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Abstract

SpeedSeq is an open-source genome analysis platform that accomplishes alignment, variant 

detection and functional annotation of a 50× human genome in 13 hours on a low-cost server, 

alleviating a bioinformatics bottleneck that typically demands weeks of computation with 

extensive hands-on expert involvement. SpeedSeq offers competitive or superior performance to 

current methods for detecting germline and somatic single nucleotide variants, indels, and 

structural variants, and includes novel functionality for streamlined interpretation.

Technical advances in second-generation DNA sequencing technologies have reduced both 

the cost and time required to generate whole-genome sequencing (WGS) data, creating 

opportunities in healthcare and academic research to survey the human genome with 

unprecedented depth and scope. However, bottlenecks in computational processing and 

variant interpretation have hindered adoption of these technologies for time-sensitive and 

large-scale projects. Using a standard pipeline based on BWA1, GATK2, SAMtools3, and 

Picard, processing a 50× human genome from raw sequence data to variant calls on a 32-

thread server requires 60-70 hours (Supplementary Note 1). Furthermore, distinguishing 
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pathogenic from benign mutations is a labor-intensive process that can take hours or days of 

manual curation per patient4.

SpeedSeq is a suite of open-source software designed for rapid whole-genome variant 

detection and interpretation. Its modular architecture and universal formats confer 

adaptability to a variety of experimental designs and compatibility with standard industry 

software (Fig. 1a). It achieves superior processing efficiency through rapid duplicate 

marking with SAMBLASTER5, through balanced parallelization of external applications, 

and by executing non-dependent pipeline components simultaneously. SpeedSeq translates 

raw 50× WGS data into prioritized single nucleotide variants (SNVs), short insertions and 

deletions (indels), and structural variants (SVs) in 13 hours on a single 16-core server with 

128 GB of RAM (current cost: <$10,000), and our accelerated implementations show little 

to no difference compared to original software (Supplementary Note 1). This represents at 

minimum a several-fold speed increase over current practices using typical computing 

resources.

We assessed the accuracy of SpeedSeq’s SNV and indel calls against the Genome in a Bottle 

Consortium (GIAB) truth set in the well-studied human sample, NA12878 (2,803,144 SNVs 

and 364,031 indels)6. SpeedSeq achieved a sensitivity of 99.9% and 89.9% for germline 

SNVs and indels respectively, with acceptably low false discovery rates (FDR) (0.4% and 

1.1%) (Fig. 1b,c). These detection rates exceeded the GATK Unified Genotyper’s (GATK-

UG) sensitivity (SNVs: 99.7%, indels: 89.0%) with a similar FDR (SNVs: 0.5%, indels: 

1.0%;). The GATK Haplotype Caller (GATK-HC) showed superior indel detection 

sensitivity (SNVs: 99.8%, indels: 95.7%) with lower FDR for both variant types (SNVs: 

0.2%, indels: 0.6%). SpeedSeq’s implementation of FreeBayes therefore exhibits 

comparable – albeit slightly inferior – performance to GATK-HC when tested on the GIAB 

callset7. However, the GIAB truth set is biased towards GATK because it was primarily 

derived from GATK-based analyses. We therefore assessed SpeedSeq’s performance against 

an unbiased truth set of 689,788 SNVs at 2,177,040 sites (Illumina Omni 2.5) in which 

SpeedSeq attained the highest sensitivity at the minor expense of specificity compared to 

GATK-UG or GATK-HC (Supplementary Fig. 1). Miscalled variants were enriched in 

repetitive regions of the genome and adjacent to assembly gaps (Supplementary Note 2 and 

Supplementary Table 1). SpeedSeq also supports joint multi-sample variant calling and de 

novo germline mutation detection in families (Supplementary Note 3), which is crucial for 

clinical applications such as rapid newborn diagnosis8.

Cancer genome analysis is a common WGS application in research and clinical 

environments, and can be a time-sensitive component of patient care. To emulate a WGS 

dataset from a heterogeneous tumor-normal pair, we defined NA12877 as the “normal” 

sample and pooled raw data from his 11 children in equal proportions to generate a single 

50× “tumor” sample. The 875,206 SNVs present in the mother (NA12878) but absent from 

the father (NA12877) were defined as somatic mutations, with variant allele frequencies 

(VAFs) ranging from 0.05 to 0.5 (Supplementary Fig. 2a). Using this evaluation paradigm, 

we compared SpeedSeq’s performance to three other leading somatic variant calling tools: 

MuTect9, SomaticSniper10, and VarScan 211. SpeedSeq recalled 96.6% of the somatic 

variants in the “tumor” with a FDR of 3.3%, outperforming SomaticSniper in both 
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sensitivity and specificity, and delivering competitive performance against MuTect and 

VarScan 2 (Fig. 1d, Supplementary Fig. 2b,c).

To test SpeedSeq’s performance on real cancer data, we obtained WGS reads (50× tumor, 

30× normal) from five tumor-normal pairs with validated somatic mutations ascertained by 

deep exome sequencing from The Cancer Genome Atlas (TCGA). SpeedSeq recalled 96.4% 

of 2,746 orthogonally validated mutations across all five datasets including 98.8% of 

mutations in genes that have been causally implicated in cancer12 (Supplementary Table 2).

Ascertainment of structural variants – copy number variants (CNVs), balanced 

rearrangements and mobile element insertions – is a critical component of comprehensive 

genome analysis. SV detection poses two key technical challenges. First, SVs are extremely 

difficult to detect reliably13. Second, functional interpretation of SVs requires specialized 

logic due to their variable size and diverse configurations, and because SV breakpoints are 

often mapped imprecisely. Due to these challenges, few established genome analysis 

pipelines attempt to rigorously detect and interpret SVs.

SpeedSeq achieves comprehensive SV analysis with a suite of three complementary tools 

that are sensitive to a range of SV signals. At its core is LUMPY, a state-of-the-art 

breakpoint detection tool that integrates split-read and discordant paired-end data14 . Next, a 

custom parallelized implementation of CNVnator uses read-depth analysis to detect CNVs 

that may be invisible to LUMPY due unmappable or repetitive sequence at their 

breakpoints15. Finally, SpeedSeq genotypes SVs with SVTyper, a novel Bayesian likelihood 

algorithm that can operate on copy-neutral events such as inversions and translocations as 

well as CNVs. This step produces SV genotypes that are crucial for meaningful variant 

interpretation, as well as quantitative estimates of breakpoint allele frequencies that allow 

inference of the fraction of tumor cells that carry a particular variant.

Measuring SV detection performance on real data is difficult due to the lack of established 

truth sets. If we accept the 1000 Genomes Project (1KGP) deletion callset for NA12878 as 

ground truth16,17, SpeedSeq achieves a sensitivity of 61.9% (2089/3376) and positive 

predictive value of 60.8% (2089/3438) for detecting deletions, which is consistent with our 

recent comparative performance tests for LUMPY14 and by inference shows that SpeedSeq 

achieves state-of-the-art SV detection relative to other tools. However, this test 

underestimates absolute performance due to known false positives and negatives in the 

1KGP callset. We therefore developed a composite strategy in which SVs in NA12878 

could be validated either by overlap with split-read mapping of deep (30×) long-read data 

from PacBio and Illumina Moleculo platforms or by overlap with 1KGP. Based on this 

hybrid approach, SVs with quality scores of 100 or greater show a positive predictive value 

of 86.0% (2823/3282) (Fig. 1e, Supplementary Fig. 3). Virtually none of these SVs are 

likely to have validated by random chance, as 100 permutations of the callset resulted in a 

validation rate of 0.073% (±6.1E-3, 95% CI). Moreover, SVTyper’s quality scores provide a 

tunable parameter for refining callsets to a desired confidence threshold. By requiring both 

paired-end and split-read support, users may generate an extremely high confidence callset 

of 1,663 SVs with a 97.8% validation rate.
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As an independent measure of SV detection and genotyping performance, we developed a 

haplotype-based test that exploits the structure of the CEPH 1463 pedigree. First, we phased 

the pedigree by SNV transmission to produce haplotype lineage maps, allowing us to 

attribute an average of 63.0% of the mappable genome of each F2 individual to a particular 

founding grandparent (Fig. 1f). Next, we performed joint SV detection on the pedigree to 

generate 1,722 high-confidence autosomal SVs that could be assigned to a founding 

grandparent by transmission, resulting in a truth set of 8,397 predicted SV observations 

across the 11 grandchildren with known genotypes. SpeedSeq showed a detection sensitivity 

of 90.2% (7,578/8,397) for these predicted SVs, encompassing 1,660 of the 1,722 unique 

variants (Supplementary Table 3). Among the SVs that were detected, SVTyper reported the 

correct genotype at 96.6% (6,845/7,083) of heterozygous variants and 72.3% (358/495) of 

homozygous variants. Moreover, the high specificity of this callset is apparent from the 

infrequency of Mendelian violations (5.0%) and the consistent co-segregation of SVs with 

SNV-based haplotypes (93.8%) (Supplementary Table 4).

Results from SpeedSeq seamlessly integrate into the GEMINI variant interpretation 

framework, which annotates calls with information from external databases including 

dbSNP, ENCODE, ClinVar, CADD, ESP, and ExAC for efficient filtering with command 

line queries or a graphical browser interface18. In concert with SpeedSeq, we have made 

numerous enhancements to GEMINI, particularly in handling structural variants and 

interpreting somatic mutations. Users can rapidly prioritize somatic mutations through 

queries on two newly added databases: the COSMIC catalogue of somatic mutations in 

cancer12 and DGIdb, the Drug-Gene Interaction database19. In addition, GEMINI can now 

identify structural variants that alter gene dosage or interrupt transcripts, as well as putative 

somatic gene fusions affecting COSMIC cancer genes.

Finally, to provide an example of a typical cancer analysis interpretation, we performed 

somatic variant calling on the tumor-normal pair of an invasive breast carcinoma from 

TCGA that carries a known gene fusion20. With four concise commands and less than an 

hour of computation, we loaded the VCF file into GEMINI, filtered variant calls for high-

confidence, clinically informative somatic mutations, and predicted gene fusion events (Fig. 

2). These analyses demonstrate the ease with which high impact somatic point mutations 

and genomic rearrangements can be identified using the SpeedSeq framework.

Online methods

Software availability

The SpeedSeq v0.0.3a source code, documentation, and example data files are available in 

Supplementary Software, as well as at https://github.com/cc2qe/speedseq.

Hardware

All timings reported herein were performed on a single machine with 128 GB RAM and two 

Intel Xeon E5-2670 processors, each with 16 threads.
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Data

We benchmarked SpeedSeq’s processing time using the NA12878 genome from the 

Illumina Platinum Genomes dataset (European Nucleotide Archive: ERP001960), which 

comprises 50× WGS datasets for each of the 17 members of the three-generation CEPH 

1463 pedigree (Supplementary Fig. 4).

Whole-genome sequencing data from five matched tumor-normal pairs and their 

orthogonally validated somatic mutations were obtained from The Cancer Genome Atlas 

(TCGA). These included three colorectal tumors (TCGA-A6-6141, TCGA-CA-6718, 

TCGA-D5-6540), one ovarian tumor (TCGA-13-0751), and one breast tumor (TCGA-B6-

A0I6). Raw FASTQ reads were down-sampled to 50× coverage in the tumor and 30× 

coverage in the normal sample. Samples were processed with SpeedSeq for alignment, 

somatic mutations, and structural variants using default parameters and then loaded into 

GEMINI for variant interpretation. We also analyzed WGS data from a tumor-normal pair 

(63× tumor, 49× normal coverage) of a patient with an invasive breast carcinoma (TCGA-

E2-A14P) containing a previously reported gene fusion between TBL1XR1 and PIK3CA20.

FASTQ alignment and BAM processing

SpeedSeq aligns paired-end FASTQ files to the human GRCh37 reference genome with 

BWA-MEM, using the “-M” flag to mark shorter alignments as secondary. Aligned reads 

are streamed directly into SAMBLASTER5, which seizes idle CPU cycles that are 

periodically liberated each time BWA reads a FASTQ data chunk into the buffer. Marking 

duplicates on the pre-sorted BAM file allows simultaneous extraction of discordant read-

pairs and split-read alignments, followed by rapid sorting and BAM compression with 

Sambamba21.

SNV and indel detection strategy

SpeedSeq runs FreeBayes version 0.9.16 with “--min-repeat-entropy 1” and “--

experimental-gls” parameters for germline variant calling7. To increase specificity, 

SpeedSeq also requires at least one read on both the left and the right to support the variant 

allele. For somatic variant detection, SpeedSeq uses parameters tuned to increase sensitivity 

over low frequency variants (--pooled-discrete --genotype-qualities --min-alternate-fraction 

0.05 --min-alternate-count 2 --min-repeat-entropy 1), and reports a somatic score (SSC) to 

estimate the confidence of each variant. The somatic score is the sum of the log odds ratios 

of the tumor (LODT) and normal (LODN) based on the genotype likelihood probabilities 

from FreeBayes (PT and PN for tumor and normal genotype probabilities respectively). The 

SSC is the preferred tuning parameter since it is robust to sequencing depth by design, 

however, the minimum alternate fraction and minimum alternate count may also be adjusted 

on the SpeedSeq command line.

(1)
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(2)

(3)

SpeedSeq’s implementation of FreeBayes is parallelized over 34,123 windowed regions of 

the GRCh37 genome using GNU Parallel22. We generated these regions, which average 84 

kb in length, by partitioning the genome into bins of approximately equal numbers of reads 

based upon the aggregate coverage depth of all 17 members of the CEPH 1463 family 

pedigree and excluding high depth sequences (Supplementary Note 4 and Supplementary 

Fig. 5). This binning scheme balances the computational load over the FreeBayes instances 

by allocating processors based on the quantity of expected input data. It is 13.3-fold faster 

than the single-threaded version and 34.9% faster than naïve parallelization over each 

chromosome (Supplementary Note 1).

Structural variation detection and genotyping strategy

SpeedSeq runs LUMPY with “-msw 4 -tt 0 min_clip 20 min_non_overlap 101 

min_mapping_threshold 20 discordant_z 5 back_distance 10”, and weights of 1 for both 

paired-end and split-read evidence. SpeedSeq’s implementation of CNVnator parallelizes 

the genome by chromosome and performs copy number segmentation with a window size of 

100 bp.

SVTyper is a maximum-likelihood Bayesian classification algorithm that infers an 

underlying genotype at each SV. Alignments at SV breakpoints either support the alternate 

allele with discordant or split-reads, or they support the reference allele with concordant 

reads/read-pairs that span the breakpoint. The ratio and quantity of these observations allow 

probabilistic inference of genotype likelihood. Under the assumption of diploidy, the set of 

possible genotypes at any locus is G = {reference, heterozygous, homozygous}. We defined 

the function S, where S(g) is the prior probability of observing a variant read in a single trial 

given a genotype g at any locus. These priors were set to 0.1, 0.4, 0.8 for reference, 

heterozygous, and homozygous deletions respectively. Assuming a random sampling of 

reads, the number of observed alternate (A) and reference (R) reads (scaled by mapping 

quality, 10^(-mapq/10)) will follow a binomial distribution B(A+R, S(g’)), where g’ ∈ G is 

the true underlying genotype. Using Bayes’s theorem we can derive the conditional 

probability of each underlying genotype state from the observed read counts (Eq. 4), 

assuming an a priori probability P(g) of 1/3 for each genotype. Finally, we calculate ĝ as 

the inferred genotype for the variant. Since the algorithm only interrogates SVs in the VCF 

file that have passed LUMPY filters as non-reference, it reports the more likely genotype of 

heterozygous or homozygous alternate states.

(4)
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(5)

(6)

(7)

SNV and indel evaluation

We compared SpeedSeq’s germline SNV and indel variant calling against two independent 

truth sets for NA12878, one derived from the Genome in a Bottle (GIAB) NA12878 gold 

standard calls and the other based on Omni microarray data from the 1000 Genomes Project 

(1KGP). The GIAB 2.17 truth set contained 2,803,144 SNVs and 364,031 indels within 

highly confident regions (excluding segmental duplications, simple repeats, decoy sequence, 

and CNVs), spanning 2.2 Gb (77.6% of the mappable genome) for which non-variant sites 

could be confidently considered homozygous reference. The Omni microarray truth set 

contained 2,177,040 informative SNVs of which 689,788 were non-reference in NA12878, 

excluding markers within 50 bp of known indels.

We aligned NA12878 raw reads from the Illumina Platinum data with SpeedSeq, and then 

called germline SNVs and indels using SpeedSeq default parameters. To evaluate 

SpeedSeq’s performance against other standard tools, we also processed the aligned BAM 

files according to the Genome Analysis Toolkit (version 3.2-2-gec30cee) best practices 

workflow, including realignment around indels, base recalibration, and variant calling with 

Unified Genotyper (GATK-UG) and Haplotype Caller (GATK-HC). Variant quality score 

recalibration was performed on the GATK results using a passing tranche filter of <99%. 

We normalized and compared variant calls according to the GIAB protocol, with 

vcfallelicprimatives, GATK’s LeftAlignAndTrimVariants, and VcfComparator2,6. We 

filtered variants for sensitivity and FDR against the GIAB truth set using a minimum quality 

score of 100 for GATK tools, and 1 for SpeedSeq (open circles, Fig. 1b,c).

To evaluate performance in detecting somatic variants, we generated a simulated tumor-

normal matched pair from the CEPH 1463 family Illumina Platinum data. The “tumor” 

dataset was an equal mixture of all 11 members of the F2 generation, down-sampled to 50× 

coverage and aligned with SpeedSeq. The father of the F2 generation (NA12877) 

represented the 50× matched normal sample. For inclusion in the somatic SNV truth set, we 

required a variant to be diallelic, autosomal, in the NA127878 GIAB truth set, and called by 

Real Time Genomics (RTG) as non-reference in NA12878 and reference in NA128776,23. 

Additionally, variants were disqualified from the truth set if they violated Mendelian 

inheritance patterns. These criteria resulted in a set of 875,206 high confidence SNVs 

covering 77.6% of the mappable genome. The truth set of variants in the chimeric tumor 
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followed the expected binomial pattern of inheritance in her children, with a peak at 0.5 

VAF from homozygous SNVs in NA12878 (Supplementary Fig. 2a).

We processed the simulated tumor data with SpeedSeq, MuTect 1.1.4, SomaticSniper, and 

VarScan 2 using parameters designed to target variants as low as 5% variant allele fraction. 

Receiver operating characteristic (ROC) curves were generated by varying somatic score 

(SSC) for SpeedSeq, SomaticSniper, and VarScan 2. For MuTect, which does not produce a 

single quality score for somatic variants, we varied the t_lod_fstar value to construct the 

ROC curve.

Structural variant evaluation

We constructed the 1KGP truth set by integrating deletions from the Pilot and Phase 1 

callsets16,17. For long-read validation of SV breakpoints, we obtained 30× PacBio (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20131209_na12878_moleculo/) and 

Moleculo (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/

20131209_na12878_pacbio/Schadt) data from 1KGP. We realigned the PacBio data with 

BWA-MEM 0.7.10 using the -x pacbio flag for consistency with the Moleculo alignments. 

Validations were performed according to previously published methods14. Custom scripts 

for this analysis are available at https://github.com/hall-lab/long-read-validation. To 

construct haplotype maps of the CEPH 1463 F2 genomes, we called SNVs with SpeedSeq 

on the entire 17-member pedigree, and phased SNVs by transmission at polymorphic sites in 

the parents. We smoothed the chromosomes for contiguous blocks of inheritance by 

selecting informative bases where 95% of each run of 101 SNVs reported a consistent 

parent-of-origin. We then merged regions that shared inheritance and were within 100 kb of 

each other. This allowed us to trace an average of 1.8 Gb (63.4%) of each F2 chromosome 

back to a particular grandparent, encapsulating meiotic crossovers that occurred in the F1 

germline (Fig. 1f). We then used SpeedSeq to jointly call structural variants on the entire 

pedigree, filtering for deletions that had at least seven pieces of support in at least one 

member of the pedigree, had legal Mendelian transmission, and whose origin could be 

unambiguously attributed to a single grandparent. Variants for which the founding 

grandparent by SV transmission agreed with the founding grandparent by SNV phasing 

were considered to be concordant, with strong supporting evidence for their authenticity. To 

test whether the 1,722 informative SVs were representative of the dataset as a whole, and 

not of misleadingly high quality due to their ascertainment criteria, we assessed their 

validation rate as above using the 1KGP callset and long-read sequencing (Supplementary 

Table 4). The 1,722 informative SVs had a similar validation rate as the remaining 6,734 

SVs, suggesting that they are representative of overall callset quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SpeedSeq workflow
(a) SpeedSeq converts raw reads into prioritized variants in 13 hours for a 50× human 

dataset. (b) Germline SNV (N=2,803,144) and (c) indel (N=364,031) receiver operating 

characteristic (ROC) curves over the Genome in a Bottle (GIAB) truth set for SpeedSeq, 

GATK Unified Genotyper (GATK-UG) and Haplotype Caller (GATK-HC). (d) Somatic 

SNV detection ROC curves for a simulated 50× tumor-normal pair using SpeedSeq and 

three other tools (N=875,206). Open circles (b-d) denote the data points reported in the main 

text. (e) SpeedSeq’s SV detection performance by quality score of all SVs (black), those 

with split-read and paired-end support (blue), and those with read-depth support from 

CNVnator (red), as validated by either PacBio/Moleculo long-reads or the 1000 Genomes 
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Project. (f) Schematic of haplotype-based SV validation showing undetected (open circles), 

consistently segregating (black circles), and inconsistently segregating (red circles) SVs 

through the CEPH 1463 pedigree.
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Figure 2. Case study in a tumor-normal pair
A SpeedSeq workflow demonstrating the seven succinct commands required to process a 

tumor-normal pair (TCGA-E2-A14P) from raw FASTQ reads to clinically actionable 

somatic mutations with predicted damaging consequences. In this tumor, SpeedSeq detected 

a previously reported somatic gene fusion product between exon 1 of TBL1XR1 and exon 2 

of PIK3CA20.
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