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Abstract

When cellular traits are measured using high-throughput DNA sequencing quantitative trait loci
(QTLs) manifest as fragment count differences between individuals and allelic differences within
individuals. We present RASQUAL (Robust Allele Specific QUAnRtitation and quality controL), a
novel statistical approach for association mapping that models genetic effects and accounts for
biases in sequencing data in a single, probabilistic framework. RASQUAL substantially improves
fine-mapping accuracy and sensitivity of association detection over existing methods in RNA-seq,
DNasel-seq and ChlP-seq data. We illustrate how RASQUAL can be used to maximise association
detection by generating the first map of chromatin accessibility QTLs (caQTLs) in a European
population using ATAC-seq. Despite a modest sample size, we identified 2,707 independent
caQTLs (FDR 10%) and demonstrate how combining RASQUAL and ATAC-seq can provide
powerful information for fine-mapping gene regulatory variants and for linking distal regulatory
elements with gene promoters. Our results highlight how combining between-individual and
allele-specific genetic signals improves the functional interpretation of noncoding variation.

Introduction

Association mapping of cellular traits is a powerful approach for understanding the function
of genetic variation. Cellular traits that can be quantified by sequencing are particularly
amenable for association analysis because they provide highly quantitative information

about the phenotype of interest and can easily be scaled genome-wide. Population scale
studies using sequencing-based cell phenotypes such as RNA-seq, ChlP-seq and DNasel-seq
have revealed an abundant QTLs for gene expression and isoform abundancel-4, chromatin
accessibility5, histone modification, transcription factor binding (TF)6—9 and DNA
methylation10, providing precise information on the molecular functions of human genetic
variation. However the effect sizes of many common variants are modest meaning that
association analysis typically requires large sample sizes, which can be problematic when
assays are labour intensive or cellular material is difficult to obtain. Furthermore, even well-
powered studies can struggle to accurately fine-map causal variants.
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One advantage of sequencing-based cell phenotyping is the ability to identify allele-specific
(AS) differences in traits between maternal and paternal chromosomesl11. AS differences
can arise when a sequenced individual is heterozygouscis@aating causal variant and

several studies have highlighted abundant AS changes in a variety of cell traits1,2,5,7. AS
signals provide information both about the existence of a QTL and the likely causal variants
because individuals showing allelic imbalance must also be heterozygous at the causal
site12. However, although both between-individual and AS signals provide complementary
information about genetic associations, principled approaches for combining them are
lacking. In part this is because AS signals are challenging to analyse: allele-specificity can
also be produced by a wide variety of technical factors including reference mapping bias 13,
the presence of collapsed repeats14, PCR amplification bias15,16 and sequencing errorsl17.
Biological phenomena such as imprinting or random allelic inactivation6,15 can also
produce allelic imbalance when m&QTL exists. Genotyping errors can also be a serious
problem, particularly in cases where homozygous SNPs located within a sequenced feature
(feature SNPs, fSNPs) are miscalled as heterozygous6. Effective use of AS information must
take account of these biases to avoid high false positive rates15. Previous strategies to
address these problems have included the creation of personal reference genomes for read
mapping, read masking, genomic blacklists or simulation strategies to compute genome-
wide mapping probabilities that account for reference bias effects. However, it is challenging
to set sensible values for the thresholds that these strategies rely on: overly conservative
settings can lead to a loss of power while overly liberal settings may inflate the false positive
rate. Additionally, genome wide simulations, custom read filtering and alignment steps
significantly increase the time, complexity and computational burden required for analysis.

Here we describe a novel statistical method, RASQUAL (Robust Allele Specific
QUAntitation and quality controL), that integrates between-individual differences, allele-
specific signals and technical biases in sequencing-based cell phenotypes into a single,
probabilistic framework for association mappinge@QTLs. RASQUAL can be applied to
existing data sets without requiring data filtering, masking or the creation of personalised
reference genomes. When applied to RNA-seq, ChIP-seq and DNasel-seq data sets,
RASQUAL significantly outperformed existing methods, both in its ability to detect QTLs
and to fine-map putatively causal variants. We explored how RASQUAL and ATAC-seq
could be used to improve fine-mapping of causal regulatory variants by generating the first
map of chromatin accessibility QTLs (caQTLS) in a European population18. Despite a
modest sample size of 24 individuals, RASQUAL detected over 2,700 independent caQTLs
(FDR 10%) providing a rich resource for the functional interpretation of human noncoding
variation.

Rationale and statistical overview of RASQUAL

If a sequenced feature, such as a ChlP-seq peak, is affected by @/siregelatory SNP
(rSNP) the total number of fragments mapped onto the feature correlates with rSNP
genotype (the between-individual signal; Fig. 1a). When sequenced reads overlap fSNPs
located inside the sequenced feature, AS differences can be detected by comparing the
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numbers of reads that map to one or other allele of the fSNP (the AS signal; Fig. 1a;
Supplementary Fig. 1). RASQUAL models each sequenced feature and considers all
genotyped variants within a given distance of the featurecfgheindow). For simplicity,
RASQUAL assumes a single causal variant at each feature, although multiple causal variants
can be tested for by conditioning on the lead SNP genotype.

The model consists of two components: (1) between-individual signals are captured by
regressing the total fragment couklt, onto the number of alternative alleles at the rSNP,
G{(G;=0,1,2), assuming fragment counts follow a negative binomial distribydigs) with

a scaling parameted, for absolute mean of coverage depth at the feature, and (2) allele-

specific signals are modelled assuming the alternative fragmentYigl)Jat theith fSNP
given the total number of fragments overlapping that fS&/Pfollows a beta binomial
distribution (psg). These model components are connected by the sirsglegulatory
effect parameterrf) such that the expected fragment count is proportional to {Z{L4; A,
2rnA} for G;=0,1,2 and the expected allelic ratio in an individual heterozygous for the
putative causal SNP becomes {Ir;-rz} at heterozygous fSNPs (Fig. 1a); otherwise
{0.5,0.5} for a homozygous individual. The likelihood of RASQUAL model is written as

N L
Z(moen0) 0 I Yop(Gipg VilGimA0) TI Y p(DalGi) by (Y [Ya, Daim,0,0,0)

- G, _ D
1=1 " between—individual signal =1 i
sample fSNP

allele—specific signal

whereDj; denotes the diplotype configuration in individidaketween the putatively causal
variant and th&th fSNP,(G;) and(D;|G)) denote prior probabilities of genotype and
diplotype configuration (obtained from SNP phasing and imputation). In addition tasthe
genetic effect£), the allelic ratio depends up@hthe probability that an individual read
maps to an incorrect location in genome anthe reference mapping bias (where 0.5

corresponds to no reference bias). Overdispersion in )b,cahing” is captured by a single
shared parametét(see Supplementary Methods for details). For simplicity, our model
assumes thay;, the feature count, is independentainde. When this assumption was

relaxed we found that the model performed similarly to the original model (see
Supplementary Methods, section 3.13 for details). Parameter estimation and genotypes are
iteratively updated during model fitting by an expectation-maximisation (EM) algorithm19

to arrive at the final QTL call for each sequenced feature (Supplementary Fig. 2). For each
feature, RASQUAL outputs a likelihood ratio test statistic for the hypothesis of a single QTL
as well as estimated over-dispersion, reference allele mapping bias, sequencing/mapping
error rate at each tested SNP and posterior probabilities for each genotype at the lead rSNP
and fSNPs. RASQUAL also performs a separate likelihood ratio test for imprinting in the
given feature. Although the software presently handles only SNPs, the model could be
extended in future to also incorporate indel mutations. We anticipate that this will require
modification of the model to handle the additional uncertainty in the alignment of indel
mutations.
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RASQUAL improves causal variant localisation

We first investigated the relative importance of the AS and between-individual components
of the RASQUAL model. We assessed power using an RNA-seq data set from 373
lymphoblastoid cell lines (LCLs) in European individuals generated by the gEUVADIS
project3 (Supplementary Table 2). Our analysis used a challenging test of model
performance: how many QTLs mapped using the full data set could our model detect in a
small subsample of the same data? We compared the numbers of eQTLs detected by
RASQUAL in a subsample of 24 individuals of RNA-seq data with the set of “true positive”
eQTLs provided by gEUVADIS project (see Online Methods). Our results clearly show that
RASQUAL'’s combined allele-specific and between-individual level information

significantly outperformed either source alone with the joint model detecting, for example,
40% of eQTLs in the true positive set at false positive rate (FPR) at 10% compared with

32% and 29% for the between-individual and allele-specific only models (Fig. 2a, b). Our
analysis also suggested that eQTLs detected by the joint model are strongly enriched at both
the 5" and 3’ ends, while those found using only allele-specific signals are more enriched
towards the 3’ end of the gene body (Fig. 2b). We also note that our power was not
significantly reduced in weakly expressed genes (Supplementary Fig. 3). This partly because
count-based models more accurately capture uncertainty for low expressed genes, but may
also reflect a limitation of our model testing, because eQTLs are challenging to map in
weakly expressed genes even in large samples such as that published by the geUVADIS
project.

Next we examined how RASQUAL'’s combined model could improve the accuracy of fine-
mapping. Here, we used a set of 47 ChiP-seq samples for CCCTC-binding factor (CTCF) in
LCLs derived from European individuals 9 (Supplementary Table 2). The availability of
population scale CTCF ChiIP-seq data provided a unique opportunity to test fine mapping
performance because causal CTCF QTLs are expected to frequently occur within a well-
defined region: the relatively long and informative canonical CTCF binding motif. We
defined a high confidence set of “motif-disrupting” putatively causal variants by identifying
those SNPs that fulfilled three criteria: (i) they were located within CTCF peak regions (i)
they were located inside CTCF motif matches and (iii) there was concordance between the
predicted and observed allelic effect on binding, where predicted allelic effects were
computed using the CTCF position weight matrix from the CisBP database20 (see Online
Methods for details). RASQUAL'’s combined model dramatically improved causal variant
localisation. CTCF lead SNPs detected by a combined model were over twice as likely to be
motif-disrupting: 29% of lead SNPs in our top 500 CTCF QTLs from the combined model
occurred within the CTCF motif, compared with 14% and 13% of lead SNPs from the allele-
specific or between-individual only models (Fig. 2c,d). An example of a putatively causal
CTCF SNP that was successfully colocalised only by the combined model is shown in (Fig.
2e).

RASQUAL outperforms existing methods

We next compared RASQUAL with three other methods: simple linear regression of log-
transformed, principal component-corrected FPKM values, TReCASE?21 and CHT as
implemented in the WASP package6. A brief summary of the mathematical differences
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between TReCASE, CHT and RASQUAL is presented in the Supplementary Methods. For
this comparison, in addition to the RNA-seq and ChIP-seq data sets, we also analysed
DNasel-seq data from 70 Yoruban individuals5 (Supplementary Table 2) where we again
compared QTLs detected in a subsample with a set of “true positive” DNase QTLs mapped
using the full data (see Online Methods for details). Across all sample sizes in all data sets,
RASQUAL significantly outperforms the other two methods (Fig. 3a-b, Supplementary Fig.
4). At a false positive rate (FPR) of 10% RASQUAL detected between 50 and 130% more
eQTLs and between 60 and 150% more DNase QTLs than simple linear regression and
between 14 and 30% more eQTLs and between 9 and 24% more DNase QTLs than the next
best performing method. We also briefly tested how well RASQUAL performed on larger
data sets, and analysed 100 samples of RNA-seq data from the gEUVADIS data set.
Unfortunately we were unable to get CHT to converge quickly enough to provide a
comparison but, consistent with our results for smaller sample sizes, RASQUAL also
detected substantially more QTLs than either linear regression (2,106 more QTLs at FDR
5%) or TReCASE (597 more at FDR 5%) (Supplementary Fig. 5).

The improvement in variant localisation was even more pronounced with, for example,
RASQUAL lead SNPs in the top 500 CTCF QTLs 2.5-fold more likely be “motif-

disrupting” compared with simple linear regression and 50% more likely than next best
performing method (Fig. 3c). In the majority of cases the next best performing method was
CHT, although it performed significantly worse than both RASQUAL and TReCASE for
larger sample sizes (Supplementary Fig. 4). Fixing the overdispersion parameter of CHT to
the default value rather than estimating it from the data improved performance slightly for
the eQTL data (Supplementary Fig. 6), but hampered performance in the CTCF and DNase
data, where very few QTLs were detected with the default overdispersion parameter. Across
all data sets CHT also took significantly longer to run than RASQUAL, for example

requiring 542 days of CPU time to analyse the CTCF ChIP-seq data set, compared with 36.2
CPU days for RASQUAL (Fig. 3d). In part, this difference is likely to arise because
RASQUAL is written in C to maximise computational efficiency. Another popular package,
Matrix eQTL22, optimises standard linear regression for QTL mapping. For example, in our
tests Matrix eQTL finished QTL mapping in our CTCF ChiIP-seq data within 0.028 CPU
days. However, Matrix eQTL does not use allele-specific information and so will perform
identically to linear regression in all other respects.

In addition to the analysis of real data, we also explored the performance of RASQUAL
using simulations. Our power estimates from simulated data for a range of sample sizes (5,
10, 25, 50 and 100 samples) were qualitatively similar to those estimated from real data
(Supplementary Fig. 7a), and analysis of data simulated under the null hypothesis also
suggested our modétvalues were well-calibrated (Supplementary Fig. 7b-c). We also

found that parameter estimates were highly correlated with their simulated values in all
cases (Supplementary Fig. 8-10). In a small number of cases (<10% of genes) we noticed
that the mapping/sequencing error paramefewés over or underestimated. This occurred
because sequencing and mapping errors are infrequent and typical read coverage can
sometimes be too low for accurate estimatiod.dflowever, analysis of genes whéwas
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inconsistently estimated (Online Methods) suggest that our power and FPR were not
significantly affected (Supplementary Fig. 7d-f).

Overdispersion and genotyping error

We next examined the ability of RASQUAL to handle two common features of high-
throughput sequence data that are problematic for AS analysis: read overdispersion and
genotyping error. Although overdispersion of read count data is well appreciated in the
literature on differential expressioa.§, Anderset al23), it is sometimes overlooked in AS
analysis24—-30. RASQUAL models overdispersion in total read counts and allele specific
counts using a single parameter shared between the AS and between-individual components
of the model. Modelling overdispersion in this way provided a very substantial increase in
power and variant localisation over a Poisson-binomial model for both real and simulated
data (Fig 3e; Supplementary Fig. 11). This result suggests that using non-overdispersed
distributions to model AS signals may inflate the false positive rate, because random
fluctuations in allelic ratios may not be properly accounteddgy, (Supplementary Fig.

12a).

RASQUAL also employs a novel, iterative approach to genotyping error that refines
imperfect genotype calls from genome imputation. Prior to model fitting, we observed an
excess of heterozygous SNPs exhibiting complete monoallelic expression in both the RNA-
seq data (Fig. 3f, Supplementary Fig. 13) and in other data sets (Supplementary Fig. 14, 15).
Although a small fraction of extreme monoallelic expression is expected to be real, the
majority of this excess is likely to result from homozygous individuals that have been
miscalled as heterozygotes §, Supplementary Fig. 12b). In addition to genotyping errors,
RASQUAL can also correct for haplotype switching in heterozygous individuals for rSNPs
with large effects (Supplementary Fig. 16). After fitting RASQUAL the frequency of
monoallelic expression at heterozygous SNPs was significantly reduced (Fig. 3f). Compared
with a model where genotypes and haplotype phase were fixed, the full model also exhibited
a significant increase in power in real and simulated data (Fig. 3e; Supplementary Fig. 11).

Reference bias and mapping error

AS signals can be affected by mapping bias towards the reference genome. Previous
approaches, such as the WASP pipeline 6, have used a filtering strategy to remove reads
suspected of being influenced by reference bias. In contrast, RASQUAL uses a feature-
specific parametep (wherep = 0.5 denoting no bias towards the reference) to detect
individual regions where mapping is biased towards the reference. We found that <1% of all
features exhibited extreme reference bijas 0.25) in all data sets (Supplementary Table 3),
suggesting that reference bias has a minor impact at most genomic loci. Genes with high
reference bias tended to cluster in specific genomic locations and were strongly enriched for
genes in the MHC region (OR = 398z 6.7 x 1022 including most known MHC class |

and Il genes (Fig. 3g and Supplementary Fig. 12c).

An additional problem for allele-specific analysis are reads that map to incorrect genomic
locations, due to problems in the reference assembly or from sequencing errors
(Supplementary Fig. 12d). Thieparameter in RASQUAL captures mapping errors by
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comparing genotype calls with the observed read sequences during model fitting. We next
tested RASQUAL's ability to model read mapping errors in sequenced features. Features
exhibiting larges estimates in the RNA-seq data were enriched in pseudogenes (ORP=7.6;
= 7.5 x 10119 (Supplementary Fig. 17), and for repeat regions and segmental duplications
overlapping within CTCF ChIP-seq peaks (OR = #€;1073%) (Fig. 3h and

Supplementary Fig. 18). Analysis of real data suggested that modelling reference bias and
mapping errors had a small effect on power (Fig. 3e) although, in the case of the DNase
data, the impact of reference bias will be reduced (Supplementary Table 3) because we
followed the protocol published by Degretral/s, which used a variant aware aligner.

Simulations suggested that modest impact of modelling reference bias and mapping error
occurred because, when these parameters were not estimated from data, a small increase in
sensitivity was offset by a similar decrease in specificity, as a result of inflation of test
statistic both under the null and alternative hypotheses (Supplementary Fig. 11b-c).
However, our simulations also illustrated that not accounting for reference bias significantly
increased the chances that a feature SNP would be falsely identified as causal under the null
(Supplementary Fig. 11f). Additionally, a major advantage of modelling reference bias and
mapping errors is the ability to identify and filter associations following QTL mapping.

Genomic imprinting is characterised by extreme allele-specific bias 31,32 and can
sometimes confound QTL mapping. An additional quality control feature of RASQUAL is
the ability to highlight potentially imprinted regions. In RASQUAL, imprinting is detected

by searching for sequenced features where all samples show allelic imbalance but, unlike a
true c/sacting QTL, the identity of the silenced allele varies randomly between individuals
(see Supplementary Methods). RASQUAL provides an additiBnalue that corresponds

to the test for imprinting that can be used to remove putatively imprinted genes from the
analysis. To test the performance of this QC filter, we identified putatively imprinted genes
in 24 RNA-seq samples and compared these to the lists recently published ieBaB4n

from the analysis of LCLs in over 639 LCLs. We detected 16 putatively imprinted genes, of
which 8 were also found Baraat afusing a much larger sample size, a highly significant
enrichment (OR = 4,04%< 10724). When we applied the impriting test to the CTCF ChlP-
seq data (see Supplementary Table 3) we identified three putatively imprinted peaks 1kb
downstream and upstream of H19 (lincRNA) a known imprinted lincRNA33,34.

Mapping caQTLs with RASQUAL and ATAC-seq

We next sought to combine the increased fine-mapping accuracy of RASQUAL with ATAC-
seq, a high-resolution experimental assay to identify regions of open chromatinl8, and
generated genome-wide chromatin accessibility landscapes in 24 LCLs from the 1000
Genomes GBR population18. Despite the modest sample size RASQUAL detected 2,707
caQTLs at FDR 10% using a permutation test. Lead SNPs detected by RASQUAL were
very highly enriched within the ATAC peak itself (841 peaks; OR =109 (Fig. 4a),

with a smaller number in perfect LD with one or more fSNPs within the peak (130 in perfect
LD with a single fSNP, and 34 with 2 fSNPs). In the set of 971 lead SNPs within a peak or
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in perfect LD with an fSNP, the majority (666) overlapped a known transcription factor
binding motif that was disrupted by one of the SNP alleles (Supplementary Fig. 19).

We also detected a small number (173) of “multipeak” caQTLs where the |Bwvakie

SNP was shared across more than 1 peak in a 2Mb window (see Online Methods). For each
multipeak caQTL, we classify peaks into a master and dependent peaks. The number of
dependent peaks ranged from 1 to 9 (Fig. 4b) with a median of one dependent peak per
window. Of these 173, 119 showed a consistent direction of effect between master and
dependent peaks (Fig. 4c). The distribution of distances between the master and dependent
peaks suggested that we find many more interactions over distances of less than 100kb than
expected by chance (Fig. 4d). We were less confident of the interactions over longer
distances given the increased the greater number of discrepant effect directions we observed
between master and dependent peaks, consistent with a greater rate of phasing errors over
larger scales. Using the same procedure in permuted data we detected 56 multipeak caQTLs,
of which 47 contained 1 dependent peak and 9 contained 2 dependent peaks suggesting that
we find almost twice as many multipeak caQTLs as might expected under the null (OR =

2.3; P=7.1 x 107). In some cases, these multipeak associations appeared to result from
enhancer-promoter interactions that are perturbed by a genetic variant. For example,
rs3763469 is the lead caQTL SNP for a region of open chromatin located approximately
2.5kb upstream of the promoter of the COL1A2 gene (Fig. 4e) with the alternative allele
predicted to increase binding affinity of the transcription factor IRF1. However, we observed
that this SNP is also a caQTL for the adjacent ATAC peak located over the promoter region
of COL1A2 gene, for which no other common SNPs were annotated in the 1000 Genomes
database. In other striking examples, we observed genetic associations spanning a large
number of additional peaks spread over many tens of kilobases (Fig. 4f).

Fine-mapping disease and cell trait associations

Our results suggest that, combined with ATAC-seq, RASQUAL is a potentially powerful

tool for fine-mapping causal regulatory variants because many putatively causal caSNPs are
found in a small genomic space (the ATAC peak itself). Our caQTLs significantly

overlapped GWAS associated SNPs for a range of traits (see Online Methods for details),
most significantly rheumatoid arthritis (OR = 525 1.1 x 10°) (Fig. 5a). As one example,

our analysis highlighted the RA-associated SNP rs90968535, which is both a strong caQTL
and eQTL for the SYNGR1 gene, as a likely causal variant located within an ATAC peak
downstream of the promoter (Supplementary Fig. 20). In other cases, our analysis
pinpointed instances of multiple, putatively causal variants located within the same ATAC
peak. For example we found a suggestive chronic lymphocytic leukemia susceptibility SNP
(rs252126936) in perfect LD with two putatively causal ATAC variants (Supplementary Fig.
21) that appear to alter the expression of the two adjacent genes, C110RF21 and TSPAN32
(Supplementary Fig. 22).

The caQTLs we detected were also significantly enriched for other cellular QTLs detected in
LCLs including DNasel-seq, CTCF ChiIP-seq and RNA-seq data sets (Fig. 5d), with
multipeak QTLs more than twice as likely to be associated with gene expression than normal
caQTLs. Our caQTLs were most strongly enriched in a set of replication timing QTLs
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(tQTLs) (OR = 11.0P= 1073) recently mapped in LCLs37. This enrichment was even
more extreme when we considered multipeak caQTLs, which were 10 times more likely to
be associated (OR = 1778z 1.26 x 109) (Fig. 5d) than normal caQTLs. The example
multipeak QTL SNP rs2886870 (Fig. 4f) is in perfect LD with the ntQTL SNP (rs6786283)
detected in Koremt af37 in Europeans.

Discussion

We have developed a novel statistical model, RASQUAL, for mapping associations between
genotype and sequence-based cellular phenotypes. In our tests, RASQUAL consistently
outperformed existing methods across a range of sequence data types. We generated a novel
ATAC-seq data set in LCLs from European individuals and illustrated how RASQUAL can

be used for fine-mapping disease-associated variants and for uncovering fundamental
mechanisms of gene regulation.

A major difference between RASQUAL and the other methods we have tested is that
RASQUAL handles bias and detection of genetic signals in a single statistical framework,
using information from all individuals and without relying on data filtering. This strategy

leads to better numerical stability and parameter estimation, improving power and fine-
mapping accuracy. RASQUAL also employs novel modelling strategies compared with other
methods, including iterative genotype correction and the use of a single overdispersion
parameter shared across the between-individual and allele-specific model components to
further improve model stability. The relative importance of different parameters varied:

power and fine-mapping were mostly impacted by better estimation of overdispersion and by
genotype correction while sequencing error primarily improved RASQUAL's fine-mapping
performance. We found that reference bias had a minor impact on both fine-mapping and
power, as also suggested by other recent work38. Additional performance might be achieved
by the use of variant-aware aligners or alternative modeling strategies to further minimise
reference bias.

The integrative approach employed by RASQUAL also improves usability. Users of
RASQUAL are not required set arbitrary thresholds for data quality control, or perform
computationally intensive read remapping or simulations. Although users can set prior
distributions for certain model parameters, our analysis suggests that the default values
perform well (see Online Methods). RASQUAL can also highlight genomic regions with
problematic AS signals, enabling more informed downstream analysis. Additionally, by
minimising the amount of data removed, RASQUAL avoids inadvertant removal of real
signal, which may be a problem for filtering strategies. For example, although we found
WASP successfully reduced reference bias (Supplementary Fig. 23), it also removed
between 22 and 31% of reads in our RNA-seq subset analysis while making a relatively
minor difference in power for association detection and fine-mapping (Supplementary Fig.
24). We note, however, that WASP is being actively developed and these results will likely
improve the pipeline continues to be refined. One caveat of our analysis is that the “true”
positive QTL calls from the geUVADIS project and Degeeér/s could also be influenced

by similar biases to those we have modelled within RASQUAL. However, our results from
real and simulated data are extremely similar, suggesting that the impact of many biases on
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our “true” positive QTL calls is small, probably because neither gEUVADIS or Degregr

5 used allele-specific information to call QTLs. Finally, although our results suggest that
RASQUAL improves fine-mapping for sequencing based traits, further work is required to
combine cellular QTL studies with those from disease studies.

We now briefly consider the experimental settings in which RASQUAL'’s performance is
likely to be optimised. Dense genotyping, either from imputation or whole genome
sequencing, is critical because this ensures that sequenced features contain as many variable
sites as possible. It is also important that genotype likelihoods are available to enable
RASQUAL to perform genotype error correction and poor quality imputation or phasing
information is likely to significantly impair RASQUAL's ability to detect QTLs. This will

be particularly problematic when the distance between the true rSNP and fSNP is large, due
greater likelihood of haplotype switching errors. RASQUAL will also be sensitive to the

depth of read coverage at feature SNPs, as greater coverage will enable more accurate
guantification of allele-specific signals. As one example, the mean read coverage per sample
in our ATAC-seq data was 68.8 million fragments. For individual features, we expect the
most dramatic improvements in sensitivity and fine-mapping to be observed for large
features, containing many heterozygous SNPs with high read coverage. We note that, while
dense genotyping information is preferable, it is not essential and it is possible to also run
RASQUAL in in a “genotype-free” mode. Here, only SNPs located inside sequenced
features are considered, genotypes are learned from the read data and SNP locations are
specified using, for example, dbSNP. Although lack of genotype information will reduce
power substantially, it can enable analysis of sequence data sets where genotype data are
absent and standard QTL analysis is not possible39.

We found that all methods that use allele-specific information showed a enrichment of lead
eQTL SNPs towards the 3’ end of the transcript. One explanation for this result is that allele-
specific analysis is more sensitive to changes in splicing of gene 3' UTRs, which often
accounts for a large fraction of the total reads mapped to many genes. Some evidence for
this comes from the fact that eQTLs detected using only allele-specific signals are enriched
for exon QTLs (Supplementary Fig. 25c, f). While changes in splicing are legitimate
biological signals, we note that eQTLs detected using any allele-specific method should not
immediately be interpreted as “classical” eQTLs and that examination of the location of the
lead SNP may assist functional interpretation.

Our results also illustrate how RASQUAL can be used to extract meaningful genetic signals
from data sets of a modest size. For example, our analysis of ATAC-seq data demonstrates
how genetic variation can be leveraged to connect distal regulatory elements with gene
promoters or with other regulatory elements. A strength of this approach, compared with
experimental technigues such as Hi-C or CHIAPET, is that these interactions are linked to
specific genetic changes enabling potential characterisation of causal relationships between
regulatory elements and their target genes. We expect that genetic analysis of long-range
regulatory interactions will be a powerful complement to standard experimental techniques
in future, more well-powered studies.
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RASQUAL's performance with modest sample sizes will potentially enable researchers to
collect and analyse multiple complementary sequence data sets, rather than being forced to
maximise the sample size for an single phenotype. Combined with RASQUAL'’s improved
ability to localise causal variants we suggest that a major future application of our model

will be the fine-mapping of causal regulatory variants to better understand the molecular
mechanisms underlying phenotypic variation.

Online methods

Hypothesis testing for inference of QTL

For statistical hypothesis testing of QTL, all five parameters for each SNP-feature
combination in thec/sregulatory window are estimated independently to get the maximum
likelihood under alternative hypotheses. Under the null hypothesis, all parametersmexcept
are estimated for each feature independently, whikeset to 0.5 and we use a likelihood

ratio test to compare the null and alternative hypotheses for each SNP-feature combination
using the/y2 distribution with one degree of freedom (fgx. We use an EM algorithm to

obtain the maximum likelihood estimators of the parameters4. We do not introduce any
common parameters across features estina@br but instead introduced prior

distributions for all the parameters (see Supplementary Methods for details) to increase the
stability and usability of RASQUAL. A detailed description of the derivation of statistical
model and the EM algorithm is available in the Supplementary Methods.

Data preprocessing of sequencing traits

The gEUVADIS RNA-seq data was downloaded from ArrayExpress (Accession E-

GEUV-3), CTCF CHIP-seq data was downloaded from the European Nucleotide Archive
(Accession ERP002168) and the DNasel-seq was downloaded from the Gene Expression
Omnibus (Accession GSE31388). All data sets were realigned to human genome assembly
GRC37. RNA-seq data were aligned using Bowtie 25 and reads mapped to splice junctions
using tophat 26, with ENSEMBL human gene assembly 69 as the reference transcriptome.
CTCF ChIP-seq data was realigned using bwa7 and the DNasel-seq was realigned using the
alignment method described in Degme#ia/3. Following alignment, we removed reads with

a quality score of <10 from all three data sets.

For the CTCF ChlIP-seq and DNasel-seq data, we generated genome wide read coverage
depths from either the fragment midpoints or cut site data respectively. Peaks were called by
comparing two Gaussian kernel densities with bandwidths of 100 and 1,000 bp,
corresponding to a “peak” and “background” model respectively. We then defined a peak as
a region where the peak kernel coverage exceeded the background kernel coverage, and
where the peak coverage was greater than 0.001 fragments per million.

For RNA-seq data, we counted the number of sequenced fragments of which one or other
sequenced end overlaps with an union of annotated Ensembl gene exons. For CTCF ChIP-
seq and ATAC-seq data, we counted the number of sequenced fragments of which one or
other sequenced end overlaps with the annotated peak. For DNasel-seq data, we simply
counted the number of reads that are overlapping with the annotated peak. For the
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computation of principal components we also calculated FPKM and RPKM values for these
data sets (see Supplementary Methods). All sequence data sets were corrected for between
library variation in amplification efficiencies of different GC content reads. For each sample,
all features were binned based on their GC content, the relative over-representation of
features of a given GC content for a given sample relative to all other samples was estimated
using a smoothing spline. This value was then either included as a covariate, in the
comparison of CHT, TReCASE and RASQUAL, or to correct RPKM or FPKM values for

the linear model.

SNP genotype data preparation

We downloaded VCF files for the 1000 Genomes Phase | integrated variant set from the
project website. Because RNA-seq and ATAC-seq samples completely overlapped with the
1000 Genomes samples, we used the subsamples from the VCF files. For CTCF ChIP-seq
and DNasel-seq data, samples were completely overlapped with the HapMap samples
(except for NA12414 in CEU population and NA18907 in YRI population) but not 1000
Genomes samples. Therefore we downloaded the HapMap phase Il & lll genotypes from the
project website and imputed with the 1000 Genomes Phase | haplotypes using IMPUTEZ28.
For the two samples which are not in HapMap samples, we obtained genotypes from the
1000 Genomes data at HapMap SNP loci and merged before the imputation. We adopted the
common 2-step imputation approach to phase HapMap genotypes first and then impute
haplotypes. Note that, to apply whole genome imputation, we split each chromosome in
20Mb bins with 100kb overlaps.

For any cellular trait mapping, we used SNP loci with minor allele frequency greater than
5% and imputation quality score (MaQ®f or IMPUTE2 /4 greater than 0.7 for candidate
rSNP. For fSNPs, we used all SNPs overlapping with the target feature with at least one
individual being heterozygote. For TReCASE analysis, we merged AS counts at those
fSNPs with heterozygous genotypes for each feature according to the phased haplotype
information. Indels and other structural variants were discarded.

Definition of true QTLs

The eQTL/exon-QTL lists detected using the entire gEUVADIS European dafs=Sin3)

at FDR 5% were downloaded from the EBI website (see URLSs section). dsQTLs were
downloaded from the University of Chicago eQTL browser (see URLs section) and used the
UCSC liftover tool to transfer genome coordinates to hg19. We then obtained peaks (in our
annotation) that overlapped with the reported dsQTL regions as a gold standard dsQTL peak
set.

URLs

RASQUAL software and documentation is available fidips://github.com/dg13/rasqugEUVADIS eQTLs and exon QTLs were
downloaded fromH(tp://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/EUR373.gene.cis.FDR5.best.rs137andigip://
www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/EUR373.exon.cis.FDR5.best.rs137.648@¥Ls were downloaded frontip://
eqtl.uchicago.edu/dsQTL_data/QTLs/GSE31388_dsQtlTable.txt.gz
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CTCF motif-disrupting SNPs

At each CTCF peak, a lead SNP was defined by each method as the SNP with th2lowest
value. In cases where there were multiple lead SNPs, a lead SNP was selected at random
from the set of lowes®value SNPs. Motif-disrupting SNPs were defined as SNPs located
within a CTCF peak and putative CTCF motif, whose predicted allelic effect on binding
(computed using CisBP 2 position weight matrices (PWMs)) corresponded to an observed
change in CTCF ChIP-seq peak height in the expected direction.

The predicted allelic effect is calculated from a PWM as follows S,gbe the reference
sequence at chromosomal position betwaandb on a chromosome. We assume a SNP
locus at chromosomal positianFor a PWM with motif length, we calculate the binding
affinity score

1 C _
w (Sa:b):m > [PWM (Sijym—1) +PWM <5i:j+m—1>]a
: j=c—m+1

wherePWM-) denotes the PWM score f6;.,andg ., denotes the reverse complement

sequence o8, We also calculated the affinity score for the sequsgfgevvhere the
reference sequence at positigithat isS,., is replaced by the alternative allele of the SNP.

We comparedu S;.p with w (@%) to determine which SNP allele is over-represented at the
putative binding site involving the SNP locuscat

For CTCF-binding motifs, there exist multiple PWMg67) reported in Weirauckt al2.
We simply took the average affinity scag (S,,.;,) across all PWMs. Then we considered

only SNPs that gave eithw (S,.;,) >0 or & (ng3> >0 as a SNP in a CTCF motif starting at

chromosomal positio,j, such that

J=_argmax PWM (Sjjym—1) +PWM (8j51m 1) +PWM (S§)

j=c—m+1,....c j:j+m71> +PWM <5V§‘?J)'+m71> .

Multiple testing correction

Following Battleet a9, we implemented a two-stage multiple testing correction to
determine which features contain a significant QTL. First, because SNP density varies
between genomic regions, QTL mapping for different features involves testing different
number of SNPs. This results in leBdalues that are incomparable across features because
more SNP dense regions will involve greater numbers of tests and therefore Svallers
observed by chance under the null hypothesis. As in Batt® we used a Bonferroni
correction to correct for multiple tests within windows.

After Rvalues for each feature have been corrected for the number of testei the
window, they are used to set the false discovery rate (FDR) threshold for the number of
features tested genome-wide. Here we used a permutation strategy as in &ieitéll
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Specifically, we drew random permutationg)for total fragment count and {j} for AS
counts at each fSNAndependently. Then we maximise the following likelihood

N L
gperm(@):]:[zp (Gi)pNB (5/(2) }GZ> H Z p (D(ZI)Z‘G1> Pgp (Y'(Ell))l ‘Yzil)l’ D(il)l)
=16, I=1D(, ),

with respect t® = {r, ¢, 8, A, 6} to obtain the likelihood ratio statistic (betweer= 0.5
andr 7.5). Here, D;,); denotes the diplotype configuration betwe&grmand permuted
fSNPG;,),. Pvalues obtained from permuted data were corrected for multiple tests within

each feature as described for real data. Then the permufalhmes{p?erm;j:L ey J}
for total Jfeatures were compared with the r€alalues {; /= 1, ..., J to calibrate
genome-wideRvalue threshold: under the false-discovery rate

# {klpe™ <}

FDR=
# {k|pr<a}

ATAC-seq in LCLs

The ATAC-seq method used was as described in Buenresaft 1, but with some

modifications: (1) 100,000 LCL nuclei obtained from sucrose and Triton X-100 treatment
were tagmented using the lllumina Nextera kit and then subject to limited PCR
amplification, incorporating indexing sequence tags (2) ATAC libraries were purified and
size selected before pooling (3) index tag ratios were balanced using a MiSeq (lllumina) run
before deep sequencing with 75bp paired-end reads on a HiSeq 2500 (lllumina). For more
details, see Supplementary Methods.

Mapping multi-peak caQTLs

For the 971 caQTLs whose lead SNPs are found in the peak or in perfet b (99)

with one fSNP, we asked how many of those caQTL SNPs are appeared to be the lead SNP
for other peaks (not necessarily significant). We found 173 out of the 971 caQTL SNPs were
shared with other peaks or in perfect LD with the lead SNP of those other peaks. We defined
the peaks involved those caQTL SNPs as “master” caQTL peaks and other peaks sharing
those lead caQTL SNPs as “dependent” peaks. If there are two or more caQTL SNPs in
perfect LD, we picked up the peak with the most significant lead caQTL SNP as the master
peak. We further filtered out dependent peaks whose effect sizes are inconsistent with those
of the master peaks. We obtained 119 caQTL peaks which have one or more dependent

peaks with consistent effect Siz(# y,aster, 7 dependent >0.5 OF Tmasters T dependent <0.5) . Note
that if two lead SNPs are in LD but negatively correlater] &= —-1), the effect size was

subtracted from 1 for the dependent peak, (tqependent < 1 — Tdependent ) -

Disease enrichment analysis for ATAC QTLs

We obtained the publicly available GWAS catalogue datal2 from the UCSC website created
on Mar 2015. We only included studies that had at least 10 hits that were genome-wide
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significant of P< 5 x 108 that overlapped with the SNPs tested in ATAC QTL mapping
(5,703,168 loci as a total) and were based on European populations with the sample sizes
greater than 1,000. The resulting data set contained GWAS on 101 diseases and other traits.
Because of tight LD, different index SNPs in the same locus were reported by multiple

GWA studies for a single disease/trait. Likewise, multiple LD SNPs were significantly
associated with a single ATAC peak. To merge these LD SNPs, we assigned the lead ATAC
peak with the minimunfRvalue for each SNP locus and counted the number of lead peaks
(instead of SNPs) that are significantly associated with a disease/trait and/or ATAC QTLs
(Supplementary Fig. 26). The disease/trait enrichment was assessed using a Fisher’s exact
test. The number of tested peaks is different across SNPs because multiple testing correction
has been applied for each le@dalue and SNPs with the corrected l¢adalues less than

FDR 10% were called as significant ATAC QTL SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Schematic of RASQUAL approach. Throughout, reference and alternate alleles are coloured
blue and red and coded 0 or 1, respectively, while alternative haplotype are coloured orange
and green, respectively. (a) Plot illustrates the two sources of input data to RASQUAL:
between-individual and AS signals, as observed from sequence data. Left panel shows the
fragment count (FC) is proportional to rSNP genotype and right hand panel illustrates how
those two signals are connected by ¢fsregulatory effectr after conversion of AS counts

into haplotype specific expression (see Main text for details). (b) Visual representation of the
key RASQUAL features and parameters. Overdispersion introduces greater heterogeneity in
the AS count than would be expected under binomial assumption. RASQUAL models the
overdispersion in AS counts and total fragment counts with a single paramneter

Genotyping error introduces complete allelic imbalance when homozygote is miscalled as
heterozygote. Haplotype switching produces inconsistency of allelic imbalance among SNPs
within an individual. Reference bias occurs when sequence reads containing the alternative
allele(s) are unmappable to the correct location. RASQUAL employs a parantieaér

captures the excess of allelic imbalance beyond the genetic eff8eguencing/mapping

error introduces additional allelic imbalance or genotype inconsistency. RASQUAL

explicitly models the proportion of reads that are erroneously sequenced or mapped from
incorrect genomic location by paramesaio allow imperfect sequencing results. Imprinting
introduces strong allelic imbalance that can confounds with genetic effects.
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Figure 2.

Cgmparing between-individual only (BI), allele-specific only (AS) and combined models. In
panels a-d, red curves indicate the joint RASQUAL model, blue indicates the AS only signal
and grey indicates the between-individual only signal. (a) ROC curves for detecting known
eQTL genes (see Online Methods) for the three different models in a random subset of 24
individuals from geUVADIS RNA-seq datal. Dotted line indicates FPR=10%. (b) Density
plot shows the enrichment of top 1,000 lead eQTLs relative to the gene body and 5'/3’
flanking regions. (c) Density plot showing positional enrichment of the lead CTCF QTL
SNPs near the CTCF peak, relative to all SNPs, aggregated over the top 1,000 detected
CTCF QTLs. (d) The percentage of motif-disrupting lead SNPs it CF binding

QTLs. Motif-disrupting SNPs were defined as SNPs located within a CTCF peak and
putative CTCF motif, whose predicted allelic effect on binding, computed using CisBP
position weight matrices2, corresponded to an observed change in CTCF ChlP-seq peak
height in the expected direction (see Online Methods). Ordering of the top QTLs was based
on their statistical significance independently measured by the three models. (e) Regional
plot of Rvalues around an example CTCF binding QTL (top panel) and CTCF ChIP-seq
coverage plot stratified by the lead SNP detected by the joint model (rs1294705) (bottom
panel). The sequencing logo (Accession M4325) was derived by the CisBP database analysis
of ENCODE CTCF ChlP-seq for GM12878 conducted by Broad Institute.
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Figure 3.
Comparison of RASQUAL with the combined haplotype test (CHT), TReCASE and simple

linear regression of log-transformed, principal component-corrected FPKM values (Lm).
Dotted line indicates FPR=10% throughout. (a) ROC curves for detecting known eQTL
genes (see Online Methods) in a random subset of 25 individuals from geUVADIS RNA-seq
data. (b) ROC curves for detecting known DNasel QTLs in a random subset of 25
individuals from DNasel-seq data 3. (c) Percentage of motif-disrupting SNPsAh¢al
CTCF-binding QTLs. Ordering of the top QTLs was based on their statistical significance
independently measured by the four models. (d) CPU time in days required by each method
to finish mapping CTCF QTLs genome-wide. (e) ROC curves for detecting known eQTL
genes in a random subset of 25 individuals from gEUVADIS RNA-seq data. The original
RASQUAL model (red) is compared to a model with fixed referencegxa8.5 (light

blue), fixed mapping/sequencing eré« 0.01 (dark blue), fixed genotype likelihood

(yellow) and no overdispersiaf(poisson-binomial model; grey). (f) Allelic imbalance at
heterozygous fSNPs (coverage depth > 20). Heterozygous fSNPs are called as maximum “a
priori” genotype (blue) and maximum “a posteriori” genotype (red) (g) The reference bias
parameter}for RNA-seq data estimated by RASQUAL in the MHC region
(chr6:28,477,797-33,448,354). Genes vwﬁth 0.25 are coloured in blue. (h) Example of a
genomic distribution of the sequencing/mapping er@)e(stimated by RASQUAL for the

CTCF ChIP-seq data. Colours represent known segmental duplications (orange), simple
repeats (green) or both (blue).
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Figure 4.

ATAC-QTL mapping with RASQUAL. (a) Positional enrichment of ATAC-QTL lead SNPs,
relative to all SNPs, across all 2,707 FDR 10% significant associations detected; inset shows
proportion of lead SNPs located inside, outside and in perfectZLbQ.99) with a SNP

inside the ATAC peak. (b) Breakdown of multipeak caQTLs in terms of the number of
dependent peaks. (¢) Comparison of effect siz}between master and dependent peaks.

(d) Distribution of peak distance between master and dependent peaks. (e) Example of a
multipeak ATAC-QTL (rs3763469) that perturbs a putative enhancer-promoter interaction in
the COL1A2, also driving variation in gene expression (RASQUAL e®@F.3.4 x 1042

on gEUVADIS 343 EUR samples). Sequence logo illustrates the IRF1 position weight
matrix from JASPAR (f) Example of a multipeak QTL (rs2886870) disrupting the NFKB
motif drives associations at 6 peaks in the intron and promoter of the MB21D2 gene. The
SNP is also an eQTL of this gene (QEUVADIS projeet 5.2 x 10°4on 373 EUR

samples).
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Figureb.
Enrichment of caQTLs and multipeak caQTLs for SNPs associated with other cellular and

organismal traits from GWAS. (a) Disease/traits in GWAS catalogue that are enriched in
caQTLs (Fisher exa#0.01). The dot shows the odds ratio between each disease/trait and
caQTL, and black line shows its 95% confidence interval. (b) Cellular trait QTL enrichment
in caQTL (black) and multipeak caQTL (red). The dot shows the odds ratio between each
diseasel/trait and caQTL, and the black line shows its 95% confidence interval. The red arrow
shows the confidence interval continues toward 451. Hodgkin’s lymphoma (HL); Vitiligo
(V); Systemic lupus erythematosus (SLE); Systemic sclerosis (SS); Multiple sclerosis
(MS);Chronic lymphocytic leukemia (CLL); Age-related macular degeneration (AMD);
Rheumatoid arthritis (RA); Blood metabolite levels (BML); Metabolic traits (MT);

Ulcerative colitis (UC); Inflammatory bowel disease (IBD); Crohn’s disease (CD); DNA
replication timing QTL (rtQTL); DNasel hypersensitive QTL (dsQTL); CTCF binding QTL
(ctcfQTL); expression QTL (eQTL).
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