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Abstract

Genetic data often exhibit patterns broadly consistent with <isolation by distance= – a phenomenon 

where genetic similarity decays with geographic distance. In a heterogeneous habitat this may 

occur more quickly in some regions than others: for example, barriers to gene flow can accelerate 

differentiation between neighboring groups. We use the concept of <effective migration= to model 

the relationship between genetics and geography: in this paradigm, effective migration is low in 

regions where genetic similarity decays quickly. We present a method to visualize variation in 

effective migration across the habitat from geographically indexed genetic data. Our approach uses 

a population genetic model to relate effective migration rates to expected genetic dissimilarities. 

We illustrate its potential and limitations using simulations and data from elephant, human and A. 
thaliana populations. The resulting visualizations highlight important spatial features of population 

structure that are difficult to discern using existing methods for summarizing genetic variation.

Introduction

All natural populations exhibit <structure=: some individuals are more closely related than 

others. Population structure is shaped by many factors, but probably most influential are the 

barriers to gene flow that the population has experienced during its evolutionary history – 

barriers that may be due to extrinsic factors (such as topography or environment) or intrinsic 

factors (such as mate recognition, reproductive compatibility, or complex interactions in 

social species such as humans). Studying genetic structure can therefore yield insights into 

the demographic and evolutionary processes that have shaped the population 
1, 2, and help 

answer questions related to, for example, adaptation 
3
, speciation 

4
, hybridization 

5
, 
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introgression 
6
 or recombination 

7. Understanding genetic structure may also be useful in 

contexts other than evolutionary genetics – for example, to identify genetically distinct 

groups that may require special conservation status 
8
, to detect the geographic origin of 

samples 
9, 10

 or to help correct for confounding in genome-wide association studies 
11, 12

.

These questions have motivated the development of many statistical methods for analyzing 

population structure. Admixture-based clustering 
13, 14

 and principal components analysis 

(PCA) 
15, 16

 are most widely used. Both approaches summarize the major patterns of 

population structure in explicit and intuitive visual representations, which can help to 

generate and refine hypotheses about biological and evolutionary processes and to identify 

sample outliers or other unexpected patterns. Aside from this shared feature, admixture-

based and PCA-based methods have distinct strengths and limitations. Clustering methods 

are particularly useful when the population is well represented by a small number of 

relatively distinct groups, possibly with recent admixture; they are less successful in 

characterizing continuous patterns of genetic variation. In comparison, PCA is arguably 

better adapted to continuous settings 
15

 and has proven helpful in diagnosing isolation by 

distance 
17

 as a feature of the data 
18

. However, PCA is heavily influenced by sampling 

biases, i.e., more data being collected preferentially from some regions than others 
19, 20, 21

. 

And while PCA projections are often interpreted post hoc with geographic information in 

hand, PCA ignores the sampling locations even if they are known – information that can be 

particularly helpful if the data exhibit a degree of isolation by distance.

Motivated by this, we developed a novel tool for visualizing population structure in an 

important setting that is not ideally served by existing methods: the setting where individuals 

are sampled from known locations across the habitat (the samples are <geo-referenced=) and 

where the population structure is broadly, but perhaps not entirely, consistent with isolation 

by distance. We aim to produce visualizations that highlight deviations from exact isolation 

by distance, and thus identify corridors and barriers to gene flow, if they exist. Our method, 

EEMS, shares goals with several spatial approaches 
22, 23, 24

, but is unique in explicitly 

representing genetic differentiation as a function of the migration rates in an underlying 

population genetic model. EEMS is conceptually related to early work on inferring 

migration rates from genetic data 
25

, although the details – and particularly the use of 

<resistance distance= 
26

 – are closer to recent work on landscape connectivity 
27

. The 

Supplementary Note includes further discussion on how EEMS compares with related work.

Results

Outline of the EEMS method

Figure 1 provides a schematic overview of our approach. EEMS is based on the stepping 

stone model 
28

, in which individuals migrate locally between subpopulations (demes) and 

migration rates can vary by location. To capture continuous population structure, we cover 

the habitat with a dense regular grid; each deme exchanges migrants only with its neighbors. 

Under the stepping stone model, expected genetic dissimilarities depend on the sample 

locations and the migration rates. The expected genetic dissimilarity between two 

individuals can be computed by integrating over all possible migration histories in their 

genetic ancestry and we approximate it using resistance distance, a distance metric from 
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circuit theory that integrates all possible migration routes between two demes 
26

. The 

estimation procedure adjusts the migration rates of all edges in the graph so that the genetic 

differences expected under the model closely match the genetic differences observed in the 

data; it also encourages nearby edges to have similar migration rates. The estimates are then 

interpolated across the habitat to produce an <estimated effective migration surface= – hence 

EEMS – which provides a visual summary of the observed genetic dissimilarities and how 

they relate to geographic location. For example, if genetic similarities tend to decay faster in 

some regions, those areas will have lower effective migration. If, on the other hand, the 

relationship between genetic similarity and geographic distance is the same throughout the 

habitat, the estimated surface will be relatively constant. We use the term <effective= because 

the model makes assumptions (most importantly, equilibrium in time) that may preclude 

interpreting effective migration as representing historical rates of gene flow. Nonetheless, we 

illustrate that the method provides an intuitive and informative way to visualize patterns of 

population structure in geo-referenced samples.

Simulations under the stepping stone model

We illustrate the benefits and limitations of EEMS with several simulations. We used the 

program ms 
29

 to simulate data under two migration scenarios: in the <uniform= scenario, 

which represents pure isolation by distance, migration rates do not vary throughout the 

habitat (Fig. 2a); in the <barrier= scenario a central region with lower migration rates 

separates the east and the west of the habitat (Fig. 2b). We applied both EEMS and PCA to 

data generated under these scenarios and under three different sampling schemes (Fig. 2c). 

The results illustrate two key points. First, whatever the sampling scheme, the migration 

scenario is easier to discern from the EEMS contour plots (Fig. 2e) than from the PCA 

projections (Fig. 2d). For the isolation by distance situation, the surfaces are approximately 

uniform under all three sampling schemes, and for the barrier simulation, the surfaces 

highlight the barrier as an area of lower effective migration. In contrast, the simple nature of 

the underlying structure is not obvious from the PCA projections in either setting, and 

indeed, the PCA results for the different scenarios do not differ in an easily identifiable, 

systematic way. Second, EEMS is less sensitive to the underlying sampling scheme than 

PCA. Indeed, the inferred surfaces are qualitatively unaffected by sampling scheme, except 

in the extreme case where there are no samples taken on one side of the migration barrier. 

This renders the migration rates on that side of the barrier inestimable from the data, so that 

estimates in that region are driven by the prior which assumes no heterogeneity in migration 

rates. In contrast, PCA is heavily influenced by irregular sampling 
19, 20, 21

. For example, 

biased sampling and the presence of a barrier can both produce clusters in the PCA results 

(top row in Fig. 2d).

Effective migration versus actual migration— Population genetics uses extensively 

the notion of <effective population size=, which can be informally defined as the size of an 

idealized (random-mating, constant-sized) population that would produce patterns of genetic 

variation similar to those observed empirically. The effective size of a population is typically 

quite different from its census size. Similarly, an effective migration surface represents rates 

that, within an idealized stepping stone model evolving under equilibrium in time, would 
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produce genetic dissimilarities similar to those observed in the data. However, the effective 

migration rates can be different from the actual migration rates in the population.

To illustrate this idea we compare two migration scenarios that both produce an <effective 

barrier to migration=: in Figure 3a the barrier results from a lower population density in the 

central region, in Figure 3b the barrier results from a population split. In both cases the 

contour plot correctly reflects spatial structure: individuals on either side of the central 

region are less genetically similar than expected under pure isolation by distance. Indeed, in 

this case both effective migration surfaces accurately reflect average rates of historical gene 

flow. However, it should be clear that care is warranted in linking effective migration to 

inferences about the actual underlying migration process.

These results also emphasize that, because EEMS characterizes expected genetic 

differentiation, it cannot distinguish between different scenarios that produce similar 

expectations for the pairwise genetic dissimilarities; this is also true for PCA 
20

. In some 

cases it may be possible to distinguish among such scenarios using other aspects of the data, 

but we do not pursue this here.

Effects of SNP ascertainment— The model underlying EEMS formally assumes that 

observed biallelic loci are a random sample of biallelic loci polymorphic in the sample and 

hence that the loci are <unascertained=. This assumption holds for complete sequence data 

but not for genotyped SNPs, which are biased towards higher minor allele frequencies and 

could also be biased towards higher levels of polymorphism in certain geographic locations. 

To assess robustness of EEMS to this assumption, we performed simulations in which SNPs 

were ascertained as polymorphic in a small panel preferentially sampled from one 

geographic area. Results show that EEMS is qualitatively robust to this bias (see 

Supplementary Note and Supplementary Fig. 1).

As described in Online Methods, EEMS also estimates the effective diversity rate within 

each deme – a parameter that reflects the expected genetic dissimilarity of two individuals 

sampled from that location. In contrast to effective migration, effective diversity is sensitive 

to geographically biased SNP ascertainment (Supplementary Fig. 1b). Intuitively, 

ascertaining common SNPs increases the average number of differences among all 

individuals, and so increases the observed diversity. Geographically biased ascertainment 

can therefore create apparent geographic differences in diversity where none exist. However, 

we expect the effect of ascertainment on how, qualitatively, genetic dissimilarity decays with 
distance – and hence its effect on the estimated migration surface – to be less pronounced, 

and our simulation results support this view.

Anisotropic migration— EEMS cannot infer directions of migration because the 

underlying model assumes that migration rates are symmetric. Nonetheless, EEMS is not 

entirely incapable of representing directional differences in migration (<anisotropic 

migration=). This is because, at any given deme, edges radiate in six directions and each 

edge has its own migration rate. To illustrate, we performed simulations where throughout 

the habitat migration occurs at a much higher rate in the NS direction than in the EW 

direction: the resulting surface reflects this by interspersing vertical <corridors= that 
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facilitate NS migration with vertical <barriers= that inhibit EW migration (Supplementary 

Fig. 2).

Diagnosing deviations from an EEMS fit— Although EEMS assumes stationary 

symmetric migration in a closed regular triangular grid, it would be a mistake to interpret 

EEMS results as a validation of this population genetic model over others. Instead EEMS is 

an exploratory tool for visualizing patterns of genetic variation in geo-referenced data. As in 

Figure 3b, EEMS can provide useful summaries even if the data was not generated under 

equilibrium; however, not all patterns of genetic differentiation can be well represented by 

EEMS. To identify deviations from the fitted model, the pairwise genetic differences 

predicted by EEMS are plotted against the pairwise genetic differences observed in the data. 

If a few individuals or sampling locations produce strong deviations, it may be prudent to 

remove them, or to check that the results are robustness to their inclusion (see 

Supplementary Note and Supplementary Fig. 3 for a scenario with recent migration).

Supplementary Figure 3 illustrates these diagnostic plots in a situation where several 

individuals have recently migrated from one end of the habitat to the other (or perhaps their 

sampling location was wrongly labeled). The <migrants= are genetically distinct from other 

nearby individuals, which EEMS represents with a barrier around them (Supplementary Fig. 

3a). However, as the diagnostic plot indicates (Supplementary Fig. 3b), EEMS cannot 

represent the fact that the <migrants= are genetically similar to some very distant individuals. 

In principle, this could be captured by a corridor of migration linking the migrants to their 

original location, but EEMS does not do this, presumably because inserting such a corridor 

would make the overall model fit worse. We supply further examples of these diagnostic 

plots for all our empirical examples (Supplementary Figures 10, 12 and 16).

Empirical results

Elephants in Sub-Saharan Africa— The African elephant (Loxodonta africana) has two 

recognized subspecies: the forest elephant (L. a. cyclotis) and the savanna (or bush) elephant 

(L. a. africana). Both subspecies are under threat, partly from poaching, and a large sample 

was collected and genotyped at 16 microsatellite loci to help assign contraband tusks to their 

location of origin and thus facilitate conservation efforts 
9
. We analyze a geo-referenced 

dataset that contains 211 forest and 913 savanna elephants 
30

.

The African elephant provides a helpful illustration because the subspecies structure is clear 

and strongly correlated with geography: its primary feature is the low effective gene flow 

between forest and savanna elephants despite their geographic proximity. Correspondingly, 

the estimated effective migration surface is dominated by a strong barrier between their 

habitats (Fig. 4b). To a degree, EEMS captures its winding shape, though our method, based 

on Voronoi tessellations, is better adapted to visualize barriers with simpler structure. This is 

also an empirical example of an effective barrier to migration due to a non-equilibrium 

history of drift after divergence (as in Figure 3b).

For the African elephant, one of the sixteen genotyped loci is extremely informative: the 

surface inferred from this locus alone is similar to that from all sixteen loci (Supplementary 

Fig. 5). However, the surface from the remaining fifteen loci is also qualitatively similar 
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(Supplementary Fig. 6a); therefore the strongly differentiated locus is consistent with the 

others. (In principle, differences in effective migration among loci could provide a test for 

selection 
31

.)

Since strong differentiation between the two subspecies dominates EEMS, we also analyzed 

forest and savanna samples separately to assess subtler structure within each group. The 

presence of substructure has been detected previously 
9
 and the habitat can be divided into 

five broad biogeographic regions (Fig. 4a): West and Central (forest); North, East and South 

(savanna). The savanna surface (Fig. 4c) shows a <corridor= of higher effective migration 

connecting the South and East regions, and a barrier separating them from the North. The 

barrier coincides with forest habitat, which forms a known barrier to migration for savanna 

elephants; the corridor is consistent with previous observations, from mitochondrial data, 

that South and East elephants are more similar genetically than their geographic distance 

would suggest 
32

. The forest surface (Fig. 4d) also shows a corridor of higher effective 

migration, which connects the West and Central regions. The two subspecies-specific 

contour plots suggest that there is more deviation from uniform migration (stronger 

deviation from isolation by distance) in the savanna elephants. These patterns are harder to 

recognize in the corresponding PCA plots (Supplementary Fig. 7) or admixture-based 

analyses (Supplementary Figures 8 and 9).

In addition to effective migration, our method also estimates the effective diversity within 

each deme; these parameters reflect the expected genetic dissimilarities of two individuals 

from the same location. For the African elephant, the inferred effective diversities are higher 

in forest regions than in savanna regions (Supplementary Fig. 6b). This represents, in a 

direct visual way, the observation that forest elephants have higher heterozygosity than 

savanna elephants 
33

.

Humans in Europe and Sub-Saharan Africa— We analyze two large-scale genome-

wide datasets to visualize the genetic structure of human populations on two continents: a 

collection of 1,201 individuals from 13 Western European countries 
18, 34

 and a collection of 

314 individuals from 21 Sub-Saharan African ethnic groups 
35, 36, 37

.

The two leading PCs are correlated with geographic location in both datasets 
18, 37, 38

. This 

suggests that genetic similarity tends to decay with geographic distance (Supplementary Fig. 

11) and thus the data are broadly consistent with isolation by distance. On the other hand, 

EEMS highlights patterns that deviate from exact isolation by distance (Fig. 5).

In Europe (Fig. 5a), the areas of highest effective migration span the North Sea and the 

Mediterranean, likely due to historic contacts between peoples bordering these bodies of 

water; other areas of high migration span central France and Austria. Some regions of low 

effective migration align with topographic barriers: the Alps and the Atlantic; an area of low 

migration also spans Germany. Visually there are two east-to-west barriers and so the 

effective migration surface supports the idea that population structure in Europe is 

characterized by a north/south cline 
39

. Thus, while the PCA plot may suggest a simple 

relationship between genetics and geography 
18

, EEMS highlights more complex spatial 

patterns of differentiation. In POPRES, the geographic information is imprecise because 
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locations were assigned based on nationality. The EEMS results are largely robust to this 

location uncertainty, which we assessed by adding random jitter to the assigned locations 

(Supplementary Fig. 13).

In Africa (Fig. 5b), EEMS highlights a corridor of higher effective migration along the 

Atlantic coast, relative to lower effective migration inland. This indicates that – at a given 

distance apart – the coastal populations are more genetically similar than the inland 

populations. The U-shaped tail of this corridor suggests higher than expected genetic 

similarity between some ethnic groups in the west and in the east. Non-genetic information 

about the subpopulations can help clarify this pattern: the Fang (Fa) and the Kongo (Ko) in 

the west, and the Luhya (Lu) in the east speak Bantu languages, so we hypothesize that the 

link is partly due to shared ancestry between Bantu speaking groups (Supplementary Fig. 

15). In an EEMS analysis after excluding the Luhya, the definition of the corridor 

connecting the east with the west is greatly decreased (Supplementary Fig. 14), which 

supports our hypothesis.

EEMS attempts to explain observed genetic dissimilarities using (an approximation to) the 

stepping stone model. Some datasets may contain features that are not captured by this 

model such as recent long-distance migrants. To check the model fit we compare the fitted 

and observed genetic dissimilarities. For both human datasets, those values agree well 

(Supplementary Figures 12 and 16) and they agree better under the estimated migration 

patterns than under a constant migration model: the proportion of variance explained 

increases from 14.2% to 97.8% for the European data and from 16.4% to 91.4% for the 

African data. Therefore non-stationary effective migration provides a better explanation for 

the observed spatial differentiation than simple isolation by distance.

A. thaliana in Europe and North America— Arabidopsis thaliana is a small flowering 

plant with natural range in Europe, Asia and North Africa, which is now also found in North 

America. Although A. thaliana is a selfing plant with low gene flow, its genetic variation has 

significant spatial structure 
40, 41

. In Europe A. thaliana exhibits patterns consistent with 

isolation by distance, with an east/west gradient that has been interpreted as evidence for 

post-glaciation colonization 
40. In North America there is less spatial structure, likely due to 

recent human introduction from Europe 
40

. We analyze A. thaliana data from the Regional 

Mapping (RegMap) project 
42

, which includes 979 accessions from Europe and 180 

accessions from North America.

In a combined analysis of the North American and European data (Fig. 6a), EEMS infers a 

corridor of high effective migration across the Atlantic Ocean, relative to lower effective 

migration within each continental group; this highlights the strong genetic similarity 

between the European and North American samples. EEMS assumes that migration is 

symmetric and so it cannot infer a direction for gene flow, but the effective migration surface 

is consistent with the hypothesis that recent migration introduced A. thaliana from Europe to 

North America 
43

.

In North America EEMS infers an area of high migration connecting the two sampled 

regions, Lake Michigan and the Atlantic coast (Fig. 6b). This indicates that accessions from 
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these regions are distant geographically but similar genetically, probably due to human-

assisted long-range <migration= rather than natural dispersal. This is consistent with the 

observation that there is extensive haplotype sharing not only within but also between 

sampling locations 
40

.

In Europe the effective migration surface highlights several regions (Fig. 6c). For example, 

in the British Isles, a region of lower migration separates the northern British Isles from the 

rest of Britain, which in turn is also separated from France. There is substructure within both 

France and Germany as well. In France, accessions in the north and the south are separated 

by a region of lower effective migration through central France. In Central Europe, areas of 

higher effective migration link northern Germany with South Sweden and Norway, and 

southern Germany with Austria, Switzerland and the Czech Republic. In contrast, effective 

migration is substantially lower in Southern Europe. PCA produces patterns consistent with 

the EEMS results about A. thaliana in France and Central Europe, which we confirm by 

zooming on these regions and coloring the samples according to latitude and longitude 

rather than country of origin (Supplementary Fig. 17).

Discussion

EEMS (Estimated Effective Migration Surfaces) is a new method for analyzing population 

structure from geo-referenced genetic samples. EEMS produces an intuitive visual 

representation of spatial patterns in genetic variation and highlights regions of higher-than-

average and lower-than-average historic gene flow. EEMS is specifically applicable when 

the data conforms roughly to <isolation by distance=, i.e., in settings where genetic similarity 

tends to decay with geographic distance, but where this decay with distance may occur more 

quickly in some regions than in others.

EEMS uses the concept of <isolation by resistance=, which aims to characterize how genetic 

differentiation accumulates in non-homogeneous landscapes 
26

, by integrating over all 

possible migration paths between two points. This provides an efficient approximation to the 

structured coalescent and, in some cases, better prediction of genetic differentiation than 

uniform isolation by distance 
44

.

In previous work, isolation by resistance is often used to build up a connectivity map from 

known landscape features 
26, 44

. The concept has also been incorporated into an inference 

procedure to test whether genetic distances are impacted by specific observed features such 

as altitude or river barriers 
27

. In contrast, EEMS estimates effective migration from genetic 

data without the need to observe environmental variables, and thus provides an exploratory 

tool for spatial population structure. The hypothesis-driven and exploratory approaches are 

complementary and both can be useful in many applications.

Although EEMS is designed to visualize continuous population structure in space, it is built 

on a dense regular grid of discrete demes, with migration between neighboring demes. Since 

the demes do not correspond to predefined subgroups, the size and registration of the grid 

are arbitrary. The choice of grid may be influenced by factors such as sampling density (in a 

sufficiently dense grid different sampling locations would correspond to different demes) 
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and computational tractability (computation scales cubically with the number of demes). In 

practice, we have found that results are qualitatively robust across a range of grids 

(Supplementary Fig. 4), but details can change and we suggest averaging the estimates over 

several different grids. In principle, it would be attractive to dispense with the grid altogether 

and use models of continuous migration; however, such models present theoretical and 

mathematical challenges 
45

 and at present we do not know how to achieve this.

EEMS requires that each sample has a specified geographic origin, but in some cases this 

information may be known imprecisely (as in the analysis of human genetic variation in 

Europe for example). To better deal with imprecision in geographic origin, the uncertainty 

could be incorporated into the model: the actual location of each individual will be treated as 

an unobserved latent variable, given a prior distribution and integrated out in the MCMC 

estimation scheme 
14

. This approach might also improve robustness to errors such as sample 

switches, by identifying individuals whose genetic origin differs appreciably from their 

physical sampling location. A similar extension could help with <spatial localization= (the 

problem of inferring the origin of individuals with unknown location) in non-stationary 

isolation by distance settings 
9, 10

.

Like PCA, EEMS works with a dissimilarity matrix that summarizes pairwise dissimilarities 

by averaging across markers. Once this matrix is computed, the complexity per MCMC 

iteration does not depend on the number of SNPs and so EEMS is computationally tractable 

for large datasets. Moreover, like PCA, this features means that EEMS could be applied to 

visualize any dissimilarity matrix computed from geo-referenced data. For example, it could 

be used to visualize dissimilarity matrices computed from non-genetic features such as 

language. EEMS will be most useful when similarity tends to decay with geographic 

distance, but this is easily assessed.

Summarizing genetic data by a pairwise dissimilarity matrix does, however, result in some 

loss of information; for example, in a genetic context, it limits what demographic scenarios 

that EEMS can distinguish 
20

. In this regard, it may be helpful to visualize dissimilarity 

matrices that emphasize different aspects of the data, perhaps different historical timescales. 

For example, ChromoPainter 
46

 produces a measure of genetic similarity that tends to 

emphasize the most recent coalescent events between samples (rather than their average 

coalescence times). Distance matrices based on rare SNPs could also reveal more recent 

dispersal history 
47

.

Online methods

EEMS uses a population genetic model that involves migration on an undirected graph G = 

(V,E) with vertices (demes) V connected by edges E. The graph G is a regular triangular 

grid, which is fixed and embedded in a two-dimensional plane, so that each deme has a 

known location and only neighboring demes are directly connected (Figure 1b). The density 

of the grid is pre-specified by the user and depends on both computational considerations – 

computational complexity scales cubically with the number of vertices – and the resolution 

of the available spatial data.
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The EEMS model has migration parameters m and diversity parameters q, where m = {me: e 
∈E} specifies an effective migration rate on every edge and q = {qv: v ∈V} specifies an 

effective diversity rate for every deme. Intuitively, the migration rates m characterize the 

genetic dissimilarities between distinct demes, while the diversity rates q characterize the 

genetic dissimilarities between distinct individuals from the same deme. The EEMS model 

is a special case of the general stepping stone model 
28

, which allows directed migration as 

well as migration between demes that are not located close in space.

We use Bayesian inference to estimate the EEMS parameters m and q. Its key components 

are the likelihood, which measures how well the parameters explain the observed data, and 

the prior, which captures the expectation that m and q have some spatial structure (in 

particular, the idea that nearby edges will tend to have similar migration rates).

The likelihood

We first specify the likelihood for SNP data (on n individuals at p SNPs) and then extend it 

to microsatellites. The initial step is to summarize the observed genetic data by the matrix of 

average genetic differences, D, between every pair of sampled individuals. (The matrix D is 

defined precisely below.) This approach – using the matrix of pairwise dissimilarities as a 

sufficient statistic for the population parameters – assumes that D contains most of the 

information about m and q. This may not be completely true but the idea of performing 

inference using pairwise genetic (dis)similarities has a long history in both population 

genetics and phylogenetics 
48, 49, 50

 and many existing methods make a similar assumption. 

For example, PCA 
15

 and TreeMix 
51

 both work with the genetic covariance matrix.

Let Dij  denote the observed genetic dissimilarity between individuals i and j. The expected 

value of Dij  is determined, up to a constant of proportionality that reflects the mutation rate, 

by how closely related i and j are, or more precisely, by their expected coalescence time. 

This expected value in turn depends on the sampling locations δ(i),δ(j) and the population 

parameters m,q: individuals sampled from demes that are connected by many short paths 

containing edges with high migration rates tend to be more closely related, and hence more 

similar genetically, than individuals sampled from demes connected only by paths that are 

long and/or contain edges with low migration rates. The expected coalescence times can be 

computed, at some computational expense, by solving a large set of simultaneous equations. 

Alternatively, they can be approximated – at lower, but still nontrivial, computational cost – 

using the concept of <resistance distance= 
26

. We implemented both metrics and found them 

to produce qualitatively similar effective migration surfaces, and so here we present results 

obtained using resistance distances.

Letting σ2 denote the constant of proportionality mentioned above, we can write

(1)

where Δ(m,q) is the matrix of expected dissimilarities that can be computed for any m and q. 

Our modeling approach assigns high likelihood to values for m,q,σ2 such that σ2Δ(m,q) ≈ 
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D, while taking some account of dependencies among elements of D and of linkage 

disequilibrium among markers.

To make our specification precise we introduce some notation: Zil  is the genotype of 

individual i at locus l, coded as 0, 1 or 2 copies of the minor allele; Z is the n×p matrix of 

genotypes. Dij  = (1/p)Σl(Zil  − Zjl)2 is the average squared difference between i and j based 

on p markers; D is the n×n matrix of observed genetic dissimilarities. L is the (n−1)×n 
matrix such that L i = ei − ei+1 where L i is the i-th row of L and ei is a row vector with 1 in 

the i-th component and 0s elsewhere. And W is the (n−1)×(n−1) matrix −LDL ′. It can be 

shown that W = 2(LZ)(LZ)′; if the n individuals are linearly independent, which requires 

p≥n, this characterization implies that W is positive definite 
27

.

The matrix L forms a basis for the space of contrasts on n items. (For example, ei − ei+1 is a 

contrast between the i-th and (i+1)-st items.) Since L is a basis, W is a one-to-one mapping 

of D and we can specify a model for D by specifying a model for W 
52

. The advantage of 

specifying a model for W, rather than D, is that, since it is positive definite, W can be 

modeled by the Wishart distribution, which is parametrized by the expectation, E{W}, and a 

scalar parameter k (the degrees of freedom). Using equation (1), the expectation is given by

(2)

We treat the degrees of freedom k as an additional free parameter.

Putting this together yields a closed form for the density f of the statistic W and thus for the 

likelihood l of the parameters k,m,q,σ2 since l(k,m,q,σ2) = f(W|k,m,q,σ2). Specifically,

(3)

We make the following observations:

1. Although we defined Zil  as the number of copies of the minor allele, the differences 

(Zil  − Zjl)2 do not depend on the allele labeling and neither does the likelihood.

2. If the genotypes Z were independent across loci and normally distributed, then 

standard Gaussian theory would imply that W has a Wishart distribution, with the 
degrees of freedom k equal to the number of SNPs p. However, genotypes are 

neither normal nor independent, and rather than fix k=p, we estimate the degrees of 

freedom k, under the assumption n≤k≤p. The smaller k is, the higher the variance of 

W about its expectation; E{W} does not depend on k in our parametrization. By 

allowing k<p we can, to some extent, account for sources of model mis-

specification such as linkage disequilibrium.
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3. In defining W = −LDL ′ we introduced a specific matrix L. However, other choices 

for L would yield equivalent likelihoods as long as the n−1 rows of L form a basis 

for the contrasts of n elements. (A contrast is a linear combination whose 

coefficients add to 0.) This property ensures that W is a one-toone mapping of D 
and that we would get exactly the same likelihood with any basis L, up to a 

constant of proportionality that does not depend on the parameters 
52

.

Application to microsatellites— At a microsatellite locus, an allele is typically coded as 

the number of repeats of a specific motif. To apply our method to microsatellites we define 

the genotype Zil  to be the average of the two alleles that individual i carries at locus l. This 

approach could likely be improved upon, but it suffices for our analysis of the African 

elephant data.

We then define D(l) as the matrix of pairwise differences Dij
(l) = (Zil  − Zjl)2 at locus l and 

W(l) = −LD(l)L′ as the corresponding transformation in terms of the basis L. Since different 

microsatellites have different mutation rates, we introduce locus-specific scale parameters 

: l = 1,…,p. For locus l equation (1) becomes

(4)

Each matrix W(l) has rank one and we define the likelihood by assuming that W(l) has a 

(singular) Wishart distribution with one degree of freedom:

(5)

and that the p microsatellite loci are independent. (Thus the degrees of freedom are 

effectively fixed to k=p.)

The dissimilarity matrix

In population genetics, the expected genetic dissimilarity between two samples is a function 

of their expected coalescence time. Indeed, for haploid samples at biallelic loci, as the 

mutation rate tends to 0, it can be shown that (see Supplementary Note)

(6)

where δ(i) denotes the deme from which sample i is drawn and T³´(m,q) is the expected 

coalescence time of two independent haploid samples taken from demes ³ and ́ . Thus in 

equation (1) we have
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(7)

Similarly, for diploid samples, we have (see Supplementary Note)

(8)

For any particular value of the parameters m and q, the matrix T(m,q) – and hence Δ(m,q) – 

can be computed by solving a system of linear equations 
53, 54

.

However, computing the matrix of expected coalescence times T is expensive: it requires 

solving a linear system with d(d+1)/2 unknowns to find all pairwise expected coalescence 

times in a graph with d demes; this has complexity O((d2)3). To reduce the computational 

cost, for all results presented here, we approximate coalescence time using the concept of 

<effective resistance= – a distance metric for weighted undirected graphs 
55

. Computing the 

matrix of effective resistances R is less intensive because we can obtain all pairwise 

resistance distances by inverting a d×d matrix 
56

; this has complexity O(d3). (Efficiency can 

be improved further by computing the subset of resistance distances between sampled demes 

only; see Supplementary Note.)

To approximate coalescence times using effective resistances, let R³´(m) denote the 

resistance distance between demes ³ and ́  in the graph G. (Note that R³´ is not a function 

of only the local migration rate m³´, but is determined by the global migration pattern m.) 

The effective resistances R are approximately related to the expected coalescence times T 
through 

26
:

(9)

This approximation is exact for isotropic migration (i.e., if the demes are equivalent with 

respect to the rate and pattern of migration), and for more general migration models the 

approximation gets better as the migration rates increase 
26

. Using equation (9) we 

approximate the expected coalescence time between two haploid samples from demes ³ and 

´ as

(10)

That is, for each pair of demes ³ and ́  we split the expected coalescence time T³´ into a 

between-demes component, which is approximated by the (scaled) effective resistance R³´, 

and a within-demes component (q³+q´)/2, which is determined by the diversity rates q. The 

effective resistances R = (R³´) depend on m; the vector q is treated as a free parameter. We 

then obtain Δ(m,q) by substituting T(m,q) with its approximation according to equation (10).
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The prior

Voronoi prior on migration rates— Our prior for the migration rates m captures the idea 

that nearby edges will tend to have similar rates, while it also allows the rates to vary among 

edges. We parametrize the prior on m using a Voronoi tessellation of the two-dimensional 

habitat H, which partitions H into C convex polygons (cells) as follows. First select C 
distinct points (seeds) s1,…,sC within H. Then define cell c to be the set of points in H that 

are closer to seed sc than to any other seed. Given a Voronoi tessellation of H, we associate 

with each cell c a migration rate mc. We use these to induce a migration rate on each edge in 

the graph G, with the migration rate of the edge joining demes ³ and ́  given by

(11)

where c³ is the cell containing deme ³. Migration rates should be positive and therefore we 

parametrize the mc values on the log10 scale. Further, to capture the idea that the migration 

rates of different cells may be similar to one another we parametrize them as deviations from 

an overall mean rate μ:

(12)

where the <effect= of cell c, denoted by ec, determines whether the local dispersal in cell c is 

faster or slower than the average.

In this formulation, migration rates on every edge in the graph are determined by the 

parameters (C,s1,…,sC,e1,…,eC,μ). To complete the Bayesian specification we place priors 

on the model parameters. For the number of Voronoi cells, C|r,u ~ Neg-Bi(r,u) is the zero-

truncated negative binomial distribution with shape (number of failures) r and probability of 

success u. The zero-truncated negative binomial has support {1,2,3,…}; we truncate the 

support at zero because the Voronoi tessellation should have at least one cell. For all 

analyses described here, we used r = 10 and u = 2/3, which results in a diffuse prior on C, 

with prior mean 20 and prior variance 60.

For the cell locations, s1,…,sC|C ~ U(H) is the uniform distribution with support the habitat 

H. For the cell effects, e1,…,eC|C,ω2 ~ N[−2,+2](0,ω2) is the truncated normal distribution 

with mean 0, variance ω2 and support [−2,+2]. For the overall migration rate, μ ~ 

U(−2.477,+2.477) and for the variance between cells, ω2 ~ Inv-G(cω/2, dω/2) is the inverse 

gamma distribution with shape cω/2 and scale dω/2. In all results presented here we used cω 

= 0.001, dω = 1, which results in a diffuse prior distribution.

The lower and upper bounds on the mean log migration rate μ are chosen so that on the 

original scale the mean migration rate varies in the range [1/300,300]. The bounds are 

somewhat arbitrary, and chosen to reflect values that might be considered <very small= 

(approaching the limit of discrete demes evolving independently) and <very large= 

(approaching a panmictic population). The cell effects e1,…,eC are constrained to lie in the 
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range [−2,+2], so that the migration rate of a cell can vary within a factor of 100 from the 

mean migration rate.

Other priors— If there are more genotyped markers than sampled individuals, we can 

estimate the degrees of freedom k. The prior on k is uniform on the log10 scale, to reflect our 

uncertainty about the order of magnitude of this parameter: π(k) ∝ 1/k. The prior is proper 

because k is bounded: n≤k≤p where n is the number of samples and p is the number of 

SNPs.

For the Wishart scale parameter, σ2 ~ Inv-G(cσ/2, dσ/2). In all results presented here we used 

cσ = 0.001, dσ = 1, which results in a diffuse prior distribution.

General comments on prior selection— For all priors, we attempted to select 

hyperparameters that are suitable for <general application=. Where we use cut-offs, they 

were chosen generously to allow a wide range of values. For example, the bounds on the 

migration parameters e1,…,eC allow them to vary by a factor of 10,000 and we do not 

envisage many situations would require a wider range. Our choice for the hyperparameters 

c,d on the scale parameters σ2,ω2 corresponds to a very diffuse prior distribution for both 

scales, which essentially allows them to take any value dictated by the data. We emphasize 

that we used exactly the same parameter settings for all examples shown. The variety of 

estimated effective surfaces suggests that our priors are sufficiently flexible to be appropriate 

in a wide range of problems.

Markov Chain Monte Carlo estimation

EEMS uses Markov Chain Monte Carlo (MCMC) to estimate the migration and diversity 

parameters, by sampling from their posterior distribution given the observed genetic 

dissimilarities. The two Voronoi tessellations (one describes the spatial structure in the 

migration rates m, the other in the diversity rates q) are independent of each other and are 

updated with a birth/death move because the number of Voronoi cells is unknown. (The 

proposal either adds a new cell, or - if there are at least two cells - removes an existing one.) 

The location and rate parameters of a randomly chosen cell are updated with a random-walk 

Metropolis-Hastings step. (Each cell in the migration Voronoi has an effective migration 

rate; each cell in the diversity Voronoi has an effective diversity rate.) The Supplementary 

Note provides further details on computational methods.

Computational time

The computational cost of EEMS is cubic in the size of the population grid and the current 

implementation does not scale well beyond 1,000 demes. We typically run the MCMC 

sampler for at least 8 million iterations, which takes about 15 hours of actual CPU time for a 

grid with 500 demes. For assessing convergence, it is important to simulate several 

realizations of the Markov chain, i.e., start EEMS several times with a different random 

seed. The software allows restarting the MCMC sampler if the diagnostic posterior trace plot 

indicates the chain has not converged in the specified number of iterations. For the analyses 

presented here, we used grids that range from 120 to 520 demes and we averaged results 

across at least 8 independent realizations.
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Color scheme

Since the primary output of EEMS is a visual summary of spatial patterns, we have paid 

attention to the details of this display. We selected a color scheme that is colorblind 

friendly 
57

 and that <balances= high versus low migration. (For example, the colors attempt 

to give similar visual prominence to regions with effective migration that is 10 times higher 

and 10 times lower than the average.) We chose the scale so that small differences in 

effective migration rates – say, less than a factor of two – tend not to be emphasized. These 

choices might be improved upon with further experimentation, and indeed, some color 

schemes or scales may work better for some datasets than others. However, we caution 

against using a scale that is too narrow, which risks over-emphasizing trivial differences in 

estimated effective migration surfaces.

Empirical datasets

We illustrated EEMS with four diverse empirical examples: an African elephant dataset with 

strong differentiation between two geographically divided subspecies; two human datasets 

with individuals sampled across Europe and Sub-Saharan Africa where genetic 

differentiation varies (somewhat) continuously with latitude and longitude; and an A. 
thaliana dataset with genetic variation characterized by strong genetic similarity between 

Europe, where the plant is native, and North America, which it colonized in the last three 

hundred years. Details about each dataset and how it can be accessed are provided in the 

Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by US National Institutes of Health (NIH) grants U01 CA198933 to J.N. and grant 
HG02585 to M.S. We thank Samuel Wasser for access to the African elephant data and Ida Moltke for compiling 
the human dataset from Sub-Saharan Africa. We also thank Brad McRae for helpful discussions on resistance 
distances.

Bibliography

1. Li J, et al. Worldwide human relationships inferred from genome-wide patterns of variation. 
Science. 2008; 319:1100–1104. [PubMed: 18292342] 

2. Reich D, Thangaraj K, Patterson N, Price A, Singh L. Reconstructing Indian population history. 
Nature. 2009; 461:489–494. [PubMed: 19779445] 

3. Beaumont M, Balding D. Identifying adaptive genetic divergence among populations from genome 
scans. Proc Natl Acad Sci USA. 2004; 13:969–980.

4. Becquet C, Przeworski M. A new approach to estimate parameters of speciation models with 
application to apes. Genome Res. 2007; 17:1505–1519. [PubMed: 17712021] 

5. Teeter K, et al. Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res. 
2008; 18:67–76. [PubMed: 18025268] 

6. Kronforst M, Young L, Blume L, Gilbert L. Multilocus analyses of admixture and introgression 
among hybridizing Heliconius butterflies. Evolution. 2006; 60:1254–1268. [PubMed: 16892975] 

7. Hinch A, et al. The landscape of recombination in African Americans. Nature. 476(411):170–175. 
[PubMed: 21775986] 

Petkova et al. Page 16

Nat Genet. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Gonder MK, et al. Evidence from Cameroon reveals differences in the genetic structure and histories 
of chimpanzee populations. Proc Natl Acad Sci USA. 2011; 108:4766–4771. [PubMed: 21368170] 

9. Wasser S, et al. Assigning African elephant DNA to geographic region of origin: Applications to the 
ivory trade. Proc Natl Acad Sci USA. 2004; 10:14847–14852. [PubMed: 15459317] 

10. Yang WY, Novembre J, Eskin E, Halperin E. A model-based approach for analysis of spatial 
structure in genetic data. Nat Genet. 2012; 44:725–731. [PubMed: 22610118] 

11. Campbell C, et al. Demonstrating stratification in a European American population. Nat Genet. 
2005; 37:868–72. [PubMed: 16041375] 

12. Price A, Zaitlen N, Reich D, Patterson N. New approaches to population stratification in genome-
wide association studies. Nat Rev Genet. 2010; 11:459–463. [PubMed: 20548291] 

13. Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype 
data. Genetics. 2000; 155:945–959. [PubMed: 10835412] 

14. Guillot G, Estoup A, Mortier F, Cosson JF. A spatial statistical model for landscape genetics. 
Genetics. 2005; 170:1261–1280. [PubMed: 15520263] 

15. Price A, et al. Principal components analysis corrects for stratification in genome-wide association 
studies. Nat Genet. 2006; 38:904–909. [PubMed: 16862161] 

16. Patterson N, Price A, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006; 2:2074–
2093.

17. Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by 
distance. Genetics. 1997; 145:1219–1228. [PubMed: 9093870] 

18. Novembre J, et al. Genes mirror geography within Europe. Nature. 2008; 465:98–101. [PubMed: 
18758442] 

19. Novembre J, Stephens M. Interpreting principal component analyses of spatial population genetic 
variation. Nat Genet. 2008; 40:646–649. [PubMed: 18425127] 

20. McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009; 
5:e1000686. [PubMed: 19834557] 

21. DeGiorgio M, Rosenberg N. Geographic sampling scheme as a determinant of the major axis of 
genetic variation in principal components analysis. Mol Biol Evol. 2013; 30:480–488. [PubMed: 
23051843] 

22. Manni F, Guerard E, Heyer E. Geographic patterns of (genetic, morphologic, linguistic) variation: 
How barriers can be detected by using Monmonier’s algorithm. Hum Biol. 2004; 76:173–190. 
[PubMed: 15359530] 

23. Manel S, et al. A new individual-based spatial approach for identifying genetic discontinuities in 
natural populations. Mol Ecol. 2007; 16:2031–2043. [PubMed: 17498230] 

24. Duforet-Frebourg N, Blum M. Nonstationary patterns of isolation-by-distance: inferring measures 
of local genetic differentiation with Bayesian kriging. Evolution. 2014; 68:1110–1123. [PubMed: 
24372175] 

25. Beerli P, Felsenstein J. Maximum likelihood estimation of a migration matrix and effective 
population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA. 
2001; 98:4563–4568. [PubMed: 11287657] 

26. McRae B. Isolation by resistance. Evolution. 2006; 60:1551–1561. [PubMed: 17017056] 

27. Hanks E, Hooten M. Circuit theory and model-based inference for landscape connectivity. J Am 
Stat Assoc. 2013; 108:22–33.

28. Kimura M, Weiss G. The stepping stone model of population structure and the decrease of genetic 
correlation with distance. Genetics. 1964; 49:561–576. [PubMed: 17248204] 

29. Hudson R. Generating samples under a Wright-Fisher neutral model of genetic variation. 
Bioinformatics. 2002; 19:337–338. [PubMed: 11847089] 

30. Wasser S, et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major 
poaching hotspots. Science. 2015; 349:84–87. [PubMed: 26089357] 

31. Beaumont M, Nichols R. Evaluating loci for use in the genetic analysis of population structure. 
Proc Biol Sci. 1996; 263:1471–2954.

32. Georgiadis N, et al. Structure and history of African elephant populations: I. Eastern and southern 
Africa. J Hered. 1994; 85:100–104. [PubMed: 7910176] 

Petkova et al. Page 17

Nat Genet. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Comstock K, et al. Patterns of molecular genetic variation among African elephant populations. 
Mol Ecol. 2002; 11:2489–2498. [PubMed: 12453234] 

34. Nelson M, et al. The population reference sample, POPRES: A resource for population, disease, 
and pharmacological genetics research. Am J Hum Genet. 2008; 83:347–358. [PubMed: 
18760391] 

35. Xing J, et al. Toward a more uniform sampling of human genetic diversity: A survey of worldwide 
populations by high-density genotyping. Genomics. 2010; 96:199–210. [PubMed: 20643205] 

36. Henn B, et al. Hunter-gatherer genomic diversity suggests a southern African origin for modern 
humans. Proc Natl Acad Sci USA. 2011; 108:5154–5162. [PubMed: 21383195] 

37. Wang C, Zöllner S, Rosenberg N. A quantitative comparison of the similarity between genes and 
geography in worldwide human populations. PLoS Genet. 2012; 8:e1002886. [PubMed: 
22927824] 

38. Lao O, et al. Correlation between genetic and geographic structure in Europe. Curr Biol. 2008; 
18:1241–1248. [PubMed: 18691889] 

39. Tian C, et al. Analysis and application of European genetic substructure using 300K SNP 
information. PLoS Genet. 2008; 4:e4. [PubMed: 18208329] 

40. Nordborg M, et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005; 3:e196. 
[PubMed: 15907155] 

41. Platt A, et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 
6(201):e1000843. [PubMed: 20169178] 

42. Horton M, et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana 
accessions from the RegMap panel. Nat Genet. 2012; 44:212–216. [PubMed: 22231484] 

43. O’Kane S, Al-Shehbaz I. A synopsis of Arabidopsis (Brassicaceae). Novon. 1997; 7:323–327.

44. McRae B, Dickson B, Keitt T, Shah V. Using circuit theory to model connectivity in ecology, 
evolution, and conservation. Ecology. 2008; 89:2712–2742. [PubMed: 18959309] 

45. Felsenstein J. A pain in the torus: Some difficulties with models of isolation by distance. Am Nat. 
1975; 109:359–368.

46. Lawson D, Hellenthal G, Myers S, Falush D. Inference of population structure using dense 
haplotype data. PLoS Genet. 2012; 8:e1002453. [PubMed: 22291602] 

47. Mathieson I, McVean G. Differential confounding of rare and common variants in spatially 
structured populations. Nat Genet. 2012; 44:243–246. [PubMed: 22306651] 

48. Cavalli-Sforza L, Edwards A. Phylogenetic analysis. Models and estimation procedures. Am J 
Hum Genet. 1967; 19:233–257. [PubMed: 6026583] 

49. Felsenstein J. Maximum-likelihood estimation of evolutionary trees from continuous characters. 
Am J Hum Genet. 1973; 25:471–492. [PubMed: 4741844] 

50. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic 
trees. Mol Biol Evol. 1987; 4:406–425. [PubMed: 3447015] 

51. Pickrell J, Pritchard J. Inference of population splits and mixtures from genome-wide allele 
frequency data. PLoS Genet. 2012; 8:e1002967. [PubMed: 23166502] 

52. McCullagh P. Marginal likelihood for distance matrices. Stat Sin. 2009; 19:631–649.

53. Bahlo M, Griffiths R. Coalescence time for two genes from a subdivided population. J Math Biol. 
2001; 43:397–410. [PubMed: 11767204] 

54. Hey J. A multi-dimensional coalescent process applied to multi-allelic selection models and 
migration models. Theor Popul Biol. 1991; 39:30–48. [PubMed: 2024230] 

55. Klein D, Randić M. Resistance distance. J Math Chem. 1993; 12:81–95.

56. Babić D, Klein D, Lukovits I, Nikolić S, Trinajstić N. Resistance-distance matrix: a computational 
algorithm and its application. Int J Quantum Chem. 2002; 90:166–176.

57. Light A, Bartlein P. The end of the rainbow? Color schemes for improved data graphics. Eos. 2004; 
85:385.

Petkova et al. Page 18

Nat Genet. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A schematic overview of EEMS, using African elephant data for illustration. (a–c) Setting 

up the population grid: (a) Samples are collected at known locations across a two-

dimensional habitat; green and orange colors represent two subspecies – forest and savanna 

elephants. (b) A dense triangular grid is chosen to span the habitat. (c) Each sample is 

assigned to the closest deme on the grid. (d–f) Estimated Effective Migration Surface 

(EEMS) analysis: (d) Migration rates vary according to a Voronoi tessellation which 

partitions the habitat into <cells= with constant migration rate; colors represent relative rates 

of migration, ranging from low (orange) to high (blue). (e) Each edge has the same 

migration rate as the cell it falls into. The cell locations and migration rates are adjusted, 

using Bayesian inference, so that the expected genetic dissimilarities under the EEMS model 

matches the observed genetic dissimilarities. (f) The EEMS is a color contour plot produced 

by averaging draws from the posterior distribution of the migration rates, interpolating 

between grid points. Here, and in all other figures, log(m) denotes the effective migration 

rate on the log10 scale, relative to the overall migration rate across the habitat. (Thus log(m) 

= 1 corresponds to effective migration that is 10-fold faster than the average.) The main 

feature of the elephant EEMS is a <barrier= of low effective migration that separates the 

habitats of the two subspecies: forest elephants to the west, and savanna elephants to the 

north, south and east.
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Figure 2. 
Simulation comparing EEMS and PCA analysis. For each method, we show results for two 

migration scenarios, representing <uniform= migration and a <barrier= to migration, and 

three different sampling schemes. (a,b) The true underlying migration rates under the two 

scenarios; colors represent relative migration rates. (c) The three sampling schemes used; the 

size of the circle at each node is proportional to the number of individuals sampled at that 

location, and locations are color-coded to facilitate cross-referencing the EEMS and PCA 

results. (d) PCA results. (e) EEMS results. In contrast to PCA, EEMS is robust to the 

sampling scheme and shows clear qualitative differences between the estimated effective 

migration rates under the two scenarios, which reflect the underlying simulation truth.
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Figure 3. 
Simulations illustrate that EEMS infers effective migration rates, rather than actual steady-

state migration rates. (a) Individuals have uniform migration rates but the central area has 

lower population density (those demes have fewer individuals, which is represented by 

smaller circles in gray). Thus fewer migrants are exchanged per generation in the central 

area, producing an effective barrier to gene flow that is reflected in the EEMS. (b) A simple 

<population split= scenario: migration is initially uniform, but at some time in the past a 

complete barrier to migration arises in the central area (represented by dashed edges). Under 

this scenario the groups on either side of the central region diverge, which creates a barrier 

in the EEMS.
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Figure 4. 
EEMS analysis of African elephant data 

30
. (a) African elephant samples are collected from 

two subspecies in five biogeographic regions: the forest elephant subspecies (in green) 

inhabits the west and central regions; the savanna elephant subspecies (in orange) inhabits 

the north, east and south regions. (b) Estimated effective migration rates for forest and 

savanna samples analyzed jointly. (c,d) Estimated effective migration rates for savanna and 

forest, respectively.
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Figure 5. 
EEMS analysis of human population structure in Western Europe and in Sub-Saharan 

Africa. (a) Effective migration rates in Western Europe, estimated using geo-referenced data 

from the POPRES project 
34

. (b) Effective migration rates in Sub-Saharan Africa, estimated 

using geo-referenced data from two previously published studies 
35, 36

.
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Figure 6. 
EEMS analysis of Arabidopsis thaliana data from the RegMap project 

42
: (a) Estimated 

effective migration rates in North America, Europe and across the Atlantic Ocean; (b) 
Estimated effective migration rates in North America; (c) Estimated effective migration rates 

in Europe.
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