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Recent advances in next-generation sequencing (NGS) technologies have triggered the
rapid accumulation of publicly available multi-omics datasets. The application of
integrated omics to explore robust signatures for clinical translation is increasingly
emphasized, and this is attributed to the clinical success of immune checkpoint
blockades in diverse malignancies. However, effective tools for comprehensively
interpreting multi-omics data are still warranted to provide increased granularity into the
intrinsic mechanism of oncogenesis and immunotherapeutic sensitivity. Therefore, we
developed a computational tool for effective Immuno-Oncology Biological Research
(IOBR), providing a comprehensive investigation of the estimation of reported or user-
built signatures, TME deconvolution, and signature construction based on multi-omics
data. Notably, IOBR offers batch analyses of these signatures and their correlations with
clinical phenotypes, long non-coding RNA (IncRNA) profiling, genomic characteristics,
and signatures generated from single-cell RNA sequencing (scRNA-seq) data in different
cancer settings. Additionally, IOBR integrates multiple existing microenvironmental
deconvolution methodologies and signature construction tools for convenient
comparison and selection. Collectively, IOBR is a user-friendly tool for leveraging multi-
omics data to facilitate immuno-oncology exploration and to unveil tumor-immune
interactions and accelerating precision immunotherapy.
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INTRODUCTION

The clinical success of immune checkpoint blockade (ICB) has
recently seen progress due to the immunotherapy that
revolutionizes the treatment paradigm of advanced cancers.
However, the heterogeneous immunotherapy outcomes across
patients necessitate the investigation into host-tumor
interactions, particularly the immune cell infiltration within
the tumor microenvironment (TME), to define robust
predictive biomarkers for precision therapy. In this regard,
increasing TME-relevant gene signatures have been reported to
estimate immune contexture and predict clinical treatment
response. Notably, gene expression profiling (GEP) (1) and
TMEscore (2) are influential pan-cancer predictive signatures
for prognosis, ICB response, and resistance by decoding the TME
component using transcriptomic data. Gene signatures for
chemotherapy response prediction have also been reported: the
70-gene (3) and 21-gene (4) assays predict distant recurrence of
estrogen receptor positive breast cancer with adjuvant
chemotherapy, with the aforementioned TMEscore further
promising as a biomarker for chemotherapy sensitivity in late-
stage gastric cancer (2). Signatures such as PAM50, constructed
by integrating transcriptomics with other omics (genomics,
methylation, and proteomics) to define subgroups, provide a
new lens into tumor plasticity and heterogeneity of breast
cancer (5).

The emergence of these promising signatures is greatly
attributed to the development of NGS and computational
deconvolution methodology. Technological breakthroughs in
NGS have driven an enormous accumulation of publicly
available multi-omics datasets, allowing easy accessibility for
multi-omics data. Despite the rapid technological progress of
scRNA-seq, the lack of large datasets indicates that the validation
of signatures still heavily depends on attainable bulk RNA-seq
datasets. Additionally, based on transcriptomic data, recently
developed computational algorithms and tools were utilized to
dissect tumor-TME interactions. Tools for TME deconvolution
are fundamentally classified according to four computational
principles: machine learning, gene set enrichment analysis
(GSEA), linear regression, and nonlinear programming (6).
Nonlinear programming-based principles do not necessarily
rely on the information of different cell-type frequencies,
whereas the other three counterparts require prior knowledge
of marker genes of distinct immune cell subsets and molecular
profiles (6). Machine learning based principles could evaluate the
absolute proportion of infiltrating immune cells within the TME,
while gene set enrichment analysis-based principles infer the
relative proportion (6).

Given the merits of the aforementioned deconvolution
methods, further comparisons of the results for additional
accuracy and the subsequent downstream analyses are not
covered by either of these tools. Competent tools to
conveniently interpret transcriptomic or integrated omics data
are warranted to offer new insight into tumorigenesis, immune-
tumor interaction, and therapeutic sensitivity diversity.
Therefore, we developed a computational tool known as IOBR,
to comprehensively explore and visualize the following: multi-

omics interpretation, including signature score calculation and
systematic estimation of its correlations with clinical phenotypes;
noncoding RNA characteristics; signatures derived from scRNA-
seq data and genomic landscapes in multiple cancers; as well as
TME deconvolution with diverse algorithms and fast signature
construction. For a much broader impact and usage of the IOBR
tool, we also created an IOBR Shinny application. This
application is a user-friendly web-based interface allowing
fundamental researchers without skill in R programming to
leverage the merits of this multifunctional tool. Together,
IOBR is an effective tool, and its implementation in the study
of immuno-oncology may aid in the discovery of novel tumor-
immune interactions and accelerating precision immunotherapy.

MATERIALS AND METHODS

Data Preprocessing

The multi-omics data retrieved from a trial of atezolizumab for
bladder cancer (IMvigor210) (7) were downloaded. Subsequently,
we transformed the count matrix into Transcripts Per Kilobase
Million (TPM) format by executing count2tpm function, and we
conducted gene annotation by utilizing anno_eset function in IOBR.

Function Modules and Implementation
IOBR is a user-friendly tool, and the detailed implementation
of IOBR was illustrated in the tutorial (https://github.com/
IOBR/IOBR) with a complete analysis pipeline. IOBR consists
of four functional modules, comprising an estimation of
signature scores and signatures generated from scRNA-seq data,
along with decoding immune contexture (signature and TME
deconvolution module); identification of phenotype relevant
signatures, cell fraction, or signature genes, as well as pertinent
batch statistical analyses (phenotype module); analysis of signature
associated mutations (mutation module) and fast model
construction (model construction module).

Signature and TME Estimation Module
Signature Estimation
To elucidate an increasingly granular view of the TME cellular
composition and functional status with the goal of cancer-
therapy refinement, we constructed an estimation function for
user-generated signatures or 255 reported signatures enrolled in
IOBR (Supplementary Table S1). The extensive signature
collection is classified into three categories: TME-associated,
tumor-metabolism, and tumor-intrinsic signatures.
Additionally, IOBR supports the estimation of the signature
gene sets derived from the GO, KEGG, HALLMARK, and
REACTOME databases. IOBR permits users to generate a
signature list based on their own biological discovery or
expletory requirement, for convenient estimation and follow-
up systematic exploration. The web-based interface of IOBR also
allows researchers to effectively calculate signature scores by
setting corresponding parameters.

Three methodologies were included in the process of
signature score evaluation, comprising Single-sample Gene Set
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Enrichment Analysis (ssGSEA), Principal Component Analysis
(PCA), and Z-score. ssGSEA is a wildly-adopted tool for
calculating separate enrichment scores for each pairing of a
sample and gene set (8). Each ssGSEA enrichment score
represents the degree to which the genes in a particular gene
set are coordinately up- or down-regulated within a sample.
Notably, PCA computes the principal components for
performing a change of basis on the exploratory data for
predictive model construction. Current signatures constructed
using PCA methodology include the Pan-F-TBRs (7) and the
TMEscore (2), two promising biomarkers for predicting clinical
outcomes and therapy sensitivity of malignancies. Z-score is a
numerical measurement for describing a score’s relationship to
the mean of a group of values. Z-score is measured in terms of
standard deviations from the mean. These three methods are able
to be selected in IOBR by inputting targeted methods or
integrations, with corresponding visualizations supported.

Signatures Derived From scRNA-seq Data

The technological and computational innovations of single-cell
analysis make it a popular alternative for determining cell
markers and gene signatures for phenotypes. However, the
significantly expensive cost and high requirement for starting
tumor material limits its widespread utility. The large and
attainable bulk RNA-seq datasets continue to be the major
workhorse for validating the signatures generated from single-
cell analysis. Thereafter, IOBR provides multiple methodologies
for extracting cell signature genes from scRNA-seq data (TPM or
counts matrix are available inputs). Remarkably, the linear
Support Vector Regression (SVR) algorithm of CIBERSORT or
the LSEI (9) algorithms are implemented in IOBR for convenient
bulk RNA-seq data analysis for verifying the clinical value of the
targeted cells identified by scRNA-seq data.

TME Deconvolution

Clinical investigations have highlighted cell infiltrations in TME
as pivotal contributors to the complex anti-tumor immunity in
malignancies. TME-cell deconvolution is the major technological
hurdle, and the deconvolution algorithms vary in their merits
and pitfalls (10, 11). IOBR integrates eight open-source
deconvolution methodologies, namely, CIBERSORT (12),
ESTIMATE (13), quanTIseq (14), TIMER (15), IPS (16),
MCPCounter (17), xCell (18), and EPIC (19).

CIBERSORT is the most well-recognized method for
detecting 22 immune cells in TME, allowing large-scale
analysis of RNA mixtures for cellular biomarkers and
therapeutic targets with promising accuracy (12). Notably,
through the adoption of the linear vector regression principle
of CIBERSORT, IOBR allows users to construct a self-defined
signature. The availability of its input file was extended to cell-
subsets derived from single-cell sequencing results. ESTEMATE
dissects non-malignant contextures, including stromal and
immune signatures, to determine tumor purity (13). The
quanTIseq method enumerates 10 immune cell subsets from
bulk RNAseq data (14). TIMER quantifies the abundance of six
tumor-infiltrating immune compartments and provides six
major analytic modules for analyzing the immune infiltration

with other cancer molecular profiles (15). IPS estimates 28 TIL
subpopulations, including effector and memory T cells and
immunosuppressive cells (16). MCP-counter conducts robust
quantification of the absolute abundance of eight immune and
two stromal cell populations in heterogeneous tissues from
transcriptomic data (17). xCell provides a comprehensive view
of 64 immune cells from RNA-seq data and other cell subsets in
bulk tumor tissue (18). EPIC decodes the proportion of immune
and cancer cells from the expression of genes and compares it
with the gene expression profiles from specific cells to predict the
cell subpopulation landscape (19). In a nutshell, IOBR R package
and web-based interface enable the convenient integration and
visualization of the above-mentioned deconvolution results and
a flexible selection of particular methodologies of interest.

Phenotype Module
To implement the aforementioned TME deconvolution and
signatures calculation for exploring potential clinical
translation, we collected and systematically categorized the
signatures into 39 groups (Supplementary Table S2). The
categories involve TME cell populations (classified either by
deconvolution methods or cell types), signatures of
immunophenotype, tumor metabolism, hypoxia, and EMT.
Furthermore, IOBR supports the construction of a novel
signature group derived from their own immuno-oncological
findings, which lays the foundation for subsequent minding
latent biological mechanisms and potential clinical translation.
Collectively, the phenotype module of the IOBR R package
permits systematic identification of phenotype relevant
signatures, cell fraction, or signature genes, as well as
corresponding batch statistical analyses and visualization.

Mutation Module

In addition to systematical signature-phenotype investigation,
IOBR expands the transcriptomic exploration to the interplay
within genome profiles. Genome data in Mutation Annotation
Format (MAF) format (20) downloaded from the University of
California, Santa Cruz (UCSC) website, or user-construct
mutation matrices are acceptable as an input to find mutations
related to specific signatures. Furthermore, IOBR supports
transforming the MAF data into a mutation matrix with
distinct variation types comprising insertion-deletion
mutations (indel), single-nucleotide polymorphism (SNP),
frameshift, or an integration of all of the mutation types for
flexible selection. Wilcoxon rank-sum test is employed in this
module for batch analysis of mutations significantly associated
with targeted signatures. IOBR also supports batch visualization
of the mutation statutes (mutation or non-mutation) of interest.

Model Construction Module

For effective application of the signatures in clinical
interpretation, IOBR provides functions for feature selection,
robust biomarker identification, and model construction based
on prior identified phenotype associated signatures. To our
knowledge, the therapeutic response and overall survival are
focused endpoints in oncology, and leveraging the corresponding
signatures to construct models may hold promise in precise and
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cost-effective prediction of tumor prognosis and treatment
sensitivity. Moreover, rational utility in other bioscience
settings may also shed new light on uncovering novel
discoveries of interest.

Software Availability
R package: https://github.com/IOBR/IOBR

The web-based interface: https://yi-xiong.shinyapps.io/
IOBRshiny/.

Data Availability

In a recently published manuscript with multi-omics data
retrieved from a trial of atezolizumab for bladder cancer
(IMvigor210) (7), we generated immunotherapy associated risk
score, determined the TME infiltration pattern, further identified
macrophages as a robust predictive biomarker, subsequently
unveiled the predominant genomic alterations, and significant
metabolic characteristics with the assistance of the IOBR
tool (21).

RESULTS

To comprehensively leverage the transcriptomic data to detect
immune-tumor interplay and its promising clinical translation,
we introduce the IOBR R package as an effective and flexible tool.

IOBR Workflow

IOBR comprises four function modules, namely, the signature
and TME deconvolution module, the phenotype module, the
mutation module, and the model construction module. The
schematic workflow and functional codes are illustrated in
Figures 1, 2, respectively. Corresponding figures were
dynamically generated following inputting function-specific
parameters of pertinent modules. Details of these four modules
are illustrated in the Materials and Methods sections. Charts
derived from IOBR reach quality requirements of publication
and can be flexibly modified locally. The workflow and functions
of IOBR are delineated below with real-world data of the
IMvigor210 cohort (7).

IOBR R package workflow

Data Preparation

CIBERS®RTI.

model construction.

s Array/RNAseq =1 MSieDB
g CIBERSORT  IPS : g
2 (GEO/TCGA/UCSC) .. Molecular Signatures
2 ESTIMATE  TIMER o
[
g quanTlseq EPIC
(9]
§ — MCPcounter ~ xCell
MAF Files/mutation matrlx
(TCGA/UCSC)
g T — — Signatures |<€— Signature collections (255)
©
©
g * MSigDB: GO/KEGG/Reactome
o
g PCA/ssGSEA/z-score/SVR/Isei  Self-constructed
% *39 signature groups to interpret
”7.9,4 TME and host-tumor interaction
O"/;,) *Validating results of scRNAseq in bulk-seq
Q" \ "’?o, *Batch statistical analysis and visualization
¢ \(\6\0 Finding mutations associated with TME processes 5’/:%
Immunotherapy Biomarkers PIK3CA &
p=65e-12 pa2te-13 pldse-10 pu079 v‘ssiresn-mroe 100
% 2 . ||| wismaten fepair Z’so
k3 TMEscoreB. - T
§ 0 8 o I n | ‘ PanFTBRs o Eeo
- Il | e E £
3, gg il w RS 2 - ,i_m
ARIDYAE Mutated B W Q ‘ " et 20
c?{ f ' 4'? f & W H z::::dcom N %G 20 40 100
5:” 8 ‘f ,é‘;i Mutated WT F &SP False Posmve Rate %
¥

Statistical analysis and visualization Feature selection and model construction

FIGURE 1 | The graphical abstract outlines the workflow of the IOBR package. The IOBR R package contains corresponding data preparation, multiple
deconvolution algorithms for the decoded signature estimation, TME contexture, batch statistical analyses and visualization, as well as feature selection and
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Data Preparation

Gene expression matrix
Array/RNAseq

MAF files (WES)

Signature/Cell relevant genes,
GO/KEGG enrichment analysis

TME and signature estimation

(==

MCPcounter, ESTIMATE, xCell, IPS,

methods: CIBERSORT, EPIC, TIMER, qunTiseq, J

self-constructed signatures: svr, lsei

pemTy,

Predictive
Model

Prognostic
Model

Feature selection and
model construction

calculate_sig_score()

s: PCA, z-score, ssSGSEA

Sii

Cell fraction or
ignature score matrix

TME, mBA, exosome,

format_si >~ i
GO, KEGG, Reactome, Hallmark, or

self-constructed signatures

Phenotype,
Genes or Signatures

Statistical analysis
and visualization

.
format_msigdb() )

make_mut_matrix()

find_mutations() >—/

batch_cor() )( batch_wilcoxon() )( batch_pcc()
iobr_cor_plot() cell_bar_plot()

Signature relevant
mutations

following feature selection.

IOBR (Immuno-Oncology Biological Research)

FIGURE 2 | The pipeline diagram depicts functions of four analytic modules contained in IOBR. In addition to the functions for data preprocessing, the function
modules comprise the following: (1) analyses of signatures pertinent to clinical phenotype, INcRNA, and targeted signatures constructed based on bulk RNA-seq or
scRNA-seq data and TME deconvolution; (2) identification of phenotype relevant signatures, cell fraction, or signature genes, as well as corresponding batch
statistical analyses and visualization; (3) an estimation of the specific mutation landscape associated with the signature of interest; and (4) model construction

Identifying TME Compositions
and Signatures Relevant to
Therapeutic Response
In comparison to most of the methods which calculate a single
signature with a specific methodology after execution, IOBR
exhibited good performance in delineating immune-tumor
crosstalk by detecting a succession of gene signatures published
or generated by users at the same time with multiple
methodology options. Herein, we further demonstrate the
utility of IOBR by deciphering the TME landscape in the
increasingly accumulating bulk RNA-seq data (Figures 3A, B).
The transcriptomic and matched clinical data derived from
patients with metastatic urothelial cancer who underwent anti-PD-
L1 immunotherapy (atezolizumab) (7) are available for download
at http://research-pub.gene.com/IMvigor210CoreBiologies. RNA-
seq count data were transformed into TPM to estimate multiple
gene signature collected in IOBR through count2tpm and
calculate_sig_score functions. Moreover, the remove_batcheffect
function for removing the batch effects across datasets when
dissect tumor microenvironment is built based on the ComBat
function derived from the sva R package. The output of
remove_batcheffect could be visualized as a plot with all samples
grouped using the PCA method. Further, the applicability of IOBR
in bulk RNA-seq studies to batch analyze and display putative
signatures related to therapy response using the iobr_cor_plot
function consistently corroborated prior reports. Estimation of
biomarkers for treatment sensitivity and signature defining TME
compositions could be depicted with a boxplot or a heatmap.
Collectively, IOBR tremendously simplified the TME
dissection and signature calculation analysis procedure and
enriched corresponding outputs of multi-omics studies.
Incorporating the immuno-oncology analyses pipelines, to
some extent, may promisingly lower the bioinformatical

threshold for understanding complex TME-tumor interaction
to unseal tumor-host interplay mechanisms, serving optimized
cancer treatment. The remove_batcheffect function for removing
the batch effects across datasets when dissect tumor
microenvironment, which is based on “ComBat” function
derived from “sva” R package.

Leveraging Signatures Generated

From scRNA-seq Analyses to Decipher
bulk-seq Data

Currently, single-cell analyses have revealed a vast heterogeneity
of intratumoral cell states at an unprecedentedly high resolution.
However, the technical simplicity and low-cost places bulk RNA-
seq data remains to be the primary method of gene expression
determination and gene signature estimation. With assistance
from IOBR, users could leverage the merit of signatures derived
from single-cell analysis to dissect tumor heterogeneity using
bulk RNA-seq data.

We utilized scRNA-seq data derived from patients in a colon
rectal cancer cohort to extract cell-type-specific gene expression
signatures that were identified by cluster analysis in the literature
(22). Marker genes of each cell type are identified by differential
expression analysis. Here, based on the prior knowledge of cell-
type-specific gene expression signatures, we could decipher the
bulk RNA-seq data of the IMvigor210 cohort (7) by using IOBR
to implement the linear svr algorithm of CIBERSORT or Isei
algorithm (9). Batch visualization of TME compositions
associated with immunotherapy best overall response were
quickly output and offered several display options, such as
boxplots and heatmaps (Figures 3C, D). Notably, IOBR is
amenable to enumerate the TME populations with high
accuracy for corroborating the discovery of single-cell studies
or to uncover novel clinical transitions in bulk RNA-seq settings,
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Wallis test and exhibited in the boxplot.

and TME compositions statistically associated with treatment sensitivity. Subsequently, the patients were enumerated and batch visualized. (E, F) IOBR dissected
the association between signatures and clinical phenotypes in the IMvigor210 bladder cancer cohort. (E) The forest plot with hazard ratios of multiple signatures,
integrated a list of survival analysis outputs. (F) The ROC curve delineated multiple signatures for predicting the immunotherapy response, displayed in the order of
their corresponding AUC (Area Under Curve) for effective comparison. (G) The boxplot evaluated the correlation between the macrophage M1 infiltration and the
therapy response which is a category variable. The statistical discrepancy of the macrophage M1 infiltration between any categories was analyzed using the Kruskal—

translating the oncoming wealth of single-cell sequencing
research into biological insight.

Batch Analysis and Visualization

Moreover, based on the simplified analyses procedure, the
iobr_cor_plot function is included into IOBR to facilitate its
implement for quick exploration of multiple data. The
iobr_cor_plot function dynamically generates statistical results
and efficaciously depicts the correlation between signatures and
targeted phenotype, such as therapeutic responses and carcinogenic
infection statuses. The sig forest function facilitates users to
integrate the survival analysis output originated from the
batch_survival function, and depicts a forest plot with hazard

ratios of multiple signatures (Figure 3F). Moreover, leveraging
signature to predict a specific phenotype, is a well-recognized
method in preclinical bioinformatic analysis. The function sig_roc
based on pROC R package is capable of delineating AUC curves of
multiple signatures (Figure 3G). The parameter compare_method
in this function enables users to compare the statistical difference
between any two signatures of interest with an optional method.
The sig_box function could be employed to infer the correlation
between a category variable and a specific signature, with a boxplot
displaying the statistical discrepancy of the signature score between
any categories (Figure 3E).

Additionally, IOBR is capable of rapidly visualizing the
relationships between signature genes and the targeted variable
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(binary or continuous) with identical methods. Likewise, IOBR is
also feasible to identify signatures significantly correlated with a
signature of interest. Notably, the iobr_cor_plot function is also
available to define the signatures correlated with IncRNA profiling,
by extracting targeted gene from the IncRNA expression matrix as
a phenotype. The subsequent batch correlation analysis procedure
is described similarly above. Furthermore, considering the fact that
multiple signatures and signature genes could be enriched, IOBR
enrolls a subset of functions for batch statistical analysis and
visualization. IOBR comprises the batch survival analysis for
either continuous signature scores or categorized phenotype
subgroups, and aforementioned batch correlation analysis uses
statistical tests including Wilcoxon test and Partial correlation
coefficient (PCC).

Evaluating Mutations Associated With
Specific Signatures and Delineating
Pertinent Mutation Landscapes

Elucidating the TME, genomic alteration landscapes, and
deciphering the latent correlation would provide insight which
could optimize patient stratification and therapeutic
intervention. The caveat that specific somatic gene mutations

could drive tumorigenesis, altering the vulnerability of cancer
cells to anti-tumor immune cells and immunotherapy in
multiple cancers should be recognized. To illustrate these
functions, we have taken the IMvigor210 cohort and
performed effective integrated analysis of genomic and
transcriptomic data using the IOBR tool.

The make_mut_matrix function in IOBR was implemented
via inputting the genomic data in MAF format, which generated
an output file amenable for the find_mutations function.
Subsequent execution of the find_mutations function also
acquired both the genomic MAF data and the gene signature
matrix of interest. Given the well-recognized significance
of CD8" T cell in anti-tumor immunity, we focused on
the CD8" T effector signature whose detail estimation was
introduced in Case Study 1. Thereafter, we obtain a succession
of mutations associated with the CD8" T effector signature,
and visualized the discrepancy of CD8" T effector signature
score in wildtype and mutated settings, including the mutation
states of PIK3CA, ARIDIA, ARIDIB, and TCHH (Figure 4A).
Alternatively, the results could be efficiently displayed with
an oncoplot showing the genomic alteration landscape in
high- and low-CD8" T effector score subsets respective of
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FIGURE 4 | IOBR delineates the mutations correlated with the CD8*T effector signature and the corresponding oncoplot. (A) Boxplots displayed the mutations
significantly associated with CD8*T effector signature expression, comprising PIK3CA, ARID1A, ARID1B, and TCHH (p = 5.7 x 107°°, 6.6 x 107'°, 1.8 x 107, and
3.1 x 107%, respectively). The blue and yellow colors represent mutated and wild-type statuses. Each dot displays a patient within the IMvigor210 cohort in pertinent
subgroups. (B) Oncoprints depicted the genomic alteration landscapes in the context of high- and low- CD8*T effector signature score. The upregulation of ARIDTA,
PIK3CA, KMT2D, TCHH, WDFY3, DNAH10, ARIDB1, BCOR, LRP1, and SPEG were observed in the high CD8*T effector expression setting. The numbers on the
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their comparisons (Figure 4B). A remarkable increase in
mutation frequency, including the aforementioned genes, was
observed in the oncoplots.

Overall, the integration of genomic and transcriptomic data
may renew and deepen our understanding of tumor progression
and provide therapeutic insight by broadly taking into
consideration of the crosstalk between the genome, metabolism,
and TME profiles. The IOBR tool is capable of substantially
simplifying these analyses procedures.

DISCUSSION

The complexity and increasing accumulation of multi-omics
datasets pose new opportunities and challenges for integrative
analysis of immuno-oncology by requiring simplification of the
interpretation without sacrificing accuracy. Our study developed
a comprehensive computational tool, IOBR, to dissect host-
tumor interaction and signatures for therapeutic sensitivity.
Four major analytic modules were provided, allowing effective
and systematical analysis of tumor immunologic, clinical,
genomics, and scRNA-seq data.

With this current era of immunotherapy and big data,
identifying novel biomarkers and calculating signatures to
finetune therapy strategies have come to the spotlight of immune-
oncology. In addition to systematic estimation of published
signature scores and signatures constructed by users, IOBR is able
to find and interpret: IncRNA profiles, gene alteration landscapes,
and scRNA-seq results. Notably, the validation of signatures
generated by single-cell analysis is also involved, which relies
intensely on large bulk RNA-seq datasets. Additionally, the model
construction module potentiates the innovative clinical translation
of signatures genes into prediction of tumor prognosis, therapy
response, and tumor resistance. Moreover, the TME is an essential
constituent of tumor immunity, and the correlation between TME
heterogenicity and clinical phenotype is pivotal for preclinical
oncology research. The IOBR R package offers multiple available
deconvolution methods that removed the roadblock for decoding
TME contexture. TIMER is a published web tool integrating six
algorithms for inferring immune cell composition from bulk tumor
transcriptome profiles (23). However, despite the convenience of
intuitive outputs provided by TIMER 2.0, the upload of large
datasets proves challenging for a web-based tool, an issue that
could be tackled using R package tools to better analyze data with a
larger volume of samples and to conveniently acquire large datasets.

With the multi-omics data accumulation, we anticipate IOBR
will attract broad application in immuno-oncology and facilitate
the accelerated discovery of latent immune evasion mechanisms
leading to the discovery of novel therapeutic targets. IOBR
represents a contribution to the computational toolbox for
unveiling immune-tumor interactions from multi-omics data,
being implemented in preclinical research of tumor heterogeneity
and plasticity, and being instrumental in providing the impetus for
precision immunotherapy.
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