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Abstract

Structural variants (SVs) are an important source of human genetic diversity but their contribution
to traits, disease, and gene regulation remains unclear. We mappgpression quantitative trait

loci (eQTLs) in 13 tissues via joint analysis of SVs, single nucleotide (SNV), and short insertion/
deletion (indel) variants from deep whole genome sequencing (WGS). We estimate that SVs are
causal at 3.5-6.8% of eQTLs — a substantially higher fraction than prior estimates — and that
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expression-altering SVs have larger effect sizes than SNVs and indels. We identified 789 putative
causal SVs predicted to directly alter gene expression: most (88.3%) are noncoding variants
enriched at enhancers and other regulatory elements, and 52 are linked to genome-wide
association study loci. We observe a notable abundance of rare, high impact SVs associated with
aberrant expression of nearby genes. These results suggest that comprehensive WGS-based SV
analyses will increase the power of common and rare variant association studies.

Introduction

Over the past decade, genome-wide association studies (GWAS) have linked thousands of
common genetic variants to human traits and diseases. Fine-mapping causal variants at
GWAS loci has proven difficult because the vast majority (~88%) reside in noncoding
genomic regions, and in most cases the causal variant(s) and relevant gene(s) or functional
element(s) are not knowriThis has confounded the identification of therapeutic targets for
precision medicine. To bridge the gap between molecular and clinical phenotypes, genome-
wide eQTL scans have sought to identify genetic determinants of gene expression variation
as markers of functional effect and a bridge connecting germline genetic variation to somatic
cell biology?™ These studies have successfully identified tens of thousands of eQTLs in a
variety of human tissues.

A notable limitation of most extant eQTL studies is that, due to their reliance on SNV
genotyping arrays, it has been difficult to identify the causal variants underlying eQTL
associations and to judge the relative contribution of different variant classes to genetically
regulated expression. Of particular interest is structural variation, a broad class of variation
that includes copy number variants (CNVs), balanced rearrangements and mobile element
insertions (MEIs). Structural variation is recognized to be an important source of genetic
diversity — 5,000 to 10,000 SVs are detectable in a typical human genome using short-read
DNA sequencing technologies — but little is known about the mechanisms through which
SVs affect gene expression and phenotypic variation. Although SVs are less abundant than
SNVs, which represent ~4 million variant sites per gerfp®¥s account for a greater

number of nucleotide sequence differences due to their size, and may therefore exhibit
outsized phenotypic effe€ié Indeed, SVs have been identified as causal contributors to a
number of rare and common diseases, and are generally presumed to act through their
effects on gene expressfon

Despite many noteworthy examples linking SVs to gene expression and phenotypic variation
in humans, more general and quantitative questions regarding the contribution of SVs
relative to other variant classes remain a matter of debate. Several studies have used low-
resolution microarray technologies to study the relationship between CNVs and gene
expression, but their conclusions were limited to large CNVs that are now known to

comprise a small fraction of S¥12 A recent study from the 1000 Genomes Project

represents the most comprehensive analysis to date, using RNA-seq expression profiles from
lymphoblastoid cell lines (LCLs) of 446 individualand SVs identified from low-coverage
(median 7.4X) WGS datd This analysis identified 9,591 eQTLs, of which 54 had an SV as
the lead marker (denoted SV-eQTLSs), implying that SVs are the causal variant at 0.56% of
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eQTLs. However, the study’s shallow sequencing depth limited SV detection power and
genotyping accuracy, which are known to suffer in low-coveragé.daighermore,

although gene expression is differentially regulated across tissues, prior SV-eQTL studies
have focused solely on LCLs, and it is not known whether these observations extend to other
cell types.

Here, we utilized multi-tissue RNA-seq expression data from the Genotype-Tissue
Expression (GTEX) project to perform the first comprehensive human eQTL mapping study
from deep WGS (median 49.9X) data that directly measures the contribution of SVs, SNVs,
and indels.

Structural variation call set

We analyzed 147 human samples using the Speétiipgline for alignment (via BWA-
MEM19), data processing and per-sample SV breakpoint detection via L&yifoowed

by cohort-level breakpoint merging, refinement, classification, and genotyping (Online
Methods). We used complementary read-depth analysis with Genome STRIP to detect
additional CNV47. Together, these methods yielded a total of 23,602 “high confidence” SVs
that met strict quality filters and are the basis for all subsequent analyses (Table 1).

Structural variation is known to be a difficult class of genome variation to detect and
genotype accurately, and variant call sets may vary considerably in quality depending on
sequencing technologies, depth of coverage, data quality and bioinformatics approaches.
Several features of our call set suggests that it is extremely high quality: we detected
consistent numbers and proportions of SVs per sample (Fig. 1b, Supplementary Table 1),
African samples had an average of 29% more heterozygous LUMPY deletions compared to
other samples (in accordance with previous observafiprad the site frequency spectrum

for SVs mirrored that of SNVs and indels (Fig. 1c). Moreover, although we cannot directly
measure genotyping accuracy, a detailed comparison to the 1000 Genomes Project SV call
set shows that we detect a larger number of SVs per genome, that SVs have a similar size
distribution (Fig. 1a), and that our call set has a similar (if not higher) CNV validation rate
based on array-based intensity rank sum (IRS) statistics (Supplementary Note,
Supplementary Figs. 1-4). This comprehensive variant call set is a powerful resource for
functional analyses due to its high resolution (median breakpoint confidence interval: 34 bp)
and diverse variant types including deletions (50.7%), duplications (15.0%), multi-allelic
CNVs (mCNVs; 6.5%), reference mobile element insertions (rMEls; 8.7%), inversions
(0.2%), and novel adjacencies of indeterminate type (hereafter denoted as “breakends”, or
BNDs; 18.9%}%8.

Common eQTL mapping

We mapped/seQTLs using 8,980 common SVs with minor allele frequency (MAF) 20.05
and whole transcriptome RNA-seq data from 13 tissues including 34,053 expressed genes,
18,126 of which were protein-coding (Online Methods, Supplementary Fig. 5). We defined
an eQTL as an eVariant/eGene pair detected in a given tissue, amsitiraow to include
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SVs within 1 Mb of each gene transcription start site (TSS). We applied a permutation-based
eQTL mapping approach using FastQTL, revealing 5,128 SV-eQTLs associated with
expression differences at 2,064 distinct eGenes and 1,634 distinct eSVs (Benjamini-
Hochberg false discovery rate (FDR): 189¢Supplementary Table 2).

SVs altered exons at 11.0% of eQTLSs, providing a testable framework for their causal
effects. Loss of function variants such as deletions or exon-disrupting MEIs are expected to
decrease gene expression, exon duplications should increase gene expression, and neutral
markers that tag a nearby causal variant through linkage disequilibrium (LD) should show
bidirectional effects. Indeed, 507/552 (91.8%) of exon-altering eQTLs showed patterns of
expression consistent with the SV class (Fig. 2a). This finding establishes strong evidence of
a causal role for SVs at a subset of eGenes. In contrast, the remaining 4,566 non-exonic
eQTLs (89.0%) generally exhibited bidirectional expression effects (Fig. 2a). This may
reflect a complex regulatory landscape of both enhancing and repressing DNA elements, or
loci at which the SV is merely in LD with the true causal variant.

To assess the relative contribution of SV, we expanded our eQTL analysis to include
6,394,161 biallelic SNVs and 801,431 indels detected by the Genome Analysis Toolkit
(GATK)20 with MAF =0.05 (Supplementary Note, Supplementary Fig. 6, Supplementary
Tables 1,3). We performed joint eQTL mapping with the complete set of genetic variants,
nominating a most likely causal variant for each eQTL identified. This produced 23,554
joint eQTLs across 13 tissues affecting 9,634 distinct eGenes including 828 SV-eQTLs
(3.5%), 20,148 SNV-eQTLs (85.5%), and 2,578 indel-eQTLs (10.9%). The observation that
SVs are the lead marker at 3.5% of eQTLs provides an initial estimate of their contribution
to gene expression variation, ranging from 2.4% in transformed fibroblasts to 4.5% in skin
(Supplementary Table 4). Per-tissue estimates were influenced by the number of available
samples for each tissue type, and controlling for the number of available samples
recapitulates relative rates of eQTLs per tissues reported in previoustudies
(Supplementary Fig. 7). In whole blood, we observed a nearly 4-fold larger contribution of
SVs to protein-coding eQTLs (2.2%) than a similar estimate from the 1000 Genomes
Project, where merely 0.56% of eQTLs identified in LCLs had an SV as the lead ¥harker
(Supplementary Note, Supplementary Figs. 8-12).

Fine-mapping causal variants

We next applied fine-mapping approaches to infer the probability that each locus contained a
causal SV in the eGenetgswindow. At each of the 23,554 joint eQTLs, we identified the

100 SNVs and indels in the 1 Miiswindow that were most significantly associated with

the eGene’s expression by their FastQTL nominal p-value, as well as the single most
significant SV. We then used the CAVIAR software package to apportion a causal likelihood
and a relative ranking to each of these 101 markers based on the magnitude and direction of
association as well as the pairwise LD structure across the #&gitis approach aims to
disentangle each variant’s causal contribution from its association due to LD with nearby
causal markers. At 3.5% of eQTLs overall (2.4-4.4% among tissues), the SV was identified
among the 101 candidates as the highest probability causal variant underlying the eQTL
association.
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As an orthogonal estimate of contribution of SV, we applied a linear mixed model to

partition the heritability of each eGene’s expression into a fixed effect from the SV and a
random effect representing the cumulative heritability of the 1,000 most significant SNVs
and indels in theisregion (Fig 2b,c, Supplementary Fig. 13). This method mirrors that of
several prior studies that have examined relative contributions of distinct variant classes on a
quantitative traf2-24 Heritability partitioning revealed that SVs account for 8.4% of total
gene expression heritability when summing their effects across all eQTLs, although we note
that this includes numerous loci where the SV has a very small effect. More importantly, at
the 22,448 eQTLs that showed appreciable overall genetic heritability (>0.05), the SV
contributed more heritability than the additive effect of the other 1,000 variants in 6.8% of
cases, suggesting that the SV was the causal variant.

Taken together, the analyses presented above indicate that SVs are the causal variant at 3.5—
6.8% of eQTLs, depending on the causal variant inference method. These are likely to be
underestimates because the genotyping error rate for SVs is typically higher than for SNVs
and indels, giving the latter a relative advantage to “win” causal variant prediction tests in
regions of strong LD. For example, simulation experiments show that a 5% increase in SV
genotyping error leads to a 19.6% decrease in the SV-eQTL mapping rate (Supplementary
Figure 9). Although the absolute contribution of SVs to heritable expression variation is
small compared to SNVs and indels, on a per-variant basis, an SV is 28 to 54 times more
likely to modulate expression than an SNV or an indel. Moreover, SVs showed a 1.3-fold
larger median effect size on gene expression than SNVs and indels (p-value: 3, x 10
Mann-Whitney U test), and deletions showed a 1.4-fold larger median effect size, with
direction of effect predominantly correlating with SV type (Fig. 2a). This result is unlikely

to stem from differences in statistical power given the observed allele frequency distributions
of each variant class, and the fact that SVs have consistently greater effect sizes across
matched allele frequency bins (Supplementary Fig. 14). Together, these results demonstrate
that SVs play an important and outsized role in defining the landscape of genetically
regulated gene expression.

Functional context of eQTLs

We next sought to examine the genomic context of SV-eQTLs for clues into their molecular
mechanisms. We hypothesized that causal SVs would be enriched in functional elements

such as gene bodies, enhancers and repressors. To maximize the number of causal variants in
this analysis, we first created an aggregate eQTL set containing the union of all eQTLs
identified by either the SV-only or joint eQTL mapping (24,884 eQTLs affecting 10,165

distinct eGenes). We then derived a composite “causality score” that incorporates the
aforementioned CAVIAR and GCTA estimates of SV causality at each eQTL by multiplying

the CAVIAR posterior causal probability with the S\E& heritability fraction (hiv /h2.)
(Supplementary Fig. 15). At each eGene we selected the SV within 1 Mb that had the
strongest association to the eGene’s expression, and allocated these 4,398 distinct SVs into 6
bins according to their composite score quantile, with the least causal bin comprising the
bottom half of composite scores. Different SV classes were represented in roughly

consistent proportions across the lower causality bins, but the most causal bin had higher
concentrations of multi-allelic CNVs and duplications (Fig. 3a). SVs in the most causal bin
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were also enriched in segmental duplications and noncoding gene classes (Supplementary
Fig. 16), which is consistent with the known concentration of SVs in architecturally complex
genomic regions2>

We examined the overlap between SVs and annotated genomic features to assess enrichment
in various functional elements. SVs in the 90th percentile of causality scores — hereafter
referred to as “predicted causal eSVs” — showed a 23-fold enrichment for altering eGene
exons, amounting to 11.7% (92/789) of the predicted causal eSVs, compared to 0.4% of SVs
in the least causal bin representing the lower half of causality scores (Fig. 3b).

Recapitulating the trend from SV-alone eQTL mapping (Fig. 2a), the expression effect
direction was highly correlated with SV type (94/106 showing the expected direction),
strongly suggesting that this set of exon-altering SVs are the causal variant at their respective
eQTLs. Importantly, this analysis also demonstrates that our causality score effectively
distinguishes neutral from causal SVs: little to no enrichment of exon-altering SVs is
observed in bins beneath the 80th percentile of scores, and enrichment rises precipitously
from the 80th to the 90th percentile.

However, the majority of SVs — including 88.1% of predicted causal eSVs — do not alter
eGene dosage or structure, and thus are likely to act through regulatory mechanisms. We
analyzed these 4,272 noncoding SVs for enrichment in other functional elements of the
genome with potential regulatory consequences. We found that several functional elements
were stratified by causality score and significantly enriched in the most causal bins,

including the regions within 1 kb of enhancers, the regions 10 kb upstream or downstream of
gene transcripts, and regions predicted by FunSeq to be highly occupied by transcription
factor£6-28(Fig. 3c—f, Supplementary Fig. 17). In all cases, regulatory element enrichment
was most pronounced in the top causality score bin — providing further evidence of the
effectiveness of our scoring method — yet more moderate enrichments were also observed in
lower bins.

GWAS associated SV-eQTLs

To investigate the contribution of SVs to trait-associated loci, we identified 4,874 SNVs

from the GWAS catalog that were non-redundant on a per-locus and per-disease basis, were
genotyped in the GTEx samples, and that had convincing evidence for disease association (p
<5 x 108)29, Of these, 851 were in LD¥20.5) with a lead marker from our joint

SV/SNV/indel eQTL analysis, suggesting that the GWAS hit and the eQTL are produced by
the same underlying causal variant. An SV was the candidate causal variant at 3.2—14.2% of
the 851 GWAS-associated eQTLs, depending on whether causality is judged based on eQTL
p-value ranks or heritability partitioning via GCTA (as in the prior causal SV analysis).
Combined with the eQTL fine mapping results presented above, this suggests that SVs
underlie a significant fraction GWAS-associated eQTLs, indicating that our results are
directly relevant to common disease biology.

We next screened for eSVs that were likely to explain prior GWAS results. We identified 52
predicted causal eSVs in LI?E0.5) with GWAS loci, a set that shows significant
enrichment with functional annotations (Supplementary Table 5, Fig. 3). Ultimately,
experimental validation will be required to definitively establish the causal relationship
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between any given variant and GWAS result. However, there are a number of promising
candidates among these 52 loci. In one case, a 294 bp deletion is associated with decreased
expression of the DAB2IP gene in thyroid tissue — apparently by disrupting an intronic
enhancer — and is linked to a risk allele for abdominal aortic anettygns 0.57; Fig 4a).

In another case, a 1,468 bp deletion in intron 10 of the PADI4 gene is ligked.70) to a

risk allele for rheumatoid arthrifi (Fig. 4b). Multiple studies have reported significant
association between haplotypes of the PADI4 gene and rheumatoid arthritis, and PADI4
mRNA is expressed in pathological synovial tisS&€8 yet none have implicated this
deletion, which flanks an annotated enhancer and is predicted to be the causal variant for
increased PADI4 expression in lung. Finally, we recapitulate several SVs previously
recognized as clinically associated markers, including an SVA retroelement insertion to a
GWAS risk allele for melanoma and esophageal camter@.85$4-36 a ~32 kb deletion
conferring risk for psoriasté, and a ~37 kb deletion linked to circulating liver enzyme

levels (gamma-glutamyl transfera¥&jSupplementary Fig. 18).

The extent to which SVs are tagged by other genetic markers via LD is an important
consideration in the design of trait mapping studies. Notably only 58.2% of common,
autosomal SVs (as well as only 51.4% of predicted causal eSVs) were in strorfgeLD (

0.8) with a SNV or indel ascertained by WGS in our study, compared to 79.4% of common
SNVs and 77.6% of eSNVs (by joint eQTL mapping) (Supplementary Note, Supplementary
Fig. 19). This is markedly lower than a previous estimate that 79% of CNVs detected by
microarray were well-tagged by nearby marR&rsloreover, although modern genotyping
arrays are designed to detect large CNVs directly via probe intensity analysis, we found that
only 3.8% of common CNVs and 4.9% of eCNVs found in our study were detectable by 5 or
more contiguous probes on the Omni 2.5 platform (Supplementary Note, Supplementary
Fig. 20). Indeed, when we omitted SV genotypes from joint eQTL mapping, 41.2%
(341/828) of eQTLs originally ascribed to SVs did not meet genome-wide significance
through SNV or indel markers (Supplementary Table 6).

Impact of rare SVs

We next sought to assess the role of rare SVs in shaping gene expression variation. In
contrast to common variant eQTLs, which are caused by ancient mutations that have been
subjected to natural selection, most rare variants arose recently and are more likely to have
larger effect sizes and deleterious consequéfdgare variants are difficult to study via
traditional eQTL approaches because any given variant is observed too infrequently within a
set of samples to establish a statistical relationship with gene expféskiowever, the

effect of rare variants on gene expression can be assessed indirectly via bulk outlier
enrichment analys&& We thus identified 5,047 gene expression outliers (median: 30 per
person; range: 10—298) in which an individual exhibited aberrant transcript dosage
compared to the data set as a whole (Online Methods). Next, we identified 5,660,254 rare
variants (4,671 SVs, 4,830,727 SNVs, and 824,836 indels) that were positively genotyped in
at most two individuals. To reduce the effects of population stratification, we limited this
analysis to the 117 individuals of European ancestry with RNA-seq data in at least 5 tissues.
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Rare variants were significantly enriched by 1.2-fold (95% CI: 1.2—1.3) within the gene

body and the 5 kb flanking sequence of expression outliers (Fig. 5a, Supplementary Table
7). This enrichment is most pronounced for SVs (16.1-fold, 95% CI: 11.5-25.4), in which
355/5,047 (7.0%) of gene expression outliers harbored a rare SV compared to the null
expectation of 22/5,047 (0.4%) in 1,000 random permutations of the sample expression
values. Notably, expression-altering SVs were significantly larger than rare SVs on the
whole (p-value: < 1 x IT3°, Mann-Whitney U test), and duplications were

disproportionately represented (Fig. 5b,c). In several cases a single large SV caused multiple
gene expression outliers: a 21.3 Mb duplication event was associated with 161 outliers
within the region, and two large duplications (4.1 Mb and 2.5 Mb) were associated with 11
and 30 outliers, respectively. However, the enrichment of rare SVs around outlier genes was
not driven by a handful of large events, since the majority of outlier-associated SVs (56/99)
were only associated with a single gene (Supplementary Fig. 21), nor was it a consequence
of subpopulation structure (Supplementary Note, Supplementary Figs. 22—25). Moreover, on
a per-variant basis, 99/4,671 (2.1%) of the rare SVs had an expression outlier within 5 kb
compared to 10/4,671 (0.2%) in the permutation set, representing a 9.9-fold enrichment
(95% CI: 5.8-19.8) (Fig. 5b). These findings demonstrate that rare SVs are a common cause
of aberrantly expressed genes, contributing a median of approximately 1 gene expression
outlier per person. We expect this to be a large underestimate given the strict definition of
expression outliers used in this study — rare variants are likely to contribute to more modest
changes in expression as well.

Our data show that rare SVs alter gene expression through diverse mechanisms. Of the 99
rare SVs predicted to causally alter gene expression (permutation-based FDR: 0.2%), 79
(79.8%) are CNVs that change dosage of the aberrantly expressed gene (Supplementary
Table 8). Most gene expression changes occur in the expected direction relative to the
dosage alteration (Fig. 5c), but we observed 4 deletions and 2 duplications with expression
effects in the opposite direction; all involve partial gene alterations, which suggests complex
regulatory effects rather than simple dosage compensation. The next most common class
(11, 11.1%) are noncoding CNVs that appear to act through regulatory effects and — as in the
case of the SV-eQTLs (Fig 2a) — show bidirectional effects on transcription. Remarkably, we
identified a number of atypical SVs with strong yet unpredicted effects on gene expression.
These include a 3.6 Mb inversion associated with altered expression of 3 genes found at or
near the breakpoints (one with increased and two with decreased expression), a 391 bp
intronic inversion that appears to cause increased expression, a complex 3-breakpoint
balanced rearrangement associated with decreased gene expression, and 9 complex CNVs
involving a combination of multiple copy number variable segments and/or adjacent
balanced rearrangements, including one highly complex 6-breakpoint event that resembles
chromothripsis (Supplementary Table 9). These results are consistent with prior studies
describing the prevalence of complex SVs in “normal” human genomes, and reveal for the
first time the diversity of gene expression effects caused by rare, comple%“8Vs

We compared the relative contribution of rare SVs, SNVs, and indels to expression outliers.
Although the overall enrichment of SNVs and indels at gene expression outliers is mild due
to the high background prevalence of rare variants in these classes, enrichment increases
dramatically when analyses are restricted to high impact mutations (as judged by
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CADD#445 Supplementary Fig. 26). Overall, we observed a net excess of 441 outliers
within 5 kb of a rare variant in the same individual compared to the expected number from
permutation tests, or 8.7% (441/5,047) of total outliers. Moreover, by partitioning excess
outliers among SVs, SNVs and indels, we estimate that 70.0% of gene expression outliers
with a genetic basis are likely explained by structural variation, whereas merely 16.0% and
13.9% are due to SNVs and indels, respectively (Online Methods, Supplementary Fig. 27).
We note that this approximation assumes similar proportions of causal variants for each
variant type, so may under-estimate the contribution of SNVs and indels. It also only
captures the effects of rare variants within 5 kb of the outlier gene and depends on our
definition of expression outliers. While the strength of the SV effect is due in part to 8 very
large CNVs (> 1 Mb), GTEX individuals should be representative of the general population
in terms of the prevalence of large CNVs, and the relative contribution of SVs remains
noteworthy even when individuals with megabase-scale CNVs are excluded from the
analysis (SV: 40.7%, SNV: 33.5%, indel: 25.9%).

Discussion

Structural variation is an important source of genetic diversity, but assessing its functional
consequences has been hindered by technical challenges in detecting and genotyping SVs in
large cohorts. Here, we mappedeQTLs from 147 individuals in the GTEX project, which

for the first time leverages deep WGS data and multi-tissue RNA-seq to elucidate the
functional role of SVs in a broader genomic context. We estimate that 3.5-6.8% of cis-
eQTLs are driven by a causal SV, a several-fold greater contribution than previously
recognized, and we present novel findings demonstrating an outsized role for rare SVs on
gene expression outliers.

SV detection and genotyping is known to be a challenging endeavor, and results can vary
widely due to different methodological approaches and sequencing technologies. However,
our study improves upon previous SV-eQTL mapping efforts in two ways. First, it harnesses
SV genotypes derived directly from deep WGS reads rather than microarrays or haplotype-
based genotype refinement of low coverage sequencing. Second, we capture the expression
profiles of 12 human tissues and transformed fibroblasts rather than a single derived cell
line. Using these methods, we observed a nearly 4-fold greater contribution of SVs to
protein-coding eQTLs than a similar estimate from the 1000 Genomes Project ilSL&Ls
discrepancy that is unlikely to stem from trivial methodological differences given the
similarity of eQTL mapping methods used in the two studies. Our analyses of the
methodological consequences of genotyping error and haplotype-based refinement suggest
that the key difference between these results is the greater sensitivity and accuracy of SV
genotypes afforded by deep WGS data, underscoring the power and novelty of our study.

Bridging the gap between disease-associated loci and mechanism is a driving motivation for
eQTL studies, since noncoding variants encompass approximately 88% of GWASUbCi

their gene targets and regulatory effects are often difficult to predict. We applied fine-
mapping approaches to identify 789 putative causal SV-eQTLs. We confirmed previous
reports that coding SV-eQTLs generally exhibit an effect direction consistent with SV

typel and we observed that noncoding SVs with strong causality predictions were
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significantly enriched for overlap with known regulatory elements. Given the paucity of
causal variants discovered in the human genome to date, the 789 putatively causal SV-
eQTLs identified here — of which 52 are linke#l0.5) with GWAS findings — will be a
valuable resource for future functional studies.

Finally, we analyzed the functional impact of rare variants, the majority of which are

relatively new alleles with limited exposure to purifying selection. Our study assessed bulk
enrichment of rare variants in proximity to gene expression outliers, demonstrating for the
first time that rare SVs are a common cause of aberrantly expressed genes in the human
population, and that rare SVs contribute a large fraction of gene expression outliers relative

to SNVs and indels. This result implies that thorough ascertainment of SV will significantly
increase the power of rare variant association studies and the efficacy of WGS-based disease
diagnosis.

An important extension of this work lies in guiding the design of future trait-mapping

studies. Our results show that SVs comprise a significant and outsized fraction of
expression-altering genetic variants, a substantial portion of which are untested in typical
association studies. As human genetics moves deeper into the era of whole genome
sequencing, it has become possible to include all forms of genetic variation in cohort studies
and clinical practices. Comprehensive analysis of structural variation will be a critical aspect
of these efforts.

Online methods

SV call set generation

We acquired 148 deep whole genome BAM files from the GTEx V6 data release (dbGaP
accession phs000424.v6.pl). Post-mortem donors were consented by their next-of-kin, as
described previousfy We excluded one sample (GTEX-WHWD-0002) due to an abnormal
insert size distribution, which confounds SV detection. We realigned the remaining 147
whole genomes to GRCh build 37 plus a contig for Epstein-Barr virus using SpeedSeq
v0.0.3 (BWA-MEM v0.7.10-r789) according to published pracfi¢é8 We ran LUMPY

v0.2.9 on each sample with the default parameters in the LUMPY Express script, using the
published list of excluded genomic regions from SpeedSeq as well as the -P option to output
probability curves for each breakpdifitWe merged the 147 VCF files using the |_sort.py

and |_merge.py scripts included in LUMPY with the “-product” option and 20 bp of slop,
simultaneously combining variants with overlapping breakpoint intervals while refining their
spatial precision based on the probability curves to create a cohort-level VCF. We pruned
remaining variants with nearly overlapping breakpoint intervals (within 50 bp) by selecting
the single variant with the highest allele frequency among the overlapping set. Next, we
genotyped each sample with SVTyper v0.0.3, which performs breakpoint sequencing of
paired-end and split-read discorddft§Ve define the term “allele balance” as the ratio of
non-reference to total reads at each breakpoint. Allele balance serves a proxy for genotype
that is tolerant to inefficiencies in aligning the alternate allele for SVs, and is used for most
analyses in this paper. We then used CNVnator v0.3 to annotate the copy number of each
spanning variant (putative deletions, duplications, and inversions).
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We applied several filters to the LUMPY call set to flag low quality SVs. Since 68 samples
were sequenced on the lllumina HiSeq 2000 platform and 79 on the lllumina HiSeq X Ten
platform, we flagged variants whose linear correlati8netween genotype and

sequencing platform exceeded 0.1. We further flagged deletions lacking split-read support
that were smaller than 418 bp, which was measured to be the empirical minimum deletion
size at which all insert size libraries were able to discriminate between concordant and
discordant reads with 95% certainty. We determined that three samples (GTEX-NPJ8-0004,
GTEX-T21S-0002, GTEX-0IZI-1026) had abnormal read-depth profiles and we therefore
flagged SVs private to any of those samples, effectively excluding them from rare variant
analyses. Finally, we flagged variants with a mean sample quality (MSQ, a measure of
genotype quality among positively genotyped samples that is independent of allele
frequency) of less than 20 as low quality.

Next, we reclassified variant types, requiring that deletions and duplications exhibit
correlation between read-depth and the allele balance at the breakpoint. For SVs positively
genotyped in at least 10 samples, we fit a linear regression and required a slope of at least
1.0 in the appropriate direction (positive for duplications, negative for deletions} and

0.2. For the remaining low frequency SVs we required that > 50% of positively genotyped
samples must be read-depth of > 2 MAD (median absolute deviation) (in the correct
direction for deletion/duplication) and > 0.5 absolute copies from the median of reference
genotyped samples. For low frequency SVs on the sex chromosomes, we limited the above
criteria to the gender with more non-reference individuals to avoid gender confounders. We
identified mobile elements insertions in the reference genome (rMEIs) as SVs with
breakpoint orientations indicative of deletions that had > 0.9 reciprocal overlap with an
annotated SINE, LINE, or SVA element with sequence divergence of less than 200 milliDiv,
based on RepeatMasker annotations. Due to limitations of our pipeline, we were only able to
detect mobile elements inserted into the reference genome based on their absence in other
genotyped samples.

We ran Genome STRIP 2.00.1602 according to the best practices workflow for deeply
sequenced genomes, using a window size of 1,000 bp, window overlap of 500 bp, reference
gap length of 1,000 bp, boundary precision of 100 bp, and minimum refined length of 500

bp. We flagged CNVs for platform bias and the three samples with abnormal coverage
profiles as described above. For rare SVs detected by Genome STRIP (private or doubletons
in our call set) we merged fragmented variants of matching types with identical genotypes
within 10 Mb of each other whose combined footprint encompassed at least 10% of their
span.

We then unified the LUMPY and Genome STRIP call sets while collapsing redundancies.
Because LUMPY variants are substantially more precise and have well-defined confidence
intervals, we retained LUMPY calls when an SV was detected by both algorithms with a
reciprocal overlap of > 0.5 and a matching variant type (mMCNVs were allowed to merge with
either LUMPY duplications or LUMPY deletions). To ensure that SVs would be merged
even when the Genome STRIP call was fragmented, which occurs fairly often with GTEx
WGS data, we also merged calls where > 0.9 of a Genome STRiP CNV was contained in a
LUMPY SV of the same type (or mCNV) and their correlation between LUMPY allele
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balance and copy humber h&d> 0.25. This last step ensures that the merged variants have
a high degree of co-occurrence among samples, and are not simply independent variants that
inhabit the same genomic interval.

We measured MAF for LUMPY SVs as the ratio of minor alleles to total alleles in the
population. For Genome STRIP variants we defined MAF as the fraction of samples that
deviate from the mode copy number value in the population.

We defined a high confidence call set from the variants that had not been flagged by the
aforementioned filters, at least 50 bp in size, and located on the autosomes or the X
chromosome. In general, high confidence SVs had to be supported by multiple independent
evidence types. Since LUMPY deletions and duplications were identified by paired-end
and/or split-read evidence and had also met requisite read-depth support from
reclassification they were automatically considered high confidence. Similarly, rMEls were
considered high confidence based on support from reference genome repeat annotations.
LUMPY inversions and BNDs (unclassified breakends) were required to have a minimum
variant quality score of 100. Inversions were further required to show evidence from both
sides of the event, and at least 10% of supporting reads derived from each of split-read and
paired-end evidence types. LUMPY BND variants were required to have at least 25% of
supporting reads derived from each of split-read and paired-end evidence types. Genome
STRIP variants that were merged as described above and those with GSCNQUAL score =10
were considered high confidence. This set of 23,602 variants served as the basis for all
analyses in this paper.

We estimated the FDR of this SV call set with Genome STRIP’s Intensity Rank Sum (IRS)
annotator forn siico CNV validation using lllumina Omni 5M SNV genotyping array.

Array data was available for 131 of 147 samples, and we used the log R ratio
(log2(RobservelRexpected) Of intensity values from lllumina GenomeStudio as IRS input. We
tested 7,575 of 17,040 CNVs (deletions or duplications, excluding reference MEIs) that
spanned at least one probe.

Array-based CNV calling

For array-based CNV calling using for quality control, DNA samples from each GTEXx

donor were run on lllumina DNA arrays (N=186 samples on the Illlumina 5M platform,
N=275 samples on the 2.5M platform). GenomeStudio software was used to generate B
Allele Frequency and Log R Ratio data for each array experiment, and these normalized
probeset summaries were used as the primary data for calling CNVs using plumbCNV, an R
package based on the popular and widely used PennCNV algtithive constructed

custom *.pfb files for each array platform using the full set of GTEx data for each platform.
Prior to CNV calling, we perform sample QC on each array experiment, and removed
samples with abnormalities in either the mean or variance of the Log R Ratio across the
entire genome. Principal components analysis was then used to correct for batch effects in
the Log R Ratio data. PennCNV was then used to call CNVs with default parameters. Raw
CNV calls were cleaned by a) merging adjacent CNVs separated by a gap < 20% of the size
of the smaller CNV, and b) removing CNVs with >50% overlap with immunoglobulin loci,
telomeric and centromeric regions. Post-calling sample QC was performed to identify and
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remove individual with an excess of CNV calls based on the poisson expectation derived
from the total set of samples.

Common eQTL mapping

We mapped/seQTLs to scan for significant associations between common variant
genotypes and gene expression in all tissues for which there were =70 individuals with both
WGS data and RNA-seq data. These include the following 12 tissues: whole blood, skeletal
muscle, lung, tibial artery, aortic artery, adipose (subcutaneous), thyroid, esophagus mucosa,
esophagus muscularis, skin (sun-exposed), tibial nerve, muscle (skeletal), as well as
transformed fibroblasts. For convenience, we refer to the transformed fibroblasts as a tissue
type throughout this study. Biospecimen collection was performed as previously déscribed
RNA-seq data from each tissue was aligned with Tophat v1.4 using GENCODE v19 gene
annotations by taking the union of exons for gene level quantification, and RPKM values
were calculated with RNA-Se@&-°0 Reads were required to align exclusively within

exons or span them (without aligning to intronic regions), align in proper pairs, contain a
maximum of six non-reference bases, and map uniquely to the gene. We note that because
these gene-level expression values are normalized to the reference transcript length, partial
exonic copy number variants that alter the transcript length are expected to modulate RPKM
values even if the absolute number of transcripts remains stable. Samples were quantile
normalized within each tissue followed by inverse quantile normalization of each gene to
control outliers.

We selected common genetic markers with MAF =0.05 for eQTL mapping. We performed
two independent/seQTL mapping runs. The first, an “SV-only” eQTL analysis, used only
common SV markers as genotype input for improved sensitivity under a reduced multiple-
testing burden. The second, a “joint” eQTL analysis, included the 8,980 common SVs as
well as 6,394,161 SNVs and 801,431 indels detected by the Genome Analysis Toolkit
HaplotypeCaller v3.1-144-g00f68&3allowing a fair comparison of the relative

contribution of different variant types.

We mapped/seQTLs with FastQTL v2.184 usingaswindow of 1 Mb on either side of

the TSS of autosomal and X chromosome genes with a permutation analysis to identify the
most significant marker for each g&heWe customized the FastQTL software to include an

SV for genotype-expression associations when the span of a deletion, duplication, mCNV, or
rMEI fell within the ciswindow for a particular gene TSS, or when the breakpoints of an
inversion or uncharacterized breakend (BND) fell withindfsavindow. For each tissue, we
applied a set of covariates including sex, three genotyping principal components, genotyping
platform (HiSeq 2000 or HiSeq X Ten), and a variable number of PEER (probabilistic
estimation of expression residuals) factors determined by number of samples per tissue, N
(N < 150: 15 PEERs, 150 =N < 250: 30 PEERSs, N 250: 35 PEF_5|QSNOte that PEER

factor sample sizes include RNA-seq data from individuals lacking WGS, providing more
samples for PEER correction than the 147 individuals in the remainder of this study. We
performed gene level multiple-testing correction for each of the SV-only and joint analyses
using Benjamini-Hochberg at a 10% FDR.
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Fine mapping of causal variants at eQTLs

We used CAVIAR to untangle linkage disequilibrium to predict a causal variant for each
eQTL2L CAVIAR assesses summary statistics in conjunction with LD across an associated
locus to rank the causal probability of each variant in a region. Thus, we ran FastQTL once
again on the 24,884eQTLs that had previously met FDR thresholds in either the SV-only or
joint ciseQTL mapping analyses to generate the nominal t-statistic for every common
variant in theciswindow. For each eQTL, we selected the most significant SV as well as the
100 most significant SNVs or indels (based on nominal p-value) iovéfrgndow and

estimated their pairwise LD using linear regression. For SVs, we used allele balance rather
than discrete genotype for computing LD. We ran CAVIAR at each of these eQTLs using the
t-statistics and signedvalues of LD among the 101 variants with a causal set size of 1.

As an alternate estimate of the causal role of structural variation, at each eQTL discovered
by either the SV-only or joint analyses, we applied a linear mixed model (LMM) to partition
the heritability of each eGene’s expression into a fixed effect from the SV, and a random
effect representing the cumulative heritability of the 1,000 most significant SNVs and indels
in the c/sregion. This method mirrors that of several other studies that have examined
relative contributions of distinct variant classes on a quantitative trait in n indiAétls

We first corrected for the same covariates as ircfheQTL mapping analyses above by

linear regression residualization, and then applied a linear model of the form

179251'79?1""79"'?199

Whereﬁg is a vector of the normalized expression valyigsis the effect of allele dosage
of SV /jon geney, x;is a n-length vector of genotypes atﬁﬁg is a n-length vector of
random effects drawn from the genetic relatedness matrix (GRM) with

U y~MVN (07 U;igKg>, and— is a random error term drawn freV (0, o2 )

representing unexplained variance. We defined the n x n dimensional EgMith entries
Zq(ziq — Zq)(2jq — Zg)

N —\2 —\2
\/Zq(ziq —Zq) Zq(zjq —Z4)" for the 1,000 SNV and indel varianig)that are
most significantly associated with the expression of e@ene

Solving this equation with GCTA produces an estimate of variance war (7';) ~ h2, .

var (?g> = ]2-7gvar (?]) +‘7721gK9+‘7§_7;g I,

U}Q):hzv +h§+a?
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cis

2 2 2
h%=h% +h}

Heritability estimates for a small number of eQTLs could not be calculated due to non-
positive definite matrices likely arising from small sample sizes (788/23,554 of joint eQTLs
and 892/24,884 of eQTLs detected by either SV-only or joint mapping). These loci were
excluded from the heritability analysis and composite causality scores described below. To
estimate the fraction afisheritability attributable to SVs across all eQTLs in our data set,

we counted the number of eQTLs whhiv >h? as a fraction of joint eQTLs at which the

overall heritability (,2,) was at least 0.05.

We combined the CAVIAR and heritability estimates of causality into a single composite
score for each eQTL by taking the product of the CAVIAR causal probability and the

fraction of heritability attributed to the S\h? , / h2_+hj). To bound the heritability

fraction between 0 and 1, we set the minir’rhivl andp? to 1076 and the maximum to 1

before taking the quotient. For SVs that were associated with multiple eQTLs, including
those that were independently ascertained in multiple tissues, we selected the eQTL (tissue,
gene pair) in which the SV had the highest causality score, resulting in a set of 4,485 distinct
SVs.

Though we calculated causality scores (CAVIAR, heritability, composite) for all eQTLs
detected by the SV-only or joint analyses, we restricted estimates comparing the relative
contributions and effect sizes of SVs, SNVs, and indels to only those 23,554 detected by the
joint analysis to eliminate confounding differences in statistical power between the eQTL
mapping runs.

Feature enrichment

We performed intersections between SVs across the range of composite causality score
guantiles and various annotated genomic features (Fig. 3, Supplementary Fig. 17). We first
allocated SVs into 6 bins by the quantile (bottom 50% and 5 deciles of the top 50%) of their
composite causality score and then counted the number that intersected with each feature,
allowing 1 kb of flanking distance except for the following: exon-altering plot, no flanking
distance; proximity to TSS, 10 kb of directional flanking distance; GENCODE genes, no
flanking distance; GENCODE exons, no flanking distance; and topologically associated
domain boundaries, 5 kb of flanking distance. SVs involved in multiple eQTLs were
considered to touch an eGene if they overlapped the exons of genes at any of those eQTLs.
SVs from each causality bin were shuffled with BEDTools into non-gapped regions of the
genome within 1 Mb of a gene transcription starP3ité/e calculated the fold enrichment

of observed feature intersections compared to the median of 100 random shuffled sets of the
elements of each bin to control for each bin’s composition of SV types and size
distributions. The 95% confidence intervals were derived from the empirical distributions of
feature intersections from the shuffled set for each bin.
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Enhancer positions were defined as those in the Dragon ENhancers database (DENdb) with
a minimum support of28 (Fig. 3b). Positions 10 kb upstream and downstream of the TSS
were defined from GENCODE v19 gene positions (Fig. 3c,d). FunSeq 2.1.0 regions and
topologically associated domain boundaries from human embryonic stem cell lines were
downloaded from the authors’ websites (see URLZ) All other regions were defined by

the ENCODE project and downloaded from the UCSC genome briwSer

eQTL linkage to GWAS hits

We defined a set of phenotype-associated SNVs from the GWAS catalog v1.0.1
(downloaded 2016—02—0%) We selected for results with a p-value better than 5 di6d

tested in Europeans. When multiple markers within a 100 kb window met this criteria in a
single study and a single phenotype, we selected the most significant marker in the window
to reduce redundancy, resulting in a set of 4,951 SNVs, of which 4,874 were genotyped in
our cohort of 147 samples. We calculated LD between these GWAS hits and variants in our
cohort using a linear regression to approxin/tesing allele balance rather than discrete
genotypes for SVs detected with LUMPY.

Rare variant association with expression outliers

We began by defining gene expression outliers in each of 544 individuals with RNA-seq data
across the 44 tissues available from the GTEX project. Since quantile normalization of
expression values (as applieddiseQTL mapping) can reduce the signal from true
expression outliers, we derived PEER-corrected expression values without quantile
normalization to define expression outliers. For each tissue, we filtered for genes on the
autosomes or the X chromosome in which at least 10 individuals had an RPKM (reads per
kilobase of transcript per million mapped reads) > 0.1 and raw read counts > 6. Next we
took the log(RPKM + 2) transformation of the data, followed by Z-transformation across
each gene. We then removed PEER factors by linear regression residualization (using the
same number of factors per tissue as described abov€pgeaon eQTL mapping

followed by Z-transformation.

We then subsampled the 544 individuals above to select the 117 who were of European
ancestry (since this was the largest subpopulation in our cohort) and had available WGS
sequence data. Among these 117 individuals, we identified (sample, gene) pairs at which an
individual’'s absolute median Z-score of a gene’s expression was at least 2, and there were at
least 5 tissues with available expression data for the gene. This amounted to 5,047 gene
expression outliers (median: 30 per person, range: 10—-298). Next, we identified rare variants
that were present in at most two individuals in our cohort of 147 individuals and positively
genotyped in at least one of the 117 European ancestry individuals, amounting to 5,660,256
rare variants (4,671 SVs, 4,830,727 SNVs, and 824,836 indels).

We counted the number of rare SVs, SNVs, and indels that co-occurred in the outlier
individual that resided within the outlier transcript or 5 kb of flanking sequence. To define
the frequency that this occurs by chance, we performed 1,000 random permutations of the
outlier individual names in our set to determine the number of rare variants of each type that
co-occur with an outlier in a random individual. Notably, this strategy retained the relative
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number of outliers per individual in each permutation so that individuals with many outliers
were still over-represented in the permuted sets.

We performed two reciprocal measures of enrichments. The “outlier-centric” approach
tested for a significant difference in the number of outliers that had a rare variant within 5 kb
(Fig. 5a, red points). However, for SVs in particular, a single large variant may be in
proximity to many outliers, and we controlled for this phenomenon with the “variant-

centric” approach to test for a significant difference in the number of rare variants that had
an outlier gene within 5 kb (Fig. 5a, blue points).

To judge the enrichment across thresholds of variant functional impact, we computed a
predicted impact score with CADD v1.2 for all variants in our datd.detr SVs, we used

the highest-scoring base across the affected interval and the confidence intervals around the
SV breakpoints. We then computed to the percentile of these impact scores for SVs, SNVs,
and indels separately across the full set of allele frequencies. We show the fold-enrichment
for the outlier-centric (Supplementary Fig. 26a—c) and variant-centric (Supplementary Fig.
26d-f) approaches across the range of impact score percentiles for each variant class.

To estimate the relative contribution of each variant type to expression outliers, we first
defined the fraction of outliers with a likely genetic basis. Across 1,000 shuffled
permutations of the data, we observed a median of 1,976 outliers (95% CI: 1,917-2,036)
with a rare variant of any type in the outlier individual. We identified 2,417 outliers with a
rare variant, representing a net excess of 441 over the expected value (95% CI: 381-500).
Thus, of the 5,047 total outliers in our data set, an estimated 8.7% (95% CI: 7.6—9.9%) of
outliers have a genetic basis.

We then apportioned these 8.7% of genetically determined outliers amongst SVs, SNVs, and
indels according to the net excess of observed outliers within 5 kb of each variant types
(Supplementary Fig. 27). For outliers that were within 5 kb of multiple variant types

(overlaps on the Venn diagram), we allocated the net excess percentage based on the relative
strength of their overall fold-enrichment. To achieve this, we first estimated the fraction of
expression outliers with a genetic basis within each variant fgeSV, SNVV/ind€)) as

s—§

G ,=—— wheresis the number of observed outliers with 5 kb of a rare variant of fype

andg is the median from the permuted s&B(=0.94:Gsn=0.12,Gj0e70.19 in our data

set). Then, for each overlapping region of the Venn diagram, we multiplied the net excess by
_Gr
ZT&AGT for each of the variant types in each Venn diagram Area

T

To identify complex variants, we clustered rare SVs with breakpoint evidence located no
more than 100 kb away from each other and present in the same individual(s). Rare SVs
with only read-depth support were not included in this clustering because of their imprecise
boundaries. We joined separate clusters if they contained two sides of the same
uncharacterized BND. Clusters containing SVs that were previously found to be associated
with outlier gene expression were reclassified as a complex deletion, complex duplication,
or balanced complex rearrangement by manual curation. During this manual curation, rare
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SVs with only read-depth support and present in the appropriate sample(s) were added to the
rare variant cluster if they overlapped other variants included in the cluster. Upon manual
inspection, one outlier-associated SV (LUMPY_BND_195398) with inverted breakpoint
orientation was visually determined to have amplified read-depth over the interval and thus
reclassified as a complex duplication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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eQTL effect size distributions and heritability partitioning with linear mixed modgls. (
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5,128 eQTLs that were discovered by the SV-only analysis, while the bottom two panels
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lines denote the median of values for each axis.
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an expression outlier in the same individual, excluding balanced rearrangements. A peak at
~300 bp in the top two plots results from Alu SINE insertions in the reference genome.
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Summary of variant types and discovery methods. SNVs and indels were detected using the Genome Analysis Toolkit (GATK) and SVs were de(fjected by
breakpoint evidence (BP) and supported by read-depth evidence (BP, RD), or only detected by read-depth evidence (RD). Common variants (M&F >

«Q
0.05) were tested fariseQTLs. The SV-only eQTL mapping excluded SNVs and indels for greater sensitivity, while the joint eQTL mapping included all

. )
variant types. =
Detection method | #of variants | Median resolution (bp) | Median size (bp) of ?loanrﬂ:mr; eVariants (SV-only) | eVariants (joint)
SNV GATK 21,764,904 - 1 6,394,161 - 16,959
Indel GATK 3,030,964 - 3 801,431 - 2,1B0
BP, RD 11,492 35 993 2,939 51p 25
Deletion (DEL)
RD 473 kilobass® 3,819 284 68 17|
BP, RD 2,506 96 574 674 af B
Duplication (DUP)
RD 1,035 kilobase® 4,999 684 148 76
Multi-allelic CNV (mCNV) RD 1,534 kilobase® 3,847 1060 264 119
Inversion (INV) BP 51 15 1045 14
Reference mobile element insertion BP 2,051 1 307 1,539 26 1h
(rMEI)
Other SV (BND) BP 4,460) 34 - 1,748 281 4
All SVs - 23,602 39 - 8,980 1,634 233
All variant types - 24,819,47 - - 7,204,472 - 19|342

*
Resolution refers to the positional certainty at each breakpoint, with read-depth variants having approximate breakpoint precision on the kilobase scale.
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