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Abstract

Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global 

transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool 

for unsupervised clustering which achieves high accuracy and robustness by combining multiple 

clustering solutions through a consensus approach. We demonstrate that SC3 is capable of 

identifying subclones based on the transcriptomes from neoplastic cells collected from patients.

One of the key applications of scRNA-seq is determining cell types based on transcriptome 

profiles alone through unsupervised clustering1–3. A full characterisation of the 

transcriptional landscape of individual cells holds an enormous potential, both for basic 

biology and clinical applications. SC3 is an interactive and user-friendly R-package for 

clustering and its integration with Bioconductor4 and scater5 makes it easy to incorporate 

into existing bioinformatic workflows.

The SC3 pipeline is presented in Fig. 1a, Methods. Each of the steps requires the 

specification of a number of parameters. Choosing optimal parameter values is difficult and 

time-consuming. To avoid this problem, SC3 utilizes a parallelisation approach, whereby a 

significant subset of the parameter space is evaluated simultaneously to obtain a set of 

clusterings. SC3 then combines all the different clustering outcomes into a consensus matrix 

that summarises how often each pair of cells is located in the same cluster. The final result 

provided by SC3 is determined by complete-linkage hierarchical clustering of the consensus 

matrix into k groups.

To constrain the parameter values of the SC3 pipeline, we first considered six publicly 

available scRNA-Seq datasets*  (Fig. 1b). The datasets were selected on the basis that one 

can be highly confident in the cell-labels as they represent cells from different stages, 

conditions or lines, and thus we consider them as ‘gold standard’. To quantify the similarity 

between the reference labels and the clusters obtained by SC3, we used the Adjusted Rand 

Index (ARI, see Methods) which ranges from 1, when the clusterings are identical, to 0 

when the similarity is what one would expect by chance. For the gold standard datasets, we 

found that the quality of the outcome as measured by the ARI was sensitive to the number of 

eigenvectors, d, retained after the spectral transformation (Fig. S1, S2). For all six datasets 

we find that the best clusterings were achieved when d is between 4-7% of the number of 

cells, N (Fig. 1c, S3a, Methods). The robustness of the 4-7% region was supported by a 

simulation experiment where the reads from the six gold standard datasets were 

downsampled by a factor of ten (Methods and Fig. S3a). We further tested the SC3 pipeline 

on six other published datasets, where the cell labels can only be considered ‘silver standard’ 

since they were assigned using computational methods and the authors’ knowledge of the 

underlying biology. Again, we find that SC3 performs well when using d in the 4-7% of N 
interval (Fig. S3b). The final step, consensus clustering, improves both the accuracy and the 

stability of the solution. k-means based methods will typically provide different outcomes 

depending on the initial conditions. We find that this variability is significantly reduced with 

the consensus approach (Fig. 1d).

*Full references to the datasets can be found in the Supplementary Results
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To benchmark SC3, we considered five other methods: tSNE6 followed by k-means 

clustering (a method similar to the one used by Grün et al1), pcaReduce7, SNN-Cliq8, 

SINCERA9 and SEURAT10. As Fig. 2a shows, SC3 performs better than the five tested 

methods across all datasets (Wilcoxon signed-rank test p-value < 0.01), with only a few 

exceptions. In addition to considering accuracy, we also compared the stability of SC3 with 

other stochastic methods (pcaReduce and tSNE+kmeans, but not SEURAT) by running them 

100 times (Fig. 2b, Methods, black dots in Fig. 2a). In contrast to the other methods that rely 

on different initializations, SC3 is highly stable.

Although SC3’s consensus strategy provides a high accuracy, it comes at a moderate 

computational cost: the run time for N = 2,000 is ~20 mins (Fig. S4a). The main bottleneck 

is the k-means clustering and by reducing how many different runs are considered it is 

possible to cluster 5,000 cells in ~20 mins with only a slight reduction in accuracy (Fig. 

S4b). To apply SC3 to even larger datasets, we have implemented a hybrid approach that 

combines unsupervised and supervised methodologies. SC3 selects a subset of 5,000 cells 

uniformly at random, and obtains clusters from this subset as described above. Subsequently, 

the inferred labels are used to train a support vector machine (SVM, Methods), which is 

employed to assign labels to the remaining cells. Our result shows that the use of an SVM to 

predict cell labels works well (Fig. 2c, S4c and Methods). Using the hybrid approach, we 

were able to analyse a large Drop-Seq dataset with N = 44,808 cells and k = 39 clusters10 

and our results were again in good agreement with the original authors’ (Supplementary 

Results, Methods, Fig. S5, Table S1). The main drawback of the sampling strategy is that 

one may fail to identify rare cell-types, and when N>>5,000 there is a substantial risk that 

the sampled distribution will differ significantly from the full distribution (Methods). If the 

user is trying to identify a rare subpopulation (e.g. cancer stem cells), then methods 

specifically designed to identify rare cell-types such as RaceID1 or GiniClust11 may be 

more appropriate.

To help the user identify a good choice of k, we have implemented a method based on 

Random Matrix Theory (RMT)12,13 for determining the number of clusters (Methods). 

Overall, we find good agreement between these estimates, , and the numbers suggested by 

the original authors (Fig. 2b). Additionally, in the interactive SC3 session the user can 

explore different choices of k in real time, by either assessing the consensus matrix (Fig. 2d), 

the silhouette index14 (a measure of how tightly grouped the cells in the clusters are), or the 

expression matrix.

To help the user interpret the clustering result SC3 can identify differentially expressed 

genes, marker genes, and outlier cells (Fig. S6, Methods, Table S2). Marker genes are 

particularly useful since they can be used to uniquely identify a cluster. To illustrate these 

features, we analysed the Deng15 dataset tracing embryonic developmental stages. The most 

stable result for k = 10 is shown in Fig. 2d, and our clusters largely agree with the known 

sampling timepoints. In total, we identified ~3000 marker genes (Table S3), many of which 

had been previously reported as specific to the different developmental stages16,17. 

Furthermore, the analysis reveals several genes specific to each developmental stage which 

had previously not been reported (Table S3). Importantly, when using the reference labels 

reported by the authors15, nine cells have high outlier scores (purple cells in Fig. S6c). As it 
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turns out, these were prepared using the Smart-Seq2 protocol instead of the Smart-Seq 

protocol8,15.

Finally, we investigated the ability of SC3 to identify subclones based on transcriptomes. 

Myeloproliferative neoplasms, a group of diseases characterised by the overproduction of 

terminally differentiated cells of the myeloid lineage, reflect an early stage of tumorigenesis 

where multiple subclones are known to coexist in the same patient18. From exome 

sequencing data, we previously identified TET2 and JAK2V61F as the only driver mutations 

in a large patient cohort19. Haematopoietic stem cells (HSCs) are thought to be the cell of 

origin in myeloproliferative neoplasms. To gain further insight into the transcriptional 

landscape of patient derived HSCs, we obtained scRNA-seq data from the two patients 

(Figs. S7a-b, S8, Methods, Table S4). For patient 1 (N = 51), both the silhouette index of 

SC3 and our RMT method suggested that k = 3, provides the best clustering, revealing three 

clusters of similar size (Fig. S9). For patient 2 (N = 89) SC3 indicated k=1 (Fig. S10), in 

agreement with the RMT algorithm, suggesting that one single cluster might best reflect the 

underlying transcriptional changes.

Since known driver mutations in these patients are the TET2 and JAK2V617F loci20 we 

hypothesized that the different clusters correspond to different combinations of mutations 

within different clones. The genotype composition for each HSC clone was determined by 

growing individual haematopoietic stem cells into granulocyte/macrophage colonies, 

followed by Sanger sequencing of the TET2 and JAK2V617F loci (Fig. S7b-c). In 

agreement with the clustering defined by SC3, patient 1 (k=3) was found to harbor three 

different subclones: (i) cells with both TET2 and JAK2V617F mutations, (ii) cells with a 

TET2 mutation and (iii) wild-type cells (Fig. S7c). Strikingly, the SC3-clusters contain 22%, 

29% and 49% of the cells, in excellent agreement with the proportions of each genotype 

found in the patient, namely 20%, 30% and 50% (Fig. S7c). Thus, we hypothesize that 

cluster 1 corresponds to the double mutant, cluster 2 corresponds to cells with only a TET2 

mutation, and cluster 3 corresponds to wild-type cells. The HSC compartment of patient 2 

was 100% mutant for TET2 and JAK2V617F (Fig. S7c), which again was consistent with 

clustering of k=1 suggested by SC3 (Fig. S10). We then analysed the pooled cells from 

patient 1 and 2. SC3 clustering again suggested k=3 (Figs. 3, S11), in agreement with the 

RMT algorithm. Most importantly, all of the putative double mutant cells from patient 1 

were grouped with the double mutant cells from patient 2. SC3 reported 33 marker genes for 

the putative TET2 mutant and 202 marker genes for the putative double mutant clone (Fig. 

3, Table S5). Together with additional evidence (Supplementary Results, Fig. S12), we 

conclude that SC3 is able to identify subclones across patients.

Methods

SC3 clustering

SC3 takes as input an expression matrix M where columns correspond to cells and rows 

correspond to genes/transcripts. Each element of M corresponds to the expression of a gene/

transcript in a given cell. By default SC3 does not carry out any form of normalization or 

correction for batch effects. SC3 is based on five elementary steps. The parameters in each 
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of these steps can be easily adjusted by the user, but are set to sensible default values, 

determined via the gold standard datasets (see text).

1 Gene filter— The gene filter removes genes/transcripts that are either expressed 

(expression value is more than 2) in less than X% of cells (rare genes/transcripts) or 

expressed (expression value is more than 0) in at least (100-X)% of cells (ubiquitous genes/

transcripts). By default X is 6. The motivation for the gene filter is that ubiquitous and rare 

genes are most often not informative for the clustering. We also explored all three 

parameters defined in the gene filter (expression thresholds of rare and ubiquitous genes/

transcripts and the percentage X) and found that in general the gene filter did not affect the 

accuracy of clustering (Fig. S3c). However, the gene filter significantly reduced the 

dimensionality of the data, thereby speeding up the method.

For further analysis the filtered expression matrix M is log-transformed after adding a 

pseudo-count of 1: M’  = log2(M + 1).

2 Distance calculations— Distance between the cells, i.e. columns, in M’  are 

calculated using the Euclidean, Pearson and Spearman metrics to construct distance 

matrices.

We investigated the impact of dropouts on distance calculations by considering a modified 

distance metric that ignores dropouts. This was done by excluding genes that were not 

expressed in at least one cell from the distance calculation. We found that this did not 

improve the performance (Fig. S3d).

3 Transformations— All distance matrices are then transformed using either principal 

component analysis (PCA) or by calculating the eigenvectors of the associated graph 

Laplacian (L = I  - D-1/2AD-1/2, where I  is the identity matrix, A is a similarity matrix (A = 

exp(-A’ /max(A’ ))), where A’  is a distance matrix) and D is the degree matrix of A, a 

diagonal matrix which contains the row-sums of A on the diagonal (Dii  = ∑j Aij). The 

columns of the resulting matrices are then sorted in ascending order by their corresponding 

eigenvalues.

4 k-means— k-means clustering is performed on the first d eigenvectors of the 

transformed distance matrices (Fig. 1a) by using the default kmeans() R function with the 

Hartigan and Wong algorithm21. By default, the maximum number of iterations is set to 109 

and the number of starts is set to 1,000.

5 Consensus clustering— SC3 computes a consensus matrix using the Cluster-based 

Similarity Partitioning Algorithm (CSPA)22. For each individual clustering result a binary 

similarity matrix is constructed from the corresponding cell labels: if two cells belong to the 

same cluster, their similarity is 1, otherwise the similarity is 0 (Fig. 1a). A consensus matrix 

is calculated by averaging all similarity matrices of individual clusterings. To reduce 

computational time, if the length of the d range (D on Fig. 1a) is more than 15, a random 

subset of 15 values selected uniformly from the d range is used.
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The resulting consensus matrix is clustered using hierarchical clustering with complete 

agglomeration and the clusters are inferred at the k level of hierarchy, where k is defined by 

a user (Fig. 1a). In principle, the k used for the hierarchical clustering need not be the same 

as the k used in step 5. However, for simplicity in SC3 the two parameters are constrained to 

have the same value.

Fig. 1d shows how the quality and the stability of clustering improves after consensus 
clustering.

Adjusted Rand Index

If cell-labels are available (e.g. from a published dataset) the Adjusted Rand Index (ARI)23 

can be used to calculate similarity between the SC3 clustering and the published clustering. 

ARI is defined as follows. Given a set of n elements, and two clusterings of these elements 

the overlap between the two clusterings can be summarised in a contingency table, where 

each entry denotes the number of objects in common between the two clusterings. The ARI 

can then be calculated as:

where nij  are values from the contingency table, ai is the sum of the ith row of the 

contingency table, bj is the sum of the jth column of the contingency table and ( ) denotes a 

binomial coefficient.

Since the reference labels are known for all published datasets, ARI is used for all 

comparisons throughout the paper.

Downsampling of the gold standard datasets

For each gene i and each cell j, the downsampled expression value was generated by 

drawing from a binomial distribution with parameters p = .1 and n = round(M ij).

Additional validation of SC3 pipeline

Additionally, we investigated the impact of dropouts by considering a modified distance 

metric that ignores dropouts, but we found that this did not improve the performance (Fig. 

S3d, Methods).

Identification of a suitable number of groups 

Matrix Z is obtained from M’  by subtracting the mean and dividing by the standard 

deviation for each column (z-score). Next, the eigenvalues of X =ZT*Z are calculated. The 

number of clusters  is determined by the number of eigenvalues that are significantly 

different with a p-value <.001 from the Tracy-Widom distribution24,25 with mean 
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 and standard deviation  where n is the 

number of genes/transcripts and p is the number of cells.

Benchmarking

For each dataset we used the expression units provided by the authors (Fig. 1b). The gene 

filter was applied to all the datasets. For tSNE+k-means, SNN-Cliq and pcaReduce the same 

log-transformation as in SC3 (M’  = log2(M + 1)) was applied. For SINCERA we used the 

original z-score normalisation26 instead of the log-transformation. For tSNE the Rtsne R 

package was used with the default parameters. For SEURAT we used the original Seurat R 

package (version 1.3): we performed tSNE embedding with the default parameters once 

(following the authors’ tutorial at http://www.satijalab.org/clustertutorial1.html) and then 

clustered the data using DBSCAN algorithm multiple times, where we varied the density 

parameter G in the range 10-3-103 to find a maximal ARI (this ARI is presented in Fig. 2a). 

SEURAT was not able to find more than one cluster for the smallest datasets (Biase, Yan, 

Goolam, Treutlein and Ting) leading to very small ARI scores. For all methods we supplied 

the k used by the original authors.

Cluster stability

We calculated stability of clustering solutions by running each method 100 times and finding 

the most frequent solution and the number of times (Nc) it appeared. The stability measure 

shown in Fig. 2b is then calculated as Nc/100.

Support Vector Machines (SVM)

When using SVM a specific fraction of the cells is selected at random with uniform 

probability. Next, a support vector machine27 model with a linear kernel is constructed 

based on the obtained clustering. We used the svm function of the e1071 R-package with 

default parameters. The cluster IDs for the remaining cells are then predicted by the SVM 

model.

Identification of rare cell-types

To specifically evaluate the sensitivity of SC3 for identifying rare cell-types, we carried out a 

synthetic experiment, whereby cells from one cell-type were removed iteratively from the 

Kolodziejczyk and Pollen datasets. For the Pollen dataset, all but 1-7 of the cells in one of 

the 11 clusters were removed. The limit of 7 cells corresponds to the size of the smallest 

cluster in the original data. Subsequently, SC3 was run using k=11, and we asked whether or 

not the cells of the rare cell-type were located in a separate cluster. This was repeated 100 

times for each cell-type and Fig. S4d reports the percentage of runs when the rare cells were 

found together in a cluster with no other cells. Note that the ARI is a poor indicator of the 

ability to identify rare cells since this measure is relatively insensitive to the behavior of a 

small fraction of the cells. For the Kolodziejczyk dataset, we used a similar strategy, but we 

allowed for 1-101 cells in the rare group. For the Pollen dataset, SC3 can detect clusters 

containing ~1% of the cells, whereas for the Kolodziejczyk dataset ~10% of the cells are 

required (Fig. S4d). We hypothesize that the ability to identify rare cells reflects the origins 
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of the two datasets; the Pollen data is more diverse as it represents 11 different cell lines 

while the Kolodziejczyk data comes from one cell-type grown in three different conditions.

For the hybrid SC3 approach with 30% of cells used to train the SVM we were able to 

calculate the probability of including the rare cell-types in the training set analytically by 

multiplying the data from Fig. S4d by the probability of all rare cells to be included in the 

drawn sample (30% of all cells). This probability was calculated using the hypergeometric 

distribution R function: phyper(n.rare.cells - 1, n.rare.cells, n.other.cells, 0.3*(n.other.cells + 
n.rare.cells), lower.tail=F), where n.rare.cells is the number of rare cells and n.other.cells is 

the number of other cells in the dataset (Fig. S4e).

Biological insights

SC3 can identify differentially expressed genes as genes that vary between two or more 

clusters. Accordingly, marker genes are identified as genes that are highly expressed in only 

one of the clusters and are able to distinguish one cluster from all the remaining ones (Fig. 

S6a). Cell outliers are identified through the calculation of a score for each cell using the 

Minimum Covariance Determinant28. Cells that fit well into their clusters receive an outlier 

score of 0, whereas high values indicate that the cell should be considered an outlier.

Identification of differential expression— Differential expression is calculated using 

the non-parametric Kruskal-Wallis test, an extension of the Mann-Whitney test for the 

scenario when there are more than two groups. The Kruskal-Wallis test has the advantage of 

being non-parametric, but as a consequence, it is not well suited for situations where many 

genes have the same expression value. A significant p-value indicates that gene expression in 

at least one cluster stochastically dominates one other cluster. SC3 provides a list of all 

differentially expressed genes with p-values<0.01, corrected for multiple testing (using the 

default “holm” method of p.adjust() R function) and plots gene expression profiles of the 50 

most significant differentially expressed genes. Note that the calculation of differential 

expression after clustering can introduce a bias in the distribution of p-values, and thus we 

advise to use the p-values for ranking the genes only.

Identification of marker genes— For each gene a binary classifier is constructed based 

on the mean cluster expression values. The area under the receiver operating characteristic 

(ROC) curve is used to quantify the accuracy of the prediction. A p-value is assigned to each 

gene by using the Wilcoxon signed rank test comparing gene ranks in the cluster with the 

highest mean expression with all others (p-values are adjusted by using the default “holm” 

method of p.adjust() R function). The genes with the area under the ROC curve (AUROC) 

>0.85 and with the p-value<0.01 are defined as marker genes. The AUROC threshold 

corresponds to the 99% quantile of the AUROC distributions obtained from 100 random 

permutations of cluster labels for all datasets (Table S2 and Fig. S6b). SC3 provides a 

visualization of the gene expression profiles for the top 10 marker genes of each obtained 

cluster.

Cell outlier detection— Outlier cells are detected by first taking an expression matrix of 

each individual cluster (all cells with the same labels) and reducing its dimensionality using 
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the robust method for PCA (ROBPCA)29. This method outputs a matrix with N rows 

(number of cells in the cluster) and P columns (retained number of principal components 

after running ROBPCA). SC3 then uses p=min(P, 3) first principal components for further 

analysis. If ROBPCA fails to perform or P=0, SC3 shows a warning message. We found 

(results not shown) that this usually happens when the distribution of gene expression in 

cells is too skewed towards 0. Second, robust distances (Mahalanobis) between the cells in 

each cluster are calculated from the reduced expression matrix using the minimum 

covariance determinant (MCD)28. We then used a threshold based on the Q% quantile of the 

chi-squared distribution (with p degrees of freedom) to define outliers. By default Q=99.99, 

but it can be manually adjusted by a user. Finally, we define an outlier score as the difference 

between the square root of the robust distance and the square root of the Q% quantile of the 

chi-squared distribution (with p degrees of freedom). The outlier score is plotted as a barplot 

(Fig. S6c).

Gene and Pathway enrichment analysis

We utilized g:Profiler web tool30 to perform gene and pathway enrichment analysis in all 

obtained sets of genes.

Analysis of the Macosko dataset

To analyze the Drop-Seq dataset we followed the procedure used by Macosko et al and 

selected the 11,040 cells where more than 900 genes were expressed. Moreover, due to the 

low read depth, the gene filter was removed. We then sampled 5,000 cells and clustered 

using SC3, including the SVM step, 100 times. All 100 solutions were consistent between 

each other resulting in an average ARI of 0.58 and they were sufficiently accurate compared 

to the reference authors’ clustering yielding an average ARI of 0.54 (Fig. S5a). Since each of 

the 100 solutions were different, we added an additional consensus clustering step using the 

“best of k” consensus algorithm31. This approach provided a single solution based on the 

100 different solutions and it was as accurate as the individual solutions with an ARI of 0.52 

(the actual labels are presented in Table S1). The SC3 consensus solution splits the large 

original cluster (cluster 24 with 29,400 cells) hierarchically into 2 clusters of smaller sizes 

(18105 + 10558 = 28663 cells, clusters 4 and 8 in Fig. S5b). Additional gene and pathway 

enrichment analysis for the differentially expressed genes between the two clusters is 

presented in Table S1. If more than 75% of the cells from the reference cluster are shared 

with the SC3 cluster we defined these two clusters as matched. In total 31 reference clusters 

were matched to the SC3 clusters.

Patients

Both patients provided written informed consent. Diagnoses were made in accordance with 

the guidelines of the British Committee for Standards in Haematology.

Isolation of haematopoietic stem and progenitor cells— Cell populations were 

derived from peripheral blood enriched for haematopoietic stem and progenitor cells 

(CD34+, CD38-, CD45RA-, CD90+), hereafter referred to as HSCs. For single cell cultures, 

individual HSCs were sorted into 96-well plates (Fig. S7a-b) and grown in a cytokine 
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cocktail designed to promote progenitor expansion as previously described32. For scRNA-

seq studies, single HSCs were directly sorted into lysis buffer as described in Picelli et al33.

Determination of mutation load— Colonies of granulocyte/macrophage composition 

were picked and DNA isolated for Sanger sequencing for JAK2V617F and TET2 mutations 

as previously described by Ortmann et al34.

Single cell RNA-Sequencing— Single HSCs were sorted into 96-well plates and cDNA 

generated as described previously33. The Nextera XT library making kit was used for 

library generation as described by Picelli et al33.

Processing of scRNA-seq data from HSCs— 96 single cell samples per patient with 2 

sequencing lanes per sample were sequenced yielding a variable number of reads (mean = 

2,180,357, std dev = 1,342,541). FastQC35 was used to assess the sequence quality. Foreign 

sequences from the Nextera Transposase agent were discovered and subsequently removed 

with Trimmomatic36 using the parameters HEADCROP:19 ILLUMINACLIP:NexteraPE-

PE.fa:2:30:10 TRAILING:28 CROP:90 MINLEN:60 to trim the reads to 90 bases before 

being mapped with TopHat37 to the Ensembl reference genome version GRCh38.77 

augmented with the spike-in controls downloaded from the ERCC consortium. Counts of 

uniquely mapped reads in each protein coding gene and each ERCC spike-in were calculated 

using SeqMonk (http://www.bioinformatics.bbsrc.ac.uk/projects/seqmonk) and were used 

for further downstream analysis. Quality control of the cells contained two steps: 1. filtering 

of cells based on the number of expressed genes; 2. filtering of cells based on the ratio of the 

total number of ERCC spike-in reads to the total number of reads in protein coding genes. 

Filtering threshold were manually chosen by visual exploration of the quality control 

features (Fig. S8). After filtering, 51 and 89 cells were retained from patient 1 and patient 2, 

correspondingly. The expression values in each dataset were then normalised by first using a 

size-factor normalisation (from DESeq2 package38) to account for sequencing depth 

variability. Secondly, to account for technical variability, a normalisation based on ERCC 

spike-ins was performed using the RUVSeq package39 (RUVg() function with parameter 

k=1). For combined patient data, normalisation steps were performed after pooling the cells. 

The resulting filtered and normalised datasets were clustered by SC3. Potential biases of cell 

filtering on the proportions of cells in the clusters of patient 1 are considered in the 

Supplementary Data 1. It shows that the cluster of lower cell quality is separated from the 

other biologically meaningful clusters of patient 1 and it does not change the total proportion 

of the biologically meaningful clusters. Supplementary Data 2 shows that SC3 results of 

clustering of patient 1 do not depend on the normalization procedure.

Clustering of patient scRNA-seq data by SC3— We clustered scRNA-seq data from 

patient 1 and patient 2 separately as well as a combined dataset containing data from patient 

1 + patient 2. For patient 1, in agreement with the RMT algorithm, the best clustering was 

achieved for k=3 (Fig. S9). Data from patient 2 was homogeneous and SC3 was unable to 

identify more than one meaningful cluster (Fig. S10), again in agreement with the RMT 

algorithm. For the combined dataset for patient 1 + patient 2 the best values of the silhouette 

index were obtained when k was 2 or 3 (Fig. S11). In both cases all of the cells from cluster 
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1 in patient 1 were grouped with the cells from patient 2. For k=3 clusters 1 and 3 of patient 

1 were also resolved. The RMT algorithm also provided k=3 for the merged patient 1 + 

patient 2 dataset.

Comparison of clustering of patient 1 scRNA-seq data— Results of the clustering 

of the patient 1 data by other methods and their comparison to SC3 is presented in the 

Supplementary Data 3 and 4.

Identification of differentially expressed genes from microarray data— The 

microarray data of patient 1 was obtained from Array Express accession number E-

MTAB-308634. One replicate (2B) was identified as an outlier and removed. The limma R 

package40 was used to identify 932 differentially expressed genes between WT and TET2/

JAK2V617F double mutant using an adjusted (by false discovery rate) p-value threshold of 

0.1.

Marker genes analysis for patients— For both patients, to increase the number of 

marker genes, the AUROC threshold was set to 0.7 instead of the default value of 0.85 and 

the 0.1 p-value threshold was chosen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The SC3 framework for consensus clustering.
(a) Overview of clustering with SC3 framework (see Methods). The consensus step is 

exemplified using the Treutlein data. (b) Published datasets used to set SC3 parameters. N is 

the number of cells in a dataset; k is the number of clusters originally identified by the 

authors; Units: RPKM is Reads Per Kilobase of transcript per Million mapped reads, RPM is 

Reads Per Million mapped reads, FPKM is Fragments Per Kilobase of transcript per Million 

mapped reads, TPM is Transcripts Per Million mapped reads. (c) Histogram of the d values 

where ARI>.95 is achieved for the gold standard datasets. The black vertical lines indicate 

the interval d = 4-7% of the total number of cells N, showing high accuracy in the 

classification. (d) 100 realizations of the SC3 clustering of the datasets shown in (b). Dots 

represent individual clustering runs. Bars correspond to the median of the dots. Red and grey 

colours correspond to clustering with and without consensus step. The black line 

corresponds to ARI=0.8. The dashed black line separates gold and silver standard datasets.
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Figure 2. Benchmarking of SC3 against existing methods.
(a) SC3, tSNE+kmeans and pcaReduce were applied 100 times to each dataset. SNN-Cliq 

and SINCERA are deterministic and were run only once. SEURAT was also run once, 

however was optimised over different values of the density parameter G (Methods). Each 

panel shows the ARI (black dots, Methods) between the inferred clusterings and the 

reference labels. Bars correspond to the median of the dots. For the Pollen and Usoskin 

datasets all different hierarchies were considered (Data Avaialbility). The black line 

indicates ARI = 0.8. The dashed black line separates gold and silver standard datasets. (b) 

Number of clusters  predicted by SC3, SINCERA and SNN-Cliq for all datasets. Ref is the 

reference clustering reported by the authors. (c) The performance of the hybrid SC3 

(Methods). Dots represent outliers higher (lower) than the highest (lowest) value within 1.5 

x IQR, where IQR is the interquartile range. The black line indicates ARI = 0.8. The dashed 

black line in the legend separates gold and silver standard datasets. (d) The consensus matrix 

as generated by SC3 for the Deng dataset (Methods). The matrix indicates how often each 

pair of cells was assigned to the same cluster by the different parameter combinations as 

Data Availability
All datasets (in Fig. 1b and Macosko dataset) were acquired from the accessions provided in the original publications. According to 
the authors, the Pollen dataset contains two distinct hierarchies and the cells can be grouped either into 4 or 11 clusters, and the 
Usoskin dataset contains three hierarchies and the cells can be grouped either into 4, 8 or 11 clusters. scRNA-seq data for patient 1 and 
2 is available from GEO accession GSE79102.
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indicated by the colorbar (1 - always, 0 - never). SC3 finds a clustering with k = 10 clusters, 

separated by the white lines as visual guides. The colors at the top represent the reference 

labels, corresponding to different stages of development (see colour guide).
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Figure 3. Using SC3 to define subclones from two patients with myeloproliferative neoplasm.
Marker gene expression matrix (after Gene Filter and Log-transformation, Methods) of the 

combined dataset (patient 1 + patient 2). Clusters (separated by white vertical lines) 

correspond to k = 3 (Methods). Only the top 10 marker genes are shown for each cluster.
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