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Nanopore long-read RNAseq reveals widespread
transcriptional variation among the surface
receptors of individual B cells
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Rebecca M. DuBois3, E. Camilla Forsberg3,4, Mark Akeson2,3 & Christopher Vollmers2,3

Understanding gene regulation and function requires a genome-wide method capable of

capturing both gene expression levels and isoform diversity at the single-cell level. Short-read

RNAseq is limited in its ability to resolve complex isoforms because it fails to sequence full-

length cDNA copies of RNA molecules. Here, we investigate whether RNAseq using the long-

read single-molecule Oxford Nanopore MinION sequencer is able to identify and quantify

complex isoforms without sacrificing accurate gene expression quantification. After bench-

marking our approach, we analyse individual murine B1a cells using a custom multiplexing

strategy. We identify thousands of unannotated transcription start and end sites, as well as

hundreds of alternative splicing events in these B1a cells. We also identify hundreds of genes

expressed across B1a cells that display multiple complex isoforms, including several B cell-

specific surface receptors. Our results show that we can identify and quantify complex

isoforms at the single cell level.
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O
ver the last decade, RNAseq has vastly increased our
knowledge of eukaryotic gene expression and the unique
transcript isoform signatures that differentiate develop-

mental stages, organs and single cells1–4. Proteins that arise from
transcript isoforms of a single gene can vary in their biological
properties including stability, intracellular localization, enzymatic
activity and post-translational modifications5. Transcript
isoforms are the product of alternative transcription start sites
(TSSs), transcription end sites (TESs) and alternative splicing
events that include alternative splice sites, intron retention and
exon skipping6. It has been predicted that a large fraction of
human genes is alternatively spliced7,8. Although alternative
splicing enables increased transcriptome diversity, aberrations in
splicing have been implicated in several human diseases,
including cancer. Indeed, up to 15% of all point mutations
causing human genetic disease are predicted to result in mRNA
splicing9 somatic mutations within splicing factors are associated
with 12 different cancer types10.

Consequently, it is important to determine the true transcrip-
tional diversity of cells. This requires that gene expression is
analysed not only at the gene-level but also at the isoform-level.
However, current short-read RNAseq methods are inherently
limited in their ability to identify complex transcript isoforms, as
they cannot sequence full-length transcripts. Instead, transcripts
are fragmented for sequencing, resulting in short individual reads
that fail to span the entirety of the transcript. Computational tools
can be used to assemble full-length transcripts from these reads,
but different assembly algorithms can result in conflicting
outcomes and varying overall assembly quality11.

To offset this limitation of short-read RNAseq, studies have
successfully used both single-molecule long-read PacBio Iso-Seq
and synthetic long-read MOLECULO methodologies12–15 to
sequence full-length complementary DNA (cDNA). Recently, the
Oxford Nanopore Technologies (ONT) MinION has been used to
analyse full-length cDNA samples derived from both defined
synthetic RNA molecules, as well as RNA from tissue culture
cells16,17.

With only two exceptions18,19, these long-read technologies
have been used exclusively to evaluate transcriptome diversity
across bulk cell populations. However, recent studies have
highlighted that cells found within seemingly homogeneous
populations can differ in gene expression20–22. Understanding
heterogeneity within cell populations has shown promise across
multiple disciplines including developmental biology,
neurobiology, cancer and immunology. Single-cell approaches
can help illuminate biological questions regarding cell function,
development and dysfunction. Knowing the exact state of the cell
can help determine its fate or reflect changes with response to
stimuli or drug treatment, as well as its ability to neutralize a
pathogen, respectively. Cell-to-cell heterogeneity3 makes immune
cells a fascinating target for in-depth analysis of transcriptional
diversity. Current approaches that measure RNA transcripts
within single cells rely on short-read RNA-seq, single-molecule
RNA-fluorescence in-situ Hybridization (SM-RNA FISH) or
single-cell RT-qPCR23–26. These current methods can either be
applied to a few genes or are under the same constraints of short-
read RNA-seq, which we described earlier. Ultimately, these
approaches are limited in their ability to identify and quantify
complex isoforms, containing multiple, possibly distant,
alternative events, on a transcriptome-wide level.

To make it possible to identify and quantify complex isoforms
on a transcriptome-wide single-cell level, we have developed a
nanopore sequencing approach for the analysis of full-length
cDNA in single cells. The ONT MinION sequencer is a portable
device that is based on single-molecule sequencing technology
that provides reads of unprecedented length by performing

voltage-driven molecule translocations through small nanosen-
sors27. Although the MinION platform has been most useful for
interrogating viral and bacterial genomes, recently it has been
applied for analysing cDNA in both targeted, as well as genome-
wide approaches16,28–31.

Taking advantage of its unprecedented read length, we wanted
to interrogate single-cell transcriptomes of mouse B1a cells by
sequencing full-length cDNA molecules using the ONT MinION
sequencer. We implemented an integrated informatics pipeline
(Mandalorion) for gene-level and transcript isoform-level expres-
sion quantification to overcome the sequencing accuracy limita-
tions of the ONT MinION. To identify transcript isoforms,
Mandalorion predicted transcription start and end sites, as well as
splice sites and their alternative usage. After benchmarking the
ONT RNAseq approach on a complex mixture of synthetic
transcripts, we sequenced seven individual mouse B1a cells to
show that we could accurately quantify gene expression and
identify and quantify novel isoforms at the single-cell level. Our
analysis identifies differential usage of complex isoforms in over a
hundred genes including several surface molecules like CD19,
CD20 and IGH, the very receptors defining B cell identity.

Results
Generating and sequencing single-cell RNAseq libraries. We
first investigated the ability of the ONT MinION platform to
interrogate transcriptomes at the single-cell level. To test this, we
used our ONT RNAseq approach to analyse seven individual
mouse B1a cells32,33 and compared it with the standard Illumina
RNAseq approach. To this end, we FACS-sorted single B1a cells
into individual wells containing lysis buffer and amplified cDNA
from each individual cell using the Smartseq2 protocol with
modifications (see Methods, Supplementary Table 1)34. The
cDNA generated by the Smartseq2 protocol was split and
processed in-parallel using the Illumina and ONT library
preparation protocols. Sequencing the fragmented cDNA of the
seven cells on the HiSeq2500, we generated between 73,086 and
351,876 150 bp Illumina reads per cell. Sequencing the full-length
cDNA of the first three cells on individual ONT MinION flow
cells using the R7.3 chemistry generated between 17,749 and
52,696 ONT 2D reads per cell (Supplementary Table 2). Taking
advantage of the improved MinION throughput using the R9.4
chemistry, we multiplexed the full-length cDNA of the other four
cells on a single MinION flow cell and generated between 57,874
and 128,726 ONT 2D reads per cell. To enable this multiplexing
we introduced custom 60 nucleotide cellular indexes during PCR
amplification (see Methods, Supplementary Table 1, Fig. 1a).

Comparison of gene expression quantification. To assess whe-
ther ONT RNAseq is capable of quantifying gene expression, we
compared RNAseq data produced with ONT and Illumina, the
current benchmark for gene expression quantification. Because
standard gene quantification tools (for example, STAR35,
Cufflinks36) are not compatible with nanopore reads, we
aligned the ONT 2D reads using BLAT37 and quantified gene
expression using our own Mandalorion pipeline. Mandalorion
determines how many reads overlap with the exons of a gene to
produce a Reads Per Gene per 10 K reads (RPG10K) value. As
ONT 2D reads are long enough to span the full-length of the
transcripts, normalization for gene length was not performed
(Fig. 1b). Comparing Illumina and ONT RNAseq gene expression
quantification for the same cell showed high correlation (Pearson
rZ0.84–0.89 for R7.3 and 0.9–0.92 for R9.4), confirming that our
ONT RNAseq approach recapitulates Illumina gene expression
quantification (Fig. 2). Comparing Illumina and ONT RNAseq
gene expression quantification across different cells showed low
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Figure 1 | Experimental design and Oxford Nanopore sequencing read characteristics. (a) Schematic of experimental design. FACS-sorted single B1a

cells were lysed. PolyA-RNA was then reverse transcribed and PCR amplified using template switching. Full-length cDNA was split into two reactions. Half

of the reaction was tagmented by Tn5 and sequenced using a Illumina HiSeq2500 sequencer. The other half of the reaction was ligated to ONT adaptors

and sequenced on an ONT MinION sequencer. (b) Schematic of the Mandalorion pipeline used to analyse the ONT 2D read data.
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given as reads per gene per 10,000 reads (RPG10K) across seven single cells. Pearson r is given for each cell per sequencing method combination with
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chemistry is shown on the right. Histograms found on the left and top of the figure represent number of genes found binned by their expression levels.
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correlation with a Pearson rr0.45, suggesting that ONT RNAseq
can identify cell-to-cell variability1,38 (Fig. 2).

These results show that even with the relative low number of
reads produced, ONT RNAseq gene-expression quantification
largely detects the same genes as Illumina RNAseq (Fig. 3a).
Furthermore, subsampling ONT and Illumina raw reads showed
that, for five of the seven cells analysed, the detection of expressed
genes had reached saturation (Supplementary Fig. 2). Unsurpris-
ingly, genes that were detected by either ONT or Illumina
RNAseq alone were expressed at lower levels, indicating that
these genes were expressed at levels close to the detection limits of
both technologies (Fig. 3b). We also observed that the genes
detected by ONT RNAseq alone were comprised of smaller
transcripts (Fig. 3c). In addition, genes that were o600 bp in
length and were detected by both ONT and Illumina RNAseq had
relatively lower expression levels in Illumina RNAseq data
(Fig. 3d). While this is consistent with smaller transcripts being
strongly selected against in the Tn5 based Illumina library prep,

we could not exclude that ONT RNAseq might have a bias
towards shorter transcripts. To exclude this possibility, we chose
to analyse a mix of synthetic transcripts.

Analysis of SIRV synthetic transcript mixtures. To test whether
transcript length had an effect on expression levels as measured
by ONT RNAseq, we sequenced synthetic Spike-in RNA Variant
Control Mixes (SIRVs, Lexogen) of known length, structure and
sequence. SIRV transcripts provided in the E2 mix contained 69
transcripts ranging from 191 to 2528 nt. In the E2 mix 69 tran-
scripts were present in four groups of varying concentrations
containing 19, 21, 17 and 12 transcripts in each group, respec-
tively. To test a wide range of possible transcript levels, we
amplified (sub-) single-cell amounts (that is, 10 fg and 100 fg) of
the Lexogen SIRV E2 mix in duplicate. This reflected a wide range
of possible transcript levels with 8–10,240 molecules of individual
SIRV transcripts present before the amplification step.
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Figure 3 | Quantifying gene and transcript expression with ONT RNAseq data. (a) Stack barplots showing the number of genes detected in each cell

corresponding to different sequencing technologies (Ill—Illumina, ONT—Oxford Nanopore). (b) Median expression levels of genes detected by both or

individual technologies. Two expression levels (Ill and ONT) are given for genes detected in both technologies. (c) Gene length of genes detected by both or

individual technologies. (d) Ratio of gene expression levels for genes detected by both technologies. Ratios are binned according to gene length and shown

as boxplots with whiskers indicating 10th and 90th percentiles. (e) SIRV transcript levels of Replicate 1 (Rep1: 100fg SIRV pool E2) as measured with ONT

RNAseq. Transcripts are binned by their starting molecule numbers. (f) SIRV transcript levels of Replicate 1 are plotted against transcript length with

colours corresponding to groups in e. (g) Scatter plot showing correlation of SIRV transcript expression levels of Replicate 1 (Rep1: 100fg SIRV pool E2) and

Replicate 2 (Rep2: 100 fg SIRV pool E2), both measured by ONT RNAseq. r-value shown is Pearson r. Colours corresponding to groups in e.
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We quantified the 69 transcripts by aligning the resulting
5367–17915 2D ONT reads directly to the spliced SIRV
transcriptome using BLAT and then counting and normalizing
the matched ONT 2D reads for each transcript. As expected when
amplifying (sub-) single-cell amounts of RNA, we observed
transcript drop-out in the lower concentration groups and found
that transcript quantification showed variations within each
concentration group (Fig. 3e, Supplementary Fig. 3a). Most
importantly, however, quantification was not affected by
transcript length, with the exception of transcripts shorter than
500 bp. These transcripts were either underrepresented or missed
entirely (Fig. 3f). Generally, ONT RNAseq quantification agreed
with the nominal concentration of the spike-in transcripts and,
interestingly, the intra-group variations in transcript quantifica-
tion were reproducible between replicates (Fig. 3g). This intra-
group variation might be due to variation in initial transcript
levels, systematic amplification bias, or data analysis bias. Overall,
the observed underrepresentation of short transcripts in ONT
RNAseq and the differences between Illumina and ONT RNAseq
quantification are consistent with cDNA molecules below 500 bp
in length being selected against during cDNA synthesis and again
during the Illumina library preparation using the Tn5 method.
Ultimately, analysing these synthetic transcripts at different
concentrations allowed us to exclude the possibility that ONT
RNAseq favors shorter transcripts.

Next, we wanted to test whether, in addition to largely
unbiased quantification of SIRV transcripts 500–2,500 bp in
length, ONT RNAseq reads cover transcripts in their entirety
which would make them uniquely suitable to identify and
quantify complex isoforms.

Isoform identification and quantification from SIRV data. The
69 synthetic SIRV transcripts are derived from seven artificial
gene loci that have been modelled after human genes with high
isoform diversity, making them suitable for testing ONT RNA-
seq’s capability to capture isoform diversity in a genome anno-
tation independent manner. To this end, we used Mandalorion to
analyse ONT RNAseq 2D read data to annotate the SIRV gene
loci, which in turn could be utilized to further identify and
quantify SIRV isoforms. First, we used read alignments to
annotate TSS and TES, as well as splice sites (SS) of SIRV tran-
scripts in the SIRV gene loci. The annotation of TSS and TES was
accomplished by end to end coverage of the entire RNA tran-
script by complete ONT 2D reads (that is, reads for which both
ISPCR adaptors could be identified and trimmed, Supplementary
Table 2) (Fig. 4a–c). Complete ONT 2D reads contained infor-
mation regarding both TSS, TES in their read alignments.

After combining and aligning ONT 2D reads of all replicates to
the artificial SIRV genomic loci (Fig. 4c, Supplementary Fig. S4),
we categorized 20 bp bins containing TSS, TESs and splice sites
using the Mandalorion pipeline (see Methods). To avoid the
detection of spurious TSS and TES by prematurely terminated
read alignments, we required TSS/TES to be at least 60 bp apart.
In this manner, we detected 20 TSS and 24 TES that all directly
overlapped with an actual TSS and TES and were within 60 bp of
38 (of 57) actual TSSs and 41 (of 59) actual TESs present in the
SIRV transcript annotation. Furthermore, we detected 76 (of 89)
50 splice sites and 73 (of 93) 30 splice sites present in the SIRV
genome annotation. By analysing the actual splicing pattern of
ONT 2D reads we detected 11 (of 12) alternative 30 splice site
combinations and 12 (of 14) alternative 50 splice site combina-
tions, as well as 12 (of 12) intron retention events present in the
SIRV transcripts.

Using Mandalorion, we then sorted ONT 2D reads into
isoform groups based on their TSS/TES and alternative splice site

usage. We generated consensus sequences of these groups using
Partial Ordered Alignment (POA)39 and compared these
consensus sequences to SIRV transcript sequences using BLAT.
All of the 33 consensus sequences we generated matched a SIRV
transcript with between 97.8 and 100% identity (BLAT identity
score) and in all cases matched its directionality. Of the resulting
33 consensus sequences, 26 matched one of the 29 SIRV
transcripts present in the two highest abundance groups
(Fig. 4c, Supplementary Fig. 4). The other seven consensus
sequences matched one of the 40 SIRV transcripts in the two low
abundance groups. While Mandalorion did not succeed in
consistently identifying lower abundance isoforms, the
consensus isoform sequences detected were very accurate. We
also observed high correlation between the genome annotation-
independent transcript isoform quantification by Mandalorion
and quantification derived from directly aligning reads to the
transcriptome (Fig. 4d) This means that in addition to identifying
sequence, structure and directionality of complex isoforms,
Mandalorion can also accurately quantify them in a genome
annotation independent manner. As a result, we were encouraged
to apply this pipeline to our single-cell data.

Identification of isoform features used in single B1a cells. By
analysing the ONT 2D reads generated from the seven B1a cells
using Mandalorion, we detected 4234 TSSs and 3883 TESs with
only 2476 TSSs and 2448 TESs overlapping with the TSSs or TESs
present in the Gencode annotation (vM10)40,41 of the mouse
genome (Fig. 5a). To determine whether the unannotated TSS
and TES we detected were artifacts of our experimental and
computational pipelines, we determined their Fantom542 CAGE
peak and polyA signal enrichment. Fantom5 CAGE peaks are
derived from capturing and sequencing the 50 end of transcripts
and should therefore be enriched in TSSs. Indeed, we found that
in contrast to TESs (49/3883 or 1.3%), a high percentage of both
annotated (2356/2476 or 95%) and unannotated (1052/1799 or
58%) TSSs overlapped with high scoring Fantom5 CAGE peaks
(Fig. 5b). Conversely, both annotated and unannotated TESs were
highly enriched for polyA signals, while TSSs were not (Fig. 5c).
When we assigned the detected TSSs and TESs to annotated
genes, we found that most genes contained exactly one TSS and
one TES, as expected. However, 696 genes contained more than
one TSS or TES indicating the presence of more than one isoform
(Fig. 5d). Overall, this suggested that Mandalorion successfully
identified thousands of unannotated TSSs and TESs and
hundreds of genes with differential TSS/TES usage by analysing
individual cells.

In addition to TSSs and TESs, Mandalorion identified a total of
24,887 50 splice sites and 24,756 30 splice sites. The vast majority
of these splice sites were supported by the GENCODE annotation
or splice junctions found in Illumina reads. Of the 24,887 50SS
and 24,756 30SS we identified, 24,298 (97.6%) and 24,220 (97.8%)
matched GENCODE annotation, respectively. Of the 589 50SS
and 536 30SS that did not match GENCODE annotation, 250
(42.4%) and 216 (40.2%) were supported by splice junctions in
Illumina reads, respectively. Even if all splice sites that were not
supported by GENCODE annotation or Illumina reads were false,
which is unlikely, the false discovery rate of our approach would
only be 1.3% (659/49,643). Furthermore, while Mandalorion
defined our splice sites as 20 bp bins, we were relatively successful
in defining the exact splice site as shown by the base context of
the determined splice sites (Fig. 5e). By determining alternative
splice sites, we found 296 intron retention events, 134 alternative
50 splice sites and 173 alternative 30 splice site combinations. The
majority of these events were also observed in Illumina read data,
which supported 216 (of 296) intron retention events, 99 (of 134)
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alternative 50 splice sites, 123 (of 173) alternative 30 splice sites
and 72 (of 92) exon skipping events (Fig. 5f). Alternative events
not supported by Illumina read data had significantly lower ONT
2D read counts than those that were supported (Supplementary
Table S3), indicating they might be closer to the detection limits
of both technologies.

Identification of complex isoforms. Having established that
ONT RNAseq can be used to identify isoform features like TSSs

and TESs as well as alternative splicing events, we aimed to
identify complex isoforms. We defined genes as expressing
complex isoforms if they contained alternative TSS/TES, as well
as alternative splice sites. We identified 169 genes that expressed
complex isoforms. By identifying and quantifying all isoforms we
detected at these 169 genes, we found highly significant differ-
ential isoform usage between cells in 55 of the genes (Chi2-
contigency test, alpha¼ 0.001, holm-sidak multiple-testing cor-
rection). These genes with significant differential isoform usage
included B cell-specific surface receptors CD19 and CD20, the
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box 3 indicate alternative splicing and intron retention events predicted from the read data. Box 4 contains read alignments of isoform consensus reads. Box

5 contains ONT 2D read alignments. Direction of transcripts, isoform consensus, and ONT 2D reads are indicated by their colour (Teal: 50 to 30, Purple: 30 to 50).

(d) Scatter plot shows correlation between SIRV transcript quantification by aligning to annotated transcripts or by annotation-independent isoform grouping

using Mandalorion. Pearson r is shown.
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antibody heavy chain locus (IGH) (Fig. 5g-i), CD37 (Fig. 6), as
well as CD2 and CD79b, and CD45 (Supplementary Fig. 5). We
created consensus sequences of the isoforms at these gene loci in
each B1a cell and found that across the individual B1a cells,
isoforms derived from CD19 showed a combination of alternative
TSSs and intron retention events. Isoforms derived from CD20,
on the other hand, showed a combination of alternative TESs, as
well as an exon skipping event including a previously unan-
notated exon. The IGH locus was even more complex, with
canonical isoforms containing VDJ recombinations and the
IGHM constant region exons. In addition, we observed isoforms
containing the IGHM constant region exon but originating from

(1) abortive DJ recombinations (2) I-exon (3) miRNA loci in the
IGHM Switch-region and (4) a J-segment. Finally, one isoform in
cell 1 originated from the IGHM I-exon but contained the IGHD
constant region exons. While IGH isoform diversity has been
previously observed and has been known for a long time to be
involved in class-switching43, the ability of ONT RNAseq to
sequence full-length cDNA at the single cell level truly highlights
and confirms the exceptional transcriptional diversity of the IGH
locus.

The ability to sequence entire cDNA molecules from end to
end presents an advantage over assembling transcript isoform
using Illumina data. While assembling Illumina data using
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Trinity44 is likely to succeed if a gene locus only expresses a single
isoform, it appears to struggle with analysing multiple isoforms of
a gene locus that contain multiple distant alternative features. For
example, ONT RNAseq identified several distinct isoforms of the
CD37 gene across the individual cells analysed. In most cases,
when we assembled the Illumina data from individual cells,
Trinity was either unable to form complete contigs or produced
contigs that were not detected by ONT RNAseq (Fig. 6). The
CD37 gene and its isoforms therefore highlight the strength of the
ONT RNAseq approach to identify the diversity of complex
isoforms beyond what is possible with either bulk or short reads
technologies.

Discussion
The data we present here shows that RNAseq studies using the
Oxford Nanopore Technologies MinION sequencer have the
potential to redefine the level of information gathered by a single
RNAseq experiment.

By benchmarking our experimental and computational pipe-
lines on ONT MinION data derived from a mix of synthetic
transcripts, we showed that our approach identifies the location of
transcription start and end sites as well as splice sites in a genome.
Furthermore, we have shown that these experimentally deter-
mined annotations can then be used by our Mandalorion pipeline
to identify and quantify complex isoforms longer than B500 bp

in an otherwise largely transcript length independent manner. It
is likely that if we use less stringent size selection methodologies
during library preparation, we could capture transcripts o500 bp
as well. Although we were only able to consistently identify the
SIRV transcripts found among the high abundance groups, we
expect that the less abundant transcripts could be identified using
our pipeline by increasing the sequencing depth. Variation in the
quantification of transcripts in the SIRV mix indicated that
quantification might be improved by using Unique Molecular
Identifiers (UMI)45 during cDNA amplification. However, UMI
length would have to be at least 430 bp to be resolved
unambiguously with the current error-rate of the ONT
MinION. Introducing random nucleotides of this length during
priming is likely to create short, unwanted PCR artifacts which
would greatly increase the noise of the amplification reaction.
Ultimately, until ONT sequencing accuracy improves, the Smart-
seq2 approach employed in this study is currently the best choice
for UMI free library generation, as it has been shown by a
comparison study to generate the smallest amount of PCR
duplicates and the highest transcriptome coverage when
comparing low input methodologies46–49.

By focusing on single-cells transcriptomes, we demonstrated
the capability of sequencing read output and accuracy of ONT
MinION sequencer. We showed that ONT RNAseq cannot only
quantify known genes with a high correlation to Illumina
RNAseq but, using the Mandalorion pipeline we developed, also
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annotate transcript features, thereby allowing us to identify and
quantify complex, never before observed, isoforms. Using ONT
RNAseq on only seven B1a cells, we identified thousands of
unannotated transcription start and end sites which we then
validated using FANTOM5 CAGE data and polyA signals,
respectively. Furthermore, we identified 696 genes displaying
alternative transcription start and end site usage, and 354 genes
with alternative splicing events. Although not all alternative
splicing events we detected were supported by single-cell Illumina
data, the events that were not supported were of significantly
lower coverage, indicating they might be closer to the detection
limits in either technology (Supplementary Table 3). Combined
with the relatively low Illumina sequencing depth per cell in our
study, this suggests that larger Illumina depth might aid in the
validation of individual events in future studies.

In addition to the identification of individual alternative events,
the read length of the ONT MinION sequencer paired with our
Mandalorion analysis pipeline enabled us to identify 169 genes
expressing complex isoforms containing both alternative TSS/TES
and splice sites. Interestingly, among the genes expressing these
complex isoforms were surface receptors, including the very
surface receptors distinguishing B cells from other immune cells.
For example, we found that CD19, CD20 (Ms4a1), IGH, CD45
(B220 or Ptprc), CD2, CD79b and CD37 were expressed as
multiple complex isoforms across the seven B1a cells. This
indicates that the diversity of the surface receptors found on
B-cells is not fully understood, which could have important
implications on all facets of B cell biology. Our data suggest that
we are currently only scratching the surface of the true
transcriptional diversity of B1a cells. In the future, we aim to
use the multiplexing strategy that we have developed to analyse
hundreds of individual cells. This will make it possible to truly
reconstitute the full transcriptome complexity of B1a and other
cell types and will likely lead to discovery of additional
subpopulations with distinct functional properties1. While we
currently estimate the cost per cell at B$100–200, this is likely to
decrease considering the rapidly increasing throughput of the
ONT MinION and the soon-to-be-released ONT PromethION
sequencer.

Nanopore sequencing is still rapidly maturing and we believe
that advancements in sequencing chemistries, nanopore design
and analysis algorithms will vastly improve the technology and
address the shortcomings of low read numbers and high error
rates in the near future. Lower error-rates will, for example, allow
us to improve the Mandalorion pipeline further by enabling the
base accurate identification of TSS/TES and splice sites, instead of
identifying 20 bp bins for these features. Even with its current
limitations, the data and analysis tools we present here
demonstrate that ONT RNAseq is already a powerful addition
to Illumina workflows and has the potential to revolutionize
analysis of transcriptomes in the future. Finally, while the ONT
MinION has not quite caught up with the very capable PacBio
Sequel long read sequencer, it is only a fraction of its price
(B$1,000 versus $300,000). At this price, any molecular biology
lab will be able to perform their own RNAseq experiments on-
site, thereby increasing adoption of the single cell RNAseq
approach and accelerating research.

Methods
FACS sorting of individual B cells. Mice were maintained in the UCSC vivarium
according to protocols approved by UCSC’s Institutional Animal Care and Use
Committee (IACUC). Single murine Ter119�CD3�CD4�CD8�Gr1�B220þ

IgMþCD11b�CD5þ B1a cells were isolated from wild-type C57Bl/6 mice by
lavage and incubated with fluorescently-labeled antibodies before sorting32. The
following antibodies were purchased from Biolegend to stain B-cells: Ter119
(Biolegend catalogue number 116204; 1:100 dilution), CD3 (clone 145-2C11;
100304; 1:100), CD4 (GK1.5; 100404; 1:100), CD8a (53-6.7; 100704; 1:100),

streptavidin-cy5PE (405205; 1:400), B220 (RA3-6B2; 103224; 1:400), Gr1 (RB6-
8C5; 108404; 1:200), IgM (RMM-1; 406514; 1:200), CD5 (53-7.3; 100614; 1:800)
and CD11b (M1/70; 101224; 1:1600). Cells were collected from the peritoneal
cavity by lavage of 5 ml PBS with 2% serum and 5 mM EDTA. Similar to previously
described protocols50–52, single-cell suspensions were incubated with the
antibodies described above. Single cells were sorted into 96 well plates and directly
placed into 4 ml of Lysis Buffer—0.1% Triton X-100, 0.2 ml of SuperaseIn (Thermo),
1 ml of oligodT primer (IDT), 1 ml of dNTP (10 mM each) (NEB)—and frozen at
� 80 �C.

Smartseq2 cDNA synthesis. Single cell lysate was reverse transcribed using
Smartscribe Reverse Transcriptase (Clontech) in a 10 ml reaction including a
Smartseq2 (ref. 34) TSO (Supplementary Table 1) according to manufacturer’s
instructions at 42 �C. The resulting cDNA was treated with 1 ml of 1:10 dilutions of
RNAse A (Thermofisher) and Lambda Exonuclease (NEB) for 30 min at 37 �C.
A PCR amplification step using KAPA Hifi Readymix 2� (KAPA) step was
performed incubating at 95 �C for 3 min, followed by 27 cycles of (98 �C for 20 s,
67 �C for 15 s, 72 �C for 4 min), with a final extension at 72 �C for 5 min.

Illumina sequencing. The resulting full-length cDNA PCR product was treated
with Tn5 enzyme53, which was loaded with Tn5ME-A/R and Tn5ME-B/R adaptors
(Supplementary Table 1). The Tn5 product was then nick-translated and amplified
for 13 cycles (72 �C for 6 min, followed by 98 �C for 30 s and 13 cycles of (98 �C for
10 s, 63 �C for 30 s, 72 �C for 2 min), with a final extension at 72 �C for 5 min) with
KAPA Hifi Polymerase (KAPA) and Nextera Index Primers (Supplementary
Table 1). Libraries were then size selected using a E-gel 2% EX (Thermo-Fisher) to
a size range of 400–1,000 bp, and sequenced on an Illumina HiSeq2500 2� 150
run.

Nanopore sequencing. To achieve the 1 mg of DNA needed for the Oxford
Nanopore library prep, the full-length cDNA product was split into five aliquots
and amplified for 13 cycles with KAPA Hifi Readymix 2� (KAPA) using the
ISPCR or multiplex cellular index primers. The following reaction was incubated at
95 �C for 3 min, followed by 13 cycles of (98 �C for 20 s, 67 �C for 15 s, 72 �C for
4 min) with a final extension at 72 �C for 5 min. The single cDNA or multiplex
product was further end-repaired and dA-tailed using NEBNext Ultra End Repair/
dA tailing mix (NEB), and adaptor ligated using the sequencing adaptors provided
by ONT (HP Adaptor/Adaptor Mix). Ligation reaction was performed using Blunt/
TA ligase master mix (NEB). Reactions were then enriched using Dynabeads
MyOne C1 Streptavidin (Life Technologies) to capture molecules that contain the
HP Adaptor. Enriched libraries were then mixed with Fuel mix and Running buffer
provided by ONT. Single-cell libraries were either sequenced solely on one (Cell1
and Cell2) or two (Cell3) separate MinION R7.3 flow cells and ran on the 48 h 2D
protocol. For our multiplexing strategy, single R9.4 flow cells were used (Pool1:
Cells4–7, Pool2: Lexogen libraries) and ran on the 48 h 2D protocol.

Data analysis. Illumina paired end 150 bp reads in fastq format were quality and
adaptor trimmed using trimmomatic (v0.33)54. The trimmed reads were aligned
using STAR (v2.4)35 to the mouse genome (Sequence: GRCm38, Annotation:
Gencode vM10 (ref. 41)). Illumina reads were assembled for each cell separately
using the Trinity (v2.2.0)44 set of tools.

ONT reads were processed using the Metrichor cloud platform 2D workflow.
For R7.3 runs, both reads that passed or failed Metrichor quality cutoffs were
retained. For R9.4 runs, reads that failed Metrichor quality cutoffs were discarded
as they also failed our alignment criteria. Fast5 files generated by Metrichor were
converted into fastq and fasta formats using poretools (v0.5.1)55.

For demultiplexing, index-sequences were aligned to the reads using BLAT with
parameters: -noHead -stepSize¼ 1 -minScore¼ 20 -minIdentity¼ 20. Reads for
which index-sequences could be identified were trimmed and assigned to the
respective libraries. Next, for multiplexed and non-multiplexed reads alike, ISPCR
adaptor sequences were identified and trimmed using Levenshtein distances. Reads
for which ISPCR adaptors could be identified and trimmed were marked but all
reads, trimmed or not, were aligned to the mouse genome (GRCm38) using
BLAT(v35� 1)37 with parameters: -stepSize¼ 5 -repMatch¼ 2253 -
minScore¼ 100 -minIdentity¼ 50 -maxIntron¼ 2,000,000. Alignments were
filtered for a single alignment per read. This filtering process involved three steps:
(i) the highest scoring alignment for each read is identified, alignment scores within
2% of each other were treated as ties, (ii) in case of ties the alignment with largest
number of gaps is selected (this selects against alignment to unspliced pseudo-
genes) and (iii) if the best alignment of a read has a ratio of aligned bases to read
bases r0.6 the read and its alignment are discarded.

Gene Expression for ONT and Illumina RNAseq was analysed using custom
scripts. For each gene, the number of reads overlapping with its exons was counted,
normalized to total number of aligned reads in a library and reported as Reads Per
Gene per 10,000 reads (RPG10K). Genes were counted as expressed if they had a
RPG10K value 40. RPG can be calculated as: RPG10k= (total # of reads aligned to
gene exon/total # of reads aligned in sample)� 10,000.

For the detection transcription start and end sites we limited our analysis to
reads for which we detected and trimmed ISPCR adaptor before read alignment.
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We then identified positions in the genome at which at least two alignments of
these complete reads ended. We then further restricted our analysis by only
considering positions with a median and 75th percentile of the number of clipped
(unaligned) read bases between 6–15 and r20, respectively. This number of
clipped (unaligned) bases corresponds to the length of bases contained in ISPCR
TSO and oligodT primers that were not trimmed. We then placed a 20 bp bin
around these positions to include the highest number of read alignment ends
possible.

To filter false positive bins caused by incomplete read alignments in highly
expressed genes bins were only considered as containing true TSS/TES if they met
the following conditions:

(i) The total number of read alignment ends in the bins had to be Z2% of the
total number of reads in the next 50 read covered bases. (ii) The candidate site had
to be at least 60 read covered bases away from the next closest TSS/TES.

By only counting bases covered by read alignments we didn’t take non-covered
introns into account which would skew our analysis. Next, in order to distinguish TSS
and TES bins, we calculated median Levenshtein distances of the unaligned bases at all
read alignment ends in a bin to nucleotides present in TSO (ATGG) or the OligodT
(TTTT) primer. If the median Levenshtein of a bin to ATGG was r2 it was declared a
TSS. If the median Levenshtein of a bin to TTTT was r2 it was declared a TES.

To assess Fantom5 (ref. 42) CAGE scores we downloaded combined CAGE data
(mm9.cage_peak_phase1and2combined_coord.bed.gz), converted the data to
mm10 coordinates using https://genome.ucsc.edu/cgi-bin/hgLiftOver56 and
investigated direct overlap between TSS/TES and CAGE peaks. We considered
TSS/TES and CAGE peaks to be overlapping if they were within 10 bp of each
other. To assess polyA enrichment in TSS/TES, we extracted genomic sequences
up- and downstream of these sites and looked for identical string matches to
‘AATAAA’ and ‘ATTAAA’.

To identify 20 bp bins as splice sites only ONT 2D reads with a ratio of aligned
bases/read bases of 40.9 were analysed. We then identified positions in the
genome at which at least two read alignments of these reads opened or closed an
alignment gap larger than 50 bp.

The 20 bp bins surrounding these positions were considered as containing a
splice site if the following conditions are met:

(i) The number of of reads opening or closing an alignment gap in the bin was
at least 2% of the total number of reads in the preceding (50) or subsequent (30) 40
read covered bases. (ii) Not closer than 30 bp to another splice site. The
directionality of the splice site bin containing either 50 or 30 status was based on the
direction of the majority of reads containing the splice site.

To detect alternative splice sites, we counted how often 50 and 30 splice sites
were spliced together in ONT 2D reads with aligned bases/read bases ratio
of40.85. A 50–430 combination had to be present in at least two reads to be
considered. We scored alternative splice site usage if the same 50 splice site was
spliced into two different 30 splice sites or vice versa. To detect intron retentions,
we identified areas between 50 and 30 splice sites that were covered to at least 70%
by at least one ONT 2D read.

We detected isoforms by grouping reads according the TSS/TES and alternative
splice sites they contained. ONT read alignment ends found within 60 bp of a TSS
and a TES were sorted based on which alternative splice sites it contained. Isoforms
that contained at least 1% of all reads at a gene locus were retained. All the reads in
these retained isoform groups were used to create consensus reads using POA39. In
short, fasta files containing all read sequence are passed to POA, which generates a
consensus of the reads by creating a multiple sequence alignment of the reads in
the form of a partially ordered graph. The program then returns the most heavily-
weighted path as the consensus of the reads. The consensus reads are then aligned
to genome using BLAT parameters: -stepSize¼ 5 -repMatch¼ 2253 -
minScore¼ 10 -minIdentity¼ 10. There was however, one exception regarding the
highly complex variable regions derived from the IGH transcripts which were first
aligned with IgBlast57 and then with BLAT. IgBlast alignment coordinates were
converted to genome coordinates and BLAT and IgBlast portions of the read
alignments were merged.

We used the ‘chi2_contingency’ function in the scipy.stats58 package to
implement the Chi2 contingency test to detect differential expression of complex
isoforms between cells. Multiple testing holm-sidak correction was performed with
the ‘statsmodels.sandbox.stats.multicomp’59 package.

All data analysis and visualization was performed in python60 using the numpy/
scipy/matplotlib58,61,62 packages.

Code availability. All scripts, including the Mandalorion pipeline, are available on
request and are available at GitHub at https://github.com/christopher-vollmers/
Mandalorion.

Data availability. Illumina and ONT sequencing reads were uploaded to the SRA
under accession number SRP082530. The rest of the data that support the con-
clusions of this study are available from the corresponding author upon request.
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