatment of narcolepsy53 and insomnia54. INADL  encodes a membrane 

protein involved in the formation of tight junctions, and is implicated in photoreception in 

mice and Drosophila55,56. The INADL protein is reported to interact with HTR2A57, a 

serotonin receptor with a known role in sleep regulation58,59.

Our strongest association for insomnia symptoms fell within MEIS1, a locus previously 

associated with RLS in GWAS60. Our lead SNP rs113851554 and the correlated 3′UTR 

variant rs11693221 (pair-wise r2=0.69, D'=0.90 in 1KG EUR) represent the strongest known 

genetic risk factor for RLS and were identified in follow-up sequencing studies of 

MEIS161,62 of the original RLS GWAS signal rs230047860,63. Conditional analysis suggests 

that only one underlying signal detected by the lead SNP rs113851554 in our GWAS 

explains the association of all three SNPs with insomnia symptoms (Supplementary Fig. 8; 

Supplementary Table 10). To further investigate the extent of overlap between RLS and 

insomnia symptoms, we tested if a weighted genetic risk score (GRS) for RLS64,65 was also 

associated with insomnia symptoms with concordant direction of allelic effects (OR 

[95%CI]= 1.06[1.05-1.07] per RLS risk allele, p=1.17×10-21; Supplementary Table 11). 

Weighting of RLS GWAS alleles by SNP effects on periodic limb movements (PLMs) did 

not substantially alter overall results (Supplementary Table 11). Interestingly, recent data 

indicating increased thalamic glutamatergic activity in RLS provides evidence for an 

underlying propensity for hyperarousal in RLS66, which is also a core feature of insomnia. 

Future analyses of pair-wise bidirectional causal effects for all three traits will be necessary 

to determine if shared genetic associations represent causality, partial mediation or 

pleiotropy.

Strong epidemiologic associations of sleep duration, insomnia symptoms and sleepiness 

have been observed with disease traits, but the extent to which the underlying genetics is 

shared is unknown. Therefore, we tested for genome-wide genetic correlation between our 

sleep GWAS and publicly available GWAS for 20 phenotypes spanning a range of cognitive, 

neuropsychiatric, anthropometric, cardio-metabolic and auto-immune traits using LD-score 

regression67 (Fig. 4 and Supplementary Table 12).

Genetic correlations demonstrated a strong biological link between longer sleep duration and 

risk of schizophrenia (rG=0.29, p=10-13), as suggested by previous reports18,47,68. 

Furthermore, a schizophrenia GRS (96 variants) was associated with longer sleep duration 

(β(se)=1.44(0.36) mins/allele, p=2.56×10-4 [2.3 hr inter-quartile range], although a variety 

of sleep behaviors are seen in schizophrenia patients69-71. Significant genetic correlation 

between low birth weight and longer sleep duration (rG= -0.27, p=10-4) may reflect shared 

links between genetically-determined insulin secretion or action pathways underlying fetal 

growth72,73 and long sleep duration. In support, significant genetic correlation was observed 
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by Jones et al.18 between over-sleepers and both fasting insulin and risk of type 2 diabetes in 

UK Biobank. Genetic correlation between sleep duration and Crohn's disease risk (rG=0.18, 

p=10-3) is also consistent with epidemiologic observations74.

Significant genetic correlation was also found between increased insomnia symptoms and 

major depression, adverse glycemic traits, increased adiposity and fewer years of education, 

and between excessive daytime sleepiness and increased adiposity (all p<10-3), further 

highlighting biological overlap of sleep traits with metabolism, psychiatric traits, and 

educational attainment17. In support, studies have shown that experimentally suppressing 

slow wave sleep leads to decreased insulin sensitivity and impaired glucose tolerance75,76. 

Notably, a fasting insulin GRS was not significantly associated with insomnia symptoms (7 

SNPs, OR =1.01, p=0.51). Finally, consistent with a well-established but poorly-understood 

link between excessive daytime sleepiness and obesity77,78, a BMI GRS was associated with 

excessive daytime sleepiness (95 SNPs, β(se) 0.002(0.0004) sleepiness category/allele, 

p=1.67×10-4), but not with insomnia symptoms (OR=1.00, p=0.73).

Moving forward, replication and systematic testing of genetic correlations in larger samples 

will be needed. Importantly, genetic correlation testing between insomnia and RLS should 

be examined, but was not possible here because RLS consortium GWAS results were not 

available. Additionally, identifying causal relationships between genetically correlated traits 

may be difficult, and findings using Mendelian randomization approaches will need cautious 

interpretation given potential selection biases in UK Biobank79-81.

In summary, in a GWAS of sleep traits, we identified new genetic loci that point to 

previously unstudied variants might modulate the hypocretin/orexin system, retinal 

development, and influence cerebral cortex genes. Furthermore, genome-wide analysis 

suggests that sleep traits share underlying genetic pathways with neuropsychiatric and 

metabolic disease. This work should advance understanding of molecular processes 

underlying sleep disturbances, and open new avenues of treatment for sleep disorders and 

related disorders

Methods

Population and study design

Study participants were from the UK Biobank study, described in detail elsewhere80-82. In 

brief, the UK Biobank is a prospective study of >500,000 people living in the United 

Kingdom. All people in the National Health Service registry who were aged 40-69 and 

living <25 miles from a study center were invited to participate between 2006-2010. In total 

503,325 participants were recruited from over 9.2 million mailed invitations. Self-reported 

baseline data was collected by questionnaire and anthropometric assessments were 

performed. For the current analysis, individuals of non-white ethnicity were excluded to 

avoid confounding effects. All participants provided informed consent to the UK Biobank.

Sleep quality, quantity and covariate measures

Study subjects self-reported sleep duration, insomnia symptoms, excessive daytime 

sleepiness, depression, medication use, age, sex, height and weight on a touch-screen 
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questionnaire. For sleep duration, subjects were asked, “About how many hours sleep do 

you get in every 24 hours? (please include naps)?” with responses in hour increments. To 

assess insomnia symptoms, subjects were asked, “Do you have trouble falling asleep at night 

or do you wake up in the middle of the night?” with responses “never/rarely”, “sometimes”, 

“usually”, “prefer not to answer”. To assess daytime sleepiness, subjects were asked “How 

likely are you to doze off or fall asleep during the daytime when you don't mean to? (e.g. 

when working, reading or driving)?” with responses “never/rarely”, “sometimes”, “often”, 

“all the time”, “don't know”, “prefer not to answer”. Approximately 500,000 subjects 

answered these questions, but only the 120,286 unrelated individuals with genetic data and 

European ancestry were considered for this analysis. Subjects with self-reported shift work 

(n=6,557) or sleep medication use (n=1,184) were excluded. Subjects who responded “Do 

not know” or “Prefer not to answer” were set to missing. Sleep duration and excessive 

daytime sleepiness were untransformed and treated as continuous variables, with daytime 

sleepiness coded 1-4. The insomnia symptom trait was dichotomized into controls (“never/

rarely”) and cases (“usually”). Covariates used in sensitivity analyses included self-reported 

sleep apnea, BMI, depression, psychiatric medication use, socio-economic, smoking, 

employment and marital status, and snoring, and secondary GWAS for sleepiness included 

adjustment for BMI or depression. Sleep apnea cases were defined based on ICD10 

diagnosis code (391 cases). BMI at baseline visit was calculated from entries of height and 

weight (n=75,540 with available data). Depression was reported in answer to the question 

“How often did you feel down, depressed or hopeless mood in last 2 weeks?” (cases, 

n=4,242 based on answers “more than half the days”, or “nearly every day”). Medication use 

was self-reported as part of the initial UK Biobank interview. Our list of psychiatric 

medication for sensitivity analysis included the four most widely used: fluoxetine (Prozac), 

citalopram (Cipranol), paroxetine (Seroxat), and sertraline (Lustral). Our list of sleep 

medications included the 21 most widely used sleep medications in the UK Biobank: 

oxazepam, meprobamate, medazepam, bromazepam, lorazepam, clobazam, chlormezanone, 

temazepam, nitrazepam, lormetazepam, diazepam, zopiclone, triclofos, methyprylone, 

prazepam, triazolam, ketazolam, dichloralphenazone, clomethiazole, zaleplon, butobarbital. 

Smoking status was self-reported as past smoking behavior and current smoking behavior, 

and classified into “current”, “past”, or “never” smoked. Socio-economic status was 

represented by the Townsend deprivation index, based on national census data immediately 

preceding participation in the UK Biobank. Employment status was self-reported 

(cases=retired, controls=currently employed). Marital status was derived from self-reported 

household occupancy and relatedness data. Snoring was reported in answer to the question 

“Does your partner or a close relative or friend complain about your snoring?”.

Genotyping, quality control and imputation

Of the ∼500,000 subjects with phenotype data in the UK Biobank, ∼153,000 are currently 

genotyped. Genotyping was performed by the UK Biobank, and genotyping, quality control, 

and imputation procedures are described in detail at the UK Biobank website (http://

biobank.ctsu.ox.ac.uk/). In brief, blood, saliva, and urine was collected from participants, 

and DNA was extracted from the buffy coat samples. Participant DNA was genotyped on 

two arrays, UK BiLEVE and UKB Axiom with >95% common content. Genotypes were 

called using Affymetrix Power Tools software. Sample and SNP quality control were 
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performed. Samples were removed for high missingness or heterozygosity (480 samples), 

short runs of homozygosity (8 samples), related individuals (1,856 samples), and sex 

mismatches (191 samples). Genotypes for 152,736 samples passed sample QC (∼99.9% of 

total samples). SNPs were excluded if they did not pass QC filters across all 33 genotyping 

batches. Batch effects were identified through frequency and Hardy-Weinberg equilibrium 

tests (p-value <10-12). Before imputation, 806,466 SNPs pass QC in at least one batch 

(>99% of the array content). Population structure was captured by principal component 

analysis on the samples using a subset of high quality (missingness <1.5%), high frequency 

SNPs (>2.5%) (∼100,000 SNPs) and identified the sub-sample of European descent. 

Imputation of autosomal SNPs was performed to a merged reference panel of the Phase 3 

1000 Genome Project and the UK10K using IMPUTE283. Data were prephased using 

SHAPEIT384. In total, 73,355,677 SNPs, short indels and large structural variants were 

imputed. X-chromosome data were imputed separately, using Eagle 2.0 for pre-phasing with 

the –X chromosome flag (no reference panel) in the entire cohort85 and IMPUTE283 with 

the Phase 3 1KG Project reference panel for imputation using the –chrX flag on 500kb 

chunks in randomly assigned subsets of 30,000 individuals. Post-imputation QC was 

performed as previously outlined (http://biobank.ctsu.ox.ac.uk/) and an imputation info 

score cut-off of 0.8 was applied. For GWAS, we further excluded SNPs with MAF <0.001, 

maximum per SNP missingness of 10%, and maximum per sample missingness of 40%. In 

total, up to 112,586 samples of European descent with high quality genotyping and complete 

phenotype/covariate data were used for these analyses.

Statistical Analysis

Phenotypic correlation analysis was performed using the Spearman test in R using the 

Hmisc package. Genetic association analysis for autosomes was performed in 

SNPTEST86,87 with the “expected” method using an additive genetic model adjusted for 

age, sex, 10 PCs and genotyping array. Genome-wide association analysis was performed 

separately for sleep duration, insomnia symptoms, and excessive daytime sleepiness with a 

genome-wide significance threshold of 5×10-8 for each GWAS. We are 80% powered to 

detect the following effects: sleep duration β=0.045 hrs (2.7 mins), insomnia symptoms 

OR=1.07, and excessive daytime sleepiness β=0.021 units (assuming a MAF 0.1, p=5×10-7) 

and 80% powered to detect the following effects: sleep duration β= 0.048 hrs (2.9 mins), 

insomnia symptoms OR=1.08 and excessive daytime sleepiness β=0.023 units (assuming a 

MAF 0.1, p=5×10-8). X-chromosome analysis was performed in PLINK 1.988 using linear/

logistic regression with separate analysis of the pseudoautosomal regions using the split 

chromosome flag, adjusting for sex, age, 10 PCs and genotyping array. For the X 

chromosome signal at rs73536079, we verified using principal components analysis that all 

carriers of the minor allele fall within the major European ancestry cluster. Follow-up 

analyses on genome-wide suggestive and significant loci in the primary analyses included 

covariate sensitivity analysis individually adjusting for sleep apnea, depression, psychiatric 

medication use, socio-economic, smoking, employment and marital status, and snoring, or 

BMI (on top of the baseline model adjusting for age, sex, 10 PCs and genotyping array). 

Sensitivity analysis was conducted only in the subset of subjects with all secondary 

covariates (n=75,477 for sleep duration, n=39,812 for insomnia symptoms and n=75,640 for 

excessive daytime sleepiness). Enrichment for disease associated gene sets and transcription 
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factors was performed in WebGestalt46 using the human genome as the reference set, the 

Benjamini Hochberg adjustment for multiple testing, and a minimum number of 2 genes per 

category. Sex specific GWAS were performed in PLINK 1.988 using linear/logistic 

regression stratified by sex adjusting for age, 10 principal components of ancestry, and 

genotyping array. We used a hard-call genotype threshold of 0.1 (calls with greater than 0.1 

are treated as missing), SNP imputation quality threshold of 0.80, and a MAF threshold of 

0.001. Regional association plots were made using Locuszoom with the HG19 Nov2014 

EUR reference panel for background linkage disequilibrium89.

Trait heritability was calculated as the proportion of trait variance due to additive genetic 

factors across the autosomes measured in this study using BOLT-REML48, to leverage the 

power of raw genotype data together with low frequency variants (MAF≥0.001). For multi-

trait genome-wide association analysis we applied the CPASSOC package developed by Zhu 

et al.51 to combine association evidence of chronotype, sleep duration, insomnia symptoms 

and excessive daytime sleepiness. CPASSOC provides two statistics, SHom and SHet. 

SHom is similar to the fixed effect meta-analysis method90 but accounting for the correlation 

of summary statistics because of the correlated traits. SHom uses a sample size of a trait as a 

weight instead of variance, so that it is possible to combine traits with different measurement 

scales. SHet is an extension of SHom but power can be improved when the genetic effect 

sizes are different for different traits. The distribution of SHet under the null hypothesis was 

obtained through an estimated beta distribution. To calculate statistics SHom and SHet, a 

correlation matrix is required to account for the correlation among traits or induced by 

overlapped or related samples from different cohorts. In this study, we directly provide the 

correlation matrix calculated from the residuals of four sleep traits after adjusting for age, 

sex, PCs of ancestry and genotyping array. Post-GWAS genome-wide genetic correlation 

analysis of LD Score Regression (LDSC)67 was conducted using all UK Biobank SNPs also 

found in HapMap389 and included publicly available data from 20 published genome-wide 

association studies, with a significance threshold of p=0.0026 after Bonferroni correction for 

all 20 tests performed. As expected, the observed heritability estimates from LDSC67 using 

summary statistics for HapMap3 are lower (5.7 (0.0065)% for sleep duration, 13.3 

(0.0123)% for insomnia symptoms and 5.3 (0.005)% for sleepiness) than those calculated by 

Bolt-REML48 using primary data (10.3 (0.006)% for sleep duration, 20.6 (0.011)% for 

insomnia symptoms and 8.4 (0.006)% for sleepiness), because the HapMap3 panel restricts 

to variants with >5% MAF. LDSC estimates genetic correlation between two traits from 

summary statistics (ranging from -1 to 1) using the fact that the GWAS effect-size estimate 

for each SNP incorporates effects of all SNPs in LD with that SNP, SNPs with high LD have 

higher X2 statistics than SNPs with low LD, and a similar relationship is observed when 

single study test statistics are replaced with the product of z-scores from two studies of traits 

with some correlation67. Furthermore, genetic correlation is possible between case/control 

studies and quantitative traits, as well as within these trait types. We performed a weighted 

genetic risk score analysis using risk scores for restless legs syndrome, schizophrenia, body 

mass index, and fasting insulin. Risk score SNPs passed the genome-wide significance 

threshold (p<5×10−8) from recent large-scale genome-wide association studies and were 

present in the UK Biobank (restless legs syndrome 7 SNPs Supp Table 1165; schizophrenia 

96 SNPs91; BMI 95 SNPs92; fasting insulin 7 SNPs93). Independent SNPs were identified 
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and beta estimates recorded for calculation of the weighted risk score. The genetic risk score 

was calculated by summing the products of the risk allele count multiplied by the effect 

reported in the discovery GWAS paper. The additive genotype model was used for all SNPs. 

We performed partitioning of heritability using the 25 pre-computed functional annotations 

available through LDSC, which were curated from large-scale robust datasets50. Enrichment 

both in the functional regions and in an expanded region (+500bp) around each functional 

class was calculated in order to prevent the estimates from being biased upward by 

enrichment in nearby regions. The multiple testing threshold was determined using the 

conservative Bonferroni correction (p of 0.05/25 classes). Summary GWAS statistics will be 

made available at the UK Biobank web site (http://biobank.ctsu.ox.ac.uk/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sleep traits are phenotypically and genetically correlated
a. Phenotypic correlation between the reported sleep traits, using Spearman correlation (r). 

b. Genetic correlation (rG) between the reported sleep traits, using LD-score regression67. 

Color scale represents the strength of the correlation. Chronotype ranges from extreme 

morning types to extreme evening types.
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Figure 2. Regional association plots for genome-wide significant loci
Panel a sleep duration, b-d insomnia symptoms, e excessive daytime sleepiness, f-g 
composite trait of sleep duration, insomnia symptoms, excessive daytime sleepiness, and 

chronotype. Chromosomal position is indicated on the x-axis and –log10 p-values for each 

SNP (filled circles/squares) is indicated on the y-axis, with the lead SNP shown in purple 

(400kb window around lead SNP shown). Genes within the region are shown in the lower 

panel. The blue line indicates the recombination rate. Additional SNPs in the locus are 

colored according to linkage disequilibrium (r2) with the lead SNP (estimated by 
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LocusZoom based on the CEU HapMap haplotypes or within UK Biobank (panel c). 

Squares represent directly genotyped SNPs, and circles represent imputed SNPs.
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Figure 3. Partitioning of genetic architecture of sleep duration, insomnia symptoms, and 
excessive daytime sleepiness across functional annotation categories
Fold enrichment estimates for the main annotations of LD-score regression50 are indicated 

on the y-axis across functional annotation class on the x-axis for each trait. Error bars 

represent the 95% confidence interval around the estimate. 25 functional annotations were 

tested, and annotations passing the multiple testing threshold (p<0.005) are shown. For 

context, the average enrichment across functional annotation categories is shown for 9 traits 

with significant genetic correlation to at least one sleep trait (GWAS traits correlated with 

Sleep: includes GWAS for BMI, waist circumference, birth weight, depression, educational 

attainment, three glycemic traits in non-diabetics, and schizophrenia) or for 5 traits with no 

significant genetic correlation to any sleep traits (GWAS traits uncorrelated with Sleep: 

includes GWAS for Alzheimer's Disease, Type 2 Diabetes, autism, rheumatoid arthritis, and 

height). Abbreviations: H3K9=histone H3 lysine 9.
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Figure 4. Shared genetic architecture between sleep duration, insomnia symptoms, or excessive 
daytime sleepiness and 20 behavioral and disease traits
LD-score regression67 estimates of genetic correlation (rG) of sleep duration, insomnia 

symptoms, and excessive daytime sleepiness are compared with the summary statistics from 

20 publicly available genome-wide association studies of psychiatric and metabolic 

disorders, immune diseases, and other traits of natural variation. Blue, positive genetic 

correlation; red, negative genetic correlation, rg values displayed for significant correlations. 

Larger squares correspond to more significant P values. Genetic correlations that are 

significantly different from zero after Bonferroni correction are marked with an asterisk, 

after Bonferroni correction p-value cut-off is 0.0025. All genetic correlations in this report 

can be found in tabular form in Supplementary Table 12. Abbreviations: BMI=body mass 

index, BMD=bone mineral density, HOMA-IR= Homeostatic model assessment of insulin 

resistance. * p<10-3, **p<10-5, ***p<10 -7.
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Table 1

Genome-wide significant (p<5×10-8) and suggestive (p<5×10-7) loci associated with sleep duration, insomnia symptoms, and excessive daytime 

sleepiness in subjects of European ancestry in the UKBiobank.

Trait SNP Chr:position NCBI 37 Nearest Gene(s) Alleles (E/A) EAF Imputation Quality Beta (SE) SE p-val
Most likely causal 
SNPs 
(probability) †

Sleep Duration (n=111,975)

rs62158211 2:114106139 PAX8 T/G 0.213 0.99 0.039 0.005 4.72 × 10-14

rs62158211 (0.16), 
rs62158213 (0.16), 
rs4618068 (0.16), 
rs1807282 (0.16), 
rs56093896 (0.16)

rs1380703 2:57941287 VRK2/LOC647016/LOC100131953 A/G 0.618 0.89 0.025 0.005 8.44 × 10-8 rs1380703 (1)

rs10953765 7:114291435 FOXP2 G/A 0.447 0.98 0.022 0.004 2.96 × 10-7
rs10953765 (0.27), 
rs1456031 (0.14)

rs146977851 10:56570954 PCDH15 C/T 0.971 0.97 0.065 0.013 3.53 × 10-7
rs146977851 
(0.85), rs75334053 
(0.14)

rs61980273 14:94218949 PRIMA1/UNC79 A/G 0.039 1.00 0.058 0.011 1.30 × 10-7 rs61980273 (1)

Insomnia Symptoms (n up to 31,767 cases and 26,935 controls) OR 95% CI

rs576106307 1:18007282 ARHGEF10L C/CT 0.934 0.89 1.07 1.10-1.04 2.66 × 10-7 rs576106307 (1)

rs113851554 2:66750564 MEIS1 T/G 0.057 1.00 1.26 1.20-1.33 9.11 × 10-19 rs113851554 (0.98)

rs376775068 8:145604659 ADCK5 G/C 0.934 0.67 1.11 1.16-1.06 6.81 × 10-8 rs376775068 (1)

rs145258459 17:32986155 TMEM132E C/T 0.983 0.69 1.23 1.13-1.35 2.13 × 10-8 rs145258459 (1.0)

rs531814036 17:43219921 ACBD4 C/CT 0.419 0.91 1.06 1.03-1.08 2.92 × 10-7 rs531814036 (1)

rs5922858 X:82971008 CYCL1 G/T 0.849 0.99 1.12 1.07-1.16 1.28 × 10-8 rs5922858 (1)

Males rs13192566 6:169961635 WDR27 G/C 0.860 0.99 1.14 1.09-1.20 3.17 × 10-8
rs13192566 (0.50), 
rs13208844 (0.50)

Females rs3792900 5:135393754 TGFBI C/T 0.470 0.99 1.1 1.07-1.14 2.16 × 10-8
rs3792900 (0.14), 
rs6894815 (0.07)

Excessive Daytime Sleepiness (n<111,648) Beta SE

rs192315283 1:59531543 HSD52 C/T 0.010 0.76 0.126 0.025 3.55 ×10-7 rs192315283 (1)

rs76645968 2:53827686 ASB3 G/C 0.977 0.99 0.073 0.014 1.79 × 10-7
rs76645968 (0.26), 
rs12328289 (0.26)
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Trait SNP Chr:position NCBI 37 Nearest Gene(s) Alleles (E/A) EAF Imputation Quality Beta (SE) SE p-val
Most likely causal 
SNPs 
(probability) †

rs920065 3:5893776 MRPS35P1/ MRPS36P1 C/G 0.824 0.96 0.028 0.006 4.25 × 10-7 rs920065 (0.49)

rs115320831 4:159178375 TMEM144 A/G 0.702 0.98 0.024 0.005 3.68 × 10-7 rs115320831 (0.58)

rs35309287 5:146775386 DPYSL3 TA/T 0.970 0.94 0.067 0.013 1.25 × 10-7
rs35309287 (0.45), 
rs34398961 (0.45)

rs189689339 6:82375372 FAM46A T/C 0.003 0.67 0.226 0.044 2.13 × 10-7 rs189689339 (1)

rs17507216 15:83226925 CPEB1 A/G 0.232 1.00 0.026 0.005 1.59 × 10-7
rs17507216 (0.20), 
rs72751643 (0.11)

rs73536079 X:67154206 AR/OPHN1 T/G 0.002 0.90 0.634 0.115 3.94 × 10-8 rs73536079 (1)

rs182765975* 3:78538431 ROBO1 T/G 0.003 0.86 0.099 0.018 3.33 × 10-8

rs182765975 
(0.33), 
rs191435135 
(0.33), 
rs182979911 (0.33)

rs142261172** 12:126049981 TMEM132B A/G 0.004 0.92 0.106 0.018 9.06 × 10-9
rs142261172 
(0.50), 
rs189248622 (0.50)

E=effect allele, A=alternative allele, Chr=chromosome, OR=Odds Ratio, CI=confidence interval, INFO=imputation quality from Impute2. EAF=effect allele frequency. Note, increasing beta and Odds 
Ratio indicate longer sleep duration in hours, increased insomnia symptoms, and increased sleepiness. Analyses are adjusted for age, sex, genetic ancestry and genotyping array.

*
denotes secondary analysis with additional adjustment for depression.

**
denotes secondary analysis with additional adjustment for body mass index. Bold denotes genome-wide significant signals (p<5×10-8).

†
Using PICS.

N
at G

enet. A
uthor m

anuscript; available in P
M

C
 2017 June 30.



Author ManuscriptAuthor ManuscriptAuthor ManuscriptAuthor Manuscript

Lane et al.
P

age 22

Table 2

Genome-wide significant (p<5×10-8) loci associated with a multiphenotype model of sleep duration, insomnia symptoms, excessive daytime sleepiness and categorical chronotype in subjects of European 

ancestry in the UKBiobank.

SNP Chr:position NCBI 37 Nearest Gene Alleles (E/A) EAF Imputation Quality Multitrait p-val Sleep Duration Insomnia Symptoms Excessive Daytime Sleepiness Chronotype Causal SNPs (probability)

Beta SE OR 95% CI Beta SE Beta SE

p-val p-val p-val p-val

rs12140153 1:62352479 INADL T/G 0.099 0.93 1.06×10-10 -0.009 0.007 1.039 0.999-1.08 -0.036 0.007 0.036 0.008 rs12140153 (1)

0.22 0.05 6.60×10-7 2.59×10-6

rs76681500 1:77247749 AK5 A/G 0.159 0.99 1.03×10-9 -0.002 0.006 0.98 0.950-1.011 -0.008 0.006 -0.043 0.006 rs76681500 (0.5732)

0.79 0.27 0.15 1.50×10-12

rs694383 1:180834827 RGS16 C/G 0.030 1.00 2.72×10-11 0.018 0.012 0.98 0.917-1.048 -0.009 0.012 0.099 0.013 rs694383 (0.2207), rs509476 (0.2207), rs1144566 (0.2207), 
rs12743617 (0.2207)

0.14 0.75 0.47 2.61×10-14

rs113851554 2:66523432 MEIS1 T/G 0.056 1.00 3.97×10-16 0.001 0.009 1.264 1.202-1.329 -0.002 0.009 0.033 0.01 rs113851554 (0.9619)

0.95 9.11×10-19 0.85 5.64×10-4

rs62158211 2:113822609 PAX8 T/G 0.214 0.99 8.18×10-13 0.039 0.005 0.943 0.917-0.969 0.005 0.005 0.014 0.005 rs62158211 (0.1547),rs62158213 (0.1547), rs4618068 (0.1547), 
rs1807282 (0.1547), rs56093896 (0.1547)

4.72×10-14 1.31×10-5 0.37 7.93×10-3

rs3122163 6:55164327 HCRTR2 T/C 0.768 0.99 4.18×10-10 0.019 0.005 0.984 0.957-1.011 -0.023 0.005 0.021 0.005 rs3122163 (0.0833), rs34694541 (0.0833), rs3122170 (0.0833)

9.97×10-5 0.52 5.51×10-6 8.68×10-5

E=effect allele, A=alternative allele, Chr=chromosome, OR=Odds Ratio, CI=confidence interval. EAF=effect allele frequency. Note, increasing beta and Odds Ratio indicate longer sleep duration, increased insomnia symptoms, increased daytime sleepiness, and later chronotype.
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