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Scripts for figures generation are availablétgi://github.com/hemberg-lab/SC3-paper-figures

At the time of writing the manuscript the following old versions of some of the tools were used (these tools have been updated/
upgraded since then):

1. SC3 (1.1.2 <= Version < 1.1.5). These versions of SC3 can be installed:
. from source/binary files from Bioconductoitp://bioconductor.org/packages/3.3/bioc/html/SC3.html
. from Github using commands:

install.packages("devtools")
devtools::install_github("hemberg-lab/SC3", ref = "8a86b60463")
SC3v.1.1.2 source and DESCRIPTION files can be found in Supplementary Software 1.
In the newer versions the main SC3 pipeline has not been changed.
2. SEURAT (version 1.3) - can be installed from GitHub:
install.packages("devtools")
devtools::install_github('satijalab/seurat', ref = 'da6cd08")
In the newer versions of SEURAT a different algorithm is used for clustering.
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Abstract

Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global
transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool

for unsupervised clustering which achieves high accuracy and robustness by combining multiple
clustering solutions through a consensus approach. We demonstrate that SC3 is capable of
identifying subclones based on the transcriptomes from neoplastic cells collected from patients.

One of the key applications of ScCRNA-seq is determining cell types based on transcriptome
profiles alone through unsupervised clustering1-3. A full characterisation of the
transcriptional landscape of individual cells holds an enormous potential, both for basic
biology and clinical applications. SC3 is an interactive and user-friendly R-package for
clustering and its integration with Bioconductor4 and scater5 makes it easy to incorporate
into existing bioinformatic workflows.

The SC3 pipeline is presented in Fig. 1a, Methods. Each of the steps requires the
specification of a number of parameters. Choosing optimal parameter values is difficult and
time-consuming. To avoid this problem, SC3 utilizes a parallelisation approach, whereby a
significant subset of the parameter space is evaluated simultaneously to obtain a set of
clusterings. SC3 then combineéthe different clustering outcomes into a consensus matrix
that summarises how often each pair of cells is located in the same cluster. The final result
provided by SC3 is determined by complete-linkage hierarchical clustering of the consensus
matrix into kK groups.

To constrain the parameter values of the SC3 pipeline, we first considered six publicly
available sScRNA-Seq datase(&ig. 1b). The datasets were selected on the basis that one

can be highly confident in the cell-labels as they represent cells from different stages,
conditions or lines, and thus we consider them as ‘gold standard’. To quantify the similarity
between the reference labels and the clusters obtained by SC3, we used the Adjusted Rand
Index (ARI, see Methods) which ranges from 1, when the clusterings are identical, to 0

when the similarity is what one would expect by chance. For the gold standard datasets, we
found that the quality of the outcome as measured by the ARI was sensitive to the number of
eigenvectorsg, retained after the spectral transformation (Fig. S1, S2). For all six datasets
we find that the best clusterings were achieved wdfisrbetween 4-7% of the number of
cells, NV (Fig. 1c, S3a, Methods). The robustness of the 4-7% region was supported by a
simulation experiment where the reads from the six gold standard datasets were
downsampled by a factor of ten (Methods and Fig. S3a). We further tested the SC3 pipeline
on six other published datasets, where the cell labels can only be considered ‘silver standard’
since they were assigned using computational methods and the authors’ knowledge of the
underlying biology. Again, we find that SC3 performs well when usiimgthe 4-7% ofVV

interval (Fig. S3b). The final step, consensus clustering, improves both the accuracy and the
stability of the solution. k-means based methods will typically provide different outcomes
depending on the initial conditions. We find that this variability is significantly reduced with
the consensus approach (Fig. 1d).

*Full references to the datasets can be found in the Supplementary Results
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To benchmark SC3, we considered five other methods: tSNEG6 followkdnaans

clustering (a method similar to the one used by Griin et all), pcaReduce7, SNN-CIig8,
SINCERA9 and SEURAT10. As Fig. 2a shows, SC3 performs better than the five tested
methods across all datasets (Wilcoxon signed-rank test p-value < 0.01), with only a few
exceptions. In addition to considering accuracy, we also compared the stability of SC3 with
other stochastic methods (pcaReduce and tSNE+kmeans, but not SEURAT) by running them
100 times (Fig. 2b, Methods, black dots in Fig. 2a). In contrast to the other methods that rely
on different initializations, SC3 is highly stable.

Although SC3'’s consensus strategy provides a high accuracy, it comes at a moderate
computational cost: the run time for N = 2,000 is ~20 mins (Fig. S4a). The main bottleneck
is the k-means clustering and by reducing how many different runs are considered it is
possible to cluster 5,000 cells in ~20 mins with only a slight reduction in accuracy (Fig.

S4b). To apply SC3 to even larger datasets, we have implemented a hybrid approach that
combines unsupervised and supervised methodologies. SC3 selects a subset of 5,000 cells
uniformly at random, and obtains clusters from this subset as described above. Subsequently,
the inferred labels are used to train a support vector machine (SVM, Methods), which is
employed to assign labels to the remaining cells. Our result shows that the use of an SVM to
predict cell labels works well (Fig. 2c, S4c and Methods). Using the hybrid approach, we
were able to analyse a large Drop-Seq dataset/Mitl14,808 cells ané = 39 clusters10

and our results were again in good agreement with the original authors’ (Supplementary
Results, Methods, Fig. S5, Table S1). The main drawback of the sampling strategy is that
one may fail to identify rare cell-types, and when N>>5,000 there is a substantial risk that
the sampled distribution will differ significantly from the full distribution (Methods). If the

user is trying to identify a rare subpopulation (e.g. cancer stem cells), then methods
specifically designed to identify rare cell-types such as RacelD1 or GiniClust11 may be
more appropriate.

To help the user identify a good choicekpive have implemented a method based on

Random Matrix Theory (RMT)12,13 for determining the number of clusters (Methods).
Overall, we find good agreement between these estinjat@sd the numbers suggested by

the original authors (Fig. 2b). Additionally, in the interactive SC3 session the user can
explore different choices dfin real time, by either assessing the consensus matrix (Fig. 2d),
the silhouette index14 (a measure of how tightly grouped the cells in the clusters are), or the
expression matrix.

To help the user interpret the clustering result SC3 can identify differentially expressed

genes, marker genes, and outlier cells (Fig. S6, Methods, Table S2). Marker genes are
particularly useful since they can be used to uniquely identify a cluster. To illustrate these
features, we analysed the Deng15 dataset tracing embryonic developmental stages. The most
stable result fok = 10 is shown in Fig. 2d, and our clusters largely agree with the known
sampling timepoints. In total, we identified ~3000 marker genes (Table S3), many of which
had been previously reported as specific to the different developmental stages16,17.
Furthermore, the analysis reveals several genes specific to each developmental stage which
had previously not been reported (Table S3). Importantly, when using the reference labels
reported by the authors15, nine cells have high outlier scores (purple cells in Fig. S6c). As it
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turns out, these were prepared using the Smart-Seg2 protocol instead of the Smart-Seq
protocol8,15.

Finally, we investigated the ability of SC3 to identify subclones based on transcriptomes.
Myeloproliferative neoplasms, a group of diseases characterised by the overproduction of
terminally differentiated cells of the myeloid lineage, reflect an early stage of tumorigenesis
where multiple subclones are known to coexist in the same patient18. From exome
sequencing data, we previously identified TET2 and JAK2V61F as the only driver mutations
in a large patient cohort19. Haematopoietic stem cells (HSCs) are thought to be the cell of
origin in myeloproliferative neoplasms. To gain further insight into the transcriptional
landscape of patient derived HSCs, we obtained scRNA-seq data from the two patients
(Figs. S7a-b, S8, Methods, Table S4). For patiedf 2 §1), both the silhouette index of

SC3 and our RMT method suggested that3, provides the best clustering, revealing three
clusters of similar size (Fig. S9). For patient\2=89) SC3 indicated=1 (Fig. S10), in
agreement with the RMT algorithm, suggesting that one single cluster might best reflect the
underlying transcriptional changes.

Since known driver mutations in these patients arerthe2andJAK2V61 7Foci20 we
hypothesized that the different clusters correspond to different combinations of mutations
within different clones. The genotype composition for each HSC clone was determined by
growing individual haematopoietic stem cells into granulocyte/macrophage colonies,
followed by Sanger sequencing of the TET2 and JAK2V617F loci (Fig. S7b-c). In
agreement with the clustering defined by SC3, patiekt3)(was found to harbor three
different subclones: (i) cells with both TET2 and JAK2V617F mutations, (ii) cells with a
TET2 mutation and (iii) wild-type cells (Fig. S7c). Strikingly, the SC3-clusters contain 22%,
29% and 49% of the cells, in excellent agreement with the proportions of each genotype
found in the patient, namely 20%, 30% and 50% (Fig. S7c). Thus, we hypothesize that
cluster 1 corresponds to the double mutant, cluster 2 corresponds to cells with only a TET2
mutation, and cluster 3 corresponds to wild-type cells. The HSC compartment of patient 2
was 100% mutant for TET2 and JAK2V617F (Fig. S7c), which again was consistent with
clustering ofk=1 suggested by SC3 (Fig. S10). We then analysed the pooled cells from
patient 1 and 2. SC3 clustering again suggest8dFigs. 3, S11), in agreement with the

RMT algorithm. Most importantly, all of the putative double mutant cells from patient 1
were grouped with the double mutant cells from patient 2. SC3 reported 33 marker genes for
the putativeTE72mutant and 202 marker genes for the putative double mutant clone (Fig.
3, Table S5). Together with additional evidence (Supplementary Results, Fig. S12), we
conclude that SC3 is able to identify subclones across patients.

SC3 clustering

SC3 takes as input an expression maiftiwhere columns correspond to cells and rows
correspond to genes/transcripts. Each elemeit ebrresponds to the expression of a gene/
transcript in a given cell. By default SC3 does not carry out any form of normalization or
correction for batch effects. SC3 is based on five elementary steps. The parameters in each
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of these steps can be easily adjusted by the user, but are set to sensible default values,
determined via the gold standard datasets (see text).

1 Gene filter— The gene filter removes genes/transcripts that are either expressed
(expression value is more than 2) in less than X% of cells (rare genes/transcripts) or
expressed (expression value is more than 0) in at least (100-X)% of cells (ubiquitous genes/
transcripts). By default X is 6. The motivation for the gene filter is that ubiquitous and rare
genes are most often not informative for the clustering. We also explored all three
parameters defined in the gene filter (expression thresholds of rare and ubiquitous genes/
transcripts and the percentage X) and found that in general the gene filter did not affect the
accuracy of clustering (Fig. S3c). However, the gene filter significantly reduced the
dimensionality of the data, thereby speeding up the method.

For further analysis the filtered expression maltixs log-transformed after adding a
pseudo-count of M’ = log2M + 1).

2 Distance calculations— Distance between the cells, i.e. columngyiinare
calculated using the Euclidean, Pearson and Spearman metrics to construct distance
matrices.

We investigated the impact of dropouts on distance calculations by considering a modified
distance metric that ignores dropouts. This was done by excluding genes that were not
expressed in at least one cell from the distance calculation. We found that this did not
improve the performance (Fig. S3d).

3 Transformations— All distance matrices are then transformed using either principal
component analysis (PCA) or by calculating the eigenvectors of the associated graph
Laplacian [ =1 - D'Y2ADY2 wherel is the identity matrixA is a similarity matrix & =
exp(A’/max(@’))), whereA'’ is a distance matrix) aridl is the degree matrix &, a

diagonal matrix which contains the row-sums\adn the diagonallj = 3j A;). The

columns of the resulting matrices are then sorted in ascending order by their corresponding
eigenvalues.

4 k-means— k-means clustering is performed on the fa'gigenvectors of the

transformed distance matrices (Fig. 1a) by using the default kmeans() R function with the
Hartigan and Wong algorithm21. By default, the maximum number of iterations is sét to 10
and the number of starts is set to 1,000.

5 Consensus clustering— SC3 computes a consensus matrix using the Cluster-based
Similarity Partitioning Algorithm (CSPA)22. For each individual clustering result a binary
similarity matrix is constructed from the corresponding cell labels: if two cells belong to the
same cluster, their similarity is 1, otherwise the similarity is 0 (Fig. 1a). A consensus matrix
is calculated by averaging all similarity matrices of individual clusterings. To reduce
computational time, if the length of tldfange D on Fig. 1a) is more than 15, a random
subset of 15 values selected uniformly from élrange is used.
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The resulting consensus matrix is clustered using hierarchical clustering with complete
agglomeration and the clusters are inferred aktlegel of hierarchy, wherg&is defined by

a user (Fig. 1a). In principle, thkeused for the hierarchical clustering need not be the same
as thek used in step 5. However, for simplicity in SC3 the two parameters are constrained to
have the same value.

Fig. 1d shows how the quality and the stability of clustering improvesaitesensus
clustering

Adjusted Rand Index

If cell-labels are available (e.g. from a published dataset) the Adjusted Rand Index (ARI)23
can be used to calculate similarity between the SC3 clustering and the published clustering.
ARl is defined as follows. Given a setmélements, and two clusterings of these elements

the overlap between the two clusterings can be summarised in a contingency table, where
each entry denotes the number of objects in common between the two clusterings. The ARI

can then be calculated as:
nig o\ a; b; n
= (%)= (5)2(3))(3)
a; b; a; b; n
(5 ) (8- (= 05)= (%)) (3)
wheren; are values from the contingency takdgis the sum of thé” row of the

contingency table; is the sum of thg” column of the contingency table and () denotes a
binomial coefficient.

ARI=

Since the reference labels are known for all published datasets, ARI is used for all
comparisons throughout the paper.

Downsampling of the gold standard datasets

For each genéand each ceji the downsampled expression value was generated by
drawing from a binomial distribution with parametgrs .1 and?= roundi;;).

Additional validation of SC3 pipeline

Additionally, we investigated the impact of dropouts by considering a modified distance
metric that ignores dropouts, but we found that this did not improve the performance (Fig.
S3d, Methods).

Identification of a suitable number of groups i

Matrix Z is obtained fronM’ by subtracting the mean and dividing by the standard
deviation for each column (z-score). Next, the eigenvalu@s=af'*Z are calculated. The
number of clusterj; is determined by the number of eigenvalues that are significantly
different with a p-value <.001 from the Tracy-Widom distribution24,25 with mean
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, 1 1.3
(Vn =1+ V/P)” and standard deviatid V" ~ 1+ VP) - (ﬁJr%) *wherenis the

number of genes/transcripts gnd the number of cells.

Benchmarking

For each dataset we used the expression units provided by the authors (Fig. 1b). The gene
filter was applied to all the datasets. For tSNE+k-means, SNN-Cliq and pcaReduce the same
log-transformation as in SC8( = log2M + 1)) was applied. For SINCERA we used the
original z-score normalisation26 instead of the log-transformation. For tSNE the Rtsne R
package was used with the default parameters. For SEURAT we used the original Seurat R
package (version 1.3): we performed tSNE embedding with the default parameters once
(following the authors’ tutorial atttp://www.satijalab.org/clustertutoriall.hihand then
clustered the data using DBSCAN algorithm multiple times, where we varied the density
parameteiG in the range 18-103 to find a maximal ARI (this ARI is presented in Fig. 2a).
SEURAT was not able to find more than one cluster for the smallest datasets (Biase, Yan,
Goolam, Treutlein and Ting) leading to very small ARI scores. For all methods we supplied
the k used by the original authors.

Cluster stability

We calculated stability of clustering solutions by running each method 100 times and finding
the most frequent solution and the number of timé$ if appeared. The stability measure
shown in Fig. 2b is then calculated/&g100.

Support Vector Machines (SVM)

When using SVM a specific fraction of the cells is selected at random with uniform
probability. Next, a support vector machine27 model with a linear kernel is constructed
based on the obtained clustering. We usedtirefunction of theeZ071R-package with
default parameters. The cluster IDs for the remaining cells are then predicted by the SVM
model.

Identification of rare cell-types

To specifically evaluate the sensitivity of SC3 for identifying rare cell-types, we carried out a
synthetic experiment, whereby cells from one cell-type were removed iteratively from the
Kolodziejczyk and Pollen datasets. For the Pollen dataset, all but 1-7 of the cells in one of
the 11 clusters were removed. The limit of 7 cells corresponds to the size of the smallest
cluster in the original data. Subsequently, SC3 was run ésiht, and we asked whether or

not the cells of the rare cell-type were located in a separate cluster. This was repeated 100
times for each cell-type and Fig. S4d reports the percentage of runs when the rare cells were
found together in a cluster with no other cells. Note that the ARI is a poor indicator of the
ability to identify rare cells since this measure is relatively insensitive to the behavior of a
small fraction of the cells. For the Kolodziejczyk dataset, we used a similar strategy, but we
allowed for 1-101 cells in the rare group. For the Pollen dataset, SC3 can detect clusters
containing ~1% of the cells, whereas for the Kolodziejczyk dataset ~10% of the cells are
required (Fig. S4d). We hypothesize that the ability to identify rare cells reflects the origins

Nat MethodsAuthor manuscript; available in PMC 2017 September 27.
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of the two datasets; the Pollen data is more diverse as it represents 11 different cell lines
while the Kolodziejczyk data comes from one cell-type grown in three different conditions.

For the hybrid SC3 approach with 30% of cells used to train the SVM we were able to
calculate the probability of including the rare cell-types in the training set analytically by
multiplying the data from Fig. S4d by the probability of all rare cells to be included in the
drawn sample (30% of all cells). This probability was calculated using the hypergeometric
distribution R functionphyper(n.rare.cells - 1, n.rare.cells, n.other.cells, 0.3*(n.other.cells +
n.rare.cells), lower.tail=FWheren.rare.cellss the number of rare cells andbther.cellss

the number of other cells in the dataset (Fig. S4e).

Biological insights

SC3 can identify differentially expressed genes as genes that vary between two or more
clusters. Accordingly, marker genes are identified as genes that are highly expressed in only
one of the clusters and are able to distinguish one cluster from all the remaining ones (Fig.
S6a). Cell outliers are identified through the calculation of a score for each cell using the
Minimum Covariance Determinant28. Cells that fit well into their clusters receive an outlier
score of 0, whereas high values indicate that the cell should be considered an outlier.

Identification of differential expression—  Differential expression is calculated using

the non-parametric Kruskal-Wallis test, an extension of the Mann-Whitney test for the
scenario when there are more than two groups. The Kruskal-Wallis test has the advantage of
being non-parametric, but as a consequence, it is not well suited for situations where many
genes have the same expression value. A signifizgalue indicates that gene expression in
at least one cluster stochastically dominates one other cluster. SC3 provides a list of all
differentially expressed genes wjthvalues<0.01, corrected for multiple testing (using the
default “holm” method of p.adjust() R function) and plots gene expression profiles of the 50
most significant differentially expressed genes. Note that the calculation of differential
expression after clustering can introduce a bias in the distributjowaities, and thus we
advise to use thgvalues for ranking the genes only.

Identification of marker genes— For each gene a binary classifier is constructed based
on the mean cluster expression values. The area under the receiver operating characteristic
(ROC) curve is used to quantify the accuracy of the predictigpv@iue is assigned to each
gene by using the Wilcoxon signed rank test comparing gene ranks in the cluster with the
highest mean expression with all othepvélues are adjusted by using the default “holm”
method of p.adjust() R function). The genes with the area under the ROC curve (AUROC)
>0.85 and with thervalue<0.01 are defined as marker genes. The AUROC threshold
corresponds to the 99% quantile of the AUROC distributions obtained from 100 random
permutations of cluster labels for all datasets (Table S2 and Fig. S6b). SC3 provides a
visualization of the gene expression profiles for the top 10 marker genes of each obtained
cluster.

Cell outlier detection— Ouitlier cells are detected by first taking an expression matrix of
each individual cluster (all cells with the same labels) and reducing its dimensionality using
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the robust method for PCA (ROBPCA)29. This method outputs a matrixVWibkvs

(number of cells in the cluster) akttolumns (retained number of principal components

after running ROBPCA). SC3 then ugssnin(£, 3) first principal components for further
analysis. If ROBPCA fails to perform =0, SC3 shows a warning message. We found
(results not shown) that this usually happens when the distribution of gene expression in
cells is too skewed towards 0. Second, robust distances (Mahalanobis) between the cells in
each cluster are calculated from the reduced expression matrix using the minimum
covariance determinant (MCD)28. We then used a threshold based @ibtheantile of the
chi-squared distribution (witppdegrees of freedom) to define outliers. By defge99.99,

but it can be manually adjusted by a user. Finally, we define an outlier score as the difference
between the square root of the robust distance and the square roofQ¥f thentile of the
chi-squared distribution (witpp degrees of freedom). The outlier score is plotted as a barplot
(Fig. S6c).

Gene and Pathway enrichment analysis

We utilized g:Profiler web tool30 to perform gene and pathway enrichment analysis in all
obtained sets of genes.

Analysis of the Macosko dataset

Patients

To analyze the Drop-Seq dataset we followed the procedure used by Macosko et al and
selected the 11,040 cells where more than 900 genes were expressed. Moreover, due to the
low read depth, the gene filter was removed. We then sampled 5,000 cells and clustered
using SC3, including the SVM step, 100 times. All 100 solutions were consistent between
each other resulting in an average ARI of 0.58 and they were sufficiently accurate compared
to the reference authors’ clustering yielding an average ARI of 0.54 (Fig. S5a). Since each of
the 100 solutions were different, we added an additional consensus clustering step using the
“best of k” consensus algorithm31. This approach provided a single solution based on the
100 different solutions and it was as accurate as the individual solutions with an ARI of 0.52
(the actual labels are presented in Table S1). The SC3 consensus solution splits the large
original cluster (cluster 24 with 29,400 cells) hierarchically into 2 clusters of smaller sizes
(18105 + 10558 = 28663 cells, clusters 4 and 8 in Fig. S5b). Additional gene and pathway
enrichment analysis for the differentially expressed genes between the two clusters is
presented in Table S1. If more than 75% of the cells from the reference cluster are shared
with the SC3 cluster we defined these two clusters as matched. In total 31 reference clusters
were matched to the SC3 clusters.

Both patients provided written informed consent. Diagnoses were made in accordance with
the guidelines of the British Committee for Standards in Haematology.

Isolation of haematopoietic stem and progenitor cells— Cell populations were

derived from peripheral blood enriched for haematopoietic stem and progenitor cells
(CD34+, CD38-, CD45RA-, CD90+), hereafter referred to as HSCs. For single cell cultures,
individual HSCs were sorted into 96-well plates (Fig. S7a-b) and grown in a cytokine
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cocktail designed to promote progenitor expansion as previously described32. For scRNA-
seq studies, single HSCs were directly sorted into lysis buffer as described in Picelli et al33.

Determination of mutation load— Colonies of granulocyte/macrophage composition
were picked and DNA isolated for Sanger sequencing for JAK2V617F and TET2 mutations
as previously described by OrtmaanaB4.

Single cell RNA-Sequencing— Single HSCs were sorted into 96-well plates and cDNA
generated as described previously33. The Nextera XT library making kit was used for
library generation as described by PicelliaB3.

Processing of scRNA-seq data from HSCs— 96 single cell samples per patient with 2
sequencing lanes per sample were sequenced yielding a variable number ahezams (
2,180,357 std dev= 1,342,541). FastQC35 was used to assess the sequence quality. Foreign
sequences from the Nextera Transposase agent were discovered and subsequently removed
with Trimmomatic36 using the parameters HEADCROP:19 ILLUMINACLIP:NexteraPE-
PE.fa:2:30:10 TRAILING:28 CROP:90 MINLEN:60 to trim the reads to 90 bases before

being mapped with TopHat37 to the Ensembl reference genome version GRCh38.77
augmented with the spike-in controls downloaded from the ERCC consortium. Counts of
uniquely mapped reads in each protein coding gene and each ERCC spike-in were calculated
using SegMonkfttp://www.bioinformatics.bbsrc.ac.uk/projects/segmcenkd were used

for further downstream analysis. Quality control of the cells contained two steps: 1. filtering

of cells based on the number of expressed genes; 2. filtering of cells based on the ratio of the
total number of ERCC spike-in reads to the total number of reads in protein coding genes.
Filtering threshold were manually chosen by visual exploration of the quality control

features (Fig. S8). After filtering, 51 and 89 cells were retained from patient 1 and patient 2,
correspondingly. The expression values in each dataset were then normalised by first using a
size-factor normalisation (from DESeq2 package38) to account for sequencing depth
variability. Secondly, to account for technical variability, a normalisation based on ERCC
spike-ins was performed using the RUVSeq package39 (RUVg() function with parameter
k=1). For combined patient data, normalisation steps were performed after pooling the cells.
The resulting filtered and normalised datasets were clustered by SC3. Potential biases of cell
filtering on the proportions of cells in the clusters of patient 1 are considered in the
Supplementary Data 1. It shows that the cluster of lower cell quality is separated from the
other biologically meaningful clusters of patient 1 and it does not change the total proportion
of the biologically meaningful clusters. Supplementary Data 2 shows that SC3 results of
clustering of patient 1 do not depend on the normalization procedure.

Clustering of patient scRNA-seq data by SC3—  We clustered scRNA-seq data from
patient 1 and patient 2 separately as well as a combined dataset containing data from patient
1 + patient 2. For patient 1, in agreement with the RMT algorithm, the best clustering was
achieved fork=3 (Fig. S9). Data from patient 2 was homogeneous and SC3 was unable to
identify more than one meaningful cluster (Fig. S10), again in agreement with the RMT
algorithm. For the combined dataset for patient 1 + patient 2 the best values of the silhouette
index were obtained whehwas 2 or 3 (Fig. S11). In both cases all of the cells from cluster
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1in patient 1 were grouped with the cells from patient 2 4E8rclusters 1 and 3 of patient
1 were also resolved. The RMT algorithm also provikte8l for the merged patient 1 +
patient 2 dataset.

Comparison of clustering of patient 1 scRNA-seq data— Results of the clustering
of the patient 1 data by other methods and their comparison to SC3 is presented in the
Supplementary Data 3 and 4.

Identification of differentially expressed genes from microarray data— The

microarray data of patient 1 was obtained from Array Express accession number E-
MTAB-308634. One replicate (2B) was identified as an outlier and removed. The limma R
package40 was used to identify 932 differentially expressed genes between WT and TET2/
JAK2V617F double mutant using an adjusted (by false discovery rate) p-value threshold of
0.1.

Marker genes analysis for patients— For both patients, to increase the number of
marker genes, the AUROC threshold was set to 0.7 instead of the default value of 0.85 and
the 0.1pvalue threshold was chosen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The SC3 framework for consensus clustering.

(a) Overview of clustering with SC3 framework (see Methods). The consensus step is
exemplified using the Treutlein datd) Published datasets used to set SC3 paramaféss.

the number of cells in a datasktis the number of clusters originally identified by the

authors; Units: RPKM is Reads Per Kilobase of transcript per Million mapped reads, RPM is
Reads Per Million mapped reads, FPKM is Fragments Per Kilobase of transcript per Million

mapped reads, TPM is Transcripts Per Million mapped regddigtogram of thedvalues

where ARI>.95 is achieved for the gold standard datasets. The black vertical lines indicate

the intervald= 4-7% of the total number of cellg showing high accuracy in the
classification. d) 100 realizations of the SC3 clustering of the datasets showh iDdts

represent individual clustering runs. Bars correspond to the median of the dots. Red and grey

colours correspond to clustering with and without consensus step. The black line

corresponds to ARI=0.8. The dashed black line separates gold and silver standard datasets.
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Figure 2. Benchmarking of SC3 against existing methods.
(a) SC3, tSNE+kmeans and pcaReduce were applied 100 times to each dataset. SNN-Cliq

and SINCERA are deterministic and were run only once. SEURAT was also run once,
however was optimised over different values of the density para@ékdethods). Each

panel shows the ARI (black dots, Methods) between the inferred clusterings and the
reference labels. Bars correspond to the median of the dots. For the Pollen and Usoskin
datasets all different hierarchies were considered (Data Avaialbility). The black line
indicates ARI = 0.8. The dashed black line separates gold and silver standard dbjasets. (
Number of clusterj. predicted by SC3, SINCERA and SNN-Cliq for all datasets. Ref is the
reference clustering reported by the auth@ysThe performance of the hybrid SC3

(Methods). Dots represent outliers higher (lower) than the highest (lowest) value within 1.5
x IQR, where IQR is the interquartile range. The black line indicates ARI = 0.8. The dashed
black line in the legend separates gold and silver standard datds&tse consensus matrix

as generated by SC3 for the Deng dataset (Methods). The matrix indicates how often each
pair of cells was assigned to the same cluster by the different parameter combinations as

Data Availability

All datasets (in Fig. 1b and Macosko dataset) were acquired from the accessions provided in the original publications. According to

the authors, the Pollen dataset contains two distinct hierarchies and the cells can be grouped either into 4 or 11 clusters, and the
Usoskin dataset contains three hierarchies and the cells can be grouped either into 4, 8 or 11 clusters. sScRNA-seq data for patient 1 and
2 is available from GEO accessi@GisE79102
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indicated by the colorbar (1 - always, O - never). SC3 finds a clustering wiftd clusters,
separated by the white lines as visual guides. The colors at the top represent the reference
labels, corresponding to different stages of development (see colour guide).
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Figure 3. Using SC3 to define subclones from two patients with myeloproliferative neoplasm.
Marker gene expression matrix (after Gene Filter and Log-transformation, Methods) of the

combined dataset (patient 1 + patient 2). Clusters (separated by white vertical lines)
correspond t& = 3 (Methods). Only the top 10 marker genes are shown for each cluster.
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