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Abstract

Many genetic variants influence complex traits by modulating gene expression, thus altering the
abundance levels of one or multiple proteins. Here, we introduce a powerful strategy that
integrates gene expression measurements with summary association statistics from large-scale
genome-wide association studies (GWAS) to identify genes whose cis-regulated expression is
associated to complex traits. We leverage expression imputation to perform a transcriptome wide
association scan (TWAS) to identify significant expression-trait associations. We applied our
approaches to expression data from blood and adipose tissue measured in ~3,000 individuals
overall. We imputed gene expression into GWAS data from over 900,000 phenotype
measurements to identify 69 novel genes significantly associated to obesity-related traits (BMI,
lipids, and height). Many of the novel genes are associated with relevant phenotypes in the Hybrid
Mouse Diversity Panel. Our results showcase the power of integrating genotype, gene expression
and phenotype to gain insights into the genetic basis of complex traits.

Introduction

Although a large proportion of variability in complex human traits is due to genetic
variation, the mechanistic steps between genetic variation and trait are generally not
understood~’. Many genetic variants influence complex traits by modulating gene
expression, thus altering the abundance levels of one or multiple p¥otéisaich

relationships between expression and trait could be investigated through association scans in
individuals for which both measurements are avaifablé4 Unfortunately, studies that
measure gene expression have been held back by specimen availability and cost, with the
few published studies of expression and complex trait being orders of magnitude smaller
than studies of trait alone. Consequently, many expression-trait associations cannot be
detected, especially those with small effects. To mitigate the reduced power from small
sample size, alternative approaches examined the overlap of genetic variants that impact
gene expression (eQTLs) with trait-associated variants identified in large, independent
genome-wide association studies (GW2aS§:9.11-13.15However, this approach is also

likely to miss expression-trait associations of small effect.

We developed a new approach to identify genes whose expression is significantly associated
to complex traits in individuals without directly measured expression levels (Methods). We
leveraged a relatively small set of reference individuals for whom both gene expression and
genetic variation (single nucleotide polymorphisms, SNPs) have been measured to impute
the cis-genetic component of expression into a much larger set of phenotyped individuals
from their SNP genotype data (Figure 1). The imputed expression can be viewed as a linear
model of genotypes with weights based on the correlation between SNPs and gene
expression in the training data while accounting for linkage disequilibrium (LD) among
SNPs. We then correlated the imputed gene expression to the trait to perform a
transcriptome-wide association study (TWAS) and identify significant expression-trait
associations (Methods). Work in parallel to ours has also proposed to find expression-trait
associations through imputation of gene expression when GWAS at an individual level is
availablé®see Discussion). However, a critical limitation is that large-scale GWAS data are
typically only publicly available at the level of summary association statistics (e.g.
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individual SNP effect size$)* To capitalize on the largest GWAS to date (typically

available only at the summary level), we extended our approach to impute the expression-
trait association statistics directly from GWAS summary statistics (Methods). In contrast to
expression imputation from individual-level dfiamputation of expression-trait

association from GWAS summary statistics can exploit publically available data from
hundreds of thousands of samples. Linear predictors naturally extend to indirect imputation
of the standardized effect of the cis-genetic component on the trait starting from only the
GWAS association statist€st (Methods). This allowed us to increase the effective sample
size for expression-trait association testing to hundreds of thousands of individuals. By
focusing only on the genetic component of expression, we avoid instances of expression-
trait associations that are not a consequence of genetic variation but are driven by variation
in trait (Figure 2). Our approach can be conceptualized as a test for significant cis-genetic
correlation between expression and trait (see Results).

We applied our approaches to expression data from blood and adipose tissue measured in
~3,000 individuals overall. Through extensive simulations and real data analyses we show
that our proposed approach increases performance over standard GWAS or eQTL-guided
GWAS. Furthermore, we reanalyzed a 2010 lipid GWAS find 25 new expression-trait
associations in that data. 19 out of 25 contained genome-wide significant SNPs in the more
recent and expanded lipids stidgus showcasing the power of our approach to find robust
associations. We imputed gene expression into GWAS data from over 900,000 phenotype
measurements’ to identify 69 novel genes significantly associated to obesity-related traits
(BMI, lipids, and height). Many of the novel genes were associated with relevant
phenotypes in the Hybrid Mouse Diversity Panel. Overall our results showcase the power of
integrating genotype, gene expression and phenotype to gain insights into the genetic basis
of complex traits.

SNP-heritability of gene expression

To investigate the potential utility of a transcriptome-wide association (TWAS) based on
imputed gene expression we first estimated the cis- (1Mb window around the gene) and

trans- (rest of the genome) SNP-heritabilih, ;.. 2 1,.ns) for each gene in our daa'®

These metrics quantify the maximum possible accuracy (in term? of R linear predictor

from the corresponding set of SNP<1(Methods). We used 3,234 individuals for whom
genome-wide SNP data and expression measurements were available from METSIM
(adipose), YFS (blood), and NTR (blood) data%e&(Methods, Supplementary Table 1).

All expression measurements were adjusted for batch confounders, and array probes were
merged into a single expression value for each gene where possible (Methods). Consistent
with previous work425 we observed significantly non-zero estimates of heritability across

all three studies, with mezh;m ranging from 0.01-0.07 and meh;t,.ans ranging from
0.04-0.06 in genes where estimates converged (Supplementary Figure 1, Supplementary

Table 1). Although we observed large differences in the av'hia-@stimates between the

two blood cohorts, the estimates were strongly correlated across genes (Be@4bifior
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YFS-NTR, as compared j&=0.15 andgp=0.26 for METSIM-NTR and METSIM-YFS
respectively). This is consistent with a common but not identical genetic architecture. The
hfms was significantly non-zero for 6,924 genes after accounting for multiple hypotheses
(1,985 for METSIM, 3,836 for YFS, and 1,103 for NTR) (Supplementary Figure 1) whereas
current sample sizes where too small to detect individually significant trans heritable genes.

As expected, we also observed a high overlap of genes with signh§76i51across cohorts

(Supplementary Table 2, Supplementary Figure 2). We focused subsequent analyses on the
6,924 cis-heritable genes as such genes are typically enriched for trait
associations913.24-29

TWAS performance in simulation and cross-validation

We evaluated whether the expressions of the 6,924 highly heritable genes could be
accurately imputed from cis-SNP genotype data alone in these three cohorts. In each tissue,
we used cross-validation to compare predictions from the best cis-eQTL to those from all
SNPs at the locus either in a best linear unbiased predictor (BLUP) or in a Bayesian
modeP?:31(Methods). On average, the Bayesian linear mixed model (BSE¥Mhich

uses all cis-SNPs and estimates the underlying effect-size distribution, attained the best
performance with a 32% gain in predictiod &ver a prediction computed using only the top
cis-eQTL (Figure 4, Supplementary Figure 3). The BSLMM exhibited a long tail of

increased accuracy, more than doubling the predictfdo25% of genes (Supplementary
Figure 4). In contrast to complex traits where hundreds of thousands of training samples are
required for accurate predicti#h33 a substantial portion of variance in expression can be
predicted at current sample sizes due to the much smaller number of independent SNPs in
the cis regiofL. Furthermore, larger training sizes will continue to increase the total number
of genes that can be accurately predicted (Figure 3). We further evaluated cross-cohort
prediction of these genes in the YFS and NTR, which were roughly equally sized and had
expression measured in whole-blood by microarray, but were genotyped on different
platforms and from different Scandinavian populations. After accounting for cis-heritability

in the test cohort, our cross-cohort standardized accuracr® /h?],cis) was broadly
consistent with in-cohort cross-validation accuracy (Supplementary Table 3). The BSLMM

was again the most accurate predictor, with an average cross+* /h;m of 72%,
outperforming the best eQTL by an average 1.17x.

Next, we focused on evaluating the power of the TWAS approach to detect significant
expression-trait associations using GWAS summary data from complex traits (equivalent to
TWAS from individual level data; Methods, Supplementary Figure 5). For comparison, we
also measured power to detect significant SNP-trait associations through standard GWAS
(testing each SNP individually) and eQTL-based GWAS (eGWAS, where the best eQTL in
each gene is the only variant tested for association to trait), with all three tests corrected for
their genome-wide testing burdens. Using real genotype data, we simulated a causal SNP-
expression-trait model with realistic effect-sizes and measured the power of each strategy to
identify genome-wide significant variants (accounting for 1 million SNPs for GWAS and
15,000 expressed genes using family-wise error rate control). Over many diverse disease
architectures TWAS substantially increased power when the expression-causing variants
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were un-typed or poorly tagged by an individual SNP (Figure 5, Supplementary Figures 6—
11). The greatest power gains were observed in the case of multiple causal variants: 92%
power for TWAS compared to 18% and 25% for GWAS and eGWAS. This scenario would
correspond to expression caused by allelic heterog@séiéy? or “apparent” heterogeneity

at common variants (due to tagging of unobserved causal vafiaiyAS was comparable

to other approaches when a single causal variant was directly typed, in which case
combining the effects of neighboring SNPs does not add signal. Under the null where
expression was completely independent of phenotype (with either being heritable, Figure
2A-D), the TWAS false positive rate was well controlled (Supplementary Table 4). As
expected, all methods were confounded in the case where the same causal variants had
independent effects on trait and expression (Figure 2F-G; Supplementary Figures S8, 12).

Our approach can be conceptually viewed as a test for the correlation between the genetic
component of expression and the genetic component of trait (Methods). Since several recent
methods have been proposed that measure genetic correlation between summary statistics
we sought to evaluate this relationship empirically. We compared TWAS to the recently
proposed cross-trait LD-score regression (LDSC) that estimates genome-wide genetic
correlation between traité Although LDSC is not intended for local analyses due to model
assumptions on polygenicity and use of block-jackknife across loci for estimating standard
errors, we performed the evaluation using expression and phenotype (height) from the YFS
cohort, using the results over individual data as the “gold standard” (Methods). We find that
LDSC estimate of genetic correlation between height and expression from summary data is
highly correlated with the gold standard (correlation=0.7, Supplementary Figure 13), but the
relationship is much noisier than that of TWAS (correlation=0.99, Supplementary Figure 5,
13). This suggests that TWAS attains more power in relating expression to complex traits.

TWAS is also conceptually similar a test for co-localization of signal between expression
and complex trat3% and we compared to a recently proposed method, COt, @@t

evaluates co-localization of expression at known GWAS risk loci. After matching the false-
discovery rate of the two methods in simulations (Methods), TWAS and COLOC had
similar power under the single typed causal variant scenario (with slightly lower COLOC
power at small GWAS sizes), but TWAS has superior performance when the causal variant
was un-typed or in the presence of allelic heterogeneity (Supplementary Figure 10). This is
likely due the fact that TWAS explicitly models LD to better capture the un-typed variants.

Finally, we investigated the effect of the expression reference panel size on performance of
TWAS (Supplementary Figure 9). In general, TWAS always outperforms eGWAS when
multiple variants are causal. Interestingly, power for either approaches does not increase
substantially beyond 1,000 expression samples, suggesting that the expression panels
analyzed in this manuscript nearly saturate the available imputation accuracy. This was
further reflected in an analysis of real data where merging cohorts did not substantially
change the distribution of TWAS statistics for the same gene set (Supplementary Figure 14).
Although these results come with caveats (e.g. standard assumptions of additive effects and
normal residuals), they suggest that the main benefit of larger expression reference panels is
in increasing the total number of significant cis-heritable genes available for imputation
(Figure 3).
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TWAS performance in GWAS summary data

We employed TWAS to identify expression-trait associations at the 697 known GWAS risk
loci for height using the YFS data for which height was also measured. At each locus, we
considered three strategies for selecting a single causal gene: 1) the gene nearest to the top
GWAS SNP; 2) the gene for which the index SNP is the strongest eQTL in the training data;
3) the most significant TWAS gene. For each strategy, we then constructed a risk-score
using the genetic value of expression for the selected genes and correlated the risk score
with height measurements in the YFS individuals (an independent sample from the original
height GWAS, Supplementary Note). Thé lietween the risk score and height was 0.038
(nearest); 0.031 (eQTL); and 0.054 (TWAS); with TWAS significantly higher than the

others in a joint model (Supplementary Table 5, Methods). When we re-computed the risk
scores using TWAS values for expression from the NTR cohort (which introduces additional
noise due to heterogeneity between the cohorts), TWAS remained significantly higher than
the eQTL strategy, but was comparable to selecting the nearest gene (Supplementary Table
5). This indicates that using expression from a different study to select genes still
significantly explains variance, but is complementary (rather than superior) to selecting the
nearest gene. Working from the assumption that genes with a higher cis-genetic correlation
to phenotype are more likely to be causal, these results motivate the use of TWAS to
prioritize putative risk genes at known GWAS loci.

Across all known risk loci in our data, 77% of genome-wide significant loci (defined as lead

SNP +/-500kb) overlapped at least one gene with signifh;cib; and 36% overlapped at

least one significant TWAS association (Supplementary Table 6). These results suggest that
cis regulation of expression in blood and adipose tissue is an important mechanism through
which genetic variation at known risk loci alters obesity related traits. We expect that
expression studies from other tissues relevant to obesity-related traits will further increase

the overlap. Focusing specifically on the 282 TWAS genes that were within 500kb of the

lead SNP, 187 (66%) are not the nearest gene with many residing more than 100kb away
from the lead GWAS SNP (Supplementary Figure 15). Since GWAS usually reports the
nearest gene, these 187 genes can be considered new candidates for follow-up at known risk
loci. We note that gene-trait associations at known risk loci will not be found by TWAS

either due to a causal mechanism that does not involve cis-expression of the tested genes, or
lack of power to identify and detect all cis-heritable genes at the locus.

Next, we employed TWAS to identify novel expression-trait associations using summary
association statistics from a 2010 lipid GW&%~100,000 samples), i.e. associations more
than 500Kb away from any genome-wide significant SNPs in that study. We used all three
studies (METSIM, YFS, and NTR;) as separate SNP-expression training panels. We then
looked for genome-wide significant SNPs at these loci in the larger 2013 lipid @WAS
(expanded to ~189,000 samples). We identified 25 such expression-trait associations in the
2010 study (Supplementary Table 7), of which 19/25 contained genome-wide significant
SNPs in the 2013 study (P=1x#8 by hypergeometric test, Methods) and 24/25 contained
a more significant SNP (P=1x1%), a highly significant validation of the identified loci.

The validation remained significant after conservatively accounting for sample overlap
across the studies (binomial P=3%1%® Methods, Supplementary Table 7). As a sanity
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check, we compared direct and summary-level TWAS in the METSIM cohort, and found the
two sets of imputed expression-trait Z-scores to be nearly identical, with summary-level
TWAS slightly under-estimating the effect (Pearps0.96, Supplementary Figure 16).

Overall, we find the TWAS approach to be highly predictive of robust phenotypic
associations.

TWAS identifies novel expression-trait associations

Having established the utility of TWAS, we applied the approach to identify novel
expression-trait associations using summary data from three recent GWAS over more than
900,000 phenotype measurements: lipid measures (high-density lipoproteins [HDL]
cholesterol, low-density lipoprotein [LDL] cholesterol, total cholesterol [TC], and
triglycerides [TG]}; height; and BMP. Significantly cis-heritable genes across the three
expression data sets were tested individually (6,924 tests) and together in an omnibus test
that accounts for predictor correlation (1,075 tests; Methods), and we conservatively
corrected for the 8,000 total tests performed for each trait. Overall, we identified 665
significant gene-trait associations (Supplementary Table 8). Of these, 69 gene-trait
associations did not overlap a genome-wide significant SNP in the corresponding GWAS,
residing in 60 physically non-overlapping cis-loci (Table 1, Supplementary Table 9).
Averaging over the novel genes, thesTatistics from TWAS were 1.5x higher than the
strongest eQTL SNP for the same gene(though this may be slightly inflated due to winner’'s
curse). Our previous simulations suggest that the substantial gain over testing the cis-eQTL
is an indication of pervasive allelic heterogerféigt these loci, and analyses of the
expression showed strong evidence for allelic heterogeneity at the TWAS genes
(Supplementary Figure 17).

We further sought to quantify the significance of the expression-trait associations

conditional on the SNP-trait effects at the locus with a permutation test (Methods).
Comparing to this null assesses how much signal is added by the true expression given the
specific architecture of the locus. Of the 69 genes, this permutation test was significant for
54 (after accounting for 69 tests). After excluding these individually significant genes, the P-
values were still substantially elevated witkc of 19 (ratio of median? to the expected

null). For these 54 genes, we can confidently conclude that integration of expression data
significantly refined the association to trait. As before, more evidence of allelic

heterogeneity of expression was observed at the loci that passed permutation
(Supplementary Figure 17). Our results are consistent with a model of causality where these
genes harbor inherited causal variants that modulate expression, which in turn has a complex
effect on the cell and downstream impact on complex &raits

Next, we evaluated the contribution to heritability of all expression-trait associations,
including those that were not genome-wide significant (MetR8d9, We estimated the

variance in trait explained by all METSIM+YFS imputed genhf;Eo to be 3.4% averaged
over six traits (Supplementary Table 10). We assumed independence between the two
cohorts, and did not include the NTR genes because of its strong correlation with YFS.

Height had the most variance attributable to the heritable gehiE:Tl%. These
combined estimates were consistently higher than a corresponding analysis using predictions
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from permuted expression (Supplementary Table 10). For the four traits with individual-
level genotype and phenotype data in the METSIM (BMI, TG, WHR, INS), we estimated

hZE directly using variance-components over the imputed expression values (Methods). On
average, all significantly heritable genes in adipose + blood explained 4-6% of the trait

variance (16—19% of the total trhf,‘), and were largely orthogonal between the two
predictions (Supplementary Table 11). The imputed expression consistently explained more
trait variance than the best cis-eQTL in each gene and did not strongly depend on the cis-
window size (Supplementary Table 12).

Re-evaluation using other expression cohorts

To replicate the 69 novel expression-trait associations, we re-evaluated the GWAS summary
statistics with expression data from two external studies: eQTLs from ~900 samples in the
MuTHER study® of fat, LCL, and skin cells; and separate eQTL data from 5,311 samples
across in whole blodd (Methods). These expression studies only consist of summary-level
associations, and are expected to be much noisier as reference. In the relatively smaller
MuTHER sample, 20 out of 55 available genes replicated significantly in at least one tissue
(after accounting for 55 tests, Supplementary Table 9). This is substantial given the apparent
heterogeneity between cohorts we previously observed (Methods). Importantly, the
correlations between discovery and replication Z-scores were strongest for associations
found in the corresponding tissye(.60, P=1.5x10> for blood/LCL;p=0.66, P=0.05 for
adipose, Supplementary Table 13); a significant aggregate replication and further evidence
for the tissue-specific nature of our findings. Using the larger, but heterogeneous, training
sample from retl, 24 out of 37 available genes replicated significantly (Supplementary

Table 9). Although these replications are not strictly independent (they use the same GWAS
data), they demonstrate that many of the novel loci are consistently significant across
diverse expression cohorts.

Functional analysis of the novel associations

To better understand their functional consequences, we evaluated the 69 novel genes in the
Hybrid Mouse Diversity Panel (HMDP) for correlation with multiple obesity-related traits.

This panel includes 100 inbred mice strains with extensive collection of obesity-related
phenotypes from ~12,000 genes. Of the 69 novel TWAS genes previously identified, 40
were present in the panel and could be evaluated for effect on phenotype. Of these, 26 were
significantly associated with at least one obesity-related trait (after accounting for genes
tested) and 14 remained significant after accounting for 36 phenotypes tested (very
conservatively assuming the phenotypes were independent) (Supplementary Table 14). 77%
of the genes with an association were associated with multiple phenotypes. For example,
expression oFtsj3 was significantly correlated with fat mass, glucose-to-insulin ratio, and
body weight in both liver and adipose tissue, wifr&ging from 0.20-0.28. Another
candidatelih4, was significantly correlated with LDL and TC levels in liver. In humans,

this gene is also linked to hypercholesterolemia in OMIM and was previously associated

with BMI in East Asian$l. Due to complex correlation of phenotypes, it is difficult to

assess whether this gene set is significant in aggregate and genes in the HMDP are typically
expected to have strong effects. We could not perform enough random selections of genes to
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establish significance for this set. However, we consider the 26 individually significant
genes to be fruitful targets for follow-up studies.

The BMI and height GWAS evaluated functional enrichment at identified loci, and we
performed similar analyses for the novel genes that we identified. We tested the 10 novel
BMI genes and 33 novel height genes for tissue-specific enrichment using DERICT

method based on large-scale gene co-expression analyses, following the protocol of the
original GWAS studi€d’. Analysis of BMI identified significant enrichment for

hypothalamus and neurosecretory systems (P=28x4ignificant at FDR<5%). This
enrichment is consistent with the landmark finding in the original Stsidgwing

enrichment in these and other central nervous system tissues. Notably, we recapitulated this
result using only novel genes that did not overlap any genome-wide significant SNPs. In
analysis of height, DEPICT did not identify any tissue-specific enrichment.

In this work we proposed methods that integrate genetic and transcriptional variation to
identify genes with expression associated to complex traits. Using imputed gene expression
to guide GWAS has three potential advantages. First, the gene is a more interpretable
biological unit than an associated locus, which often contains multiple significant SNPs in
LD that may not lie in genes and/or tag variants in multiple genes. Second, the lower total
number of genes (or cis-heritable genes) means the multiple-testing burden is substantially
reduced relative to all SNPs. Lastly, combining cis-SNPs into a single predictor may capture
heterogeneous signal better than individual SNPs or cis-eQTLs. Focusing the prediction on
the genetic component of expression also avoids confounding from environmental
differences caused by the trait that may impact expression. Our approach builds upon the
wealth of GWAS data in massive cohorts to directly implicate the gene-based mechanisms
underlying complex traits.

Our proposed method shares conceptual similarities with 2-sample Mendelian

randomization approaches that aim to identify causal relations between traits using genetic
variation predictions as a randomi¥&r*> However, while Mendelian randomization is

intended to quantify the total causal effect, our method has the less strict goal of identifying
significant associations and can operate on summary GWAS data. Importantly, our approach
maintains the attractive feature of not being confounded by effects on expression and trait
that are independent of the SNPs. Other recent work proposed to leverage summary statistics
to estimate the underlying genetic correlation between traits at the genome-widie beutel
cannot be applied locally as it requires multiple loci to estimate standard errors (Methods).
Recent work in parallel to ours also proposes gene expression imputation from individual-
level data to find expression-trait associations and observes benefits from a reduced
multiple-testing burden and increased interpretabfiityn contrast, our approach does not
require individual GWAS data and is applicable directly to GWAS summary data of very
large sample sizes thus increasing discovery power.

Unlike current methods, which focus on individually significant eQTL and SNP
associations6:8:9.11,13.26.2%r approach captures the full cis-SNP signal and does not
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require any individual marker to be significant. This is underscored by the fact that TWAS
substantially outperformed its cis-eQTL analog both in imputing expression and in
association to trait. Our results show that the imputation approach is especially effective
when multiple variants influence expression (which in turn influences trait). The large
number of new associations identified in real data supports this phenomenon and suggests
that it may be a strong contributor to common phenoffp@serefore, our approach can be
seen as complementary to GWAS by identifying expression-trait associations that are not
well explained by individual tagging SNPs. Future work could leverage the difference in
performances of TWAS and GWAS to explicitly detect allelic heterogeneity. We note that it
is still possible for some loci to have an independent SNP-phenotype and SNP-expression
association driven by the same underlying variant though we consider this to be an
infrequent biological model.

We conclude with several limitations of our approach. First, disease-impacting variants that
are independent of cis-expression — in general or in the training data — will not be identified.
Second, as with any prediction, the number of genes that can be accurately imputed is still
limited by the training cohort size and the quality of the training data. In particular, we

found that prediction accuracy did not correspond to theoretical expectations and is likely
driven by data quality. The impact of these weaknesses could be better quantified as
expression from larger sample sizes and a more diverse set of tissues becomes available.
Although in this work we utilized both microarray and RNA-seq as measure of gene
expression thus showcasing the applicability of our approach to diverse data sets, the
accuracy of our method intrinsically depends on the quality of the expression measurements.
For the associated genes, it remains possible that the effect is actually mediated by
phenotype (i.e. SNP> phenotype— cis-expression, Figure 2F). We attempted to quantify

this in the YFS data by conditioning the heritability analyses on all the evaluated phenotypes
(height, BMI, and lipids) but observed no significant change at individual genes or in the

meancis- hg. These results suggest that confounding from phenotype does not substantially
affect the tested cis expression, though at the current sample size we cannot completely rule
out such confounders for individual genes. An alternative confounder arises from
independent effects on phenotype and expression at the same SNP/tag (Figure 2G,
Methods). Such instances could be indistinguishable from the desired causal model
(Methods) without analyzing individual-level data, though we believe they are still
biologically interesting cases of co-localization. Both types of confounding could potentially
be quantified by training the SNP-expression relationships in control individuals where
phenotype is fixed, or by interrogating the gene experimentally. Lastly, the summary-based
TWAS cannot account for rare variants that are poorly captured by the LD reference panel,
or optimally capture non-linear relationships between SNPs and expression. Additional
sources of information could potentially be incorporated to improve the prediction,

including significant trans-associatidA<€?8 allele-specific expressiéf*8 splice-QTLs

effecting individual exori€: haplotype effects; and SNP-specific functional pA®f$-51
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Online Methods

Data sets

In this study, we included 11,484 participants from two Finnish population cohorts, the
METabolic Syndrome in Men (METSIM, n=10,19%%3and the Young Finns Study (YFS,
n=1,414%223 1,400 randomly selected individuals from the 10,197 METSIM participants
underwent a subcutaneous abdominal adipose biopsy of which 600 RNA samples were
analyzed using RNA-seq (Supplementary Note). Traits BMI, TG, WHR, and INS were
inverse rank transformed and adjusted for age and age-square. INS was additionally adjusted
for TAD and T2D. 1,414 individuals (638 men with a median age of 43 years and 776
women with a median age of 43) with gene expression, phenotype, and genotype data
available were included in the blood expression analysis. Traits height, BMI, TG, TC, HDL,
and LDL were inverse rank transformed and adjusted for age, age-square, and sex. TC was
also adjusted for Statin intake. The biochemical lipid, glucose, and other clinical and
metabolic measurements of METSIM and YFS were performed as described
previous#2:52:54 Complete details on the pipeline and quality control procedures can be
found in Supplementary Note.

Heritability estimation with individual data

Cis and trans variance components were estimated using the REML algorithm implemented
in GCTA!®. As in previous studies, estimates were allowed to converge outside the expected
0—1 bound on variance to achieve unbiased mean estimates across &fl Geaedard

error across gene sets was estimated by dividing the observed standard deviation by the
square root of the number of genes that converged (this will lead to underestimation due to
correlated genes, but is presented for completeness). Genomlaz-gvidethe four traits in

the GWAS cohort was estimated with GCTA from a single relatedness matrix constructed
over all post-QC SNPs in the strictly unrelated individuals. For estimating expression-wide
h2gE, each predicted expression value was standardized to mean=0 and variance=1, and

sample covariance across these values used to define the relatedness mzhf;E:.vVétaa

then estimated from this component with GCTA, with P-values for difference from zero
computed using a likelihood ratio test. 20 principal components (PCs) were always included
as fixed-effects to account for ancestry. Genetic correlation between traits in the GWAS
cohort was estimated from all post-QC SNPs in the full set of 10,000 individuals with
GEMMAS3! (Supplementary Table 15). For the YFS, we quantified the mediating effects of
trait on cis-expression by separately re-estimating cis-h2g with all analyzed traits (height,
BMI, TC, TG, HDL, LDL) included as fixed-effects in addition to PCs. We did not observe
significant differences in any individual gene (after accounting for 3,836 genes tested) nor in
the mean estimate of cis-h2g.

Heritability estimation with summary data
As shown in reP1:55 for an association study of N independent samples, the expécted
statistic is Ef?] = 1 + NIn2gg/M, wherel is the LD-score accounting for correlatid s
the number of markers, ahégg is the variance in trait explained by the imputed
expression. We estimatédirectly from the genetic values of expression to be close to
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independence (1.4, 1.5 for METSIM, YFS) allowing us to solvéafgg from the observed
distribution ofy?2 (or, asymptotically equivalent?¥ statistics. We did not compute this value
for the BMI GWAS because the conservative multiple GC-correction applied in that study
would yield a severe downwards Bias

Imputing expression into genotyped samples

We evaluated three prediction schemes: i. cis-eQTL, the single most significantly associated
SNP in the training set was used as the predictor; ii. the best linear predictor $8LUP)
estimates the causal effect-sizes of all SNPs in the locus jointly using a single variance-
component; iii. The Bayesian linear mixed model (BSLMMyvhich estimates the

underlying effect-size distribution and then fits all SNPs in the locus jointly. For the BLUP
and BSLMM, prediction was done over all post-QC SNPs using GEf#MAle note that

the BLUP/BSLMM both perform shrinkage of the SNP weights but not variable selection,

so all SNPs are included in the predictor. Recent work in parallel to ours also evaluated
expression imputation using polygenic risk scores, LASSO, and eladfic net

Evaluating prediction accuracy

Within-study prediction accuracy was measured by five-fold cross-validation in a random
sampling of 1,000 of the highly heritable genes (i.e. significant non zero cis-heritability) for
each study. Cross-study prediction accuracy was measured by merging the YFS/NTR
genotyped individuals and predicting from all individuals in one cohort into all individuals
in the other. In all instances, thé Between predicted and true expression across all
predicted folds was used to evaluate accuracy (see Supplementary Note).

Imputing expression into GWAS summary statistics

Summary-based imputation was performed using the ImpG-Summary aldoeittended

to train on the cis-genetic component of expression. Let Z be a vector of standardized effect
sizes (z-scores) of SNP on trait at a given cis-locus (i.e. Wald staffsig9 ). We impute

the z-score of the expression and trait as a linear combination of elements of Z with weights
W (these weights are precompiled from the reference paﬁ%l,&‘lsysfor ImpG-

Summary or directly from BSLMM), sis the covariance matrix between all SNPs at the
locus and gene expression aigkis the covariance among all SNPs (i.e. linkage
disequilibrium). Under null data (no association) and a multi-variate normal assu@ption
N(0,3s 4. It follows that imputed z-score of expression and ti&if)(has varianc&V Xg ¢

W therefore, we us&/z/(W Sg s W )Y/2 as the imputation Z-score of cis-genetic effect on

trait. In practice, for each gene, all SNPs within 1Mb of the gene present in the GWAS study
were selected, arxk sandX swere computed in the reference panel (i.e. expression and
SNP data). To account for finite sample size and instances Whei®not invertible, we
adjusted the diagonal of the matrix using a technique similar to ridge regressiasQvith

(as evaluated in Pasaniuc €Y alhis regularization, as well as noise in the estimation of W,
can translate to lower power for association but yield conservative imputed Z-statistics.

We used the YFS samples that were assayed for SNPs, phenotype, and expression to assess
the consistency of individual-level and summary-based TWAS. We first computed GWAS
association statistics between phenotype (height) and SNP and used them in conjunction
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with the expression data to impute summary-based TWAS statistics. The TWAS statistics
were compared to those from the simple regression of (height ~ expression) in the YFS data.
We observed a correlation of 0.415 (Supplementary Figure 5), consistent with an average
cishzg of 0.17 &0.415"2) observed for these genes. When restricting to a regression of
(height ~ cis component of expression) we observed a correlation of 0.998 to the summary
based TWAS, demonstrating the equivalence of the two approaches when using in-sample
LD.

Power analysis of summary-based method

Simulations to evaluate the summary-based method were performed in 6,000 unrelated
METSIM GWAS individuals. 100 genes and the SNPs in the surrounding 1MB were
randomly selected for testing. For each gene, normally distributed gene expression was
simulated a& = X/ + &, whereX is a matrix of the desired number of causal genotypes,
sampled randomly from the locysis a vector of normally distributed effect-sizes for each
causal variant; andis a vector of normally distributed noise to achieve a cis-h2g of 0.17
(corresponding to the mean observed in our significant gene sets). 1,000 individuals with
SNPs and simulated expression were then withheld for training the predictors. For the
remaining 5,000 individuals, normally distributed noise was applied to the expression to
generate a heritable phenotype where expression explained 0.10/180 or 0.20/180 of the
phenotypic variance (the former corresponding to the average effect-sizes for associated
genes observed in a large GWAS of heifland the latter to high-effect loci). Association
between SNP and phenotype was estimated in the 5,000 individuals (standard Z-score), and
the phenotype generation repeated with different environmental noise (up to 60 times) to
generate results from multiple GWAS sub-studies. Association statistics from each run were
then meta-analyzed to reach precision corresponding to a larger GWAS of desired size (up
to 300,000) (Supplementary Note).

Detecting a locus was defined as follows. The single most significant trait associated SNP
was taken as the GWAS association, considered detected if GWAS significance was
<5x1078, The single most significant eQTL in the training set was taken as the eQTL-guided
association (eGWAS), and considered detected if GWAS significance was <0.05/15,000.
The TWAS association was measured by training the imputation algorithm on the 1,000
held-out samples with expression and imputing into the GWAS summary statistics, and
considered detected if significance was <0.05/15,000. The entire procedure was repeated
500 times (5 per gene) and power was estimated by counting the fraction of instances where
each method detected the locus. As in the cross-validation analysis, training on the genetic
component of expression instead of the overall expression consistently increased TWAS
power by ~10% (Supplementary Figure 7). Two null expression models were tested by
generating gene expression for the 1,000 held-out samples that was standard normal as well
as heritable expression (cis-h2g=0.17) with GWAS Z-scores drawn from the standard
normal (Supplementary Table 4). See Supplementary Note for detailed simulation setup.

Power comparison to COLOC

COLOC uses summary data from eQTL and GWAS studies and a Bayesian framework to
identify the subset of GWAS signals that co-localize with eQTLs. We sought to compare
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TWAS to the COLOC-estimated posterior probability of association (PPA) being shared for
both phenotypes (PP4 in the COLOC implementation). COLOC additionally evaluates the
hypothesis of multiple independent associations (PP3), but this is more general than the
proposed TWAS model and was not tested. Because COLOC relies on priors of association
to produce posterior probabilities of co-localization, we sought to identify a significance
threshold that would make a fair comparison to the TWAS p-value-based threshold.
Specifically, we ran both methods on a realistic null expression simulation (with the
generative model described previously): the expression was sampled from a null standard
normal for 1,000 individuals and eQTLs computed; the trait associations were derived from
a simulated 300,000 GWAS with a single typed causal variant that explained 0.001 variance
of the trait (high effect). We believe this scenario is both realistic and consistent with the
GWAS assumptions of COLOC. We then empirically identified the statistical threshold for
COLOC and TWAS that would yield a 5% false discovery rate: co-localization statistic PP4
> 0.17 for COLOC, and P<0.05 for TWAS. We note that this empirical COLOC threshold is
much less stringent than PP4>0.8 used in the COLOC paper (PP4>0.8 would yield lower
power for COLOC in our simulations). These thresholds were subsequently to evaluate the
power to detect an expression-trait association in simulations with a true effect
(Supplementary Figures S10, 12). The reported power is for a single locus and we did not
attempt to quantify genome/transcriptome-wide significance.

Individual-level analysis of METSIM GWAS

We imputed the significantly heritable genes into the METSIM GWAS cohort of 5,500
unrelated individuals with individual-level genotypes (and unmeasured expression). We then
tested the imputed expression for obesity-related traits: body mass index (BMI);
triglycerides (TG); waist-hip-ratio (WHR); and fasting insulin levels (INS). Overall, the
evaluated traits exhibited high phenotypic and genetic correlation as well as highly
significant genome-widtazg ranging from 23-36% (Supplementary Table 15) consistent

with common variants having a major contribution to diseasé relsociation was

assessed using standard regression as well as a mixed-model that accounted for relatedness
and phenotypic correlatiShwith similar results. The effective number of tests for each trait
was estimated by permuting the phenotypes 10,000 times and, for each permutation, re-
running the association analysis on all predicted genes. For eachdrgitie P-value in

the lowest 0.05 of the distribution, was computed and the effective number of tests was
0.05/Ryerm reported in Supplementary Table 16. All phenotypes were shuffled together, so
any phenotypic correlation was preserved. The effective number of tests corresponded to
88-95% of the total number of genes, indicating a small amount of statistical redundancy
(Supplementary Note). To evaluate the TWAS approach, we computed phenotype
association statistics for the 5,500 unrelated individuals and re-ran the analysis using only
these summary statistics and the same expression reference panels. The resulting TWAS
associations were nearly identical to the direct TWAS associations across the four traits
(Pearsom=0.96). Reassuringly, the TWAS was generally more conservative than the direct
estimates (Supplementary Figure 16).
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Refining trait-associated genes at known loci

We focused on GWAS data from heigthat identified 697 genome-wide significant

variants in 423 loci, and conducted the summary-based TWAS over all genes in these loci
using YFS and NTR as expression training data. Because the YFS individuals had been
phenotyped for height and not tested in the GWAS, we could directly evaluate whether
selected genes were associated with phenotype. At each locus, we considered three
strategies for selecting a single causal gene: 1) the gene nearest to the most significantly
associated SNP; 2) the gene for which the index SNP is the strongest eQTL in the training
data; 3) the most significant TWAS gene. For each strategy, we then constructed a risk-score
using the genetic value of expression for the selected gene weighted by the corresponding
TWAS Z-score. The same procedure was then re-evaluated using TWAS values trained in
the NTR cohort (which introduces additional noise due to heterogeneity between the

cohorts, Supplementary Table 5).We separately used GCTA to estimate the heritability of
height explained by all of the genes selected by each algorithm by constructing a GRM from
the selected genes. In contrast to the risk score, this does not assume pre-defined weights on
each gene but allows them to be fit by the REML model. Results were comparable, with

only the TWAS-selected genes explaining significantly non-zero heritability

(Supplementary Table 5).

Validation analysis in lipid GWAS data

We evaluated the performance of TWAS by identifying significantly associated genes in the
2010 lipid study that did not overlap a genome-wide significant SNP, and looking for newly
genome-wide significant SNPs in the expanded 2013 study. The P-value for the number of
genes with increased significance and genome-wide significance in the 2013 study was
computed by a hypergeometric test, with background probabilities estimated from the set of
significantly heritable genes. Of the genes not overlapping a significant locus in the 2010
study, 70% had a more significant SNP in the 2013 study and 3.5% overlapped a genome-
wide significant SNP (P<5x168).

Meta-analysis of imputed expression from multiple tissues

We proposed a novel omnibus test for significant association across predictions from all
three cohorts. Because the imputation is made into the same GWAS cohort, correlation
between predictors must be accounted for. For eachigemecstimated a correlation

matrix C; by predicting from the three tissues into the ~5,500 unrelated METSIM GWAS
individuals (though any large panel from the study population could be used). This
correlation includes both the genetic correlation of expression as well as any correlated error
in the predictors, thus capturing all redundancy. On average, a correlation of 0.01, 0.01, and
0.43 was observed between YFS:METSIM, NTR:METSIM, and YFS:NTR, highlighting the
same tissue of origin the last pair. We then used the three-entry vector of TWAS predictions,
Zi, to compute the statistic omnibasz;’ C;~1 Z; which is approximately? (3-dof)

distributed and provides an omnibus test for effect in any tissue while accounting for
correlatio?”->8 Though the correlation observed in our data was almost entirely driven by
the YFS:NTR blood datasets, we expect this to be an especially useful strategy for future
studies with many correlated tissues. An alternative approach would be to perform
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traditional meta-analysis across the three cohorts and then predict the TWAS effect.
However, this would lose power when true eQTL effect-sizes (or LD) differ across the
cohorts, which we have empirically observed to be the case looking at predictor correlations
above. The proposed omnibus test aggregates different effects across the studies, at the cost
of additional degrees of freedom.

Gene permutation test

The standard TWAS Z-score is a test against the null of no SNP-trait association; that is
Ztwas = WZ(W s sWH)Y2 is well calibrated (i.e. has a 0 mean and unit variance) only
under the null model o ~N(0,Zs 9. In the alternate model where Z is drawn from a non-
zero mean distributi®®¥:0 Zrwas has a distribution that depends both on Z as well as the
weights W. To quantify the impact of the weights afy4£s regardless of whether Z is null

or non-null we conduct permutations conditional on the observed Z vector. For each gene,
the expression labels were randomly shuffled and the summary-based TWAS analysis
trained on the resulting expression to compute a permuted new nufifakZTesting

against this permuted null distribution is equivalent to testing for an expression-trait
association (or genetic correlation between expression and trait, see below) conditional on
the observed GWAS statistics at the locus (which may not be drawn from the null of no
association). The permutation test empirically computes this distributiopygfZvalues
conditional on the observed Z and asks how extreme is the obseagyad Zmong all

possible W coming from permuted expression data. Note that failing the permutation test
may be an indication of lack of power to show that the expression significantly refines the
direct SNP-trait signal. In practice, the permutation test was run 1,000 times for each TWAS
gene and a p-value computed by Z-test against this null.

Relationship to genetic covariance/correlation

Our tests relate to previously defined estimators of genetic correlation and covariance
between traits. We consider two definitions of genetic covariance at a locus: 1) the
covariance between the genetic component of expression and the genetic component of trait;
2) the covariance between the causal effect sizes for expression and the causal effect-sizes
for trait. Under assumptions of independent effect-sizes, these definitions yield
asymptotically identical quantitié§ Assuming a substantially large training set where the
genetic component of expression can be perfectly predicted, the direct TWAS tests for a
significant association between the genetic component of expression and the trait; equivalent
to testing definition #1 for a polygenic trait. Likewise, the summary-based TWAS tests for a
significant sum of products of the causal expression effect sizes and the causal trait effect
sizes; equivalent to definition #2 up to a scaling factor. The TWAS approach therefore fits
naturally with the broader study of shared genetic etiology of multiple phenotypes. At the
sample sizes evaluated in this study, the TWAS approach is substantially better powered
than an LD-based estimate of local genetic correlation (Supplementary Note).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of methods
Cartoon representation of TWAS approach. In the reference panel (top) estimate gene

expression effect-sizes: directly (i.e. eQTL); modeling LD (BLUP); or modeling LD and
effect-sizes (BSLMM). A: Predict expression directly into genotyped samples using effect-
sizes from the reference panel and measure association between predicted expression and
trait. B: Indirectly estimate association between predicted expression and trait as weighted
linear combination of SNP-trait standardized effect sizes while accounting for LD among
SNPs.
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Figure 2. M odes of expression causality
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Unlikely to detect for multiple SNPs
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Diagrams are shown for the possible modes of causality for the relationship between genetic
markers (SNP, blue), gene expression (GE, green), and trait (red). A-D describes scenarios
that would be considered null by the TWAS model; E-G describes scenarios that could be
identified as significant.
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Figure 3. Number of geneswith significant cis-heritability observed at varying sample sizes

The number of genes with significant cis-heritability was estimated by down-sampling each
cohort (YFS, METSIM, and NTR/Wright et al.) into quintiles.
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Figure 4. Accuracy of direct expression imputation algorithms
Adjusted accuracy was estimated using cross-validation R"2 between prediction and true

expression, and normalized by corresponding cis-h2g. Bars show mean estimate across three
cohorts and three methods: eQTL — single best cis-eQTL in the locus; BLUP using all SNPs
in the locus; BSLMM using all SNPs in the locus and non-infinitesimal priors.
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Figure 5. Power of summary-based expression imputation algorithms

Realistic disease architectures were simulated and power to detect a genome-wide
significant association evaluated across three methods (accounting for 15,000 eGWAS/
TWAS tests, and 1,000,000 GWAS tests). Colors correspond number of causal variants
simulated and methods used: GWAS where every SNP in the locus is tested; eGWAS where
only the best cis-eQTL is tested; and TWAS computed using summary-statistics. Expression
reference panel was fixed at 1,000 out-of-sample individuals and simulated GWAS sample
size designated by x-axis. Power was computed as the fraction of 500 simulations where
significant association was identified.
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Table 1

TWAS significant genes with no known GWAS risk variants within 500Kb.

GWAS trainingexpression gene chr | locusstart locus end prualue
TWAS | permuted | bestcis-SNP
LOCKE.BMI omnibus INO8OE 16 29506615 30517114 3E-09 3E-0f 3E-0
LOCKE.BMI omnibus FTSJ3 17 6139679 62407312 1E-p7 5E-(6 9E-0
LOCKE.BMI omnibus PAM 5 101589684 1028668709  3E-Q7 4E-09 3E-03
LOCKE.BMI YFS GGNBP2 17 34400737 35446278 1E-Q6 7E-0p 3E-04
LOCKE.BMI YFS MYO19 17 34351477 35399284 3E-0p 4E-04 3E-06
LOCKE.BMI omnibus OPRL1 20 62211524 63231996 3E-06 9E-0p 2E-0
LOCKE.BMI NTR RABGAP1 9 1252032871 12636714 4E-06 3E-0 1E-05
LOCKE.BMI YFS SMARCD2 17 61409444 6242042 5E-(J6 9E-0% 9E-07
LOCKE.BMI METSIM AL049840.1 14 | 103677607 104679149 5E-(Q6 5E-0p 1E-07%
LOCKE.BMI omnibus LPAR2 19 19234477 2023973p 6E-(§6 3E-0p 4E-04
WILLER.HDL YFS MRPS18B 6 30085486 31094172 1E-J7 2E-02 4E-06
WILLER.LDL omnibus PAM 5 101589689 10286680Pp  4E-1I5 9E-1 2E-03
WILLER.LDL omnibus ITIH4 3 52346991 53365494 8E-0p 4E-06 3E-05
WILLER.LDL omnibus WARS 14 100300124 101343142  1E-(8 6E-Of 3E-04
WILLER.LDL omnibus MAN2C1 15 75148133 7616097 1E-08 1E-O 6E-05
WILLER.LDL YFS DHRS13 17 26724799 2773008 6E-07 4E-04 2E-06
WILLER.LDL YFS ERAL1 17 26681956 27688085 8E-0f 9E-04 2E-06
WILLER.LDL YFS HCG27 6 30665537 31671745 2E-0p 7E-03 7E-08
WILLER.LDL YFS VARS2 6 30376019 31394234 3E-0p 2E-02 1E-05
WILLER.LDL omnibus PEX6 6 42431608 4344695 5E-(6 3E-O 4E-04
WILLER.LDL omnibus CSK 15 74574398 75595539 6E-(J6 1E-04 1E-05
WILLER.TC omnibus PAM 5 10158968% 1028668Q9 9E-15 3E-1B 5E-03
WILLER.TC omnibus WARS 14| 10030012p 101343142 2E-p8 4E-06 2E-0
WILLER.TC omnibus MAN2C1 15 75148133 7616097[L 3E-¢7 7E-Op 2E-06
WILLER.TC omnibus ITIH4 3 52346991 5336549 6E-qQ7 2E-O 5E-05
WILLER.TC NTR CDK2AP1 12 123245557 124256647  6E-Q7 2E-Oft 5E-04
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GWAS trainingexpression gene chr | locusstart locus end prvalue
TWAS | permuted | bestcis-SNP
WILLER.TC YFS TBKBP1 17 45271447 4628941 9E-Q7 3E-04 2E-07| *
WILLER.TC METSIM RPP25 15 74746757 7574980p 2E-(6 2E-0Oft 9E-01 *
WILLER.TC omnibus CSK 15 74574398 7559553p 2E-06 9E-0p 9E-OF *
WILLER.TC YFS MPI 15 74682346 75691794 2E-0p 2E-04 5E-06| *
WILLER.TC omnibus DAGLB 7 5948757 7023821 2E-0p 8E-04 TE-06| *
WILLER.TC NTR TOM1 22 35195267 36243985 2E-0p 2E-04 1E-06] *
WILLER.TC METSIM HMGXB4 22 35153445 36191800 3E-0p 4E-05 4E-07| *
WILLER.TC NTR C170rf68 17 7628139 8651413 3E-06 6E-0 2E-07| *
WILLER.TG YFS PABPC4 1 39526488 4054246 1E-Q8 1E-O4 8E-04 *
WILLER.TG omnibus PACS1 11 65337834 66512218 5E-p8 3E-4 1E-0% *
WOOD.HEIGHT omnibus INO8SOE 16 2950661 30517134 2E-10 2E-Q5 1E-Of *
WOOD.HEIGHT NTR INPP5B 1 37825435 3891272p 2E-(9 1E-Op 1E-04 *
WOOD.HEIGHT omnibus MEGF9 9 12286309 123976748  3E{9 2E-Q4 1E-Of *
WOOD.HEIGHT omnibus ATF1 12 50657493 51714905 6E-P9 4E-05 1E-0¢ *
WOOD.HEIGHT omnibus PAM 5| 10158968p 102866809 2E-D8 8E-0J6 1E-0% *
WOOD.HEIGHT omnibus CNIH4 1 22404455p 225067161  3E-p8 2E-05 6E-08 *
WOOD.HEIGHT omnibus PLEKHA1 10 12363421p 1246918p7 1E-P7 3E-(5 6E-0Of *
WOOD.HEIGHT NTR PDXDC1 16 14568832 1563218p 1E-¢7 3E-0B 7E-04
WOOD.HEIGHT YFS MSRB2 10 22884435 2391094p 2E-07 2E-0p 3E-0¢ *
WOOD.HEIGHT YFS ZNF213 16 2679778 3692804 2E-¢7 1E-0B 6E-07%
WOOD.HEIGHT NTR YWHAB 20 43014185 44037354 5E-0f7 3E-04 4E-06| *
WOOD.HEIGHT NTR ITM2B 13 48307273 4933645] 5E-07 4E-0§ 1E-06| *
WOOD.HEIGHT omnibus WDSUB1 2| 159592304 16064330 7EP7 3E-04 5E-0p *
WOOD.HEIGHT NTR STAT6 12 56989190 5800512 8E-(7 3E-0B 8E-06
WOOD.HEIGHT omnibus PLCL1 2| 19816942p 1999373p5 9E-P7 4E-(3 6E-0f
WOOD.HEIGHT YFS H2AFJ 12 1442727( 1543093p 1E-06 4E-Op 6E-07 *
WOOD.HEIGHT YFS FAM8BAL 6 17100586 1811195 1E-06 2E-0 1E-07
WOOD.HEIGHT METSIM AC016995.3 2 38133861 39242882 1E-P6 3E-04 4E-0% *
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GWAS trainingexpression gene chr | locusstart locus end prvalue
TWAS | permuted | bestcis-SNP

WOOD.HEIGHT omnibus CDA 1 20415441 2144540'1 1E-06 3E-0p 6E-01 *
WOOD.HEIGHT YFS ECHDC2 1 52861656 5389288L1 1E-06 3E-0B 1E-04
WOOD.HEIGHT YFS NFATC3 16 67618654 6876316p 2E-(6 4E-0B 4E-071
WOOD.HEIGHT YFS SH3YL1 2 —282270 766398 2E-0p 1E-04 6E-07| *
WOOD.HEIGHT omnibus PABPC4 1 3952648 40542462 3E6 4E-04 6E-0p *
WOOD.HEIGHT METSIM RP11-473M20.14 16 2666043 368488B 3EP6 4E-Q3 1E-Of
WOOD.HEIGHT omnibus HEBP1 12 1262779 13653207 3E{6 7E-Q4 1E-0p *
WOOD.HEIGHT YFS KBTBD2 7 32407784 3343374 3E-06 4E-0 1E-07
WOOD.HEIGHT METSIM LRRC69 8 91614060 92731464 3E-Q6 6E-Of 6E-07 *
WOOD.HEIGHT YFS RAB23 6 56553607 57587078 4E-(6 4E-0B 6E-07
WOOD.HEIGHT YFS PPP4C 16 29587299 30596698 5E06 1E-Q3 1E-Of
WOOD.HEIGHT NTR B3GALNT2 1 235110444 236167884 5E-(Q6 S5E-Of 1E-09 *
WOOD.HEIGHT YFS PSRC1 1 109322178 1103258p8 5E{06 3E-Q4 1E-Of *
WOOD.HEIGHT YFS ACSS1 20 24486864 25539616 5E-P6 6E-04 1E-0¢ *
WOOD.HEIGHT omnibus GGPsS1 1 234990645 236007447  5E}06 4E-D4 3E-Q7*

*
Significant after permutation
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