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Abstract

Haplotype phasing is a fundamental problem in medical and population genetics. Phasing is
generally performed via statistical phasing within a genotyped cohort, an approach that can attain
high accuracy in very large cohorts but attains lower accuracy in smaller cohorts. Here, we instead
explore the paradigm of reference-based phasing. We introduce a new phasing algorithm, Eagle2,
that attains high accuracy across a broad range of cohort sizes by efficiently leveraging
information from large external reference panels (such as the Haplotype Reference Consortium,
HRC) using a new data structure based on the positional Burrows-Wheeler transform. We
demonstrate that Eagle2 attairns20x speedup andl10% increase in accuracy compared to
reference-based phasing using SHAPEIT2. On European-ancestry samples, Eagle2 with the HRC
panel achieves >2x the accuracy of 1000 Genomes-based phasing. Eagle2 is open source and
freely available for HRC-based phasing via the Sanger Imputation Service and the Michigan
Imputation Server.

Haplotype phasing is a central problem in human gefe@ger the past decade, phasing

has most commonly been performed via statistical methods applied within a genotyped
cohor£"14 Wet-lab technologies for direct phasing have also generated considerable recent
interest, but these methods are currently much less sé&ldnlgeneral, the accuracy of
statistical phasing methods increases steadily with sample size due to improved modeling of
linkage disequilbrium and increasing prevalence of identity-by-descent. We and others have
recently developed methods that achieve very high statistical phasing accuracy in cohorts
comprising a large fraction of a populaffar containing >100,000 samplés4 However,

for smaller cohorts, accuracy of cohort-based statistical phasing is fundamentally limited by
the quantity of data available.

Here, we explore an alternative paradigm, reference-based phasing, which can achieve high
accuracy even in smaller cohorts by leveraging information from an external reference panel.
This paradigm targets a user group complementary to recent methods for phasing very large
cohortd3:14 |n particular, methods for mapping molecular QTLs using allele-specific reads
require accurate phasing information, but recent papers introducing these methods have
reported that inaccurate phasing currently limits their potéftal

We present a new reference-based phasing algorithm, Eagle2, which we have incorporated
into the Sanger Imputation Service and the Michigan Imputation $8teegperform free
reference-phasing using the 32,470-sample Haplotype Reference Consortiu¥HRi3)
approach achieves >2x improved phasing accuracy over 1000 Genomes-based phasing on
small European-ancestry cohorts, with smaller improvements for larger cohort sizes. The
Eagle2 algorithm represents a substantial computational advance over existing reference-
based phasing algorithms: Eagle2 achieves a 20x speedup over SHXREI&2 genome-

wide phasing in 1.5 minutes per sample—with a 10% improvement in accuracy across a
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range of ancestries. Eagle2 achieves this performance via two key ideas that distinguish it
from previous phasing algorithfi8% a new data structure based on the positional Burrows-
Wheeler transforaf and a rapid search algorithm that explores only the most relevant phase
paths through a hidden Markov model (HMM). We have released Eagle2 as open-source
software (see URLS).

Overview of methods

The Eagle2 phasing algorithm takes as input a diploid target sample and a library of
reference haplotypes. The statistical model underlying Eagle2 is a haplotype copying model
similar to the Li-Stephens modélused by previous HMM-based methods. However,

Eagle? has two key differences compared to previous HMM-based methods. First, whereas
previous approaches approximate the haplotype structure (e.g., by merging haplotypes into
local clusters) to produce a more tractable HMM, Eagle2 efficiently represents the full
haplotype structure in a way that losslessly condenses locally matching haplotypes. Second,
using this representation, Eagle2 selectively explores the space of diplotypes—i.e.,
complementary pairs of phased haplotypes—in a way that only expends computation on the
most likely phase paths (i.e., diplotypes with highest posterior probabilities). This approach
is distinct from the dynamic programming or sampling methods employed by previous
phasing software and enables much greater computational efficiency. In more detail, Eagle2
efficiently represents haplotype structure by introducing a new data structure, the HapHedge,
which can be generated in linear time using the positional Burrows-Wheeler transform
(PBWT)O. Eagle2 then explores diplotypes using a branching-and-pruning beam search. We
provide a schematic of the method in Figure 1 and present full details in Online Methods
and the Supplementary Note.

We note that the Eagle2 algorithm is very different from the long-range phasing algorithm

we recently developed for phasing extremely large coloft8/e refer to the previous

method as Eaglel.) The basic idea of Eaglel was to harness identity-by-descent among
distant relatives—which is pervasive at very large sample sizes but rare among smaller
numbers of samples—to rapidly call phase using a fast scoring approach. In contrast, Eagle2
analyzes a full probabilistic model similar to the diploid Li-Stephens model used by

previous HMM-based methods. Consequently, whereas Eaglel suffered decreased accuracy
compared to HMM-based methods when used to phase <50,000 samples, Eagle2 achieves
improved accuracy over previous methods for both small and large haplotype reference
panel sizes, as we demonstrate below. We note that when a reference panel contains fewer
than twice as many samples as the target cohort, Eagle2 iteratively augments the reference
panel with inferred target haplotypes (Online Methods); under this paradigm, reference-
based phasing should always improve accuracy over cohort-based phasing. We also note that
the Eaglel algorithm was originally only implemented for cohort-based phasing; in this

work, we have extended the implementation to reference-based phasing for the sake of
comparison. Likewise, we have implemented a cohort-based version of Eagle2 that we also
benchmark below.
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Phasing performance using genotyped reference panels

We first benchmarked Eagle2 against previous reference-based phasing methods using
reference panels generated by phasing subsets of genotyped cohorts. These benchmarks
allowed us to explore a greater range of reference panel sizes and genetic ancestries than
currently available in sequenced reference panels (agt82,470 samples currently in the
HRC are predominantly European), understanding that genotyped reference panels
containing a limited set of markers are not broadly useful for reference-based phasing. We
performed benchmarks using a total of five data sets: the UK Biobank Zcfimitthe four
GERA sub-cohorts, which were genotyped on four distinct European, African, East Asian,
and Latino genotyping arraé24 All five data sets were typed on arrays containing 650K—
850K autosomal markers with typical heterozygosity and missingness rates, and each data
set contained a small subset of mother-father-child trios (Online Methods and
Supplementary Table 1).

For the UK Biobank reference-based phasing benchmarks, we generated simulated reference
panels by randomly selectifges = 15,000, 30,000, 50,000, or 100,000 samples (not

containing trio members) and phasing them using E&$l¥le phased each subset

independently (rather than phasing all samples together and then extracting subsets) to better
reflect the phase inaccuracy that would be present in a real reference panel of a given size.
We then benchmarked the computational cost and accuracy of reference-based phasing
methods by using each panel @ haplotypes to phase sets of other UK Biobank target
samples including the 70 European-ancestry trio children, which we used for benchmarking
accuracy (Online Methods). To cover a wide range of linkage disequilibrium structure, we
performed these benchmarks on chromosomes 1, 5, 10, 15, and 20 (a total of 174,595
markers comprising25% of the genome) using Eagle2, SHAPER BHAPEIT2 with its
—no—mcmc option (which increases speed at the expense of accuracy), and a reference-based
version of Eaglel that we implemented for comparison. We also attempted to benchmark
Beagle v4.%5 but found it was too slow for this benchmark to be practical: for the smallest
analysis (chromosome 20 witties = 15,000 andViarget= 72), Beagle v4.1 required 3.6

days (in contrast to 1.1 minutes for Eagle2). (We note that the focus of BeagRis sl

haploid imputation algorithm, which is much faster than its phasing algorithm.) We did not
benchmark HAPI-UR! as HAPI-UR does not implement reference-based phasing.

We observed that Eagle2 achieved 12—-38x speedups over SHAPEIT2 for performing
reference-based phasing using panels of8jge= 15,000-100,000 (Fig. 2a and

Supplementary Tables 2 and 3). Moreover, unlike the other methods we benchmarked, the
computation time Eagle2 required to phase each target sample was nearly independent of the
reference size. (For very large reference panelsAgitfs>> 100,000, the computational cost

of Eagle2 will eventually increase willief; sSee Online Methods and the Supplementary

Note.) Eagle2 achieved running times similar to Eaglelz@xdfaster than SHAPEIT2 —

no—mcmc (both of which are much less accurate methods than Eagle2 and SHAPEIT2 when
used with reference panels of these sizes; see below). All methods had low memory costs
(<7GB for M=57,753 SNPs on chromosome 1 whfas = 100,000; Supplementary Table 3).

In our accuracy benchmarks, which we computed using gold standard trio phase calls, we
observed that Eagle2 achieved 5-16% lower switch errof ratespared to SHAPEIT2,
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with larger gains for lower values 8¢ in the 15,000-100,000 range (Fig. 2b and
Supplementary Table 2). Eagle2 achieved 4-36% lower switch error rates than Eaglel and
63—-81% lower switch error rates than SHAPEIT2 —ho—mcmc in the Aggprange. All
differences were statistically significant (binomisl0.003 or less for each comparison of
Eagle2 with SHAPEIT2p=0.02 or less for each comparison with Eaglel, @i 21 for

each comparison with SHAPEIT2 —no—mcmc).

Both Eagle2 and SHAPEIT2 have an important param&tehat specifies the number of
conditioning haplotypes used to phase each target sample and thus adjusts the speed-
accuracy trade-off. We therefore also investigated the effects of vatyifWe note that the
default values and precise meaning of this parameter are different for Eagle2 vs. SHAPEIT2;
by default, SHAPEIT?2 locally selects=100 best reference haplotypes in each 2Mb

window, while Eagle2 selects a fixed setk3f10,000 best reference haplotypes to use for

the entire chromosome. This difference may be responsible for the slightly lower rate of
improvement in accuracy of Eagle2 relative to that of SHAPEITZ&sncreases at fixed

K in Fig. 2b.) We considered a range of value& ifom 0.5-4 times the defauif, similar

to previous benchmarks of SHAPE/2The effects of varying were broadly consistent

for Eagle2, SHAPEIT2, and SHAPEIT2 —no—mcmc: all methods required similarly
increased computation time and achieved improved accuracy with larger vakiésigf

2c,d and Supplementary Tables 2 and 3). In particular, increasing the number of
conditioning haplotypes by a factor of 4x required 2—3x more computation time for both
Eagle2 and SHAPEIT2 while achieving similar decreases in switch error rates (12-20% and
17-19%, respectively, foktes = 15,000—100,000; Supplementary Table 2). All

improvements were statistically significant (binongialL0~8 or less).

To assess the robustness of these accuracy benchmarks across genetic ancestries, we
performed a similar set of benchmarks using the European, African, East Asian, and Latino
GERA sub-cohorts (Online Methods). Because the latter three sub-cohorts were relatively
small (Supplementary Table 1), we generated a single simulated reference panel for each
sub-cohort containing all samples not belonging to trio pedigrées<3,817, 5,164,

7,144, and 61,684 for the African, East Asian, Latino, and European sub-cohorts). We
phased the three smaller panels using SHAPEIT2 and phased the European panel using
Eaglel. We then benchmarked reference-based phasing accuracy by phasing the trio parents
within each sub-cohort using the panel generated from that sub-cohort, running each method
with default parameter settings. (We phased trio parents rather than trio children for these
benchmarks because the three smaller data sets contained only 3—7 independent trios each;
Supplementary Table 1.) These benchmarks confirmed our findings from the UK Biobank
data: Eagle2 achieved 5-23% lower switch error rates than SHAPEIT2, and we observed the
same relative ordering of accuracies as before across all sub-cohorts (Figure 3 and
Supplementary Table 4). All differences were statistically significant (binguaid™" or

less). We note that every method had a higher switch error rate in the GERA European sub-
cohort compared to the UK Biobank, presumably due primarily to a more diverse set of
ancestries represented. In general, absolute switch error rates are not directly comparable
among data sets due to differences in demography and genotyping properties (e.g., chip
density, allele frequency distribution, and genotype error rate).
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Phasing accuracy using the 1000 Genomes and HRC panels

We next benchmarked reference-based phasing using either the 1000 Genomes Project Phase

3 reference panel (containifg-2,504 samples from 26 populatioffsyr the HRC

reference panel rl1.1 (containing 32,470 samples mostly of European ancestr{or

these benchmarks, we used 1000 Genomes trio children as target samples, removing all
1000 Genomes trios from each reference panel before running the analyses. We phased
chromosome 1, and to emulate typical genotyping density, we restricted the SNP set to
31,853 sites typed on 23 and Me (customized Illumina) chips.

Given the predominantly European composition of the HRC panel, the benchmarks on 32
CEU trio children were of primary interest, and we observed in these benchmarks that all
methods achieved substantially improved accuracy using the HRC panel versus the 1000
Genomes panel (Figure 4 and Supplementary Table 5). For each choice of reference panel,
Eagle2 achieved the lowest switch error rate, consistent with our previous results. For
phasing small European cohorts, Eagle2 with the HRC panel provides a >2x improvement in
accuracy over 1000 Genomes-based phasing: 1.36% (s.e. 0.04%) switch error rate versus
3.52% (0.06%) using SHAPEIT2 or 3.27% (0.06%) using Eagle2 with the 1000 Genomes
reference (Figure 4 and Supplementary Table 5).

We also benchmarked accuracy in all other 1000 Genomes populations containing >1 trio.
We phased trio children in 31 Han Chinese (CHS) trios, 30 Peruvian (PEL) trios, 15 Punjabi
(PJL) trios, and 19 Yoruba (YRI) trios using either the 1000 Genomes panel or the HRC
panel, and we observed that in all cases Eagle2's accuracy was either slightly better or
statistically indistiguishable from SHAPEIT2's (Supplementary Table 5). Specifically, the
differences between Eagle2 and SHAPEIT2 were not significant for PEL with either
reference panel and for YRI with HR@®=0.05 or larger); all other differences were

significant (binomiajo=0.006 or less). Interestingly, all methods achieved lower accuracy
using the HRC panel versus the 1000 Genomes panel (Supplementary Table 5). Given that
the HRC panel contains the 1000 Genomes panel, this observation suggests that the
inclusion of~30,000 additional predominantly European samples reduced the ability of each
method to model the haplotype structure of non-European populations. However, we did not
observe this phenomenon when phasing the two non-European UK Biobank trios using
increasing numbers of European reference haplotypes (Supplementary Table 6), so this
observation may be specific to the current HRC release (rl1.1); development of the HRC is
ongoing.

Phasing performance without a reference panel

Lastly, we assessed the performance of Eagle2 when applied to cohort-based phasing, which
we also implemented in our software. The Eagle2 cohort-based phasing algorithm starts by
running the first two steps of Eagléto rapidly produce rough haplotype estimates and

then refines these estimates using the Eagle2 core phasing algorithm (Online Methods). We
benchmarked Eagle2, Eaglel, and SHAPEIT2 on subsets of the UK Biobank data set
containing/V = 5,000, 15,000, 50,000, or 150,000 samples (including trio children and
excluding trio parents). We phased chromosomes 1, 5, 10, 15, and 20 as in our UK Biobank
reference-based phasing benchmarks, and we allowed each computational job up to 5 days

Nat GenetAuthor manuscript; available in PMC 2017 April 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuey Joyiny

Loh et al.

Discussion

Page 7

to complete. We observed that Eagle2 exhibited computational efficiency similar to Eaglel,
achieving 5-6x speedups over SHAPEIT2 in the analyses SHAPEIT2 was able to complete
(NV=5,000 andVv=15,000) (Fig. 5a and Supplementary Tables 7 and 8). Eagle2 also exhibited
close-to-linear run time scaling across this sample size range, breaking even with Eaglel at
N~30,000 and achieving faster running times for larger

In our accuracy benchmarks using the 70 European-ancestry UK Biobank trios, we observed
that Eagle2 achieved better accuracy than SHAPEIT2 and Eagl&s®®00, as expected

(Fig. 5b and Supplementary Tables 7 and 8)MA150,000, Eaglel achieved a slightly

lower switch error rate (0.31%, s.e. 0.02%) than Eagle2 (0.35%, s.e. 0.02%). However, we
observed that running Eagle2 with 4x the default number of conditioning haplotypes (i.e.,
K=40,000) achieved the lowest error rates across all sample sizes tested (0.27%, s.e. 0.02%
at A=150,000). Both differences were statistically significant (binop#al.0006 or less).

Finally, we confirmed that Eagle2 achieved better phasing accuracy than SHAPEIT2 or
Eaglel when used to phase the GERA samples within each GERA sub-cohort
(Supplementary Table 9), with switch error rates consistent with our earlier reference-based
benchmarks (Figure 3 and Supplementary Table 4). All differences were statistically
significant (binomiajp=0.002 or less).

We have described a new phasing algorithm, Eagle2, which we have incorporated into the
Sanger Imputation Service and the Michigan Imputation Server to offer free reference-based
phasing using tha~32,470-sample Haplotype Reference Consortium panel. This service
enables high-accuracy phasing even in smaller cohorts, which was not previously possible.
Eagle2 achieves substantial gains in speed and accuracy over previous methods via a novel
search-based algorithm employing the positional Burrows-Wheeler transform. We believe
this method is timely, as large sequenced reference panels (e.g., the HRC) are now becoming
available for use—but must be utilized via analyses run on central servers due to consent
restrictions. We anticipate that Eagle2's phasing speed—1.5 minutes per genotyped sample
—will help keep computation tractable as demand for this service increases. Additionally,
we anticipate that our release of Eagle2 as open-source software will aid in future method
development and integration into analysis pipelines.

We note that Eagle?2 targets a distinct user group compared to very recent work on phasing
very large cohors$:14 In particular, our Eaglel methbts targeted at phasing very large
(M>100,000) cohorts and achieves much lower accuracy than both Eagle2 and previous
methods when used to phase smaller cohorts. The SHAPEIT3 feithbikewise targeted

at phasing “biobank scale datasets.” The information provided in the paper describing
SHAPEIT3 (refl4) indicates that its primary advance is removing a quadratic complexity
component of the SHAPEIT2 algorithm that becomes significaftiasreases beyond

10,000 samples; this computational speedup comes at the expense of reduced accuracy. The
benchmarks in re¥* suggest that if used to perform HRC-based phasing.at32,470,
SHAPEIT3 would bex3x faster but roughly 20% less accurate than SHAPEIT2; in contrast,
Eagle2 isv20x faster ané10% more accurate than SHAPEIT2 at this sample size. (In
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practice, the SHAPEIT license precludes its use for reference-based phasing on the Sanger
and Michigan HRC servers.)

While we believe that reference-based phasing using large reference panels such as the HRC
is a valuable phasing paradigm, we note a few limitations. First, reference-based phasing
accuracy is limited not only by reference panel size but also by genotyping and phasing
accuracy in the reference panel. In particular, the HRC reference haplotypes are largely
derived from low-coverage sequencing data (which is generally prone to higher errors in
genotype calling), and efforts to improve the accuracy of the reference panel are ongoing.
Second, for reference-based phasing to be effective, the reference panel needs to contain a
sizable subset of samples with genetic ancestry well-matched to the target samples.
Consequently, phasing using the HRC is currently only advantageous for European-ancestry
target samples, although plans are underway to grow the HRC to better represent worldwide
populations. Third, for very large cohorts (substantially larger than the reference size), we
expect that reference-based phasing will achieve only marginal gains in accuracy over
cohort-based phasing. For such cohorts, we expect that cohort-based phasing may remain the
preferred option due to ease of execution—although reference sizes are growing, and if the
end goal is HRC-based imputation, then we expect that HRC-based pre-phadiirze

more convenient. Finally, we have not fully optimized Eagle2 for phasing sequenced
sample$8:22 While a preliminary benchmark against SHAPEIT2 suggests that Eagle2
achieves gains in speed and accuracy on sequence data comparable to its improvements on
genotype data (Supplementary Table 10), more investigation will be needed to tune the
method and benchmark it against other approaches (e.g., the recent SHAPEITRnethod
which is available via the Oxford Statistics Phasing Server; see URLSs). Despite these
limitations, we expect that reference-based phasing using Eagle2 and the HRC panel will be
a valuable resource providing free, fast, and accurate phasing to the scientific community.

Online Methods

Eagle2 core algorithm for phasing a single target sample using a set of reference

haplotypes

Here we outline the key ideas underlying the Eagle2 core algorithm for phasing a single
target sample using a set of reference haplotypes, which has three main steps.

Step 1: Selection of conditioning haplotypes—  Eagle2 first identifies a subset of
K=10,000 conditioning haplotypes by ranking reference haplotypes according to the number
of discrepancies between each reference haplotype and the homozygous genotypes of the
target sample. As in our previous wétkwe perform computation on blocks of up to 64

SNPs at once using bitwise arithmetic; thus, the total computational cost of subset selection
is linear inM.f with a very small constant factor (ignoring time to rank the results, which is
negligible in practice). The constant factor is small enough that this step constitutes only a
small fraction of the total run time f@d<<100,000. We note that our discrepancy metric

does not make use of inferred phase of the target genotypes (which is possible within an
iterative phase refinement scheme) and produces a single set of conditioning haplotypes to
use for the entire region being phased, in contrast to the sophisticated approach used by
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SHAPEITZ22 However, Eagle2 is able to condition on 100x more haplotypes than
SHAPEIT2, which we suspect makes selection of conditioning haplotypes much less
important. The overall complexity of this step@§VIN,p in both time and memory.

Step 2: Generation of HapHedge data structure—  Eagle2 next generates a

HapHedge data structure on the selected conditioning haplotypes. The HapHedge encodes a
sequence of haplotype prefix trees (i.e., binary trees on haplotype prefixes) rooted at a
sequence of starting positions along the chromosome, thus enabling fast lookup of haplotype
frequencies (Figure 1). (In practice, we start a new tree roughly once per heterozygous site
in the target sample; Supplementary Fig. 1.) The key features of the HapHedge are linear-
time construction, linear-memory representation, and constant-time prefix extension, all with
small constant factors. The compact in-memory representation of the HapHedge is achieved
via radix trees (Supplementary Fig. 2), while linear-time construction is achieved via the
positional Burrows-Wheeler transfoffh In its simplest form, the PBWT iteratively creates
sorted lists of haplotype prefixes, moving the prefix start point from right to left. Our

algorithm extends this procedure to convert the lists of sorted prefixes into prefix trees; see
the Supplementary Note for details. The overall complexity of this st8W) in both

time and memory.

Step 3: Exploration of the diplotype space—  Having prepared a HapHedge of
conditioning haplotypes, Eagle2 performs phasing using a statistical model similar to the Li-
Stephens haplotype copying mot€tused by previous HMM-based methods. However, in
contrast to previous methods, Eagle2 applies two new ideas to perform fast and accurate
phase inference under this model. The first idea is a new way to efficiently compute
haplotype probabilities under a copying model. Naively, such computations require
exponential time because of the combinatorial explosion of possible recombination points.
The standard approach to overcoming this barrier is to observe that wikhijpzstate

HMM, recursion allows computation @/ marginal probabilities (for alk ., States at

each ofM positions) iInOMK yums?) time. With Eagle2, we take a completely different
recursive approach that computes the probability sifig/ehaplotype inQM) time—
independent of the number of reference haplotypesfter creation of the HapHedge in
AOMK) time. The HapHedge essentially consolidates all reference haplotypes sharing a
common prefix (starting at any given position) into a single atom of data, thus eliminating
future computation that scales wih

Of course, being able to very rapidly compute the probability of a single haplotype is only
useful if we can identify a small subset of haplotype probabilities that are worth computing;
to this end, Eagle2 employs a second key idea. We perform a beam search from left to right
across the chromosome, propagating a small set of likely diplotypes that represent most of
the posterior probability mass in the local diplotype space. This approach essentially focuses
computational effort on a small subset of the diplotype space (vs. expending computation
evenly across the space as in HMM recursion), which is advantageous when most of the
space is probabilistically unfavorable but difficult to discaydriori Full mathematical and
engineering details are provided in the Supplementary Note. The overall complexity of this
step isQAMHP) time andOQMP+HP memory, whereé+ and Pare “history length” and
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“beam width” parameters of the beam search described in the Supplementary Note. We
explore the sensitivity of Eagle2 to various parameter choices in Supplementary Tables 11,
12, and 13.

Eagle2 algorithm for reference-based phasing with multiple target samples

In practice, reference-based phasing is typically performed on a target set containing many
samples, allowing the potential to improve phasing accuracy by using inferred target
haplotypes to phase each other. By default, Eagle2 performs a variable number of phasing
iterations chosen based on the relative size of the tavgggd) and the referencéVfey).

This behavior is intended to allow Eagle2 to automatically benefit from increased statistical
power available from larger target sample sizes. Specificalgifiet< Mef/2, Eagle2

performs only one phasing iteration (phasing each target sample using only the reference
haplotypes). [Vef2 < Marget< 2Mer, Eagle2 performs two iterations, augmenting the
reference panel with the inferred target haplotypes during the second iterabipigye&

2MNet, Eagle2 performs three iterations in an analogous manner. Whenever Eagle2 performs
more than one iteration, all iterations prior to the final iteration/f2econditioning

haplotypes to save time, given that the last iteration has the most impact on accuracy. The
number of iterations can also be set directly via the —pbwtlters parameter.

Eagle? algorithm for cohort-based phasing

To perform cohort-based phasing (i.e., without a reference), Eagle2 employs an iteration
similar to the above approach, but prior to running two iterations of the Eagle2 core phasing
algorithm as described above, it first runs the first two steps of the Eaglel algorithm, which
rapidly detect identical-by-descent segments and use them to cafthhsiskin small data

sets, identity-by-descent is less common, but our results indicate that the two subsequent
iterations of the Eagle2 core phasing algorithm are able to rapidly refine phase calls given
even an inaccurate set of initial phase calls.

UK Biobank data set

We analyzed data from the UK Biobank consisting of 152,729 samples tyjp8d000

SNPs. Using PLINR! (see URLs), we removed 480 individuals marked for exclusion from
genomic analyses based on missingness and heterozygosity filters and 1 individual who had
withdrawn consent, leaving 152,248 samples (see URLs, UK Biobank Genotyping and QC).
We restricted the SNP set to autosomal, biallelic SNPs with missingness 40% and we
further excluded 65 autosomal SNPs found to have significantly different allele frequencies
between the UK BILEVE array and the UK Biobank array, leaving 707,524 SNPs (57,753

on chrl, 41,538 on chrb, 34,588 on chrl0, 22,367 on chrl5, and 18,349 on chr20). We
identified 72 trios based on IBS0<0.001, sex of parents, and age of trio members (see URLs,
Genotyping and QC). Of the 72 trio children, 69 self-reported British ethnicity, one self-
reported Indian ethnicity, and one self-reported Caribbean ethnicity. The remaining trio child
did not self-report any ethnicity, but her parents self-reported Irish and “Any other white
background” as their ethnicities, so we included this trio child in the 70 European-ancestry
trio children we used to benchmark phasing accuracy.
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GERA data set

We analyzed GERA samples (see URLs; dbGaP study accession phs000674.v1.pl) typed on
each of the four GERA ancestry-specific chips (European, African, East Asian, and Latino);
QC is described in réf. We directly analyzed all samples and all autosomal SNPs in each

of the four sub-cohorts (Supplementary Table 1). We identified independent trios in each
sub-cohort according to pedigree information provided with the data release.

Phasing software versions and parameter settings

We benchmarked Eagl&} Eagle2 (v2.1), SHAPEIT v2 (r798) and Beagle v4.1
(22Feb16.8efP using the Oxford genetic map (supplied with SHAPEIT and Eagle). When
running Eagle2 in reference-based phasing mode, we turned off imputation of missing
genotypes using the —nolmpMissing flag; otherwise, we ran all methods using their default
parameter settings unless explicitly testing non-default settings. Specifically, the non-default
parameter settings we tested were the —no—mcmc and —&tatgstipbn of SHAPEIT2 and

the —Kpbwt option of Eagle2.

Evaluation of reference-based phasing using genotyped reference panels

For our reference-based phasing benchmarks using genotyped UK Biobank data, we
constructed reference panels by randomly seledgg= 15,000, 30,000, 50,000, or

100,000 samples (disjoint from the 72 UK Biobank trios) and phasing these samples using
Eaglel (as phasing using SHAPEIT2 would have required severalif)edks then applied

each reference-based phasing method to phase chromosomes 1, 5, 10, 15, and 20 of the
Marget= 72 trio children using each simulated reference panel, and we compared the phased
output against trio phase calls to compute switch error’r&iels our results, we report

mean switch error rates and s.e.m. over the 70 European-ancestry trio children (according to
self-reported ethnicity; see above).

To benchmark per-sample computational cost of reference-based phasing, we performed an
additional set of analyses in which we phased 1,000 randomly selected samples (not
contained in the simulated reference panels) in addition to the 72 trio children. We
subtracted théarget= 72 running times from th&arget= 1,072 running times to obtain the
incremental cost of phasing 1,000 samples, thus adjusting for initialization costs (e.g.,
reading the reference data and synchronizing it with the target data), which account for a
non-neglibible fraction of total computational cost wiggqetis small. Finally, we divided

by 1,000 to obtain per-sample costs and multiplied by 4 to scale up from the five
chromosomes analyzedZ5% of the genome) to a genome-wide analysis.

For our reference-based phasing benchmarks using GERA data, we applied an analogous
procedure with the following minor differences. For each of the four sub-cohorts, we created

a single simulated reference panel using all samples not in the same extended pedigree as
any trio. We phased the European chip panel using Eaglel and phased the other three panels
using SHAPEIT2 (which is computationally tractable and more accurate than Eaglel for

small cohort$3). In each sub-cohort, we then applied each reference-based phasing method
to phase all 22 autosomes of the trio parents in that sub-cohort, and we computed mean
switch error rates over all trio parents. We chose to benchmark accuracy using trio parents
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rather than trio children due to the small numbers of trios in the non-European sub-cohorts.
(For the European sub-cohort, we also computed benchmarks using trio children for
comparison.) For the European sub-cohort, we computed s.e.m. over samples as before; for
the other three sub-cohorts, we computed s.e.m. over 25 SNP blocks due to the small
numbers of trios. When used to compare methods, these standard errors are conservative due
to true variation among samples and across the genome (which causes errors to be
correlated). We therefore assessed statistical significance of differences in performance
between pairs of methods by performing one-sided binomial tests across samples or SNP
blocks as appropriate.

Evaluation of cohort-based phasing performance

For our benchmarks of phasing without a reference, we created subsets of UK Biobank
samples containing/ = 5,000, 15,000, 50,000, or 150,000 samples, each of which contained
all 72 trio children and none of the 144 trio parents. We then applied each phasing method to
phase chromosomes 1, 5, 10, 15, and 20 of each subset of samples, and we computed mean
switch error rates and s.e.m. over the 70 European-ancestry trio children as above. We
applied an analogous procedure to the GERA sub-cohorts with the same modifications as
above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the Eagle2 core phasing algorithm
Given diploid genotypes from a target sample along with a haploid reference set of

conditioning haplotypes, our algorithm proceeds in two step$Vé use the positional
Burrows-Wheeler transforffito generate a “hedge” of haplotype prefix trees rooted at
markers spaced across the chromosome. These trees encode haplotype prefix frequencies,
represented here with branch thicknesd®sWe explore a small set of high-probability
diplotypes (i.e., complementary pairs of phased haplotypes), estimating diplotype
probabilities under a haplotype copying model by summing over possible recombination
points. For each possible choice of recombination points, the HapHedge data structure
allows rapid lookup of haplotype segment frequencies. (This illustration is meant to provide
intuition for the overall approach; our optimized software implementation first “condenses”
reference haplotypes based on the target genotypes. Details are provided in Supplementary
Fig. 1 and the Supplementary Note.)
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Figure 2. Running time and accuracy of reference-based phasingin UK Biobank benchmarks
We benchmarked Eagle2 and other available methods by phasing UK Biobank trio children

using a reference panel generated friig = 15,000, 30,000, 50,000, or 100,000 other UK
Biobank samplesaj CPU time per target genome on a 2.27 GHz Intel Xeon L5640
processor. (We analyzed a total of 174,595 markers on chromosomes 1, 5, 10, 15, and 20,
representingz25% of the genome, and scaled up running times by a factor of 4; see
Supplementary Table 3 for detaild) Mean switch error rate over 70 European-ancestry
trios; error bars, s.e.nc,(d) CPU time and mean switch error rate as a function of the
number of conditioning haplotypes used by SHAPEIT2 and Eagle2 (relative to the default
values ofK=100 and 10,000, respectively). Eaglel does not have such a parameter, so we
display its performance as a horizontal line. Numeric data and additional benchmarks
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varying the number of conditioning haplotypes used with = 15,000, 50,000, and
100,000 are provided in Supplementary Table 2.
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Figure 3. Accuracy of reference-based phasing in GERA benchmarks

We phased trio parents in each GERA sub-cohort using a reference panel generated from all

other non-familial samples in the same sub-cohort. We ran each method with default

parameter settings on all 22 autosomes and computed aggregate mean switch error rates;
error bars, s.e.m. Standard errors for the European-ancestry sub-cohort are over 400 parent
samples. Standard errors for the other three sub-cohorts are over 25 SNP blocks. Numeric
data and additional benchmarks varying the number of conditioning haplotypes used by each

method are provided in Supplementary Table 4.
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Figure 4. Accuracy of reference-based phasing using the 1000 Genomes and HRC panels
We phased 32 trio children from the 1000 Genomes CEU population using either the 1000

Genomes Phase 3 reference panel or the Haplotype Reference Consortium panel (excluding
trios in either case). We analyzed chromosome 1, and to emulate a typical use case, we
restricted the data to 31,853 markers (genotyped on 23 and Me chips). We plot mean switch
error rates; error bars, s.e.m. over samples. Numeric data and additional benchmarks on
other 1000 Genomes populations are provided in Supplementary Table 5.
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Figure 5. Running time and accuracy of cohort-based phasing in the UK Biobank cohort
We benchmarked Eagle2 and other available phasing methd#s50000, 15,000 50,000,

and 150,000 UK Biobank samples (including trio children and excluding trio pareits). (

Total wall clock time for genome-wide phasing on a 16-core 2.60 GHz Intel Xeon E5-2650

v2 processor. (We analyzed a total of 174,595 markers on chromosomes 1, 5, 10, 15, and 20,
representing=25% of the genome, and scaled up running times by a factor of 4; see
Supplementary Table 8 for per-chromosome data.) SHAPEIT2 was unable to complete the
N=50,000 chrl and chr5 analyses and was uanble to complete any\sflts@, 000

analyses in 5 days, the run time limit for single compute jaIviéan switch error rate

over 70 European-ancestry trios; error bars, s.e.m. Numeric data and additional benchmarks
varying the number of conditioning haplotypes used by Eagle2 are provided in
Supplementary Table 7.
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