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Abstract

Genetic data often exhibit patterns broadly consistent with “isolation by distance” — a phenomenon
where genetic similarity decays with geographic distance. In a heterogeneous habitat this may
occur more quickly in some regions than others: for example, barriers to gene flow can accelerate
differentiation between neighboring groups. We use the concept of “effective migration” to model
the relationship between genetics and geography: in this paradigm, effective migration is low in
regions where genetic similarity decays quickly. We present a method to visualize variation in
effective migration across the habitat from geographically indexed genetic data. Our approach uses
a population genetic model to relate effective migration rates to expected genetic dissimilarities.
We illustrate its potential and limitations using simulations and data from elephant, hum@n and
thalianapopulations. The resulting visualizations highlight important spatial features of population
structure that are difficult to discern using existing methods for summarizing genetic variation.

Introduction

All natural populations exhibit “structure”: some individuals are more closely related than
others. Population structure is shaped by many factors, but probably most influential are the
barriers to gene flow that the population has experienced during its evolutionary history —
barriers that may be due to extrinsic factors (such as topography or environment) or intrinsic
factors (such as mate recognition, reproductive compatibility, or complex interactions in
social species such as humans). Studying genetic structure can therefore yield insights into
the demographic and evolutionary processes that have shaped the po%)u%aﬂnd help

answer questions related to, for example, adaptg,tisp\eciation{ hybridizationS,
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mtrogressmn6 or recombination- Understanding genetic structure may also be useful in
contexts other than evolutionary genetics — for example, to identify genetically distinct
groups that may require special conservation s?ammsdetect the geographic origin of
910 i . o 11,12
samples: " or to help correct for confounding in genome-wide association sttidies

These questions have motivated the development of many statistical methods for analyzing
population structure. Admixture-based clusterllﬁg14 and principal components analysis
(PCA) 15,16 are most widely used. Both approaches summarize the major patterns of
population structure in explicit and intuitive visual representations, which can help to
generate and refine hypotheses about biological and evolutionary processes and to identify
sample outliers or other unexpected patterns. Aside from this shared feature, admixture-
based and PCA-based methods have distinct strengths and limitations. Clustering methods
are particularly useful when the population is well represented by a small number of
relatively distinct groups, possibly with recent admixture; they are less successful in
characterizing continuous patterns of genetic variation. In comparison, PCA is arguably
better adapted to continuous settirlfrg’jand has proven helpful in diagnosing isolation by
distance’’ as a feature of the data However, PCA is heavily influenced by sampling

biases, i.e., more data being collected preferentially from some regions thanl%ﬁ?ezré

And while PCA projections are often interpreted post hoc with geographic information in
hand, PCA ignores the sampling locations even if they are known — information that can be
particularly helpful if the data exhibit a degree of isolation by distance.

Motivated by this, we developed a novel tool for visualizing population structure in an
important setting that is not ideally served by existing methods: the setting where individuals
are sampled from known locations across the habitat (the samples are “geo-referenced”) and
where the population structure is broadly, but perhaps not entirely, consistent with isolation
by distance. We aim to produce visualizations that highlight deviations from exact isolation
by distance, and thus identify corridors and barriers to gene flow, if they exist. Our method,
EEMS, shares goals with several spatial approazc%n%ss 24, but is unique in explicitly
representing genetic differentiation as a function of the migration rates in an underlying
population genetic model. EEMS is conceptually related to early work on inferring

migration rates from genetic da2t5a although the details — and particularly the use of
“resistance distance26 — are closer to recent work on landscape connec%zziﬁ]he
Supplementary Note includes further discussion on how EEMS compares with related work.

Outline of the EEMS method

Figure 1 provides a schematic overview of our approach. EEMS is based on the stepping
stone mode%S, in which individuals migrate locally between subpopulations (demes) and
migration rates can vary by location. To captowatinuougpopulation structure, we cover

the habitat with a dense regular grid; each deme exchanges migrants only with its neighbors.
Under the stepping stone model, expected genetic dissimilarities depend on the sample
locations and the migration rates. The expected genetic dissimilarity between two

individuals can be computed by integrating over all possible migration histories in their
genetic ancestry and we approximate it using resistance distance, a distance metric from
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circuit theory that integrates all possible migration routes between two GRriiem

estimation procedure adjusts the migration rates of all edges in the graph so that the genetic
differencesexpectedinder the model closely match the genetic differeméasgrvedh the

data; it also encourages nearby edges to have similar migration rates. The estimates are then
interpolated across the habitat to produce an “estimated effective migration surface” — hence
EEMS — which provides a visual summary of the observed genetic dissimilarities and how
they relate to geographic location. For example, if genetic similarities tend to decay faster in
some regions, those areas will have lower effective migration. If, on the other hand, the
relationship between genetic similarity and geographic distance is the same throughout the
habitat, the estimated surface will be relatively constant. We use the term “effective” because
the model makes assumptions (most importantly, equilibrium in time) that may preclude
interpreting effective migration as representing historical rates of gene flow. Nonetheless, we
illustrate that the method provides an intuitive and informative way to visualize patterns of
population structure in geo-referenced samples.

Simulations under the stepping stone model

We illustrate the benefits and limitations of EEMS with several simulations. We used the
programms29 to simulate data under two migration scenarios: in the “uniform” scenario,
which represents pure isolation by distance, migration rates do not vary throughout the
habitat (Fig. 2a); in the “barrier” scenario a central region with lower migration rates
separates the east and the west of the habitat (Fig. 2b). We applied both EEMS and PCA to
data generated under these scenarios and under three different sampling schemes (Fig. 2c).
The results illustrate two key points. First, whatever the sampling scheme, the migration
scenario is easier to discern from the EEMS contour plots (Fig. 2e) than from the PCA
projections (Fig. 2d). For the isolation by distance situation, the surfaces are approximately
uniform under all three sampling schemes, and for the barrier simulation, the surfaces
highlight the barrier as an area of lower effective migration. In contrast, the simple nature of
the underlying structure is not obvious from the PCA projections in either setting, and
indeed, the PCA results for the different scenarios do not differ in an easily identifiable,
systematic way. Second, EEMS is less sensitive to the underlying sampling scheme than
PCA. Indeed, the inferred surfaces are qualitatively unaffected by sampling scheme, except
in the extreme case where there are no samples taken on one side of the migration barrier.
This renders the migration rates on that side of the barrier inestimable from the data, so that
estimates in that region are driven by the prior which assumes no heterogeneity in migration
rates. In contrast, PCA is heavily influenced by irregular samﬁﬂnz& 2L For example,

biased sampling and the presence of a barrier can both produce clusters in the PCA results
(top row in Fig. 2d).

Effective migration versus actual migration—  Population genetics uses extensively

the notion of “effective population size”, which can be informally defined as the size of an
idealized (random-mating, constant-sized) population that would produce patterns of genetic
variation similar to those observed empirically. The effective size of a population is typically
quite different from its census size. Similarly, an effective migration surface represents rates
that, within an idealized stepping stone model evolving under equilibrium in time, would
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produce genetic dissimilarities similar to those observed in the data. However, the effective
migration rates can be different from the actual migration rates in the population.

To illustrate this idea we compare two migration scenarios that both produce an “effective
barrier to migration”: in Figure 3a the barrier results from a lower population density in the
central region, in Figure 3b the barrier results from a population split. In both cases the
contour plot correctly reflects spatial structure: individuals on either side of the central
region are less genetically similar than expected under pure isolation by distance. Indeed, in
this case both effective migration surfaces accurately reflect average rates of historical gene
flow. However, it should be clear that care is warranted in linking effective migration to
inferences about the actual underlying migration process.

These results also emphasize that, because EEMS characterizes expected genetic
differentiation, it cannot distinguish between different scenarios that produce similar
expectations for the pairwise genetic dissimilarities; this is also true forZB.G)Asome

cases it may be possible to distinguish among such scenarios using other aspects of the data,
but we do not pursue this here.

Effects of SNP ascertainment— The model underlying EEMS formally assumes that
observed biallelic loci are a random sample of biallelic loci polymorphic in the sample and
hence that the loci are “unascertained”. This assumption holds for complete sequence data
but not for genotyped SNPs, which are biased towards higher minor allele frequencies and
could also be biased towards higher levels of polymorphism in certain geographic locations.
To assess robustness of EEMS to this assumption, we performed simulations in which SNPs
were ascertained as polymorphic in a small panel preferentially sampled from one
geographic area. Results show that EEMS is qualitatively robust to this bias (see
Supplementary Note and Supplementary Fig. 1).

As described in Online Methods, EEMS also estimates the effective diversity rate within

each deme — a parameter that reflects the expected genetic dissimilarity of two individuals
sampled from that location. In contrast to effective migration, effective diversity is sensitive

to geographically biased SNP ascertainment (Supplementary Fig. 1b). Intuitively,
ascertaining common SNPs increases the average number of differences among all
individuals, and so increases the observed diversity. Geographically biased ascertainment
can therefore create apparent geographic differences in diversity where none exist. However,
we expect the effect of ascertainment on how, qualitatively, genetic dissimiladsys with
distance- and hence its effect on the estimated migration surface — to be less pronounced,
and our simulation results support this view.

Anisotropic migration— EEMS cannot infer directions of migration because the
underlying model assumes that migration rates are symmetric. Nonetheless, EEMS is not
entirely incapable of representing directional differences in migration (“anisotropic
migration”). This is because, at any given deme, edges radiate in six directions and each
edge has its own migration rate. To illustrate, we performed simulations where throughout
the habitat migration occurs at a much higher rate in the NS direction than in the EW
direction: the resulting surface reflects this by interspersing vertical “corridors” that
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facilitate NS migration with vertical “barriers” that inhibit EW migration (Supplementary
Fig. 2).

Diagnosing deviations from an EEMS fit—  Although EEMS assumes stationary
symmetric migration in a closed regular triangular grid, it would be a mistake to interpret
EEMS results as a validation of this population genetic model over others. Instead EEMS is
an exploratory tool fovisualizingpatterns of genetic variation in geo-referenced data. As in
Figure 3b, EEMS can provide useful summaries even if the data was not generated under
equilibrium; however, not all patterns of genetic differentiation can be well represented by
EEMS. To identify deviations from the fitted model, the pairwise genetic differences
predicted by EEMS are plotted against the pairwise genetic differences observed in the data.
If a few individuals or sampling locations produce strong deviations, it may be prudent to
remove them, or to check that the results are robustness to their inclusion (see
Supplementary Note and Supplementary Fig. 3 for a scenario with recent migration).

Supplementary Figure 3 illustrates these diagnostic plots in a situation where several
individuals have recently migrated from one end of the habitat to the other (or perhaps their
sampling location was wrongly labeled). The “migrants” are genetically distinct from other
nearby individuals, which EEMS represents with a barrier around them (Supplementary Fig.
3a). However, as the diagnostic plot indicates (Supplementary Fig. 3b), EEMS cannot
represent the fact that the “migrants” are genetically similar to some very distant individuals.
In principle, this could be captured by a corridor of migration linking the migrants to their
original location, but EEMS does not do this, presumably because inserting such a corridor
would make the overall model fit worse. We supply further examples of these diagnostic
plots for all our empirical examples (Supplementary Figures 10, 12 and 16).

Empirical results

Elephants in Sub-Saharan Africa— The African elephant/(oxodonta africaryghas two
recognized subspecies: the forest elephani.(cycloti¥ and the savanna (or bush) elephant

(L. a. africama Both subspecies are under threat, partly from poaching, and a large sample
was collected and genotyped at 16 microsatellite loci to help assign contraband tusks to their
location of origin and thus facilitate conservation eﬁgrtWe analyze a geo-referenced

dataset that contains 211 forest and 913 savanna eIeS%ants

The African elephant provides a helpful illustration because the subspecies structure is clear
and strongly correlated with geography: its primary feature is the low effective gene flow
between forest and savanna elephants despite their geographic proximity. Correspondingly,
the estimated effective migration surface is dominated by a strong barrier between their
habitats (Fig. 4b). To a degree, EEMS captures its winding shape, though our method, based
on Voronoi tessellations, is better adapted to visualize barriers with simpler structure. This is
also an empirical example of an effective barrier to migration due to a non-equilibrium

history of drift after divergence (as in Figure 3b).

For the African elephant, one of the sixteen genotyped loci is extremely informative: the
surface inferred from this locus alone is similar to that from all sixteen loci (Supplementary
Fig. 5). However, the surface from the remaining fifteen loci is also qualitatively similar
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(Supplementary Fig. 6a); therefore the strongly differentiated locus is consistent with the
others. (In principle, differences in effective migration among loci could provide a test for
selectionSl.)

Since strong differentiation between the two subspecies dominates EEMS, we also analyzed
forest and savanna samples separately to assess subtler structure within each group. The
presence of substructure has been detected prev?oasd/the habitat can be divided into

five broad biogeographic regions (Fig. 4a): West and Central (forest); North, East and South
(savanna). The savanna surface (Fig. 4c) shows a “corridor” of higher effective migration
connecting the South and East regions, and a barrier separating them from the North. The
barrier coincides with forest habitat, which forms a known barrier to migration for savanna
elephants; the corridor is consistent with previous observations, from mitochondrial data,
that South and East elephants are more similar genetically than their geographic distance
would sugges?fz. The forest surface (Fig. 4d) also shows a corridor of higher effective
migration, which connects the West and Central regions. The two subspecies-specific
contour plots suggest that there is more deviation from uniform migration (stronger
deviation from isolation by distance) in the savanna elephants. These patterns are harder to
recognize in the corresponding PCA plots (Supplementary Fig. 7) or admixture-based
analyses (Supplementary Figures 8 and 9).

In addition to effective migration, our method also estimates the effective diversity within
each deme; these parameters reflect the expected genetic dissimilarities of two individuals
from the same location. For the African elephant, the inferred effective diversities are higher
in forest regions than in savanna regions (Supplementary Fig. 6b). This represents, in a
direct visual way, the observation that forest elephants have higher heterozygosity than
savanna elephan?g.

Humans in Europe and Sub-Saharan Africa— We analyze two large-scale genome-
wide datasets to visualize the genetic structure of human populations on two continents: a
collection of 1,201 individuals from 13 Western European coun]t%gé and a collection of

314 individuals from 21 Sub-Saharan African ethnic groSL?pSSf3 ' 37.

The two leading PCs are correlated with geographic location in both dalFa%é?sg. This
suggests that genetic similarity tends to decay with geographic distance (Supplementary Fig.
11) and thus the data are broadly consistent with isolation by distance. On the other hand,
EEMS highlights patterns that deviate from exact isolation by distance (Fig. 5).

In Europe (Fig. 5a), the areas of highest effective migration span the North Sea and the
Mediterranean, likely due to historic contacts between peoples bordering these bodies of
water; other areas of high migration span central France and Austria. Some regions of low
effective migration align with topographic barriers: the Alps and the Atlantic; an area of low
migration also spans Germany. Visually there are two east-to-west barriers and so the
effective migration surface supports the idea that population structure in Europe is
characterized by a north/south clﬁflgeThus, while the PCA plot may suggest a simple
relationship between genetics and geogre%ghEEMS highlights more complex spatial
patterns of differentiation. In POPRES, the geographic information is imprecise because
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locations were assigned based on nationality. The EEMS results are largely robust to this
location uncertainty, which we assessed by adding random jitter to the assigned locations
(Supplementary Fig. 13).

In Africa (Fig. 5b), EEMS highlights a corridor of higher effective migration along the
Atlantic coast, relative to lower effective migration inland. This indicates that — at a given
distance apart — the coastal populations are more genetically similar than the inland
populations. The U-shaped tail of this corridor suggests higher than expected genetic
similarity between some ethnic groups in the west and in the east. Non-genetic information
about the subpopulations can help clarify this pattern: the Fang (Fa) and the Kongo (Ko) in
the west, and the Luhya (Lu) in the east speak Bantu languages, so we hypothesize that the
link is partly due to shared ancestry between Bantu speaking groups (Supplementary Fig.
15). In an EEMS analysis after excluding the Luhya, the definition of the corridor
connecting the east with the west is greatly decreased (Supplementary Fig. 14), which
supports our hypothesis.

EEMS attempts to explain observed genetic dissimilarities using (an approximation to) the
stepping stone model. Some datasets may contain features that are not captured by this
model such as recent long-distance migrants. To check the model fit we compare the fitted
and observed genetic dissimilarities. For both human datasets, those values agree well
(Supplementary Figures 12 and 16) and they agree better under the estimated migration
patterns than under a constant migration model: the proportion of variance explained
increases from 14.2% to 97.8% for the European data and from 16.4% to 91.4% for the
African data. Therefore non-stationary effective migration provides a better explanation for
the observed spatial differentiation than simple isolation by distance.

A. thaliana in Europe and North America— Arabidopsis thaliane a small flowering

plant with natural range in Europe, Asia and North Africa, which is now also found in North
America. AlthoughA. thaliands a selfing plant with low gene flow, its genetic variation has
significant spatial structurdéov 41. In EuropeA. thalianaexhibits patterns consistent with
isolation by distance, with an east/west gradient that has been interpreted as evidence for
post-glaciation colonizatioh- In North America there is less spatial structure, likely due to
recent human introduction from Euro%oe We analyzeA. thalianadata from the Regional
Mapping (RegMap) projeé’tz, which includes 979 accessions from Europe and 180
accessions from North America.

In a combined analysis of the North American and European data (Fig. 6a), EEMS infers a
corridor of high effective migration across the Atlantic Ocean, relative to lower effective
migration within each continental group; this highlights the strong genetic similarity
between the European and North American samples. EEMS assumes that migration is
symmetric and so it cannot infer a direction for gene flow, but the effective migration surface
is consistent with the hypothesis that recent migration introddcéfla//anarom Europe to

North America43.

In North America EEMS infers an area of high migration connecting the two sampled
regions, Lake Michigan and the Atlantic coast (Fig. 6b). This indicates that accessions from
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these regions are distant geographically but similar genetically, probably due to human-
assisted long-range “migration” rather than natural dispersal. This is consistent with the
observation that there is extensive haplotype sharing not only within but also between
sampling Iocationéo.

In Europe the effective migration surface highlights several regions (Fig. 6c). For example,
in the British Isles, a region of lower migration separates the northern British Isles from the
rest of Britain, which in turn is also separated from France. There is substructure within both
France and Germany as well. In France, accessions in the north and the south are separated
by a region of lower effective migration through central France. In Central Europe, areas of
higher effective migration link northern Germany with South Sweden and Norway, and
southern Germany with Austria, Switzerland and the Czech Republic. In contrast, effective
migration is substantially lower in Southern Europe. PCA produces patterns consistent with
the EEMS results about thalianan France and Central Europe, which we confirm by
zooming on these regions and coloring the samples according to latitude and longitude
rather than country of origin (Supplementary Fig. 17).

Discussion

EEMS (Estimated Effective Migration Surfaces) is a new method for analyzing population
structure from geo-referenced genetic samples. EEMS produces an intuitive visual
representation of spatial patterns in genetic variation and highlights regions of higher-than-
average and lower-than-average historic gene flow. EEMS is specifically applicable when

the data conforms roughly to “isolation by distance”, i.e., in settings where genetic similarity
tends to decay with geographic distance, but where this decay with distance may occur more
quickly in some regions than in others.

EEMS uses the concept of “isolation by resistance”, which aims to characterize how genetic
differentiation accumulates in non-homogeneous Iandsggplags integrating over all

possible migration paths between two points. This provides an efficient approximation to the
structured coalescent and, in some cases, better prediction of genetic differentiation than
uniform isolation by distanc4e4.

In previous work, isolation by resistance is often used to build up a connectivity map from

26 424 . . :
known landscape featurés ~ . The concept has also been incorporated into an inference
procedure to test whether genetic distances are impacted by specific observed features such
as altitude or river barriefS. In contrast, EEMS estimates effective migration from genetic
data without the need to observe environmental variables, and thus provides an exploratory
tool for spatial population structure. The hypothesis-driven and exploratory approaches are
complementary and both can be useful in many applications.

Although EEMS is designed to visualize continuous population structure in space, it is built
on a dense regular grid of discrete demes, with migration between neighboring demes. Since
the demes do not correspond to predefined subgroups, the size and registration of the grid
are arbitrary. The choice of grid may be influenced by factors such as sampling density (in a
sufficiently dense grid different sampling locations would correspond to different demes)
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and computational tractability (computation scales cubically with the number of demes). In
practice, we have found that results are qualitatively robust across a range of grids
(Supplementary Fig. 4), but details can change and we suggest averaging the estimates over
several different grids. In principle, it would be attractive to dispense with the grid altogether
and use models of continuous migration; however, such models present theoretical and

. 45 . .
mathematical challenges and at present we do not know how to achieve this.

EEMS requires that each sample has a specified geographic origin, but in some cases this
information may be known imprecisely (as in the analysis of human genetic variation in
Europe for example). To better deal with imprecision in geographic origin, the uncertainty
could be incorporated into the model: the actual location of each individual will be treated as
an unobserved latent variable, given a prior distribution and integrated out in the MCMC
estimation schemé'. This approach might also improve robustness to errors such as sample
switches, by identifying individuals whose genetic origin differs appreciably from their
physical sampling location. A similar extension could help with “spatial localization” (the
problem of inferring the origin of individuals with unknown location) in non-stationary
isolation by distance settinaslo.

Like PCA, EEMS works with a dissimilarity matrix that summarizes pairwise dissimilarities
by averaging across markers. Once this matrix is computed, the complexity per MCMC
iteration does not depend on the number of SNPs and so EEMS is computationally tractable
for large datasets. Moreover, like PCA, this features means that EEMS could be applied to
visualizeanydissimilarity matrix computed from geo-referenced data. For example, it could
be used to visualize dissimilarity matrices computed from non-genetic features such as
language. EEMS will be most useful when similarity tends to decay with geographic
distance, but this is easily assessed.

Summarizing genetic data by a pairwise dissimilarity matrix does, however, result in some
loss of information; for example, in a genetic context, it limits what demographic scenarios
that EEMS can distinguis%‘?. In this regard, it may be helpful to visualize dissimilarity

matrices that emphasize different aspects of the data, perhaps different historical timescales.
For example, ChromoPaint‘éGr produces a measure of genetic similarity that tends to
emphasize the most recent coalescent events between samples (rather than their average
coalescence times). Distance matrices based on rare SNPs could also reveal more recent
dispersal histor)‘}?.

Online methods

EEMS uses a population genetic model that involves migration on an undirectedsgraph
(V,E) with vertices (demesly connected by edges The graphGis a regular triangular

grid, which is fixed and embedded in a two-dimensional plane, so that each deme has a
known location and only neighboring demes are directly connected (Figure 1b). The density
of the grid is pre-specified by the user and depends on both computational considerations —
computational complexity scales cubically with the number of vertices — and the resolution
of the available spatial data.
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The EEMS model has migration parameterand diversity parametegs wherem={mgz e

€ E} specifies an effective migration rate on every edge@ndg,. v €V} specifies an

effective diversity rate for every deme. Intuitively, the migration rateharacterize the
genetic dissimilarities between distinct demes, while the diversity gatiearacterize the
genetic dissimilarities between distinct individuals from the same deme. The EEMS model
. . . 28 . . . —

is a special case of the general stepping stone madehich allows directed migration as
well as migration between demes that are not located close in space.

We use Bayesian inference to estimate the EEMS parameterdq. Its key components

are thelikelihood which measures how well the parameters explain the observed data, and
the prior, which captures the expectation tiiagndg have some spatial structure (in
particular, the idea that nearby edges will tend to have similar migration rates).

The likelihood

We first specify the likelihood for SNP data (oimdividuals ato SNPs) and then extend it

to microsatellites. The initial step is to summarize the observed genetic data by the matrix of
average genetic difference3, between every pair of sampled individuals. (The mad¥ig

defined precisely below.) This approach — using the matrix of pairwise dissimilarities as a
sufficient statistic for the population parameters — assume®tbattains most of the

information aboutnandg. This may not be completely true but the idea of performing
inference using pairwise genetic (dis)similarities has a long history in both population
genetics and phylogeneti?:% 9% and many existing methods make a similar assumption.
For example, PCAWL\5 and TreeMix51 both work with the genetic covariance matrix.

Let Dj; denote the observed genetic dissimilarity between individwald/. The expected

value of Dy is determined, up to a constant of proportionality that reflects the mutation rate,
by how closely relatedand; are, or more precisely, by their expected coalescence time.

This expected value in turn depends on the sampling locafign%/) and the population
parametersgn,g. individuals sampled from demes that are connected by many short paths
containing edges with high migration rates tend to be more closely related, and hence more
similar genetically, than individuals sampled from demes connected only by paths that are
long and/or contain edges with low migration rates. The expected coalescence times can be
computed, at some computational expense, by solving a large set of simultaneous equations.
Alternatively, they can be approximated — at lower, but still nontrivial, computational cost —
using the concept of “resistance distanzc%'We implemented both metrics and found them

to produce qualitatively similar effective migration surfaces, and so here we present results
obtained using resistance distances.

Letting o2 denote the constant of proportionality mentioned above, we can write

E{D|m,q,0°}=0"A(m,q), (1)

where A(m,q) is the matrix of expected dissimilarities that can be computed famamdg.
Our modeling approach assigns high likelihood to valuesigio? such that?A(m,q) ~
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D, while taking some account of dependencies among elemeftaraf of linkage
disequilibrium among markers.

To make our specification precise we introduce some notafjpis:the genotype of
individual / at locus/, coded as 0, 1 or 2 copies of the minor all&les thesxp matrix of
genotypesDj; = (LD XA Zj - Zj/)2 is the average squared difference betwiserd;/ based
on pmarkers;Dis therxnmatrix of observed genetic dissimilaritidsis the (=1)xn
matrix such thaL,; = g — g1 whereL; is the/-th row of L andg is a row vector with 1 in
the /th component and Os elsewhere. Afifis the (+1)x(/+~1) matrix L DL’. It can be
shown thatl/= 2(L2)(LZ2)’; if the nindividuals are linearly independent, which requires
=n, this characterization implies thiis positive definité”.

The matrixL forms a basis for the space of contraste@ams. (For exampleg — €41 is a
contrast between theth and (+1)-st items.) Sincé is a basis)/is a one-to-one mapping

of D and we can specify a model fbrby specifying a model foW52. The advantage of
specifying a model fot¥, rather tharD, is that, since it is positive definitél/can be

modeled by the Wishart distribution, which is parametrized by the expectatidd, &fd a
scalar parametek (the degrees of freedom). Using equation (1), the expectation is given by

E{W m,q,02}:—LE{D|m,q,02}L,:—02LA(m,q)Ll. 2

We treat the degrees of freeddms an additional free parameter.

Putting this together yields a closed form for the derfsifythe statistid//and thus for the
likelihood / of the parameterk m,g,0? since/(k,m,q,0°) = K Wk,m,q,0%). Specifically,

2
Tf17|k,m,q,02~Wn,1 (k‘, —U—LA(m,q)L/> .
g 3)

We make the following observations:

1. Although we definedZ; as the number of copies of the minor allele, the differences
(Zy - Z/y)2 do not depend on the allele labeling and neither does the likelihood.

2. If the genotypesZ were independent across loci and normally distributed, then
standard Gaussian theory would imply thghas a Wishart distributiomyth the
degrees of freedom k equal to the number of SNAsywever, genotypes are
neither normal nor independent, and rather thak=fx we estimate the degrees of
freedomk, under the assumptiori<p. The smallekk is, the higher the variance of
W about its expectation; B} does not depend okiin our parametrization. By
allowing A&<pwe can, to some extent, account for sources of model mis-
specification such as linkage disequilibrium.
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3. Indefining W= -LDL’ we introduced a specific matrix However, other choices
for L would yield equivalent likelihoods as long as thd rows ofL form a basis
for the contrasts of elements. (A contrast is a linear combination whose
coefficients add to 0.) This property ensures #éds a one-toone mapping of
and that we would get exactly the same likelihood with any liasip to a
constant of proportionality that does not depend on the parar7512eters

Application to microsatellites— At a microsatellite locus, an allele is typically coded as
the number of repeats of a specific motif. To apply our method to microsatellites we define
the genotypeZ; to be theaverageof the two alleles that individuakarries at locug This
approach could likely be improved upon, but it suffices for our analysis of the African
elephant data.

We then defineX/) as the matrix of pairwise difference") = (Z; - Z;)? at locus/ and

W = -1 DU 1" as the corresponding transformation in terms of the laSince different

microsatellites have different mutation rates, we introduce locus-specific scale parameters
o /=1,...p. For locus/ equation (1) becomes

E{DO|m,q,02}=02A(m,q). (4)
Each matrix4) has rank one and we define the likelihood by assumingffahas a

(singular) Wishart distribution with one degree of freedom:

WOlm, g, 0t~ Wy (1~ LAGm, ) L) ®)

and that thep microsatellite loci are independent. (Thus the degrees of freedom are
effectively fixed tok=p.)

The dissimilarity matrix

In population genetics, the expected genetic dissimilarity between two samples is a function
of their expected coalescence time. Indeed, for haploid samples at biallelic loci, as the
mutation rate tends to 0, it can be shown that (see Supplementary Note)

E{Dijlm, a} o< Tsays)(msa)s  (6)

whered(/) denotes the deme from which sampie drawn and7,4(/m,q) is the expected

coalescence time of two independent haploid samples taken from demdg. Thus in
equation (1) we have
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Aij(m, )=Tss) (M2 ). (7)
Similarly, for diploid samples, we have (see Supplementary Note)
Aij(m, @) =4T5)5() (M5 ) =Tiiysci) (1 ) = To )00y (M- 9)-(8)

For any particular value of the parameterandg, the matrix7{/m,q) — and hence X4,g) —
can be computed by solving a system of linear equa%?b%%

However, computing the matrix of expected coalescence tinmeexpensive: it requires

solving a linear system witl{ ¢+1)/2 unknowns to find all pairwise expected coalescence

times in a graph witldemes; this has complexity @2). To reduce the computational

cost, for all results presented here, we approximate coalescence time using the concept of
“effective resistance” — a distance metric for weighted undirected g?g.p@emputing the

matrix of effective resistance®is less intensive because we can obtain all pairwise

resistance distances by invertingSleatriXSG; this has complexity @g). (Efficiency can

be improved further by computing the subset of resistance distances between sampled demes
only; see Supplementary Note.)

To approximate coalescence times using effective resistanc&g4(e) denote the
resistance distance between demesd/in the graphG. (Note thatR,4is not a function

of only the/oca/migration ratem,; but is determined by thggoba/migration pattern.)
The eﬁ%%tive resistancé@are approximately related to the expected coalescence fimes
through™

Raﬁ/ll =~ TaﬁN(Taa+T,6ﬂ)/2- (9)

This approximation is exact for isotropic migration (i.e., if the demes are equivalent with

respect to the rate and pattern of migration), and for more general migration models the
L o L 2B . .

approximation gets better as the migration rates incféakksing equation (9) we

approximate the expected coalescence time between two haploid samples from daches

pas

Tap=Top~(Taat+Tsp)/2+(Taa+Tps) /2 = Rap/4+(9a+45) /2. (10)

That is, for each pair of demesand/ we split the expected coalescence tifpginto a
between-demes component, which is approximated by the (scaled) effective regtggance
and a within-demes componegt,t gp)/2, which is determined by the diversity rateThe
effective resistance® = (R,,5) depend onr, the vectorgis treated as a free parameter. We
then obtain Amn,g) by substituting7{/m,q) with its approximation according to equation (10).
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\oronoi prior on migration rates—  Our prior for the migration ratew captures the idea

that nearby edges will tend to have similar rates, while it also allows the rates to vary among
edges. We parametrize the prior/amsing a Voronoi tessellation of the two-dimensional
habitat/, which partitions into C convex polygons (cells) as follows. First seléct

distinct points (seeds),...,scwithin A. Then define celtto be the set of points iff that

are closer to seeg}than to any other seed. Given a Voronoi tessellatiofi @fe associate

with each cellca migration ratern, We use these to induce a migration rate on each edge in
the graphG, with the migration rate of the edge joining dememndf given by

ma,@:(mca +mc/3)/2’ (_’]_1)

wherec, is the cell containing deme Migration rates should be positive and therefore we
parametrize then,values on the log scale. Further, to capture the idea that the migration
rates of different cells may be similar to one another we parametrize them as deviations from
an overall mean rafg

logyo(me)=ptec, (12)

where the “effect” of celt, denoted bye, determines whether the local dispersal in cédl
faster or slower than the average.

In this formulation, migration rates on every edge in the graph are determined by the
parameters@ s, ..., €, ---,6:4). To complete the Bayesian specification we place priors
on the model parameters. For the number of Voronoi aghts;~ Neg-Bi(;4) is the zero-
truncated negative binomial distribution with shape (number of failu@as) probability of
succesg/. The zero-truncated negative binomial has support {1,2,3,...}; we truncate the
support at zero because the Voronoi tessellation should have at least one cell. For all
analyses described here, we usedlO andv = 2/3, which results in a diffuse prior @

with prior mean 20 and prior variance 60.

For the cell locationsg, ...,&|C~ U(H) is the uniform distribution with support the habitat
H. For the cell effectsa,, ..., &|Ce? ~ N[_2,+2](0,wz) is the truncated normal distribution
with mean 0, variance? and support [-2,+2]. For the overall migration rate,
U(-2.477,+2.477) and for the variance between cefls; Inv-G(c,/2, d,/2) is the inverse
gamma distribution with shapg/2 and scalel,/2. In all results presented here we usgd
=0.001,d,= 1, which results in a diffuse prior distribution.

The lower and upper bounds on the mean log migrationuate chosen so that on the
original scale the mean migration rate varies in the range [1/300,300]. The bounds are
somewhat arbitrary, and chosen to reflect values that might be considered “very small”
(approaching the limit of discrete demes evolving independently) and “very large”
(approaching a panmictic population). The cell effegts.,ecare constrained to lie in the
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range [-2,+2], so that the migration rate of a cell can vary within a factor of 100 from the
mean migration rate.

Other priors— |If there are more genotyped markers than sampled individuals, we can
estimate the degrees of freedénThe prior onk is uniform on the log, scale, to reflect our
uncertainty about the order of magnitude of this paramef&rx 1/k. The prior is proper
becausekis boundedr<i<pwherenis the number of samples apis the number of
SNPs.

For the Wishart scale parametet,~ Inv-G(c,/2, d,/2). In all results presented here we used
¢,=0.001,d, =1, which results in a diffuse prior distribution.

General comments on prior selection—  For all priors, we attempted to select
hyperparameters that are suitable for “general application”. Where we use cut-offs, they
were chosen generously to allow a wide range of values. For example, the bounds on the
migration parameters,,...,ecallow them to vary by a factor of 10,000 and we do not

envisage many situations would require a wider range. Our choice for the hyperparameters
c,don the scale parameter«? corresponds to a very diffuse prior distribution for both

scales, which essentially allows them to take any value dictated by the data. We emphasize
that we used exactly the same parameter settings for all examples shown. The variety of
estimated effective surfaces suggests that our priors are sufficiently flexible to be appropriate
in a wide range of problems.

Markov Chain Monte Carlo estimation

EEMS uses Markov Chain Monte Carlo (MCMC) to estimate the migration and diversity
parameters, by sampling from their posterior distribution given the observed genetic
dissimilarities. The two Voronoi tessellations (one describes the spatial structure in the
migration ratesn, the other in the diversity rategare independent of each other and are
updated with a birth/death move because the number of Voronoi cells is unknown. (The
proposal either adds a new cell, or - if there are at least two cells - removes an existing one.)
The location and rate parameters of a randomly chosen cell are updated with a random-walk
Metropolis-Hastings step. (Each cell in the migration Voronoi has an effective migration

rate; each cell in the diversity Voronoi has an effective diversity rate.) The Supplementary
Note provides further details on computational methods.

Computational time

The computational cost of EEMS is cubic in the size of the population grid and the current
implementation does not scale well beyond 1,000 demes. We typically run the MCMC
sampler for at least 8 million iterations, which takes about 15 hours of actual CPU time for a
grid with 500 demes. For assessing convergence, it is important to simulate several
realizations of the Markov chain, i.e., start EEMS several times with a different random
seed. The software allows restarting the MCMC sampler if the diagnostic posterior trace plot
indicates the chain has not converged in the specified number of iterations. For the analyses
presented here, we used grids that range from 120 to 520 demes and we averaged results
across at least 8 independent realizations.
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Color scheme

Since the primary output of EEMS is a visual summary of spatial patterns, we have paid
attention to the details of this display. We selected a color scheme that is colorblind

friendly >’ and that “balances” high versus low migration. (For example, the colors attempt
to give similar visual prominence to regions with effective migration that is 10 times higher
and 10 times lower than the average.) We chose the scale so that small differences in
effective migration rates — say, less than a factor of two — tend not to be emphasized. These
choices might be improved upon with further experimentation, and indeed, some color
schemes or scales may work better for some datasets than others. However, we caution
against using a scale that is too narrow, which risks over-emphasizing trivial differences in
estimated effective migration surfaces.

Empirical datasets

We illustrated EEMS with four diverse empirical examples: an African elephant dataset with
strong differentiation between two geographically divided subspecies; two human datasets
with individuals sampled across Europe and Sub-Saharan Africa where genetic
differentiation varies (somewhat) continuously with latitude and longitude; aAdd an
thalianadataset with genetic variation characterized by strong genetic similarity between
Europe, where the plant is native, and North America, which it colonized in the last three
hundred years. Details about each dataset and how it can be accessed are provided in the
Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A schematic overview of EEMS, using African elephant data for illustra@et) Setting

up the population grida) Samples are collected at known locations across a two-

dimensional habitat; green and orange colors represent two subspecies — forest and savanna
elephants(b) A dense triangular grid is chosen to span the halijgEach sample is

assigned to the closest deme on the ddf) Estimated Effective Migration Surface

(EEMS) analysis(d) Migration rates vary according to a Voronoi tessellation which

partitions the habitat into “cells” with constant migration rate; colors represent relative rates
of migration, ranging from low (orange) to high (blu@). Each edge has the same

migration rate as the cell it falls into. The cell locations and migration rates are adjusted,
using Bayesian inference, so that the expected genetic dissimilarities under the EEMS model
matches the observed genetic dissimilari{fgsThe EEMS is a color contour plot produced

by averaging draws from the posterior distribution of the migration rates, interpolating
between grid points. Here, and in all other figures,Adg{enotes the effective migration

rate on the logy scale, relative to the overall migration rate across the habitat. (Thug) log(

=1 corresponds to effective migration that is 10-fold faster than the average.) The main
feature of the elephant EEMS is a “barrier” of low effective migration that separates the
habitats of the two subspecies: forest elephants to the west, and savanna elephants to the
north, south and east.
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Figure 2.
Simulation comparing EEMS and PCA analysis. For each method, we show results for two

migration scenarios, representing “uniform” migration and a “barrier” to migration, and
three different sampling scheméas,b) The true underlying migration rates under the two
scenarios; colors represent relative migration rét¢d.he three sampling schemes used; the
size of the circle at each node is proportional to the number of individuals sampled at that
location, and locations are color-coded to facilitate cross-referencing the EEMS and PCA
results.(d) PCA results(e) EEMS results. In contrast to PCA, EEMS is robust to the
sampling scheme and shows clear qualitative differences between the estimated effective
migration rates under the two scenarios, which reflect the underlying simulation truth.
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Figure 3.
Simulations illustrate that EEMS infers effective migration rates, rather than actual steady-

state migration ratega) Individuals have uniform migration rates but the central area has

lower population density (those demes have fewer individuals, which is represented by
smaller circles in gray). Thus fewer migrants are exchanged per generation in the central
area, producing an effective barrier to gene flow that is reflected in the EBMSsimple
“population split” scenario: migration is initially uniform, but at some time in the past a
complete barrier to migration arises in the central area (represented by dashed edges). Under
this scenario the groups on either side of the central region diverge, which creates a barrier

in the EEMS.
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Figure 4.
EEMS analysis of African elephant nga(a) African elephant samples are collected from

two subspecies in five biogeographic regions: the forest elephant subspecies (in green)
inhabits the west and central regions; the savanna elephant subspecies (in orange) inhabits
the north, east and south regiofiy. Estimated effective migration rates for forest and
savanna samples analyzed joinftyd) Estimated effective migration rates for savanna and
forest, respectively.

Nat GenetAuthor manuscript; available in PMC 2016 June 07.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Petkova et al.

Page 23

Figure 5.
EEMS analysis of human population structure in Western Europe and in Sub-Saharan

Africa. (a) Effective migration rates in Western Europe, estimated using geo-referenced data
from the POPRES proje%‘t‘. (b) Effective migration rates in Sub-Saharan Africa, estimated

. . . 35,36
using geo-referenced data from two previously published studies
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Figure 6.
EEMS analysis oArabidopsis thaliandata from the RegMap proje‘l':?t (a) Estimated

effective migration rates in North America, Europe and across the Atlantic Gbgan;
Estimated effective migration rates in North Amerigd;Estimated effective migration rates
in Europe.
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