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Abstract

SpeedSeq is an open-source genome analysis platform that accomplishes alignment, variant
detection and functional annotation of a 50x human genome in 13 hours on a low-cost server,
alleviating a bioinformatics bottleneck that typically demands weeks of computation with
extensive hands-on expert involvement. SpeedSeq offers competitive or superior performance to
current methods for detecting germline and somatic single nucleotide variants, indels, and
structural variants, and includes novel functionality for streamlined interpretation.

Technical advances in second-generation DNA sequencing technologies have reduced both
the cost and time required to generate whole-genome sequencing (WGS) data, creating
opportunities in healthcare and academic research to survey the human genome with
unprecedented depth and scope. However, bottlenecks in computational processing and
variant interpretation have hindered adoption of these technologies for time-sensitive and
large-scale projects. Using a standard pipeline based on!BBATK?2, SAMtools’, and

Picard, processing a 50x human genome from raw sequence data to variant calls on a 32-
thread server requires 60-70 hours (Supplementary Note 1). Furthermore, distinguishing
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pathogenic from benign mutations is a labor-intensive process that can take hours or days of
manual curation per patiént

SpeedSeq is a suite of open-source software designed for rapid whole-genome variant
detection and interpretation. Its modular architecture and universal formats confer
adaptability to a variety of experimental designs and compatibility with standard industry
software (Fig. 1a). It achieves superior processing efficiency through rapid duplicate
marking with SAMBLASTER, through balanced parallelization of external applications,
and by executing non-dependent pipeline components simultaneously. SpeedSeq translates
raw 50x WGS data into prioritized single nucleotide variants (SNVs), short insertions and
deletions (indels), and structural variants (SVs) in 13 hours on a single 16-core server with
128 GB of RAM (current cost: <$10,000), and our accelerated implementations show little
to no difference compared to original software (Supplementary Note 1). This represents at
minimum a several-fold speed increase over current practices using typical computing
resources.

We assessed the accuracy of SpeedSeq’'s SNV and indel calls against the Genome in a Bottle
Consortium (GIAB) truth set in the well-studied human sample, NA12878 (2,803,144 SNVs
and 364,031 indel8) SpeedSeq achieved a sensitivity of 99.9% and 89.9% for germline

SNVs and indels respectively, with acceptably low false discovery rates (FDR) (0.4% and
1.1%) (Fig. 1b,c). These detection rates exceeded the GATK Unified Genotyper’'s (GATK-

UG) sensitivity (SNVs: 99.7%, indels: 89.0%) with a similar FDR (SNVs: 0.5%, indels:

1.0%;). The GATK Haplotype Caller (GATK-HC) showed superior indel detection

sensitivity (SNVs: 99.8%, indels: 95.7%) with lower FDR for both variant types (SNVs:

0.2%, indels: 0.6%). SpeedSeq’s implementation of FreeBayes therefore exhibits

comparable — albeit slightly inferior — performance to GATK-HC when tested on the GIAB
callsef. However, the GIAB truth set is biased towards GATK because it was primarily

derived from GATK-based analyses. We therefore assessed SpeedSeq’'s performance against
an unbiased truth set of 689,788 SNVs at 2,177,040 sites (lllumina Omni 2.5) in which
SpeedSeq attained the highest sensitivity at the minor expense of specificity compared to
GATK-UG or GATK-HC (Supplementary Fig. 1). Miscalled variants were enriched in

repetitive regions of the genome and adjacent to assembly gaps (Supplementary Note 2 and
Supplementary Table 1). SpeedSeq also supports joint multi-sample variant calldeg and
novogermline mutation detection in families (Supplementary Note 3), which is crucial for
clinical applications such as rapid newborn diagrfosis

Cancer genome analysis is a common WGS application in research and clinical
environments, and can be a time-sensitive component of patient care. To emulate a WGS
dataset from a heterogeneous tumor-normal pair, we defined NA12877 as the “normal”
sample and pooled raw data from his 11 children in equal proportions to generate a single
50% “tumor” sample. The 875,206 SNVs present in the mother (NA12878) but absent from
the father (NA12877) were defined as somatic mutations, with variant allele frequencies
(VAFs) ranging from 0.05 to 0.5 (Supplementary Fig. 2a). Using this evaluation paradigm,
we compared SpeedSeq’s performance to three other leading somatic variant calling tools:
MuTecf, SomaticSnipéf, and VarScan¥. SpeedSeq recalled 96.6% of the somatic
variants in the “tumor” with a FDR of 3.3%, outperforming SomaticSniper in both
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sensitivity and specificity, and delivering competitive performance against MuTect and
VarScan 2 (Fig. 1d, Supplementary Fig. 2b,c).

To test SpeedSeq's performance on real cancer data, we obtained WGS reads (50 tumor,
30x normal) from five tumor-normal pairs with validated somatic mutations ascertained by
deep exome sequencing from The Cancer Genome Atlas (TCGA). SpeedSeq recalled 96.4%
of 2,746 orthogonally validated mutations across all five datasets including 98.8% of
mutations in genes that have been causally implicated in éaii8epplementary Table 2).

Ascertainment of structural variants — copy number variants (CNVs), balanced
rearrangements and mobile element insertions — is a critical component of comprehensive
genome analysis. SV detection poses two key technical challenges. First, SVs are extremely
difficult to detect reliabl}3. Second, functional interpretation of SVs requires specialized

logic due to their variable size and diverse configurations, and because SV breakpoints are
often mapped imprecisely. Due to these challenges, few established genome analysis
pipelines attempt to rigorously detect and interpret SVs.

SpeedSeq achieves comprehensive SV analysis with a suite of three complementary tools
that are sensitive to a range of SV signals. At its core is LUMPY, a state-of-the-art
breakpoint detection tool that integrates split-read and discordant paired-e¥fd titet, a
custom parallelized implementation of CNVnator uses read-depth analysis to detect CNVs
that may be invisible to LUMPY due unmappable or repetitive sequence at their
breakpoint$®. Finally, SpeedSeq genotypes SVs with SVTyper, a novel Bayesian likelihood
algorithm that can operate on copy-neutral events such as inversions and translocations as
well as CNVs. This step produces SV genotypes that are crucial for meaningful variant
interpretation, as well as quantitative estimates of breakpoint allele frequencies that allow
inference of the fraction of tumor cells that carry a particular variant.

Measuring SV detection performance on real data is difficult due to the lack of established
truth sets. If we accept the 1000 Genomes Project (LKGP) deletion callset for NA12878 as
ground trutB8.17 SpeedSeq achieves a sensitivity of 61.9% (2089/3376) and positive
predictive value of 60.8% (2089/3438) for detecting deletions, which is consistent with our
recent comparative performance tests for LUM®and by inference shows that SpeedSeq
achieves state-of-the-art SV detection relative to other tools. However, this test
underestimates absolute performance due to known false positives and negatives in the
1KGP callset. We therefore developed a composite strategy in which SVs in NA12878
could be validated either by overlap with split-read mapping of deep (30x) long-read data
from PacBio and Illlumina Moleculo platforms or by overlap with 1KGP. Based on this
hybrid approach, SVs with quality scores of 100 or greater show a positive predictive value
of 86.0% (2823/3282) (Fig. 1e, Supplementary Fig. 3). Virtually none of these SVs are
likely to have validated by random chance, as 100 permutations of the callset resulted in a
validation rate of 0.073% (+6.1E-3, 95% CI). Moreover, SVTyper's quality scores provide a
tunable parameter for refining callsets to a desired confidence threshold. By requiring both
paired-end and split-read support, users may generate an extremely high confidence callset
of 1,663 SVs with a 97.8% validation rate.
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As an independent measure of SV detection and genotyping performance, we developed a
haplotype-based test that exploits the structure of the CEPH 1463 pedigree. First, we phased
the pedigree by SNV transmission to produce haplotype lineage maps, allowing us to
attribute an average of 63.0% of the mappable genome of eautiiidual to a particular
founding grandparent (Fig. 1f). Next, we performed joint SV detection on the pedigree to
generate 1,722 high-confidence autosomal SVs that could be assigned to a founding
grandparent by transmission, resulting in a truth set of 8,397 predicted SV observations
across the 11 grandchildren with known genotypes. SpeedSeq showed a detection sensitivity
of 90.2% (7,578/8,397) for these predicted SVs, encompassing 1,660 of the 1,722 unique
variants (Supplementary Table 3). Among the SVs that were detected, SVTyper reported the
correct genotype at 96.6% (6,845/7,083) of heterozygous variants and 72.3% (358/495) of
homozygous variants. Moreover, the high specificity of this callset is apparent from the
infrequency of Mendelian violations (5.0%) and the consistent co-segregation of SVs with
SNV-based haplotypes (93.8%) (Supplementary Table 4).

Results from SpeedSeq seamlessly integrate into the GEMINI variant interpretation
framework, which annotates calls with information from external databases including
dbSNP, ENCODE, ClinVar, CADD, ESP, and ExAC for efficient filtering with command

line queries or a graphical browser interfécén concert with SpeedSeq, we have made
numerous enhancements to GEMINI, particularly in handling structural variants and
interpreting somatic mutations. Users can rapidly prioritize somatic mutations through
gueries on two newly added databases: the COSMIC catalogue of somatic mutations in
cancet? and DGIdb, the Drug-Gene Interaction databade addition, GEMINI can now
identify structural variants that alter gene dosage or interrupt transcripts, as well as putative
somatic gene fusions affecting COSMIC cancer genes.

Finally, to provide an example of a typical cancer analysis interpretation, we performed
somatic variant calling on the tumor-normal pair of an invasive breast carcinoma from
TCGA that carries a known gene fusi@rwith four concise commands and less than an

hour of computation, we loaded the VCF file into GEMINI, filtered variant calls for high-
confidence, clinically informative somatic mutations, and predicted gene fusion events (Fig.
2). These analyses demonstrate the ease with which high impact somatic point mutations
and genomic rearrangements can be identified using the SpeedSeq framework.

Online methods

Software availability

Hardware

The SpeedSeq v0.0.3a source code, documentation, and example data files are available in
Supplementary Software, as well asitps://github.com/cc2qe/speedseq

All timings reported herein were performed on a single machine with 128 GB RAM and two
Intel Xeon E5-2670 processors, each with 16 threads.
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We benchmarked SpeedSeq's processing time using the NA12878 genome from the
lllumina Platinum Genomes dataset (European Nucleotide Archive: ERP001960), which
comprises 50x WGS datasets for each of the 17 members of the three-generation CEPH
1463 pedigree (Supplementary Fig. 4).

Whole-genome sequencing data from five matched tumor-normal pairs and their
orthogonally validated somatic mutations were obtained from The Cancer Genome Atlas
(TCGA). These included three colorectal tumors (TCGA-A6-6141, TCGA-CA-6718,
TCGA-D5-6540), one ovarian tumor (TCGA-13-0751), and one breast tumor (TCGA-B6-
A0I6). Raw FASTQ reads were down-sampled to 50x coverage in the tumor and 30x
coverage in the normal sample. Samples were processed with SpeedSeq for alignment,
somatic mutations, and structural variants using default parameters and then loaded into
GEMINI for variant interpretation. We also analyzed WGS data from a tumor-normal pair
(63x tumor, 49x% normal coverage) of a patient with an invasive breast carcinoma (TCGA-
E2-A14P) containing a previously reported gene fusion between TBL1XR1 and P¥R3CA

FASTQ alignment and BAM processing

SpeedSeq aligns paired-end FASTQ files to the human GRCh37 reference genome with
BWA-MEM, using the “-M” flag to mark shorter alignments as secondary. Aligned reads
are streamed directly into SAMBLASTERwhich seizes idle CPU cycles that are
periodically liberated each time BWA reads a FASTQ data chunk into the buffer. Marking
duplicates on the pre-sorted BAM file allows simultaneous extraction of discordant read-
pairs and split-read alignments, followed by rapid sorting and BAM compression with
Sambambl.

SNV and indel detection strategy

SpeedSeq runs FreeBayes version 0.9.16 with “--min-repeat-entropy 1” and “--
experimental-gls” parameters for germline variant cafliig increase specificity,
SpeedSeq also requires at least one read on both the left and the right to support the variant

allele. For somatic variant detection, SpeedSeq uses parameters tuned to increase sensitivity

over low frequency variants (--pooled-discrete --genotype-qualities --min-alternate-fraction
0.05 --min-alternate-count 2 --min-repeat-entropy 1), and reports a somatic score (SSC) to
estimate the confidence of each variant. The somatic score is the sum of the log odds ratios
of the tumor LODy) and normall{(ODy) based on the genotype likelihood probabilities
from FreeBayesRt andPy for tumor and normal genotype probabilities respectively). The
SSC is the preferred tuning parameter since it is robust to sequencing depth by design,
however, the minimum alternate fraction and minimum alternate count may also be adjusted
on the SpeedSeq command line.

P, (alternate)

LOD,_.=!
=% P, (reference)

@
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P, (alternate)

LOD, =l
N ogPN (reference)

SSC=LOD, +LOD, (3

SpeedSeq’s implementation of FreeBayes is parallelized over 34,123 windowed regions of
the GRCh37 genome using GNU PardfieWe generated these regions, which average 84

kb in length, by partitioning the genome into bins of approximately equal numbers of reads
based upon the aggregate coverage depth of all 17 members of the CEPH 1463 family
pedigree and excluding high depth sequences (Supplementary Note 4 and Supplementary
Fig. 5). This binning scheme balances the computational load over the FreeBayes instances
by allocating processors based on the quantity of expected input data. It is 13.3-fold faster
than the single-threaded version and 34.9% faster than naive parallelization over each
chromosome (Supplementary Note 1).

Structural variation detection and genotyping strategy

SpeedSeq runs LUMPY with “-msw 4 -tt 0 min_clip 20 min_non_overlap 101
min_mapping_threshold 20 discordant_z 5 back_distance 10", and weights of 1 for both
paired-end and split-read evidence. SpeedSeq’s implementation of CNVnator parallelizes
the genome by chromosome and performs copy number segmentation with a window size of
100 bp.

SVTyper is a maximume-likelihood Bayesian classification algorithm that infers an
underlying genotype at each SV. Alignments at SV breakpoints either support the alternate
allele with discordant or split-reads, or they support the reference allele with concordant
reads/read-pairs that span the breakpoint. The ratio and quantity of these observations allow
probabilistic inference of genotype likelihood. Under the assumption of diploidy, the set of
possible genotypes at any locusis {reference, heterozygous, homozygolge defined

the functionS, whereS(g)is the prior probability of observing a variant read in a single trial
given a genotype g at any locus. These priors were set to 0.1, 0.4, 0.8 for reference,
heterozygous, and homozygous deletions respectively. Assuming a random sampling of
reads, the number of observed alternA)eafid referenceR) reads (scaled by mapping

quality, 10"(-mapq/10)) will follow a binomial distributid(A+R, S(g’)) whereg’ € G is

the true underlying genotype. Using Bayes’s theorem we can derive the conditional
probability of each underlying genotype state from the observed read counts (Eq. 4),
assuming a® priori probability P(g) of 1/3 for each genotype. Finally, we calculgtas

the inferred genotype for the variant. Since the algorithm only interrogates SVs in the VCF
file that have passed LUMPY filters as non-reference, it reports the more likely genotype of
heterozygous or homozygous alternate states.

0.1 if g=homozygous reference
S(g)=4 0.4 if g=heterozygous (4)
0.8 if g=homozygous alternate

Nat MethodsAuthor manuscript; available in PMC 2016 April 01.
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> P(A,Rlg)-P(g)

g€eG

g:argTeagP (9|4, R) @

SNV and indel evaluation

We compared SpeedSeq’'s germline SNV and indel variant calling against two independent
truth sets for NA12878, one derived from the Genome in a Bottle (GIAB) NA12878 gold
standard calls and the other based on Omni microarray data from the 1000 Genomes Project
(1KGP). The GIAB 2.17 truth set contained 2,803,144 SNVs and 364,031 indels within

highly confident regions (excluding segmental duplications, simple repeats, decoy sequence,
and CNVSs), spanning 2.2 Gb (77.6% of the mappable genome) for which non-variant sites
could be confidently considered homozygous reference. The Omni microarray truth set
contained 2,177,040 informative SNVs of which 689,788 were non-reference in NA12878,
excluding markers within 50 bp of known indels.

We aligned NA12878 raw reads from the Illumina Platinum data with SpeedSeq, and then
called germline SNVs and indels using SpeedSeq default parameters. To evaluate
SpeedSeq’s performance against other standard tools, we also processed the aligned BAM
files according to the Genome Analysis Toolkit (version 3.2-2-gec30cee) best practices
workflow, including realignment around indels, base recalibration, and variant calling with
Unified Genotyper (GATK-UG) and Haplotype Caller (GATK-HC). Variant quality score
recalibration was performed on the GATK results using a passing tranche filter of <99%.
We normalized and compared variant calls according to the GIAB protocol, with
vcfallelicprimatives, GATK’s LeftAlignAndTrimVariants, and VcfComparatérWe

filtered variants for sensitivity and FDR against the GIAB truth set using a minimum quality
score of 100 for GATK tools, and 1 for SpeedSeq (open circles, Fig. 1b,c).

To evaluate performance in detecting somatic variants, we generated a simulated tumor-
normal matched pair from the CEPH 1463 family lllumina Platinum data. The “tumor”
dataset was an equal mixture of all 11 members of tlyeiieration, down-sampled to 50x
coverage and aligned with SpeedSeq. The father ofstgerteration (NA12877)

represented the 50x matched normal sample. For inclusion in the somatic SNV truth set, we
required a variant to be diallelic, autosomal, in the NA127878 GIAB truth set, and called by
Real Time Genomics (RTG) as non-reference in NA12878 and reference in N&#3877
Additionally, variants were disqualified from the truth set if they violated Mendelian
inheritance patterns. These criteria resulted in a set of 875,206 high confidence SNVs
covering 77.6% of the mappable genome. The truth set of variants in the chimeric tumor
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followed the expected binomial pattern of inheritance in her children, with a peak at 0.5
VAF from homozygous SNVs in NA12878 (Supplementary Fig. 2a).

We processed the simulated tumor data with SpeedSeq, MuTect 1.1.4, SomaticSniper, and
VarScan 2 using parameters designed to target variants as low as 5% variant allele fraction.
Receiver operating characteristic (ROC) curves were generated by varying somatic score
(SSC) for SpeedSeq, SomaticSniper, and VarScan 2. For MuTect, which does not produce a
single quality score for somatic variants, we varied the t_lod_fstar value to construct the
ROC curve.

Structural variant evaluation

We constructed the 1KGP truth set by integrating deletions from the Pilot and Phase 1
callsetd®17 For long-read validation of SV breakpoints, we obtained 30x PatBigf(p-
trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20131209_nal2878_mglando/
Moleculo (tp:/ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/

20131209 nal2878_pachio/Schattita from 1KGP. We realigned the PacBio data with
BWA-MEM 0.7.10 using the -x pacbio flag for consistency with the Moleculo alignments.
Validations were performed according to previously published methd@isstom scripts

for this analysis are availablel&tps://github.com/hall-lab/long-read-validatioro

construct haplotype maps of the CEPH 1468&nomes, we called SNVs with SpeedSeq

on the entire 17-member pedigree, and phased SNVs by transmission at polymorphic sites in
the parents. We smoothed the chromosomes for contiguous blocks of inheritance by
selecting informative bases where 95% of each run of 101 SNVs reported a consistent
parent-of-origin. We then merged regions that shared inheritance and were within 100 kb of
each other. This allowed us to trace an average of 1.8 Gb (63.4%) of,eduliRosome

back to a particular grandparent, encapsulating meiotic crossovers that occurred in the F
germline (Fig. 1f). We then used SpeedSeq to jointly call structural variants on the entire
pedigree, filtering for deletions that had at least seven pieces of support in at least one
member of the pedigree, had legal Mendelian transmission, and whose origin could be
unambiguously attributed to a single grandparent. Variants for which the founding
grandparent by SV transmission agreed with the founding grandparent by SNV phasing
were considered to be concordant, with strong supporting evidence for their authenticity. To
test whether the 1,722 informative SVs were representative of the dataset as a whole, and
not of misleadingly high quality due to their ascertainment criteria, we assessed their
validation rate as above using the 1KGP callset and long-read sequencing (Supplementary
Table 4). The 1,722 informative SVs had a similar validation rate as the remaining 6,734
SVs, suggesting that they are representative of overall callset quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SpeedSeq wor kflow
(a) SpeedSeq converts raw reads into prioritized variants in 13 hours for a 50x human

dataset(b) Germline SNV (N=2,803,144) arfd) indel (N=364,031) receiver operating
characteristic (ROC) curves over the Genome in a Bottle (GIAB) truth set for SpeedSeq,
GATK Unified Genotyper (GATK-UG) and Haplotype Caller (GATK-H@J) Somatic

SNV detection ROC curves for a simulated 50% tumor-normal pair using SpeedSeq and
three other tools (N=875,206). Open cirdles]) denote the data points reported in the main
text. (€) SpeedSeq’s SV detection performance by quality score of all SVs (black), those
with split-read and paired-end support (blue), and those with read-depth support from
CNVnator (red), as validated by either PacBio/Moleculo long-reads or the 1000 Genomes
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Project.(f) Schematic of haplotype-based SV validation showing undetected (open circles),
consistently segregating (black circles), and inconsistently segregating (red circles) SVs
through the CEPH 1463 pedigree.
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tumor.vcf.gz

$ gemini load -v tumor.vcf.gz -t VEP -p sample.ped tumor.db]

$ gemini set somatic tumor.db

-

$ gemini actionable mutations tumor.db

elatizdl 7/
ch=il
chr2

chrX

7578460 7578461

59861630 59861641
128046288 128046289
132838304 132838328

IP53 non_syn_coding

BRIP1

ERCC3 non_syn_coding
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$ gemini fusions --in _cosmic_census --min _qual 1 tumor.db

chE3

178905990 ch1Es 176909982 - S complex PIK3CA TBL1XRI1
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TBL1XR1 (NM_024665) PIK3CA (NM_006218)
exon 1 (5' UTR) exon 2

Figure 2. Case study in atumor-normal pair
A SpeedSeq workflow demonstrating the seven succinct commands required to process a

tumor-normal pair (TCGA-E2-A14P) from raw FASTQ reads to clinically actionable
somatic mutations with predicted damaging consequences. In this tumor, SpeedSeq detected
a previously reported somatic gene fusion product between exon 1 of TBL1XR1 and exon 2

of PIK3CAZ0.
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