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Determining the genome sequence of an organism is challenging, yet fundamental to understanding its biology. Over the

past decade, thousands of human genomes have been sequenced, contributing deeply to biomedical research. In the vast

majority of cases, these have been analyzed by aligning sequence reads to a single reference genome, biasing the resulting

analyses, and in general, failing to capture sequences novel to a given genome. Some de novo assemblies have been con-

structed free of reference bias, but nearly all were constructed by merging homologous loci into single “consensus” se-

quences, generally absent from nature. These assemblies do not correctly represent the diploid biology of an individual.

In exactly two cases, true diploid de novo assemblies have been made, at great expense. One was generated using Sanger

sequencing, and one using thousands of clone pools. Here, we demonstrate a straightforward and low-cost method for cre-

ating true diploid de novo assemblies. We make a single library from ∼1 ng of high molecular weight DNA, using the 10x

Genomics microfluidic platform to partition the genome. We applied this technique to seven human samples, generating

low-cost HiSeq X data, then assembled these using a new “pushbutton” algorithm, Supernova. Each computation took 2

d on a single server. Each yielded contigs longer than 100 kb, phase blocks longer than 2.5 Mb, and scaffolds longer

than 15 Mb. Our method provides a scalable capability for determining the actual diploid genome sequence in a sample,

opening the door to new approaches in genomic biology and medicine.

[Supplemental material is available for this article.]

Determining the genome sequence of an individual organism is of

fundamental importance to biology and medicine. Although the

ability to correlate sequence with specific phenotypes has im-

proved our understanding of human disease, the molecular basis

of ∼20% of Mendelian phenotypes is still unknown (http://

omim.org/statistics/geneMap), and the situation for common dis-

ease ismuchworse. Contributing to this is the incomplete elucida-

tion of the genomic architecture of the genomes under study

(Eichler et al. 2010).

Decades of research have yielded a vast array of laboratory and

computational approaches directed at the problem of knowing the

genome sequence of a given sample. These vary dramatically in

their aggregate experimental burden, including input DNA

amount, organizational complexity, laboratory and computation-

al requirements for expertise and hardware, project complexity,

cost and timeline, with greater burden tending to yield a higher

quality genome sequence.

At the lowend, and by far themostwidely executed, are “rese-

quencing” methods that generate short reads, then align them to

a haploid reference sequence from the same species, to identify

differences with it, thereby partially inferring the sequence

of the sample (Li et al. 2008; McKenna et al. 2010). Several

projects have generated and analyzed over a thousand human

samples each, yielding extraordinarily deep information across

populations (The 1000 Genomes Project Consortium 2015;

Gudbjartsson et al. 2015; Nagasaki et al. 2015); although in gene-

ral, such methods cannot completely catalog large-scale changes,

nor distinguish between parental alleles. Moreover, such methods

are intrinsically biased by comparison to a reference sequence,

thus limiting their ability to see sequences in a sample that are sig-

nificantly different from it (Chaisson et al. 2015b).

In contrast, an analysis of an individual genome would ideal-

ly start by reconstructing the genome sequence of the sample,

without using a reference sequence. This de novo assembly process

is difficult for large and complex genomes (Istrail et al. 2004;

Chaisson et al. 2015a; Gordon et al. 2016; Steinberg et al. 2016).

A core challenge is the correct representation of highly similar se-

quences, which range in scale from single base repeats (homopol-

ymers) to large complex events including segmental duplications

(Bailey et al. 2002).

There is an even larger scale at which similar sequences ap-

pear: homologous chromosomes, which are “repeats” across their

entire extent. To correctly understand the biology of a diploid or-

ganism, these homologous chromosomes need to be separately

represented (or phased), at least at the scale of genes (Muers 2011;

Tewhey et al. 2011; Glusman et al. 2014; Snyder et al. 2015). This

is required to correctly understand allele-specific expression and

compound heterozygosity. For example, two frameshifts in one

gene allele could have a completely different phenotype than

one each in both alleles; likewise, larger-scale effects such as chang-

es to gene copynumber (Horton et al. 2008; Pyo et al. 2010) need to

be understood separately for each homologous chromosome.

However, precisely because homologous chromosomes are so sim-

ilar, it is challenging to keep them separate in assemblies.

In fact, the standard of the field for genome assembly has

been to represent homologous loci by a single haploid “consen-

sus” sequence that merges parental chromosomes. This loses

“half” of the information, and in general does not represent a

true physical sequence present in nature. As a step in the right di-

rection, one could generate a haploid assembly together with a

phased catalog of differences between the two originating chromo-

somes (Pendleton et al. 2015; Mostovoy et al. 2016). However, for

the same reasons that a de novo assembly can carry more informa-

tion than a simple catalog of differences with a reference sequence,

Corresponding author: david.jaffe@10xgenomics.com
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.214874.116.
Freely available online through the Genome Research Open Access option.

© 2017 Weisenfeld et al. This article, published in Genome Research, is avail-
able under a Creative Commons License (Attribution 4.0 International), as de-
scribed at http://creativecommons.org/licenses/by/4.0/.

Method

27:757–767 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org Genome Research 757
www.genome.org

http://omim.org/statistics/geneMap
http://omim.org/statistics/geneMap
http://omim.org/statistics/geneMap
http://omim.org/statistics/geneMap
http://omim.org/statistics/geneMap
mailto:david.jaffe@10xgenomics.com
mailto:david.jaffe@10xgenomics.com
mailto:david.jaffe@10xgenomics.com
http://www.genome.org/cgi/doi/10.1101/gr.214874.116
http://www.genome.org/cgi/doi/10.1101/gr.214874.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


these “phasedhaploid” assemblies carry less information than true

diploid assemblies that separately display homologous loci. In a

few cases, these diploid de novo assemblies have been demonstrat-

ed for small and midsized genomes (Jones et al. 2004; Chin et al.

2016). There are two extant instances of diploid de novo assem-

blies of human genomes—one obtained by Sanger sequencing of

multiple libraries (Levy et al. 2007), and one from thousands of

separate clone pools, each representing a small, low-throughput

partition of the genome (Cao et al. 2015).

In this work, we bridge the gap between low-cost resequenc-

ing approaches and high-cost diploid assembly approaches, by cre-

ating diploid de novo assemblies, at very lowexperimental burden.

Our method is also based on genome partitioning. Using an auto-

mated microfluidic system (Zheng et al. 2016), we are able to gen-

erate the entirety of data for an assembly project from one library.

Moreover, this library is made from ∼1 ng high molecular weight

DNA, far less than alternative approaches. The cost of our data is

in the range of lowendmethods based on read alignment, and spe-

cial expertise is not required for assembly, because the process is

automatic.

To demonstrate our method, we chose seven human samples

from diverse populations, including four for which parental data

was available, allowing us to test phasing accuracy. This set also in-

cluded a sample for which 340 Mb of finished sequence was gen-

erated during the Human Genome Project (HGP), thus providing

an unprecedented source of truth data, and allowing us to assess

the fine-scale accuracy of our method in a way that has not been

previously possible.We assembled these samples using a new algo-

rithm called Supernova Assembler. Both the laboratory and com-

putational methods are encapsulated in a complete commercial

system from 10x Genomics. Open source software, data sets, and

assemblies described in this work are publicly available.

Results

Data generation

We provide a conceptual explanation of our schema for data gen-

eration, including the fundamental characteristics of the data

type. Our method uses an updated version of the 10x microfluidic

gel bead partitioning system (Zheng et al. 2016), called the

Chromium Genome Reagent Kit (Methods). Library construction

starts from 1.25 ng of DNA having size 50 kb or longer (Zhang

et al. 2012), froma single individual organismor clonal population

(such as a cell line).

Briefly, the system exploits a reagent consisting of severalmil-

lion gel beads, with each bead containingmany copies of a 16-base

barcode unique to that bead. A microfluidic device delivers indi-

vidual beads into approximately one million partitions, along

with high-molecular weight genomic DNA molecules and re-

agents. Each partition receives several longmolecules (as discussed

below), and the molecular biology of the system is arranged to cre-

ate constructs having the barcode, along with ∼350 bp of genomic

DNA from a molecule, sandwiched between Illumina adapters.

The barcode is placed at the beginning of the first read in a pair.

These constructs are then sequenced on an Illumina instrument,

yielding groups of read pairs organized by barcode. Sets of these

read pairs that originate from the same molecule are called

Linked-Reads.

We describe the sequencing configuration that we used for de

novo assembly. Paired reads of length 150 bases each are generat-

ed. This read lengthwas chosen so that data could be sequenced on

the HiSeq X instrument, which yields the lowest cost data among

Illumina instruments and that has amaximum read length of 150.

Data can also be generated on the HiSeq 2500 in rapid run mode.

We tested the HiSeq 4000, observing a twofold reduction in contig

size (Supplemental Note 1). We recommend that samples be se-

quenced to 56× (including bases in barcodes), or about 1200 M

reads for a human genome. Lower coverage is possible and de-

scribed later.

Here, we describe the model behavior of the system. Of the

DNA that is loaded,∼40%makes it completely through the process

and contributes to the sequencing library. For 1.25 ng of loaded

material, distributed across 106 partitions and supposing that all

molecules had size 50 kb, the mean number of molecules per

partition would be about 10, in total representing ∼0.5 Mb of

the genome per partition. At 56× coverage, the mean number of

Linked-Reads (read pairs) permolecule for a human genomewould

thus be (1200M/2)/(106 × 10) = 60, and covering the molecule to

depth (120 · 150)/(50,000) = 0.36×. Importantly, themode of oper-

ation of the system is to provide shallow coverage by many reads

for each of many long molecules. In particular the system is not

designed to deeply cover individual molecules, in contrast to

Synthetic Long-Reads (Voskoboynik et al. 2013).

For smaller genomes, assuming that the same DNA mass was

loaded and that the library was sequenced to the same read depth,

the number of Linked-Reads (read pairs) per molecule would drop

proportionally, which would reduce the power of the data type.

For example, for a genome whose size is one-tenth the size of the

human genome (320 Mb), the mean number of Linked-Reads

per molecule would be about six, and the distance between

Linked-Reads would be about 8 kb, making it hard to anchor bar-

codes to short initial contigs. Modifications to workflow, such as

loading less DNA and/or increasing coverage would be potential

solutions for smaller genomes, but are not described here.

Using the method described above, we generated data sets

from seven human individuals of varied ancestry and sex (Table

1). All were created from DNA of size > 90 kb, measured by

length-weighted mean (Table 1). We tested the performance of

the system on DNA of several different sizes, noting degradation

in performance (Supplemental Note 2), particularly for DNA <30

kb (DNAof size∼20 kb yielded scaffolds of N50 size 0.6Mb, where-

as DNA of size ∼50 kb yielded scaffolds of N50 size 12.8 Mb). We

also tested the effect of reducing coverage from 56× to 38×

(Supplemental Note 3), noting some degradation in quality, e.g.,

scaffold N50 declining from 17 to 12 Mb.

De novo assembly

Because barcoded 10x data provide shallow coverage of each mol-

ecule, it is not possible to separately assemble the reads from each

barcoded partition, which would otherwise be a natural approach

(Voskoboynik et al. 2013). Instead the assembly process creates

progressively larger contigs. At the point where many contigs are

at least a few kb long, most molecules that “pass through” a given

contig will have at least one read landing on it. This information

about partitions touching the contig may be used to link to other

contigs; moreover, all reads from all partitions touching the contig

may be assembled together. This is the Supernova analog of single-

partition assembly.

Following this strategy, barcodes play a relatively minor role

in the initial process. To start out, we use a de Bruijn graph ap-

proach (Pevzner et al. 2001), adapting the method of DISCOVAR

(Weisenfeld et al. 2014). k-mers (k = 48) are prefiltered to remove

Weisenfeld et al.
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Table 1. Genome assemblies

Input Continuity Comparison to truth data Run
time

Ida Sampleb Ethnicityc Sexd Data descriptione Xf Fg

N50
contig
(kb)h

N50
phase
block
(Mb)i

N50
scaffold
(Mb)j Gappinessk

Same Parental Reference

N50
perfect
stretch
(kb)l

Phasing
error
ratem

Missing k-mers (%)n

Inconsistent
at given

distance (%)q

Wall
clock
(days)rHaploido Diploidp 1 Mb 10 Mb

A NA19238 Yoruban F One 10× library 56 115 114.6 8.0 18.7 2.1 14.5 10.0 1.2 0.8 1.7
B NA19240 Yoruban F One 10× library 56 125 118.8 9.3 16.4 2.3 0.00008 14.4 9.8 1.2 0.7 1.7
C HG00733 Puerto Rican F One 10× library 56 106 123.6 3.4 17.8 2.0 0.00008 12.7 9.2 1.0 1.2 1.7
D HG00512 Chinese M One 10× library 56 102 113.2 2.7 15.4 2.2 13.6 10.0 1.3 0.5 1.7
E NA24385 Ashkenazi M One 10× library 56 120 106.4 4.2 15.1 2.6 0.00006 13.9 9.6 1.3 2.0 1.8
F HGP European M One 10× library 56 139 120.2 4.5 18.6 2.5 19.8 12.4 8.8 1.8 0.9 2.0
G NA12878 European F One 10× library 56 92 118.5 2.8 16.4 2.0 16.5 0.00077 12.6 9.1 1.1 0.6 1.8
H NA12878 European F Unknown number of PacBio

libraries plus
BioNano Genomics data

46 1594.2 25.4 4.6 18.0 0.5 2.0

I NA12878 European F Six libraries (fragment,
jumping, 10×)

160 12.3 30.1 10.2 19.7 1.1 7.1

J NA12878 European F Nine libraries (fragment,
jumping, Fosmid, Chicago)

150 43.6 42.8 0.6 14.8 5.6 6.0

K NA24385 Ashkenazi M Seven PacBio libraries 71 4525.2 4.5 0.0 11.8 2.2 17.9
L NA24143 Ashkenazi F Two PacBio libraries 30 1048.4 1.0 0.0 14.3 15.2
M YH Chinese M ∼18,000 Fosmid pools and six

fragment and jumping
libraries, Illumina
sequenced, plus Complete
Genomics data

702 52.5 0.5 23.2 1.5 10.4 1.2 1.6

Assemblies of this work plus preexisting assemblies (H from Pendleton et al. 2015; I from Mostovoy et al. 2016; J from Putnam et al. 2016; M from Cao et al. 2015; see Supplemental Note 4). All sta-
tistics were computed after removing scaffolds shorter than 10 kb. Comparisons to reference use GRCh37 (Chr1-22,X,Y), with ChrY excluded for female samples. Software used to create assemblies:
(A–G) Supernova 1.1 with default parameters; (H) Falcon, BLASR (Chaisson and Tesler 2012), Celera Assembler (Koren et al. 2012), RefAligner (Anantharaman and Mishra 2001; Nguyen 2010),
custom scripts; (I) SOAPdenovo2 (Luo et al. 2012), ABySS (Simpson et al. 2009), Longranger (Zheng et al. 2016), BWA-MEM (Li 2013), fragScaff (Adey et al. 2014), RefAligner, Lastz (Harris 2007),
BioNano hybrid scaffold tool (Mak et al. 2016); (J) Meraculous (Chapman et al. 2011), HiRise (Putnam et al. 2016); (K,L) Celera Assembler, Quiver (Chin et al. 2013); (M) SOAPdenovo2, ReFHap
(Duitama et al. 2012), custom pipeline.
aIdentifier of assembly in this table.
bSource of starting material. HGP is from the donor to the Human Genome Project for libraries RPCI 1,3,4,5 (https://bacpacresources.org/library.php?id=1), for which 340 Mb of finished sequence
are in GenBank. HGP was from fresh blood; others are Coriell cell lines.
cEthnicity of individual.
dSex of individual.
eCapsule description of data type.
fEstimated coverage of genome by sequence reads. For assemblies of this work, reads were 2×150; 1200 M reads were used for each assembly; all samples were sequenced on HiSeq X.
gInferred length-weighted mean molecule length of DNA in kb (for other statistics, see Supplemental Table 1).
hN50 size of FASTA records, after breaking at sequences of 10 or more n or N characters.
iN50 size of phase blocks, computed for A–G, and as reported for assembly M.
jN50 size of FASTA records, excluding Ns.
kFraction of bases that are ambiguous.
lN50 length in kb of segments on finished sequence from same sample that are perfectly mirrored in assembly (see text).
mFraction of phased sites in megabubble branches whose phasing did not agree with the majority.
nFraction of 100-mers in reference that are missing from the assembly (includes bona fide sample/reference differences).
oValue for haploid version of assembly.
pValue for diploid version of assembly.
qOf k-mer pairs at the given distance in the assembly, and for which both are uniquely placed on the reference, fraction for which either the reference chromosome, orientation, order, or separation
(±10%) are inconsistent (includes bona fide sample/reference differences).
rRun time (days) for assemblies using a single server having 28 cores and 384 GB available memory (booted with “mem= 384G”), exclusive of subsampling to 1200 M reads, sorting by barcode
and trimming of barcodes (total 2–5 h).
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those present in only one barcode, thus reducing the incidence of

false k-mers, i.e., those absent from the sample. The remaining k-

mers are formed into an initial directed graph, in which edges rep-

resent unbranched DNA sequences, and abutting edges overlap by

k−1 bases. Operations are then carried out to recover missing k-

mers and remove residual false k-mers (Weisenfeld et al. 2014).

At this point, the graph (called the base graph) is an approximation

to what would be obtained by collapsing the true sample genome

sequence along identical 48-base sequences (Butler et al. 2008).We

thenuse the readpairs to effectively increase k to about 200, so that

the new graph represents an approximation to what would be ob-

tained by collapsing the true sample genome sequence along iden-

tical 200-base sequences, thus achieving considerably greater

resolution (Methods).

The remainder of the assembly process consists of a series of

operations that modify this graph, so as to improve it. To facilitate

these operations, we decompose the graph into units called lines

(Fig. 1; Methods). Lines are extended linear regions, punctuated

only by “bubbles.” Bubbles are places in the graph where the se-

quence diverges along alternate paths that then reconnect.

Common sources of bubbles are loci that are heterozygous or diffi-

cult to read (in particular, at long homopolymers).

We can use lines to scaffold the assembly graph. This involves

determining the relative order and orientation of two lines, then

breaking the connections at their ends, then inserting a special

“gap” edge between the lines. The end result is a new line, which

has a special “bubble” consisting only of a gap edge. Subsequent

operations (described later) may remove some of these gaps, re-

placing them by sequence.

Scaffolding is first carried out using read pairs. If the right end

of one line is unambiguously connected by read pairs to the left

end of another line, then they can be connected. Read pairs can

reach over short gaps. To scaffold across larger gaps, we use the

barcodes. Briefly, if two lines are actually near each other in the ge-

nome, then with high probability, multiple molecules (in the par-

titions) bridge the gap between the two lines. Therefore for any

line, we may find candidate lines in its neighborhood by looking

for other lines sharingmanyof the same barcodes. By scoring alter-

native orders and orientations (O&Os) of these lines, we can scaf-

fold the lines by choosing their most probable configuration,

excluding short lines whose position is uncertain (Methods).

Once the assembly has been scaffolded, some gapsmay be re-

placed by one or more sequences. For short gaps, read pairs from

both sides of the gap reach in and may cover the intervening se-

quence, from which it may be inferred. For long gaps, we first

find the barcodes that are incident upon sequence proximate to

the left and right sides of the gap. Thenwe find all the reads in these

barcodes. This set of readswill include reads thatproperly liewithin

thegap andyetbe roughly 10 times larger than that set (as eachpar-

tition contains about 10 molecules). We assemble this set of reads.

Reads outside the gap locus tend to be at low coverage in this re-

stricted read set and hence not assemble. In this way, it is typically

possible to fill in the gapwith a chunkof graphand thereby remove

the gap from the assembly. The chunk may not be a single se-

quence. For example, at this stage, heterozygous sites within the

gap would typically be manifested as simple bubbles.

The final step in the assemblyprocess is to phase lines. First for

each line (Fig. 1), we find all its simple bubbles, i.e., bubbles having

just two branches. Then we define a set of molecules. These are de-

fined by a series of reads from the same barcode, incident upon the

line, and not having very large gaps (>100 kb) between successive

reads. A givenmolecule then “votes” at certain bubbles, and the to-

tality of this voting (across all molecules on each line) is then used

to identify phaseable sections of the line, which are then separated

into “megabubble” arms (Fig. 2; Methods).

Software and computational performance

Supernova takes as input FASTQ files. No algorithmic parameters

are supplied by the user. Supernova is designed to run on a single

Linux server. The peak memory usage across the seven human as-

semblies of this work was 335 GB, and accordingly we recommend

using a server having ≥384 GB RAM. Wall clock run times are

shown in Table 1 and are in the range of 2 d.

Supernova output

A Supernova assembly can separate homologous chromosomes

over long distances, in this sense capturing the true biology of a

diploid genome (Fig. 2). These separated alleles (or phase blocks)

are represented as “megabubbles” in the assembly, with each

branch representing one parental allele. Sequences betweenmega-

bubbles are nominally homozygous. Successive megabubbles are

not phased relative to each other (if they were, they would have

been combined). A chain of megabubbles as shown comprise a

scaffold. In addition to large-scale features, the Supernova graph

encodes smaller features such as gaps and bubbles at long homo-

polymers, whose lengths are not fully determined by the data.

A Supernova assembly can be translated into FASTA in several

distinct ways that might prove useful for different applications

(Fig. 3). These allow representation of the full (or “raw”) graph

(Fig. 3A), or erase microfeatures (choosing the most likely branch

Figure 1. Lines in an assembly graph. Each edge represents a DNA se-
quence. (A) Blue portion describes a line in an assembly graph, which is
an acyclic graph part bounded on both ends by single edges. The line al-
ternates between five common segments and four bubbles, three of which
have two branches. The third bubble is more complicated. The entire
graph may be partitioned so that each of its edges lies in a unique line (al-
lowing for degenerate cases, including single edge lines, and circles). (B)
The same line, but now each bubble has been replaced by a bubble con-
sisting of all its paths. After this change, each bubble consists only of par-
allel edges.

Figure 2. Supernova assemblies encode diploid genome architecture.
Each edge represents a sequence. Blue represents one parental allele,
and gold represents the other. Megabubble arms represent alternative pa-
rental alleles at a given locus, whereas sequences between megabubbles
are homozygous (or appear so to Supernova). Successive megabubbles
are not phased relative to each other. Smaller scale features appear as
gaps and bubbles.

Weisenfeld et al.
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at small bubbles and replacing gap edges byNs). There ismore than

one way to package the result, depending on how megabubble

branch points are handled (Fig. 3B–D).Wenote that erasingmicro-

features entails some loss of information, as in some cases the

wrong branch of a bubble is chosen.

Cycles in the graph provided an interesting test case. By a cy-

cle, we mean a set of one or more edges that include a path from a

vertex back to itself. These are left intact in the full graph; however,

in the other forms, they are replaced by a path through the cycle

that traverses each edge at least once, followed by Ns. This unfor-

tunately signifies a gap (which could in principle represent any se-

quence), whereas the full graph indicates precisely which

sequences could be present at the locus.

Inferred DNA length

From each of the Supernova assemblies, we inferred the statistics of

DNA molecules that were delivered to a partition and thence se-

quenced. This reflects the quality of input material as well as deg-

radation during the initial steps of library construction. Table 1

shows the inferred values for the length-weighted mean (LWM)

of these molecules, as field F. It was in the range of 92–139 kb.

The HGP sample was obtained from fresh blood, and yielded the

longest DNA. The other samples were obtained from cell lines.

The sample NA12878 may have yielded the shortest DNA because

of repeated handling of the DNA tube to create multiple libraries,

as that DNA sample was used as a control for many experiments

(not directly connected to this work).

Assembly assessment

We assessed in the same way our seven human assemblies and six

human assemblies from the literature that represent the state of

the art, encompassing a wide range of laboratory approaches,

from low coverage (30×) Pacific Biosciences (PacBio) to complex

combinations of multiple technologies at much higher coverage

(Table1).Thesecomparisonassembliesweredownloadedfrompub-

licly accessible FTP sites (Supplemental Note 4). For Supernova as-

semblies, we computed using the pseudohap FASTA output (Fig.

3C), except as noted.

To facilitate a uniform comparison, we computed all statistics

from scratch (except as noted), rather than referring to published

values. Before computing these statistics, we removed all scaffolds

shorter than 10 kb from each assembly, thereby normalizing for

differences in the actual cutoffs used in defining the assemblies,

which would otherwise significantly affect statistics, including

coverage of the genome.

To assess the continuity of the assemblies, we first computed

the N50 contig size. The mean across the seven Supernova assem-

blies was 116 kb, with little variation. The three PacBio-based as-

semblies had much larger contigs, whereas contigs from the

other assemblies were two-fold or more shorter than those from

Supernova.

All of the Supernova assemblies were diploid, with N50 phase

block size ranging from 2.7 to 9.3Mb, with variability due presum-

ably to varied ancestry and variedDNA length. Of the six other hu-

man assemblies, only the 702× assembly of YH (assembly M) was

diploid, and it had anN50 phase block size of 0.5Mb (as reported).

The ∼100 kb molecules underlying Linked-Reads enable the long

phase blocks that are difficult to achieve with other technologies.

Scaffolds in the Supernova assemblies ranged from 15.1 to

18.7 Mb (N50). For the PacBio-only assemblies (KL), scaffolds are

contigs, as these assemblies have no gaps; these scaffolds are

much shorter than the Supernova scaffolds. The four combination

assemblies (HIJM) had longer scaffolds, ranging from 23 to 43Mb.

Figure 3. Representation of Supernova assemblies as FASTA. Several styles are depicted. (A) The raw style represents every edge in the assembly as a
FASTA record (red segments). These include microbubble arms and also gaps (printed as records comprising 100 Ns for gaps bridged by read pairs, or
a larger number, the estimated gap size) (Supplemental Note 5). Unresolved cycles are replaced by a path through the cycle, followed by 10 Ns.
Bubbles and gaps generally appear once per 10–20 kb; consequently, FASTA records from A are much shorter (∼100 times) than those from B, C, and
D. For each edge in the raw graph, there is also an edge written to the FASTA file representing the reverse complement sequence. For the remaining output
styles, we flatten each microbubble by selecting the branch having highest coverage, merge gaps with adjacent sequences (leaving Ns), and drop reverse
complement edges. (B) In this style each megabubble arm corresponds to a FASTA record, as does each intervening sequence. (C) The pseudohap style
generates a single record per scaffold. As compared to the megabubble style, in the example, seven red edges are seen on top (corresponding to seven
FASTA records) that are combined into a single FASTA record in the pseudohap style. Megabubble arms are chosen arbitrarily so many records will mix
maternal and paternal alleles. (D) This style is like the pseudohap option, except that for each scaffold, two “parallel” pseudohaplotypes are created
and placed in separate FASTA files.
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The gappiness (fraction of Ns) in these scaffolds also varied greatly,

from 0% for the PacBio-only assemblies, to ∼2% for the Supernova

assemblies, to ∼10% for assembly I.

Any assessment of assembly continuity would be tempered

by an assessment of the accuracy and completeness of those

same assemblies. Although one could do this by comparing to a

human reference sequence (and we do so later), the ideal would

be to exploit ground truth data from the same sample that was as-

sembled. These data would consist of clones (from individual hap-

lotypes), that had been independently sequenced and assembled,

and which were representative of the genome. We could find only

two samples, forwhich such truth datawas available and forwhich

high quality DNA could be procured to create assemblies. These

were the sample from a living Human Genome Project donor,

which we refer to as HGP, for which 340 Mb of finished clones

had been sequenced and assembled during the project, at great ex-

pense, and NA12878, for which we had previously sequenced and

assembled 4 Mb of random clones (Weisenfeld et al. 2014).

Although the HGP clones were not truly random, we reasoned

that they comprised so much of the genome (∼10%) that they

would be reasonably representative of it. They comprise a remark-

able and unique resource.

For a given sample, if we knew the exact sequence for each of

its chromosomes, we could assess the accuracy of an assembly of

that sample by enumerating maximal regions of the genome that

are perfectly represented in the assembly. Such regions would be

terminated by errors or gaps in the assembly (note that displaying

the wrong allele would count as an error). We call the N50 size of

such perfectly represented regions the “N50 perfect stretch.” For

diploid genomes, if one has both a diploid assembly (thus attempt-

ing to display all chromosomes), and representative finished se-

quence from the exact same sample (thus providing a sample of

those chromosomes), then one can approximate the N50 perfect

stretch (Supplemental Note 6). There are no publicly available as-

semblies that satisfy these requirements, other than those generat-

edbySupernova. Inparticular,wecanassess theN50perfect stretch

for Supernova assemblies of HGP and NA12878 in Table 1 (assem-

blies F and G). These were computed from the raw output (Fig. 3).

We found that the N50 perfect stretch in these Supernova as-

semblies was 19.8 kb for the HGP assembly and 16.5 kb for the

NA12878 assembly (Table 1). The difference might be attributable

to sampling error as the finished sequence for NA12878 comprised

4 Mb, whereas the finished sequence for HGP comprised 340 Mb.

We further examined the alignments of the finished sequence to

the HGP assembly to understand the exact nature of the assembly

defects that terminated perfect stretches. For example Figure 4 (and

the corresponding alignments for thousands of other clones) show

a preponderance of errors in low complexity sequence, particular-

ly, near long homopolymers. These errors might be attributable to

library construction defects, sequencing defects, algorithmic de-

fects, or possibly errors in the finished sequence (International

Human Genome Sequencing Consortium 2001).

In more detail, Figure 4 displays the alignment of the Super-

novaHGP assembly to a 162-kb finished clone from the same sam-

ple, interesting because it subsumes a region of Neandertal origin

(Mendez et al. 2013). Each of several discrepancies between the

Figure 4. Alignment of Supernova assembly to finished sequence from the same sample. GenBank sequence AC004551.1 for finished clone RPCI1-
71H24 has length 162,346 bases, and its reverse complement perfectly matches GRCh37. The clone encompasses a region of Neandertal origin
(Mendez et al. 2013). Both the clone and assembly F (Table 1) represent DNA from the same HGP donor. The clone matches a region of which 96% is
between two megabubbles in the assembly, thus represented as homozygous. The alignment of the assembly to the clone region on GRCh37 is shown.
Each line pair shows the assembly on top and the reference on the bottom. (Yellow) abbreviated, perfectly matching stretches; (green) mismatched bases;
(blue) indels; (cyan) indels, but not present in comparison to raw graph; (red) captured gap: signified by 34 Ns (actual number in assembly is 100); assem-
bly region also has two cycles, each suffixed by 10 Ns in output, not shown. In these cases the flattened sequence for the cycle exactly matches the
reference.
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assembly and finished sequence are annotated. Although we ex-

pect that most of these correspond to defects in the Supernova as-

sembly, there is at least one case in which the clone sequence is

likely in error: for the first mismatch (shown in green), all reads

in the Supernova assembly support the assembly base, and more-

over the base was changed in the transition from GRCh37 to

GRCh38, so that the latter now matches the assembly.

The exact list of discrepancies depends on the particular

form of the Supernova assembly that the clone is compared to

(Fig. 4), and this is interesting because it speaks to the power of

the different forms. For this clone, only indel discrepancies are

affected. If we compare the clone to the raw graph (full assem-

bly), choosing the best path through the graph, then only the

indel discrepancies shown in blue occur. However if we instead

compare to the pseudohap style, in which small bubbles have

been flattened by choosing the most probable path through

the bubble (without looking at any reference sequence), then

there are additional discrepancies, seen in cyan. Bubbles in the

full assembly thus contain some information that is lost in

the other forms.

Parental sequence data may also be used to assess the assem-

bly of their child. In particular, this could provide a direct readout

on the accuracy of phase blocks in a diploid assembly. This has not

been done before for human genomes, because for the two extant

diploid human assemblies (Levy et al. 2007; Cao et al. 2015), the

parents were not sequenced. For four of the Supernova assemblies,

(BCEG in Table 1), the parents had been sequenced, and phased

VCFs were available (Supplemental Note 7). This allowed us to es-

timate the phasing accuracy of these assemblies.

To do this, for eachmegabubble, whenever we found two po-

sitions on alternatemegabubble branches that could bemapped to

the same position on GRCh37, which represented different bases

(a heterozygous SNP), and which was phased in the VCF, we re-

corded either 0 or 1, depending on whether the “top” branch of

the megabubble was assigned to the maternal or paternal allele.

A sequence of all 0’s or all 1’s would represent perfect phasing.

We counted all the “votes” (0 or 1), and counted all “wrong votes”

(1 if majority = 0, 0 if majority = 1), and summed across all mega-

bubbles of size ≥1 Mb. The global error rate for phasing of a given

assembly would be (wrong votes)/votes, noting that a “long

switch,” i.e., haplotype misassembly error on even a single mega-

bubble would drive this rate up.

We found that for three individuals (assemblies BCE), the ob-

served phasing error rates were between 0.00006 and 0.00008,

whereas for the fourth individual (assembly G), the observed

error rate was 0.00077. The difference is attributable to rare “long

switch” (haplotype misassembly) events, wherein maternal and

paternal sequences are juxtaposed within a megabubble and that

just happened to have occurred in assembly G and not the others;

for example, exclusion of one such event lowers the rate to

0.00015.

Next, tomeasure the relative completeness of the different as-

semblies, we computed the fraction of nonduplicate k-mers that

were present in the reference sequence (GRCh37) and missing

from a given assembly (Supplemental Note 8). We used k = 100,

balancing between two considerations. First it was important

that the fraction of duplicate k-mers be small, as the analysis would

be blind to them. For k = 100, the fraction of duplicate k-mers in

GRCh37 is 2.3%. Second, we did not want to lose too many k-

mers to polymorphism. Assuming a polymorphism rate of 1/

1000, we would expect ∼10% of k-mers would be missing because

of bona fide differences between the sample and reference.

Most of the comparison assemblies were haploid, and thus

their missing fraction had to be computed based on their haploid

output. For the Supernova assemblies, we computed both the hap-

loid missing fraction (based on output type pseudohap) or their

diploidmissing fraction (basedonoutput typepseudohap2). Foras-

semblyM (the 702× diploid assembly of YH), because there was no

direct way to divide the assembly into haplotypes, we used the en-

tire assembly and reported only the diploid missing fraction.

For the seven Supernova assemblies, the haploidmissing frac-

tion varied from 12.4% to 14.5%, with the highest values for the

African samples (as would be expected, assuming that the African

samples are most divergent from the reference). In general, the

haploid coverage of the comparison assemblies is lower than

that for the Supernova assemblies. For example, assembly I is miss-

ing 19.7%. The one exception is the 71× PacBio assembly of

NA24385 (assembly K), which is missing 11.8%, as compared to

the Supernova assembly of the same sample (assembly E), which

is missing 13.9%. However, the corresponding diploid Supernova

assembly ismissing only 9.6%, again lower than the PacBio assem-

bly (which is haploid).

We next analyzed the missing 100-mers by their type

(Supplemental Table 2), examining both duplication and GC con-

tent, andusingdiploid assemblieswhere available. ForGCcontent,

we were particularly interested in performance at GC extremes,

where we would expect single-molecule technologies to be superi-

or. At lowGC (0%–19%), thiswas not observable. The performance

of the Supernova assemblies was actually somewhat better. For ex-

ample, the totalmissing k-mers in this GC range for the Supernova

assembly of NA24385 was 0.144% as compared to 0.156% for the

71× PacBio assembly of the same sample. Conversely at high GC

(80%–100%), for the same sample, Supernova missed 0.029%,

whereas the PacBio assembly missed 0.019%. Next, we analyzed

duplicate k-mers, i.e., those occurringmore than once in the refer-

ence. For these, the PacBio assembly of the same sample had a clear

advantage, with 0.127% missing compared with 0.485% for

Supernova. Conversely, Supernova excelled at nonduplicate k-

mers, with 9.127%missing compared with 11.654% for PacBio.

We then assessed long-range accuracy of the assemblies. To

do this, for a given assembly and for fixed sizes (1, 10 Mb), we se-

lected all scaffold segments (sequences of the given number of bas-

es, within one FASTA record) of the given size in the assembly,

whose end k-mers occurred exactly once in the reference sequence.

We excluded segments that bridged a gap of size 100 ormore in the

reference, as these gap sizes could be inaccurate or polymorphic

(Bovee et al. 2008). For each segment, we tested its end k-mers

for consistent placement, meaning lying on the same chromo-

some, in the correct order and orientation, and defining a frag-

ment whose length is within 10% of the fixed size. The fraction

of segmentswhose end k-merswere placed inconsistently is report-

ed in Table 1. Inconsistency could be due to assembly error, large

errors in assembly gap measurement, or polymorphism within a

sample or between it and the reference.

For the seven Supernova assemblies, and the two distances (1,

10 Mb), all inconsistent fractions were between 0.6% and 2.0%.

Two of the comparison assemblies were comparably accurate: as-

sembly H, based on PacBio and BioNano Genomics data; and as-

sembly M (the 702× diploid assembly of YH). The other four

comparison assemblies exhibited several-fold higher inconsisten-

cy at one or more measurement distances. For example, assembly

J (including Dovetail data), had long-range inconsistencies of

5.6% and 6.0%, somewhat qualifying the advantage of its very

long scaffolds (42.8 Mb). The 71× PacBio assembly (K) had an
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inconsistency of 17.9% at 10 Mb, suggesting that PacBio data

alone might be insufficient for accurate long-range assembly.

Replicability of results

To test replicability of the laboratory and computational process

for Supernova, we carried out three types of experiments using

NA12878, all with ∼38× data sets consisting of 800 M reads se-

quenced on a HiSeq X instrument (Supplemental Table 3). First,

we sequenced the same library at three different HiSeq X sites,

thus testing only sequencer-to-sequencer variability. Second, we

created five additional libraries and sequenced these on the same

flow cell, thus testing only library-to-library variability. For the

eight assemblies, some statistics are highly stable, e.g., the N50

contig length varies from 96.5 to 120.0 kb, and the N50 perfect

stretch varies from 9.9 to 13.5 kb; whereas other statistics more

dependent on rare events are more variable. Thus, the percent

inconsistent at 10Mb varies from 0.5 to 1.6, with that single value

over 0.9; similarly, the N50 scaffold size varies from 16.1 to 25.5

Mb. The N75 scaffold size, which is less dependent on rare events,

varies less, from 8.7 to 11.4 Mb. Third, we re-ran all eight assem-

blies a second time, to confirm that identical FASTA output files

were generated, which they were.

Novel sequences in the Supernova assemblies

We assessed the presence of sequences in the Supernova assem-

blies that were both long and highly divergent from the reference

sequence or absent from it entirely. We scanned each diploid as-

sembly for 10-kb windows, for which at most 10% of the 100-

mers were contained in GRCh38 (k-mers touching gap bases were

ignored). Then we merged overlapping windows. Virtually all of

these sequences had homology only with primate sequences,

with the exception of contaminants, which we removed (Supple-

mental Note 9). We also filtered out redundant windows (defined

by ≥90% 100-mer identity). These would represent novel sequenc-

es shared by haplotypes. Supplemental Table 4 describes the statis-

tics of the residual windows. The amount of novel sequence varied

from 5.8 to 8.1 Mb, depending on the assembly.

The novel sequences have N50 size 101 kb and vary in length

up to 412 kb, but tend to be in relatively small assembly units. For

example for HGP, of 8.1 Mb, only 0.4 Mb is present in scaffolds of

size ≥10 Mb, or present in scaffolds of size ≥1 Mb, whereas 5.7 Mb

is present in scaffolds of size ≥100 kb. The relative lack of continu-

ity in the novel sequence regions suggests that there is substan-

tially more to be found (that would meet the 10-kb threshold).

The fraction of unique 100-mers within a given missing set

varied from 71.5% to 80.9%, as expected, given that two alleles

might be similar, but not so similar as to have been filtered out.

We combined all seven sets of novel sequences and computed

the fraction of unique 100-mers, which was 42.7%, suggesting

that many new assemblies would be needed to fully characterize

“the” human genome. For example, the total number of unique

100-mers in themissing sets for assemblies A–F was 17.8M,where-

as if we add in the one additional assembly (G), we find 19.8 M

missing k-mers, i.e., 2.1 M more.

Discussion

Although knowledge of the genome is a fundamental starting

point for biology, for large and complex genomes, obtaining

that knowledge continues to be a challenge. Low-cost and straight-

forward methods based on read alignment to a reference provide

an extraordinarily valuable but incomplete readout. A far more

complete picture can be obtained through complex and sophisti-

cated de novo assembly approaches, but their material require-

ments and expense preclude widespread use.

Moreover, nearly all de novo assemblies of diploid genomes

have been haploid: at each locus they combine together sequences

from maternal and paternal chromosomes, yielding as output a

single mélange. This both corrupts and loses information; thus,

generating diploid assemblies has been a major goal of the field.

It has been achieved for genomes up to 5% the size of a human ge-

nome (Jones et al. 2004; Chin et al. 2016), and in two cases, at great

expense for human genomes (Levy et al. 2007; Cao et al. 2015).

In this work, we demonstrate true diploid human assemblies

via a single straightforward librarymade from∼1 ng of highmolec-

ular weight DNA. We carried out our approach on seven human

samples, whichwe sequenced on the IlluminaHiSeqX instrument

at lowcost. These assemblies used identical code, with identical pa-

rameters as a “push-button” process, that ran in 2 d on a single

server. The aggregate experiment burden of our approach is dra-

matically lower than that for all the human assemblies that we

compared to. Our approach yields much longer phase blocks

than the previous diploid human assemblies (Levy et al. 2007;

Cao et al. 2015). Our diploid human assemblies are the first to be

validated using finished sequence from the same sample and the

first whose phasing accuracy has been validated using parental

sequences.

We anticipate utility of our newmethod both for routine use

as a single-technology approach and in combination with other

technologies, e.g., for “The Reference Genomes Improvement”

project (Steinberg et al. 2016). We have demonstrated our method

here only on human genomes, and we are confident that it will

work well on similar genomes, for example, most mammals. Fun-

damentally different genomes (including much smaller ones, as

well as polyploid genomes) will likely require modifications to

our methods. For smaller genomes, the primary goal is to achieve

the same level of molecular coverage (LPM= links per molecule)

that is now achieved for human genomes. The most direct ap-

proach would be to simultaneously reduce the input mass loaded,

increase the sequencing depth of coverage, and subsample the

reads by barcode.

Our diploid assemblies open the door to new analytical ap-

proaches, including alignment of assemblies to a reference se-

quence to call variants. The low cost and burden of our approach

makes it applicable to large-scale projects, both for human and

“new” genomes, posing new opportunities and challenges both

for experimental design and biological interpretation.

Methods

Genomic DNA samples

Peripheral blood samples were obtained from a donor (anony-

mous, although known to 10x Genomics, and labeled HGP in

Table 1). The study was performed under written informed con-

sent from the donor and approved by the 10x legal department.

Genomic DNA (gDNA) was extracted from fresh whole blood ac-

cording to 10x Sample Preparation Demonstrated Protocol “DNA

Extraction from Whole Blood” (http://support.10xgenomics.

com/de-novo-assembly/sample-prep/doc/demonstrated-protocol-

hmw-dna-extraction-from-whole-blood). Optimal performance

has been characterized on high molecular weight (HMW) gDNA

with a mean length >50 kb. The gDNA did not require further

size selection or processing.
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Commercially acquired samples were obtained (NA12878,

NA19238, NA19240, HG00733, HG00512, NA24385, and

NA24143 fromCoriell). Genomic DNAwas extracted fromhuman

lymphocyte cells following the HMW gDNA extraction protocol

outlined in the Chromium Genome User Guide Rev A (http://

support.10xgenomics.com/de-novo-assembly/sample-prep/doc/

user-guide-chromiumtm-genome-reagent-kit).

Genomic DNA was quantified with the Qubit dsDNA HS

Assay Kit (Life Technologies) according to 10x Sample Preparation

Demonstrated Protocol “HighMolecularWeightDNAQC” (https://

support.10xgenomics.com/de-novo-assembly/sample-prep/doc/

user-guide-chromium-genome-reagent-kit-v1-chemistry).

Sequencing library construction using the Chromium Genome

Reagent Kit

A Chromium Controller Instrument (10x Genomics) was used for

sample preparation. The platform allows for the construction of

eight sequencing libraries by a single person in 2 d. Sample index-

ing and partition barcoded libraries were prepared using the

Chromium Genome Reagent Kit (10x Genomics) according to

manufacturer’s protocols described in the Chromium Genome

User Guide Rev A (https://support.10xgenomics.com/de-novo-

assembly/sample-prep/doc/user-guide-chromium-genome-reagent-

kit-v1-chemistry). Briefly, in the microfluidic Genome Chip, a li-

brary of Genome Gel Beads was combined with an optimal

amount of HMW template gDNA in Master Mix and partitioning

oil to create GEMs. Template gDNA (1.25 ng) was partitioned

across approximately 1 million GEMs, with the exception of the

peripheral blood sample, which utilized 1 ng of template gDNA.

Upon dissolution of the Genome Gel Bead in the GEM, primers

containing (1) an lllumina R1 sequence (Read 1 sequencing prim-

er), (2) a 16-bp 10x Barcode, and (3) a 6-bp random primer

sequence were released. GEM reactions were isothermally incubat-

ed (for 3 h at 30°C ; for 10 min at 65°C; held at 4°C), and barcoded

fragments ranging from a few to several hundred base pairs were

generated. After incubation, the GEMs were broken and the bar-

coded DNA was recovered. Silane and Solid Phase Reversible

Immobilization (SPRI) beads were used to purify and size select

the fragments for library preparation.

Standard library prep was performed according to the manu-

facturer’s instructions described in the Chromium Genome User

Guide Rev A (https://support.10xgenomics.com/de-novo-assembly/

sample-prep/doc/user-guide-chromium-genome-reagent-kit-v1-

chemistry) to construct sample-indexed libraries using 10x

Genomics adaptors. The final libraries contained the P5 and P7

primers used in lllumina bridge amplification. The barcode

sequencing libraries were then quantified by qPCR (KAPA

Biosystems Library Quantification Kit for Illumina platforms).

Sequencing was conducted with an Illumina HiSeq X with 2×150

paired-end reads based on the manufacturer’s protocols.

Internal representation of Supernova assemblies

An assembly is first represented as a directed graph in which each

edge represents a single strand of DNA sequence. Abutting edges

overlap by k-1 bases (k = 48). This graph is called the base graph.

Subsequently, a new graph called the super graph is constructed

in which each edge represents a path in the base graph. Each su-

per-graph edge may be translated into a DNA sequence. Where su-

per-graph edges abut, their associated sequences overlap by k−1

bases (k = 48, the same as the base graph). An advantage of this ap-

proach was that it allowed for certain computations to be carried

out on the base graph, once, so that experiments involving su-

per-graph algorithm improvement could be carried out, without

repeating those computations. It is also a convenient mechanism

for effectively changing the k-value, without changing the actual

k-value in use.

Generation of the initial super graph

For each read pair, where possible, we find one (or sometimes

more) paths in the graph that could represent the sequence of

the originating insert (Weisenfeld et al. 2014). These paths are rep-

resented as sequences of integers corresponding to the identifiers

of edges in the base graph. Whenever there are two paths that per-

fectly overlap by k′ = 200 bases, we formally join them via an

equivalence relation. This yields the super graph.

Definition of lines

A line in a graph is an acyclic subgraph, having a unique source

and sink (relative to the subgraph), with one edge exiting the

source and one edge entering the sink (and maximal with respect

to these properties). We also allow for the special case of circles,

which are similar, but have no source or sink. Every edge lies in a

unique line.

Ordering and orienting lines using barcodes

For all lines in the assembly, we carry out an initial computation,

which assigns a linear coordinate system to each line and marks

the positions of uniquely placed reads on it, organized by barcode.

Now for a given line set S, we score alternative O&O possibilities.

Each O&O for S thus yields a sequence of barcoded read positions

along a hypothetical merged line. We compute a penalty for the

given O&O, which is a sum, over all its constituent barcodes. For

each barcode, we first compute the mean separation between suc-

cessive read placements for that barcode (in themerged line). Then

we traverse these placements, in order, finding those pairs of con-

secutive placements that bridge a jump from one constituent line

to another, andwhichmay thus represent amisconnection.We di-

vide the separation for this pair by themean separation for the bar-

code. If the quotient is smaller than a fixed bound (2.0), we discard

it on the theory that it is unlikely to represent an anomaly. The re-

maining quotient is added to the penalty (Supplemental Fig. 1). A

givenO&O is treated as the “winner” if its penalty is at least a fixed

heuristic amount (60.0) less than that for competing tested O&O

possibilities for the same set of lines.

Phasing

A “phasing” is an orientation of each bubble on a line, placing one

of its branches on “top” and the other on the “bottom.” Initially

we choose an arbitrary orientation for the bubbles. Each molecule

touches some bubbles, and thus (relative to a given phasing) may

be represented as a sequencewith entries +1 for top,−1 for bottom,

or 0 for silent. A phasing is “good” if each molecule is coherent,

containing nearly all 1’s or nearly all −1’s (plus 0’s at silent posi-

tions). Accordingly, we define the score of a phasing to be the

sum over all molecules of Max(pluses,minuses)−Min(pluses,

minuses).

We then carry out iterative perturbations, each of which flips

some bubbles, and keeping only those perturbations that increase

the phasing score. Three types of perturbations are attempted:

1. We flip bubbles on a given molecule to make it completely

coherent.

2. We flip an individual bubble.

3. We pivot at a given point, flipping all bubbles to its left.
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This yields an initial phasing. We then look for weaknesses in it.

First, if flipping a bubble has too small an effect on the score, we

exclude it from the phasing operation. For example, a bubble

might arise at a long homopolymer, whose length was fixed in

the sample but changed during data generation. These uncertain

bubbles are “copied” to both megabubble branches. Second, if a

pivot has too small an effect on the score, we break the phasing

at the pivot point, yielding multiple phase blocks for the given

scaffold. For example this could happen if a sufficiently long re-

gion in a given sample was homozygous.

Data access

Raw sequence data from this study have been submitted to the

NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.

gov/sra) under accession number SRP090941. Assemblies have

been deposited at DDBJ/ENA/GenBank (https:// www.ncbi.nlm.

gov/genbank/) under the accessions MSBx000 00000 where x is

in {J,K,L,M,N,O,P}, and the versions described in this work are

MSBx01000000. A file of 3431 finished clones from GenBank for

the HGP sample, which we used for assessment, is available as

Supplemental Material (HGP.GenBank.fasta.gz). These materials

are also available at http://support.10xgenomics.com/de-novo-

assembly/datasets. Source code is available as Supplemental

Material (supernova-1.1-source.tar.gz) and also at https://github.

com/10XGenomics/supernova. In addition, creation of a cell line

from the HGP donor is in progress (Coriell #GM26200).
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