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The impact of rare variation on gene expression

across tissues
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Rare genetic variants are abundant in humans and are expected to
contribute to individual disease risk! . While genetic association
studies have successfully identified common genetic variants
associated with susceptibility, these studies are not practical for
identifying rare variants'>. Efforts to distinguish pathogenic
variants from benign rare variants have leveraged the genetic code
to identify deleterious protein-coding alleles®7, but no analogous
code exists for non-coding variants. Therefore, ascertaining which
rare variants have phenotypic effects remains a major challenge.
Rare non-coding variants have been associated with extreme gene
expression in studies using single tissues®"!, but their effects across
tissues are unknown. Here we identify gene expression outliers,
or individuals showing extreme expression levels for a particular
gene, across 44 human tissues by using combined analyses of whole
genomes and multi-tissue RNA-sequencing data from the Genotype-
Tissue Expression (GTEx) project v6p release'>. We find that
58% of underexpression and 28% of overexpression outliers have
nearby conserved rare variants compared to 8% of non-outliers.
Additionally, we developed RIVER (RNA-informed variant effect
on regulation), a Bayesian statistical model that incorporates
expression data to predict a regulatory effect for rare variants with
higher accuracy than models using genomic annotations alone.
Overall, we demonstrate that rare variants contribute to large gene
expression changes across tissues and provide an integrative method
for interpretation of rare variants in individual genomes.

Our analysis focused on individuals with extremely high or extremely
low expression of a particular gene compared with the population,
using the GTEx v6p release data, which include RNA-sequencing data
for 449 individuals and 44 tissues. We refer to these individuals as gene
expression outliers. The GTEx data enable the identification of both
single-tissue and multi-tissue expression outliers (Fig. 1a), with the
latter defined by consistent extreme expression across many tissues
(see Methods). To account for broad environmental and technical con-
founders, we removed hidden factors estimated by PEER (probabilistic
estimation of expression residuals)!® from each tissue before outlier
discovery (Extended Data Figs 1, 2 and Supplementary Tables 1, 2).

We identified a single-tissue expression outlier for >99% of
expressed genes in each tissue and a multi-tissue outlier for 4,919 out
of 18,380 genes that were tested (27%). Each individual was a single-
tissue outlier for a median of 83 genes per tissue and a multi-tissue
outlier for a median of 10 genes. Single-tissue outliers that were found
in one tissue replicated in other tissues at rates of up to 33%, with higher
rates among related tissues (Fig. 1b and Extended Data Fig. 3). The

replication rate for multi-tissue outliers was much higher and increased
with the number of tissues used for discovery (Fig. 1c).

We investigated the influence of rare genetic variation on extreme
expression levels, focusing on the individuals of European ancestry with
whole-genome sequencing data (1,144 multi-tissue outliers). Multi-
tissue outliers were strongly enriched for nearby rare variants. The
enrichment was most pronounced for structural variants, as previously
described, and greater for short insertions and deletions (indels) than
for single-nucleotide variants (SNVs) (Fig. 2a and Extended Data Fig. 4).
Because most rare variants occur as heterozygotes, expression outliers
driven by rare variants in cis should exhibit allele-specific expression
(ASE). Both single-tissue and multi-tissue outliers were significantly
enriched for ASE compared to non-outliers (see Methods; two-sided
Wilcoxon rank-sum tests, each nominal P < 2.2 x 107'¢; Fig. 2c). For
underexpression outliers with exonic rare variants, the rare allele
was generally underexpressed with respect to the common allele and
conversely so for overexpression outliers, consistent with the rare
variant causing the effect (two-sided Wilcoxon rank-sum tests, each
nominal P < 4.0 x 1078 Extended Data Fig. 5a). The enrichment for
rare variants and ASE was stronger for multi-tissue outliers than for
single-tissue outliers (Fig. 2b, c and Extended Data Fig. 6a), especially
at higher Z-score thresholds.

To characterize the properties of rare variants that correlated with
large changes in gene expression, we assessed the enrichment of different
classes of variants in outliers compared to non-outliers (Supplementary
Table 3a). Outliers were enriched, in order of significance, for structural
variants, variants near splice sites, introducing frameshifts, at start or
stop codons, near the transcription start site and in conserved regions
(Fig. 3a). Variants in coding regions contributed disproportionately
to outlier expression; enrichments weakened for all variants types
(SNVs, indels and structural variants) when excluding exonic regions
(Extended Data Fig. 6b). Additionally, 90% of stop-gain and frameshift
variants were predicted to trigger nonsense-mediated decay in outliers
(see Methods), suggesting a biological mechanism for these cases.

We also tested the relationship between outlier gene expression
and functional annotations. Multi-tissue outliers were strongly
enriched for variants in promoter or CpG-rich regions and had
variants with higher conservation'®~!® and CADD (combined
annotation-dependent depletion)!'? scores than non-outliers. We
observed weaker enrichment in enhancers and transcription-
factor-binding sites (Fig. 3b and Extended Data Fig. 7). Combining
all classes of variation, other than non-conserved, non-coding,
rare variants (excluded as less likely candidates for causal effects),
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Figure 1 | Gene expression outliers and sharing between tissues.

a, A multi-tissue outlier. The individual has extreme expression values
for the gene AKR1C4 in multiple tissues (red arrows) and the most
extreme median expression value across tissues. b, Outlier expression
sharing between tissues, as measured by the proportion of single-tissue

outliers that have a |Z-score| > 2 with the same effect direction for the
corresponding genes in each replication tissue. Tissues are hierarchically
clustered by gene expression. ¢, Estimated replication rate of multi-tissue
outliers in a constant held-out set of tissues for different sets of discovery
tissues.

we observed that 58% of underexpression and 28% of overexpres-
sion outliers had rare variants near the relevant gene, compared to
8% for non-outliers (Fig. 3¢). Overexpression outliers were more

common overall, potentially because detection of underexpression
outliers for very low expression genes is inherently limited (Extended
Data Fig. 5b). Overexpression outliers were also less enriched
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Figure 2 | Enrichment of rare variants and ASE in outliers.
a, Enrichment of SN'Vs, indels and structural variants (SV's) within 10 kb

enrichments at increasing Z-score thresholds. Text labels indicate
the number of outliers at each threshold. ¢, ASE at increasing Z-score

of the transcription start site (TSS) among outliers. For each frequency
stratum, we calculated enrichment as the relative risk of having a nearby
rare variant given the outlier status (see Methods). Lines indicate 95%
Wald confidence intervals of the relative risk estimates. b, Rare SNV
240 | NATURE |
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thresholds. ASE is measured as the magnitude of the difference between
the reference-allele ratio and the null expectation of 0.5. The non-outlier
category is defined in the Methods.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Splice acceptor
Splice donor
Splice region
‘Structural variant | |Splice

a o [
Duplication

CNV
> Deletion

LETTER

Regulatory region TFBS

Start lost Downstream 3’/56’UTR  |Missense Protein altering
Stop gained |Upstream Intronic Inframe deletion Stop retained
Stop lost TFBS ablating Intergenic  |Inframe insertion Synonymous

| ‘Frameshift | |Stop | |[Non-coding ; |Coding |

Bl Duplication [ ]
[l cny

. Deletion

[ Breakend

B inversion

Breakend
Inversion 3

Splice{ | e

Frameshift

Stop ®

TSS

Conserved

Coding

SNV/indel

O |

I 7SS, 250 bp upstream ]
to 750 bp downstream

D Conserved, top 1%
CADD or PhyloP

] Non-conserved

Underexpression outliers (n = 464)

Overexpression outliers (n = 680)

No rare variants ‘

Non-conserved

0 0.1 02 03 ,
Non-outliers

log odds ratio ‘ ‘

! T T
0% 10% 20%
Distance to TSS
Promoter

Enhancer
TFBS

. $

T T T T T T 1
30% 40% 50% 60% 80% 90% 100%

Regulation
Median Z-score Q.

CpG
CADD L 4

o

Phyop{ | e
PhastCons
fitCons
GerpN
GerpS

-0.50 -025 0 0.25 0.50
log odds ratio

Conservation

Mean ASE

Figure 3 | Stratification of multi-tissue outliers by rare variant classes.
We considered rare variants in the gene body and within 10kb of the gene
(200 kb for structural variants and enhancers). a, Enrichment of disjoint
variant classes among outliers calculated as the log odds ratio with 95%
Wald confidence intervals. b, Enrichment of functional annotations for

for functionally annotated rare variants (Extended Data Fig. 5¢).
Some variant classes had strong directionality concordant with their
expected impact: duplications caused overexpression, whereas dele-
tions, start- and stop-codon variants and frameshifts coincided with
underexpression (Fig. 3d). We also observed strong ASE for outliers
carrying all classes of variants, except non-conserved variants (Fig. 3e).

We hypothesized that functional, large-effect rare variants have
been under recent selective pressure. As expected, we found that rare
promoter variants of outliers were significantly less frequent in the
UKI10K cohort of 3,781 individuals® than rare promoter variants of

rare SNVs. ¢, Proportion of genes with an outlier potentially explained by

each rare variant class. d, Distribution of median Z-scores for each variant
class. e, For each variant class, distribution of ASE (see Methods) averaged
across tissues. Grey lines mark the median values among non-outliers.

non-outliers for the same genes (two-sided Wilcoxon rank-sum test,
P=0.0060; Fig. 4a). Additionally, genes intolerant to loss-of-function
and missense mutations were depleted of both multi-tissue outliers and
multi-tissue expression quantitative trait loci (eQTLs; Fisher’s exact
test, all P< 2 x 10! Fig. 4b and Extended Data Fig. 8a). We observed
a similar depletion in two curated disease gene lists—genes involved
in heritable cardiovascular disease and genes in the guidelines of the
American College of Medical Genetics and Genomics for incidental
findings?*—but not in broader gene lists (Fig. 4c and Extended Data
Fig. 8b, ¢). Genes with a multi-tissue outlier were more likely to have a
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Figure 4 | Evolutionary constraint of genes with multi-tissue outliers.
a, Distributions of UK10K minor allele frequencies for promoter SNVs
in outlier and non-outlier individuals at genes with multi-tissue outliers.
b, Odds ratio of being intolerant to loss-of-function variants for genes
with multi-tissue outliers, genes with shared eQTLs (eGenes), genes
reported in the genome-wide association study (GWAS) catalogue and

Online Mendelian Inheritance in Man (OMIM) genes. ¢, Odds ratio of a
gene having a multi-tissue outlier for each of eight sets of genes involved
in complex traits or diseases (gene lists are described in the Methods;
DDG2P: Developmental Disorders Genotype-to-Phenotype). In b and ¢,
lines represent 95% confidence intervals (Fisher’s exact test).
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Figure 5 | Performance of RIVER for prioritizing functional regulatory
variants. a, RIVER probabilistic graphical model (see Methods).
b, Predictive power of RIVER compared to an L2-regularized logistic
regression model using only genomic annotations. Accuracy was assessed
using held-out individuals, who shared the same rare SNVs as observed
individuals (AUCs compared with DeLong’s approach?). ¢, Distribution
of RIVER scores (shades of blue) as a function of expression and genomic
annotation scores. The distributions of variant categories across expression
and genomic annotation scores are shown as histograms aligned opposite
the corresponding axes.

multi-tissue eQTL (two-sided Wilcoxon rank-sum test, P < 2.2 x 10715
Extended Data Fig. 8d, e), suggesting that rare and common regulatory
variation influence similar genes. However, we found evidence that
genes with outliers were more constrained than genes with multi-tissue
eQTLs, because genes with outliers had less missense and loss-of-
function variation (Tukey’s range test, missense Z-score P=0.0070,
probability of loss-of-function intolerance score P=0.032; Fig. 4b and
Extended Data Fig. 8a). This suggests that outlier expression analysis
can yield unique insights into constraints on gene regulation.

Next, we sought to prioritize rare variants in each individual genome
by their predicted impact on gene expression. We developed RIVER
(RNA-informed variant effect on regulation), a Bayesian statistical
model that jointly analyses genome and transcriptome data from the
same individual to estimate the probability that a variant has regulatory
impact (https://bioconductor.org/packages/release/bioc/html/RIVER.
html, see Methods). RIVER uses a generative model that assumes that
genomic annotations (Supplementary Table 3b) determine the prior
probability that a variant is a functional regulatory variant, in terms
of influence on gene expression, which in turn affects whether nearby
genes are likely to display outlier levels of expression (Fig. 5a). RIVER
does not require a labelled set of functional/non-functional variants;
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rather it derives its power from identifying expression patterns that
coincide with predictive genomic annotations.

We trained RIVER on the GTEx v6p cohort, and evaluated the
model on held-out pairs of individuals who shared the same rare
variants. We then computed the RIVER score (the posterior prob-
ability of having a functional regulatory variant) for one individual,
using both expression and genomic data, and assessed the accuracy
with respect to the expression levels of the second individual that had
been held out (see Methods). Incorporating expression data signifi-
cantly improved prediction compared with a model that uses genomic
annotations alone (area under the curve (AUC) of 0.64 and 0.54,
respectively, P=3.5 x 10™% Fig. 5b and Extended Data Fig. 9a, b),
and RIVER learned, unsupervised, to prioritize variants supported by
both genomic annotations and extreme expression levels across tissues
(Fig. 5c and Extended Data Fig. 9c). ASE was also enriched among
the top RIVER hits compared with the genomic annotation model
(Extended Data Fig. 9d). Finally, even after accounting for the most
informative genomic annotations or summary scores, personal
expression data were highly informative of rare variant effects (average
log odds ratio, 2.76; Extended Data Fig. 9e, f).

RIVER can be used to predict regulatory effects on gene expression
of disease-associated variants and aid in prioritization of rare variants
in disease studies. To investigate this potential, we evaluated 27
pathogenic variants from ClinVar*! present in 21 GTEx donors (Fig. 5¢
and Extended Data Fig. 10a). Overall, pathogenic variants had RIVER
scores that were higher than background variants (two-sided Wilcoxon
rank-sum test, P=3.3 x 10™%; Extended Data Fig. 10b—d), and the six
that were probably regulatory variants (those not annotated as missense
or as an indel within a coding region) scored in the 99.9th percentile.
Several cases, which we evaluated in detail, illustrated that rare
disease-causing variants can have a regulatory impact evident from
RNA-sequencing data, even from healthy individuals that have those
variants (in whom the variants are often heterozygous; Extended
Data Fig. 10e, f). Note that RIVER trained on healthy cohorts, such as
GTEx, can then be directly applied to new cohorts that include disease
samples.

To experimentally validate a subset of the variants that were identi-
fied through outlier analysis, we used CRISPR-Cas9-mediated genome
editing®?’. In K562 cells, we tested six SNVs and matched controls in
transcribed regions of genes with an outlier (see Methods and Extended
Data Fig. 11a, b), and compared the allelic ratios between mRNA and
genomic DNA (gDNA), which was used as an internal control. All
variants that were tested were SNVs in underexpression outliers and
were therefore expected to decrease expression. Two variants were
excluded owing to low cDNA and gDNA total reads counts. The
four remaining SN'Vs in outliers all showed lower proportions of
the alternate (installed) allele in the cDNA compared to the gDNA,
confirming that these variants decreased expression (Extended Data
Fig. 11c).

In summary, by combining data across multiple tissues, we curated
a set of gene expression outliers that replicated at higher rates and
showed stronger enrichment of rare variants than those from any single
tissue. We found that rare structural variants, frameshift indels, coding
variants and variants near the transcription start site were most likely
to have large effects on expression. However, our ability to characterize
the genetic basis of multi-tissue outliers remains incomplete. Outliers
without an underlying rare variant in our analysis may be due to
variants in more distal regions or in annotations we did not consider,
or may be attributable to residual technical or environmental effects.

Although variant interpretation remains challenging, RIVER demon-
strates the value of incorporating personal gene expression data to
examine the consequences of rare variants that may be uncertain based
on the sequence alone. Our results suggest that a general approach
can be applied to studies that supplement genome sequencing with
other molecular phenotypes, such as methylation®*-2 and histone
modification?”?8, We anticipate that such integrative approaches will be
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essential for effective interpretation of genome-wide genetic variation
on a personalized level.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Study population. All human subjects were deceased donors. Informed consent
was obtained for all donors via next-of-kin consent to permit the collection and
banking of de-identified tissue samples for scientific research. The research
protocol was reviewed by Chesapeake Research Review Inc., Roswell Park Cancer
Institute’s Office of Research Subject Protection, and the institutional review
board of the University of Pennsylvania. We used the RNA-seq, allele-specific
expression, and whole-genome sequencing (WGS) data from the v6p release of
the GTEx project. The generation of these data are described in the supplementary
information of ref. 12.

Correction for technical confounders. We restricted our expression analyses to the
449 individuals and 44 tissues for which sex and the top three genotype principal
components, which capture major population stratification, were available. For
each tissue, we log,-transformed all expression values (log,(RPKM + 2)), where
RPKM is the number of reads per kilobase of transcript per million mapped reads.
We then standardized the expression of each gene to prevent shrinkage of outlier
expression values caused by quantile normalization. To remove unmeasured batch
effects and other confounders, for each tissue separately, we estimated hidden
factors using PEER'® on the transformed expression values. In each tissue, we
defined expressed genes and corrected for the same number of PEER factors as in
the GTEx eQTL analyses (see supplementary information of ref. 12). We regressed
out the PEER factors, the top three genotype principal components and sex (where
appropriate) from the transformed expression data for each tissue using the
following linear model:

N 3
Yo=pd+ 3 aguPit D B kGt S+ g
n=1 k=1

where Y, is the transformed expression of a given gene g, /1, is the mean expression
level for the gene, P,, is the nth PEER factor, Gy, G,, G3 are the top three genotype
principal components, and § is the sex covariate. We assumed the residual vector &
follows the multivariate normal distribution £, ~ N(0, o?1). Finally, we standardized
the expression residuals e, for each gene, which yielded Z-scores.

To better understand the effect of PEER correction on the removal of technical
and biological confounders, we compared the PEER factors in each tissue sepa-
rately to pre-collected sample and subject covariates. We considered the subset
of covariates with >50 observations in at least 31 tissues, where we first selected
covariates with more than one unique entry in each tissue. For categorical
covariates, we only considered categories with more than 20 observations. For
each PEER factor and each covariate, we fit a linear model with the PEER factor
as the response and the covariate as the predictor. From this model, we computed
the proportion of that PEER factor’s variance explained by the covariate as the
adjusted R*:

Adjusted R> = R? — l(1 —R?). L]
n—p—1

where p and 7 are the number of parameters and samples, respectively, and

S —SSg
SSy

RZ

SStand SSg refer to the total and residual sums of squares, respectively.

To quantify the degree to which each covariate was captured by the combination
of all PEER factors, genotype principal components and sex (where appropriate)
for each tissue, we considered the expression component regressed out from the
uncorrected data:

Wy=Y;—¢g

For each covariate, we then fit a linear model with Wy as the response and the
covariate as the predictor. We assessed the proportion of the variance of W,
explained by each covariate by computing the adjusted R? for the covariate across
all genes. We used the formula above, but summed across all genes to compute
SST and SS R-

To assess the impact of PEER correction on rare variant enrichment, we also
tried removing either the top five PEER factors for each tissue or no PEER factors.
We then performed multi-tissue outlier calling and tested the enrichment of rare
and common variants in the two partially corrected datasets (see ‘Enrichment of
rare and common variants near outlier genes’).

Single-tissue and multi-tissue outlier discovery. Single-tissue and multi-tissue
outlier calling was restricted to autosomal lincRNA and protein-coding genes.
For each tissue, an individual was called a single-tissue outlier for a particular
gene if that individual had the largest absolute Z-score and the absolute value was

at least 2. For each gene, the individual with the most extreme median Z-score
taken across tissues was identified as a multi-tissue outlier for that gene provided
the absolute median Z-score was at least 2. Therefore, each gene had at most one
single-tissue outlier per tissue and one multi-tissue outlier. Under this definition
an individual could be an outlier for multiple genes. In addition, we only tested
for multi-tissue outliers among individuals with expression measurements for the
gene in at least five tissues. To reduce cases where non-genetic factors may cause
widespread extreme expression, we removed eight individuals that were multi-
tissue outliers for 50 or more genes from all downstream analyses, including before
single-tissue outlier discovery. Removing these individuals with extreme expres-
sion across many genes improved our rare variant enrichments, but the precise
threshold mattered less (Extended Data Fig. 2g). We chose the threshold of 50 to
strike a balance between removing extreme individuals while not excluding a large
proportion of our cohort.
Replication of expression outliers. We calculated the proportion of single-tissue
outliers discovered in one tissue that had | Z-score| > 2 with the same direction of
effect for the same gene in the replication tissue. Since certain groups of tissues
were sampled in a specific subset of individuals, we evaluated the extent to which
replication was influenced by the size and the overlap of the discovery and repli-
cation sets. We repeated the replication analysis with the discovery and replication
in exactly 70 overlapping individuals for each pair of tissues with enough samples
and compared the replication patterns to those obtained by using all individuals.
To estimate the extent to which individual overlap biased replication estimates,
for each pair of tissues with sufficient samples, we defined three disjoint groups of
individuals: 70 individuals with data for both tissues, 69 distinct individuals with
data in the first tissue, and 69 distinct individuals with data in the second tissue. We
discovered outliers in the first tissue using the shared set of individuals then tested
for replication using the same individuals in the second tissue. Then, for each gene,
we added the identified outlier to the distinct set of individuals and tested the repli-
cation again in the second tissue. We repeated the process running the discovery in
the second tissue and the replication in the first one. We compared the replication
rates when using the same or different individuals for the discovery and replication.
We assessed the confidence of our multi-tissue outliers using cross-validation.
We separated the tissue expression data randomly into two groups: a discovery
set of 34 tissues and a replication set of 10 tissues. For t= 10, 15, 20, 25, and 30, we
randomly sampled t tissues from the discovery set and performed outlier calling
as described above. Owing to incomplete tissue sampling, the number of tissues
supporting each outlier is at least five but less than ¢. We computed the replication
rate as the proportion of outliers in the discovery set with |median Z-score| > 1
or 2 in the replication set. We set no restriction on the number of tissues required
for testing in the replication set. To calculate the expected replication rate, we
randomly selected individuals in the discovery set with at least five tissues that
expressed the gene and computed the replication rate. We repeated this process
10 times for each discovery set size.
Quality control of genotypes and rare variant definition. We restricted our
rare variant analyses to individuals of European descent, as they constituted the
largest homogenous population within our dataset. We considered only auto-
somal variants that passed all filters in the VCF (those marked as PASS in the
Filter column). Minor allele frequencies (MAFs) within the GTEx data were
calculated from the 123 individuals of European ancestry with WGS data (average
coverage 30x ). The MAF was the minimum of the reference and the alternate
allele frequency where the allele frequencies of all alternate alleles were summed
together. Rare variants were defined as having MAF < 0.01 in GTEx, and for SNVs
and indels we also required MAF <0.01 in the European population of the 1000
Genomes Project Phase 3 data®. To ensure that population structure among the
individuals of European descent was unlikely to confound our results, we verified
that the allele frequency distribution of rare variants included in our analysis
(within 10 kb of a protein-coding or lincRNA gene, see below) was similar for the
five European populations in the 1000 Genomes Project (Extended Data Fig. 4d).
Enrichment of rare and common variants near outlier genes. We assessed
the enrichment of rare SN'Vs, indels and structural variants near outlier genes.
Proximity was defined as within 10kb of the transcription start site for most
analyses. For Fig. 3 and Extended Data Figs 5, 7, 8, we included all variants within
10 kb of the gene, including the gene body, to also capture coding variants. In Fig. 3
and Extended Data Figs 5, 8, we extended the window to 200 kb for enhancers
and structural variants. For each gene with an outlier, we chose the remaining set
of individuals tested for outliers at the same gene as non-outlier controls. We only
considered genes that had both an outlier and at least one control. We stratified
variants of each class into four minor allele frequency bins (0-1%, 1-5%, 5-10%,
10-25%) to compare the relative enrichments of rare and common variants. We
also assessed the enrichment of SNV at different Z-score cutoffs. Enrichment was
defined as the ratio of the proportion of outliers with a variant whose frequency
lies within the range to the corresponding proportion for non-outliers. This
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enrichment analysis is equivalent to the relative risk of having a nearby rare variant
given outlier status. We used the asymptotic distribution of the log relative risk to
obtain 95% Wald confidence intervals. Within our set of European individuals,
we observed some individuals with minor admixture that had relatively more rare
variants than the rest (Extended Data Fig. 1b). We confirmed that inclusion of these
admixed individuals did not substantially affect our results (Extended Data Fig. 1c).
We also calculated rare variant enrichments when restricting to variants outside
protein-coding and lincRNA exons in the Gencode v.19 annotation (extending
internal exons by 5 bp to capture canonical splice regions).

To measure the informativeness of variant annotations, we used logistic regres-
sion to model outlier status as a function of the feature of interest; this yielded
log odds ratios with 95% Wald confidence intervals. Note that for the feature
enrichment analysis in Fig. 3b and Extended Data Fig. 7, we required that outliers
and their gene-matched non-outlier controls have at least one rare variant near
the gene. We standardized all features, including binary features, to facilitate
comparison between features of different scale. We also calculated the proportion
of overexpression outliers, underexpression outliers and non-outliers with a rare
variant near the gene (within 10kb for SNVs and indels and 200kb for structural
variants). To each outlier instance, we assigned at most one of the 12 rare variant
classes that we considered (Supplementary Table 3a). If an outlier had rare variants
from multiple classes near the relevant genes, we selected the class that was most
significantly enriched among outliers.

Annotation of variants. We obtained structural variant annotations from ref. 14
and computed features for rare SNV and indels using three primary data sources:
Roadmap Epigenomics®!, CADD v.1.2 (ref. 19) and VEP v.80 (ref. 32). Promoter
and enhancer annotation tracks were obtained from the Roadmap Epigenomics
Project (http://www.broadinstitute.org/~meuleman/reg2map/HoneyBadger2_
release/). We mapped 28 unique tissues in the GTEx project to 19 tissue groups in
the Roadmap Project. Using these annotations, for each individual, we assessed
whether each SNV or indel overlapped a promoter or enhancer region in at least
one of the 19 Roadmap tissue groups. Features, including conservation'>~13,
transcription factor binding and deleteriousness, were extracted from the
full annotation tracks of the CADD v.1.2 release (downloaded 15 May 2015;
http://cadd.gs.washington.edu/download). Finally, we obtained protein-coding and
transcription-related annotations from VEP and LOFTEE. This information was
provided in the GTEx v6p VCF file (described in ref. 12). Stop-gain and frameshift
variants annotated as high-confidence loss-of-function variants by LOFTEE were
assumed to trigger nonsense-mediated decay. We generated gene-level features
described in Supplementary Table 3.

Allele-specific expression (ASE). We only considered sites with at least 30 total
reads and at least five reads supporting each of the reference and alternate alleles.
To minimize the effect of mapping bias, we filtered out sites that showed mapping
bias in simulations®, that were in low mappability regions (ftp://hgdownload.cse.
ucsc.edu/gbdb/hg19/bbi/wgEncodeCrgMapabilityAlign50mer.bw) or that were
rare variants or within 1kb of a rare variant in the given individual (the variants
were extracted from the GTEx exome-sequencing data described in ref. 12). The
first two filters were provided in the GTEx ASE data release. The third filter was
applied to eliminate potential mapping artefacts that mimic genetic effects from
rare variants. We measured ASE at each testable site as the absolute deviation of
the reference-allele ratio from 0.5. For each gene, all testable sites in all tissues were
included. We compared ASE in single-tissue and multi-tissue outliers at different
Z-score thresholds to non-outliers using two-sided Wilcoxon rank-sum tests. To
obtain a matched background, we only included a gene in the comparison when
ASE data existed for both the outlier individual and at least one non-outlier. In
the case of single-tissue outliers, we also required the tissue to match between the
outlier and the non-outlier. All individuals that were neither multi-tissue outliers
for the given gene nor single-tissue outliers for the gene in the corresponding tissue
were included as non-outliers.

In cases where outliers had rare coding variants in the gene, if the rare variants
were causing the extreme expression in cis, we expected to see ASE at the rare
variant matching the direction of the effect. For underexpression outliers, we
expected the (rare) minor allele to be underexpressed compared to the major allele.
For overexpression outliers, we expected the minor allele to be overexpressed. To
test this, we used the same filters as above, but looked exclusively at rare variants
(instead of excluding them). We measured ASE as the minor-allele ratio: the
number of reads supporting the minor allele over the total number of reads.

We also used ASE to evaluate the performance of both the genomic annotation
model and RIVER (see below) by testing the association between allelic imbalance
and model predictions using Fisher’s exact test. Here, we defined allelic imbalance
as the top 10% of the median absolute deviation, across tissues, of the reference-
allele ratio from 0.5.

Allele frequency measurements in UK10K. UK10K? VCF files of whole-
genome cohorts were downloaded from https://www.ebi.ac.uk. We merged the
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Avon Longitudinal Study of Parents and Children (ALSPAC) EGAS00001000090
and the Department of Twin Research and Genetic Epidemiology (TWINSUK)
EGAS00001000108 datasets for a total of 3,781 individuals. We counted the
occurrence of all rare GTEx SNVs in Roadmap Epigenomics-annotated promoter
regions among the UK10K samples. GTEx variants absent from the UK10K cohorts
were assigned a count of 0.

Definition of multi-tissue eGenes. We defined multi-tissue eGenes using two
approaches. For the tissue-by-tissue approach, we obtained lists of significant
eGenes (g value <0.05) for each of the 44 tissues from the GTEx v6p release. The
second approach used cis-eQTLs with shared effects across tissues estimated by
the RE2 model of the Meta-Tissue software®, as described in ref. 12. We chose,
for each gene, the variant with the lowest nominal P value from the RE2 model.
We then determined the number of tissues in which this variant-gene pair showed
a cis-eQTL effect (m value > 0.9 (ref. 34)). For each of the 18,380 genes tested
for multi-tissue outliers, we calculated the number of tissues in which the gene
appeared as a significant eGene (tissue-by-tissue approach) or had a shared eQTL
effect (Meta-Tissue approach). To show that the enrichment of outlier genes
as multi-tissue eGenes was not confounded by gene expression level, using the
Meta-Tissue results, we stratified genes tested for multi-tissue outliers into RPKM
deciles and repeated the comparison between genes with and without a multi-
tissue outlier. When comparing the enrichment for eGenes among constrained and
disease gene lists, we classified the top n Meta-Tissue eGenes (ranked by nominal
Pvalue from the RE2 model) as multi-tissue eGenes and considered the remaining
genes as background. We selected n to match the number of multi-tissue outliers
in the comparison.

Evolutionary constraint of genes with multi-tissue outliers. We obtained
gene-level estimates of evolutionary constraint from the Exome Aggregation
Consortium®® (http://exac.broadinstitute.org/, ExAC release v.0.3). We inter-
sected the 17,351 autosomal lincRNA and protein-coding genes with constraint
data from ExAC with the 18,380 genes tested for multi-tissue outliers from GTEx,
yielding 14,379 genes for further analysis (3,897 and 10,482 genes with and without
a multi-tissue outlier, respectively). We examined three functional constraint scores
from the ExAC database: synonymous Z-score, missense Z-score and probability
of loss-of-function intolerance (pLI). Synonymous- and missense-intolerant genes
were defined as those with corresponding Z-scores above the 90th percentile. We
defined loss-of-function intolerant genes as those with a pLI score above 0.9,
following the guidelines provided by ExAC. We calculated odds ratios and 95%
confidence intervals for the enrichment of genes with multi-tissue outliers in these
lists using a Fisher’s exact test. We repeated this analysis for three other gene sets:
19,182 multi-tissue eGenes from GTEx v6p defined using Meta-Tissue, 9,480
reported GWAS genes from the NHGRI-EBI catalogue®® (http://www.ebi.ac.uk/
gwas, accessed 30 November 2015) and 3,576 OMIM genes (http://omim.org/,
accessed 26 May 2016).

We tested for a difference in the mean constraint for genes with multi-tissue

outliers and genes with multi-tissue eQTLs using ANOVA. For each constraint
score in EXAC, we treated the score for each gene as the response and the status of
the gene as having a multi-tissue outlier and/or a multi-tissue eQTL as a categorical
predictor with four classes. After fitting the model, we performed a Tukey’s range
test to determine whether there was a significant difference in the mean constraint
between genes with a multi-tissue outlier but no multi-tissue eQTL and genes with
a multi-tissue eQTL but no multi-tissue outlier.
Overlap of genes with multi-tissue outliers and disease genes. We examined
the enrichment of genes with multi-tissue outliers in eight disease gene lists: the
GWAS catalogue and OMIM (described above), as well as ClinVar (6,279 genes;
http://www.ncbi.nlm.nih.gov/clinvar/), OrphaNet (3,451 genes; http://www.orpha.
net/), ACMG?’ (58 genes; http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/),
Developmental Disorders Genotype-to-Phenotype®” (DDG2P; 1,693 genes;
http://www.ebi.ac.uk/gene2phenotype/), and two curated gene lists of 86 cardio-
vascular disease genes and 55 cancer genes (described below). We computed odds
ratios and 95% confidence intervals using a Fisher’s exact test to compare each
disease gene list to the genes with multi-tissue outliers and repeated the comparison
for genes with multi-tissue eQTLs.

Heritable cancer predisposition and heritable cardiovascular disease gene lists
were curated by local experts in clinical and laboratory-based genetics in the two
respective areas (Stanford Medicine Clinical Genomics Service, Stanford Cancer
Center’s Cancer Genetics Clinic and Stanford Center for Inherited Cardiovascular
Disease). Genes were included if both the clinical and laboratory-based teams
agreed there was sufficient published evidence to support using variants in these
genes in clinical decision making.

For each of the eight disease gene lists above and for genes with multi-tissue
outliers or multi-tissue eQTLs, we computed the number of variants (SNVs and
indels within 10kb and structural variants within 200 kb of the gene, including the
gene body) at each gene in the 123 individuals of European ancestry with WGS
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data. For each gene list and for each MAF bin (0-1%, 1-5%, 5-10%, 10-25%), we
compared the mean number of variants near genes in the list to the mean number
near all other annotated autosomal protein-coding and lincRNA genes using a
two-sided t-test.

The RIVER integrative model for predicting regulatory effects of rare variants.
RIVER (RNA-informed variant effect on regulation) is a hierarchical Bayesian
model that predicts the regulatory effects of rare variants by integrating gene
expression with genomic annotations. The RIVER model consists of three layers:
aset of nodes G = Gj,..., Gpin the topmost layer representing P observed genomic
annotations over all rare variants near a particular gene; a latent binary variable
F in the middle layer representing the unobserved functional regulatory status of
the rare variants; and one binary node E in the final layer representing expression
outlier status of the nearby gene. We model each conditional probability distri-
bution as follows:

F|G ~ Bernoulli(y)), v =logit"(3'G)

E|F ~ categorical(0)
B~ N [o l]
1 > A

0 ~ Beta(C, C)

with parameters (3 and 0 and hyper-parameters A and C.

Because F is unobselrved, the RIVER log-likelihood objective over instances
n=1,...,N Z log Z P(E,, Gy, F,|3, 6) is non-convex. We therefore opti-

n=1 F,=0

mize model parameters using Expectation-Maximization* (EM) as follows:

In the E-step, we compute the posterior probabilities (w,”) of the latent variables
F, given current parameters and observed data. For example, at the ith iteration,
the posterior probability of F,,=1 for the nth instance is

win=P(Fs=1/Gy B, E, 07)

_ P(F,=1|Gy, BY) P(E,|F=1, 8Y)
Sku—0P(Fs |Gry BY) - P(E,|F,, 69)

(i) _ (i)
Wop =1 — Wiy
In the M-step, at the ith iteration, given the current estimates w, the parameters
(B 1) are estimated as

N 1
. N
argmax 4+ S° 57 log(P(Fy| Gy, B4TD)) - w}’i’n — EHBUH)HZ
n=1F,=0

where A is an L2 penalty hyper-parameter derived from the Gaussian prior on 3.
The parameter 6 gets updated as:

04 =S 1(E, =1 O+ C

n=1

where I is an indicator operator,  is the binary value of expression E,, s is the
possible binary values of F,,, and C is a pseudo count derived from the Beta prior
on 6. The E and M steps are applied iteratively until convergence.

RIVER application to the GTEx cohort. As input, RIVER requires a set of
genomic features G and a set of corresponding expression outlier observations E,
each over instances of individual and gene pairs. Using the variant annotations
described above, we generated site-level genomic features for the 116 European
individuals with GTEx WGS data that had fewer than 50 multi-tissue outliers.
We then collapsed these features for all rare SNVs within 10kb of each tran-
scription start site to generate the gene-level features that are described in
Supplementary Table 3b. This produced a matrix of genomic features G of size
(116 individuals x 1,736 genes) x (112 genomic features), where we standardized
features before use. For the values of E, we defined any individual with |median
Z-score| > 1.5 as an outlier if expression was observed in at least five tissues; the
remaining individuals were labelled as non-outliers for the gene. We used this more
lenient threshold in order to obtain a sufficiently large set of outliers for robust
training and testing. In total, we extracted 48,575 instances where an individual
had at least one rare variant within 10 kb of the transcription start site of a gene.

To train and evaluate RIVER on the GTEx cohort, we used the 3,766 instances
of individual and gene pairs where two individuals had the same rare SNV's near
a particular gene. We held out those instances and trained RIVER parameters
with the remaining instances. RIVER requires two hyper-parameters A and C. To
select A\, we first applied an L2-regularized multivariate logistic regression with
features G and response variable E, selecting A with the minimum squared error
via tenfold cross-validation (we selected A =0.01). We selected C= 50, informed
simply by the total number of training instances available, as validation data were
not available for extensive cross-validation. Initial parameters for EM were set to
6=(P(E=0|F=0),P(E=1| F=0), (E=0| F=1), P(E=1| F=1))=(0.99,
0.01, 0.3, 0.7) and 3 from the multivariate logistic regression above, although
different initializations did not significantly change the final parameters (Extended
Data Fig. 9b).

The 3,766 held-out pairs of instances were used to create a labelled evaluation
set. For one of the two individuals from each pair, we estimated the posterior
probability of a functional rare variant P(F | G, E, 3, 6). The outlier status of
the second individual, whose data were not observed either during training or
prediction, was then treated as a ‘label” of the true status of functional effect F.
Using this labelled set, we compared the RIVER score to the posterior P(F | G, 3)
estimated from the plain L2-regularized multivariate logistic regression model
with genomic annotations alone. We produced receiver operating characteristic
curves and computed areas under the curve (AUCs) for both models, testing for
significant differences using DeLong’s method®. This analysis relied on outlier
status reflecting the consequences of rare variants. Indeed, pairs of individuals who
shared rare variants tended to have highly similar outlier status even after regressing
out effects of common variants (Kendall’s 7 rank correlation, P < 2.2 x 1071¢). We
repeated this evaluation, varying the median Z-score threshold used to define
outliers, and we also compared RIVER to individual features that were strongly
enriched among outliers as well as PolyPhen®® and SIFT*.

Supervised model integrating expression and genomic annotation. To assess
the information gained by incorporating gene expression data in the prediction of
functional rare variants, we applied a simplified supervised approach to a limited
dataset. We used the instances where two individuals had the same rare SNV's
to create a labelled training set where the outlier status of the second individual
was used as the response variable. We then trained a logistic regression model
with only two features: (1) the outlier status of the first individual and (2) a single
genomic feature value, such as CADD or deleterious annotation of genetic variants
using neural networks (DANN). We estimated parameters from the entire set of
rare-variant-matched pairs using logistic regression to determine the log odds ratio
and corresponding P value of expression status as a predictor. While this approach
was not amenable to training a full predictive model over all genomic annotations
jointly given the limited number of instances, it provided a consistent estimate of
the log odds ratio of outlier status. We tested five genomic predictors: CADD",
DANN*,, transcription-factor-binding site annotations, PhyloP scores'® and one
aggregated feature: the posterior probability from a multivariate logistic regression
model learned with all genomic annotations.

RIVER assessment of pathogenic ClinVar variants. We downloaded variants
from the ClinVar database?! (accessed 04 May 2015) and searched for these disease
variants within the set of rare variants segregating in the GTEx cohort. Any disease
variant reported as pathogenic, likely pathogenic or a risk factor for disease was
considered pathogenic. We further categorized the pathogenic variants as likely
regulatory if they were annotated as splice-site variants, synonymous or nonsense,
whereas missense variants were considered unlikely to have a regulatory effect. To
explore RIVER scores for those pathogenic variants, all instances were used for
training RIVER. We then computed a posterior probability P(F | G, E, 3, 0) for
each instance coinciding with a pathogenic ClinVar variant.

Stability of estimated parameters with different parameter initializations.
We tried several different initialization parameters for 3 and 6 to explore how
this affected the estimated parameters. We initialized a noisy 3 by adding K%
Gaussian noise compared to the mean of 3 with fixed 6 (for K= 10, 20, 50 100,
200, 400, 800). For 6, we fixed ((E=1 | F=0) and P(E=0 | F=0) as 0.01 and 0.99,
respectively, and initialized (P(E=1|F=1), P(E=0| F=1)) as (0.1, 0.9), (0.4, 0.6)
and (0.45, 0.55) instead of (0.3, 0.7) with 3 fixed. For each parameter initialization,
we computed Spearman rank correlations between parameters from RIVER using
the original initialization and the alternative initializations. We also investigated
how many instances within top 10% of posterior probabilities from RIVER under
the original settings were replicated in the top 10% of posterior probabilities under
the alternative initializations (replication accuracy in Extended Data Fig. 9b).
Validation of large-effect rare variants using CRISPR-Cas9 genome editing. To
select rare, coding SNV for validation by CRISPR-Cas9 editing, we first restricted
to the (gene, individual, variant) tuples identified in multi-tissue outliers without a
rare structural variant or a rare indel within 200kb or 10kb of the gene, respectively.
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We considered the 116 rare SNVs with a coding consequence for the corresponding
gene as annotated by VEP?% coding annotations included stop gained, stop lost,
splice acceptor variant, splice donor variant, start lost, missense variant, splice
region variant, stop retained variant, synonymous variant, coding sequence
variant and 5'/3’ UTR variant. Using RNA-seq data from ENCODE, we further
restricted our variant list to the 59 SNV occurring in genes with an average FPKM
(fragments per kilobase per million reads) of at least 10 in K562 cells (ENCODE
experiment accession numbers ENCSRO00AEL and ENCSRO00AEN)*, Finally, we
filtered for rare, coding SNVs in (gene, individual) pairs with |median Z-score| > 4
and a RIVER score above the 99.5th percentile. These filters yielded a final set of
13 rare SNV from which we chose the six exonic SNV for testing.

As controls, we selected SNV's present within the same cDNA amplicon region
as the corresponding outlier SNV (see details on targeted sequencing below). We
first searched for coding SN'V's present within these regions in the GTEx cohort
that did not occur in the outlier individual. If no SNV could be found satisfying
these criteria, we expanded our search for SNVs using the ExAC database (ExAC
release v.0.3)*°. If multiple possible control variants existed for an outlier SNV,
we ranked the controls by CADD score!” and prioritized synonymous variants.

Sequences of single-guide RNAs (sgRNAs) used in the study are listed in
Extended Data Fig. 11b. For each variant, a sgRNA and two donor oligonucleotides
(with the reference and alternative alleles) were designed such that the PAM was
located as close to the variant as possible. The donors were 99 bp long centred on
the variant being installed. The variants were installed into K562 cells as previously
described?*?*. The K562 cells were those generated previously* and were regularly
tested for mycoplasma infection. sgRNAs were expressed in the pPGH020 (Addgene
plasmid 85405) expression vector. For each donor oligonucleotide, K562 cells
constitutively expressing a Cas9-BFP fusion protein were electroporated with 3 g
of sgRNA plasmid DNA and 1 pl of 100 uM donor oligonucleotide using the T-016
program on a Lonza Nucleofector 2b. After electroporation, cells were allowed to
recover for five days. Cells electroporated with the reference and alternative allele
donor oligonucleotides were mixed in a 1:1 ratio and grown together for three
more days to control for differences in culturing conditions. We included cells
electroporated with the reference allele to ensure that any changes in expression we
observed were not due to the editing process itself. Because the editing efficiency
is not 100% and varies between loci, we expected fewer than half the cells to carry
the alternative allele and for this proportion to vary by locus. One to two million
cells were collected for RNA and genomic DNA extraction.

Genomic DNA (gDNA) was extracted using the QiaAmp DNA mini kit
(Qiagen). Total RNA was extracted using QiaShredder and RNeasy Mini kit
(Qiagen). Subsequently, 6 ug of RNA was converted into cDNA using AMV reverse
transcriptase (Promega). cDNA was purified and concentrated with the PCR
Purification Kit (Qiagen). PCR primers were designed to generate 300-400-bp
amplicons including the variant in either the gDNA or cDNA locus. For both gDNA
and cDNA samples, 400 ng of DNA was amplified in triplicate (technical replicates)
using Phusion High-Fidelty polymerase (Fisher) and the amplicon was purified
on a 1% TAE agarose gel. The amplicons were then prepared for sequencing
using the Nextera XT kit (Illumina) and sequenced together on a NextSeq 500.

Reads were trimmed with cutadapt®® (v.1.13) and aligned using bwa**
(v.0.7.12-r1039) allowing no mismatches (bwa aln —n 0), which excluded any reads
with indels created during editing. We used custom reference sequences, one each
for the reference and alternate alleles of the targeted cDNA and gDNA amplicon
regions. Allele counts at the target locus were computed for each sample using
samtools pileup as implemented in the R package Rsamtools* (v.1.22.0). Only
reads with a minimum mapping quality of 20 were considered. Two of the tested
loci amplified poorly in preparation for sequencing, and they had extremely low
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mapping rates and total read counts over the target locus (median read count
across replicates <400 compared to 281,000 and 397,000 for gDNA and cDNA,
respectively, for the remaining loci). As such, we removed these two loci from
further analysis. Finally, to assess the effect of each variant on expression, we
tested for a significant difference between the cDNA and gDNA alternate allele
proportions with a two-sided t-test. We corrected for multiple testing using
the Bonferroni procedure.

Code availability. RIVER is available at https://bioconductor.org/packages/release/
bioc/html/RIVER html. Additionally, the code for running analyses and producing
the figures throughout this manuscript is available separately (https://github.com/
joed3/GTExV6PRareVariation).

Data availability. The GTEx v6p release genotype and allele-specific expression
data are available from dbGaP (study accession phs000424.v6.p1; http://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v6.p1).
Expression data from the v6p release and eQTL results are available from the GTEx
portal (http://gtexportal.org).
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Extended Data Figure 1 | PEER correction. a, Adjusted R* between top
15 PEER factors and top 20 sample (left) and subject (right) covariates in
an example tissue, skeletal muscle. Covariates were ranked by the average
adjusted R? across all PEER factors and hierarchically clustered. The
corresponding data for all tissues are provided in Supplementary Tables
1,2.b, Adjusted R? between the total expression component removed

all tissues, and both axes were hierarchically clustered. White denotes
missing values, and tissues are coloured as in Fig. 1. PEER factors captured
slightly different covariates across tissues, with a noticeable difference
between the brain and other tissues. ¢, Rare variant enrichments as in

Fig. 2a for different levels of PEER correction. The fully corrected data
show substantially stronger rare variant enrichments than the two partially

by PEER in each tissue and the top 20 sample (left) and subject (right)
covariates. The covariates were ranked by the average adjusted R* across

corrected datasets.
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Extended Data Figure 2 | Distribution of the number of genes with a
multi-tissue outlier. a, Distribution of the number of genes for which each
individual was a multi-tissue outlier. Each individual was an outlier for
amedian of 10 genes. Individuals with 50 or more outliers are coloured

in grey and were excluded from downstream analyses. b—f, Distribution

of the number of genes for which individuals, stratified by common
covariates, were multi-tissue outliers. For race and sex, we compared the
distributions using an unsigned Wilcoxon rank-sum test, whereas we

used Spearmanss p to test for association with the remaining covariates.

Only age (Spearman’s p = 0.10, P=0.033) and ischaemic time (Spearman’s
p=0.18, P=0.00022) were nominally associated with the number of
outlier genes per individual. The association with age fails to achieve
significance after correcting for multiple testing using the Bonferroni
method. Note that in b we only tested for a significant difference in the
distribution of the number of outlier genes between white and black
individuals, because there were too few individuals in the other groups.

g, Enrichments as shown in Fig. 2a either including all individuals, or
excluding individuals that are outliers for 50 (matches Fig. 2a) or 30 genes.
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Extended Data Figure 3 | Single-tissue outlier replication. a, Correlation
between the replication proportions (see Methods) obtained from all
samples and from a subset of 70 overlapping individuals per tissue pair
(Pearson’s correlation, P < 2.2 x 10 '%). When restricting to 70 individuals,
the replication rates decreased more for discovery tissues with larger
sample sizes in the full dataset, indicating that replication rates were
underestimated for tissues with small sample sizes. b, Correlation between
replication in the 70 individuals used for discovery and replication
assessed in a set of 70 individuals that included the outlier individual and
69 individuals excluded from the discovery set (Pearson’s correlation,

P <2.2 x 1071%). Replication was higher when computed in the discovery
individuals rather than in a distinct set of individuals. ¢, Single-tissue

outlier replication using all individuals, as in Fig. 1b, but data are only
shown for pairs with at least 70 overlapping individuals. Tissue pairs with
insufficient overlap are in grey. d, For each pair of tissues with sufficient
samples, outlier discovery and replication using 70 individuals sampled in
both tissues. The replication values decreased compared with replication
performed in all individuals (c), particularly for tissues with large sample
sizes in the complete dataset. However, the pattern of replication, with
more similar tissues having higher replication rates, is maintained. e, For
each tissue, the proportion of (individual, gene) outlier pairs where the
individual was also a multi-tissue outlier for the gene. This proportion was
positively correlated with the tissue sample size (P=1.4 x 10~'%). Points
are coloured by tissue as in Fig. 1.
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Extended Data Figure 4 | Number of rare variants per individual and
population structure. a, The distribution of the number of rare variants of
each type for individuals of European descent (reported as white). Certain
individuals had many more rare variants than the population median
(vertical black line). b, Principal component analysis of all individuals.
Individuals are plotted according to their first two genotype principal
components (PCs) and coloured by their reported ancestry. White
individuals with WGS data, included in a, are coloured in a lighter shade
of blue and those with 60,000 or more rare variants are circled in black.

Minor allele frequency (%)

population:

S.

The individuals with an excess of rare variants probably had African or
Asian admixture. ¢, Enrichments as in Fig. 2a and excluding individuals
with >60,000 rare variants (circled in b), which did not substantially
affect the enrichment patterns. d, European population allele frequency
distributions in the 1000 Genomes Project of rare SNV and indels used in
our analysis. The rare variants included in our analysis were constrained
to have MAF < 0.01 in the 1000 Genomes European super population,

but they were also relatively rare in each of the individual European
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Extended Data Figure 5 | Comparison of overexpression and
underexpression outliers. a, ASE at rare exonic variants. ASE is shown

as the ratio of the number of reads supporting the minor allele to the

total number of reads at the site. If the rare variant is driving the extreme
expression, we expect this ratio to be below 0.5 for underexpression
outliers and above 0.5 for overexpression outliers. Rare coding variants
were enriched for ASE in the direction of the extreme expression effect
(two-sided Wilcoxon rank-sum tests, each nominal P < 4.0 x 107%).

b, Expression level distribution of all genes and genes with overexpression

Log odds ratio

or underexpression outliers. Expression is shown as the log, of the median
(RPKM + 2), where the median was first taken across individuals in each
tissue then across expressed tissues for each gene. For genes with low
expression, even an RPKM of 0 may not yield a Z-score < —2. Indeed,
underexpression outliers were depleted among low expressed genes
whereas the opposite was true of overexpression outliers (two-sided
Wilcoxon rank-sum test comparing to all genes, P < 2.2 x 107!° for both
overexpression and underexpression). ¢, Feature enrichments (as in

Fig. 3b) shown separately for over and underexpression outliers.
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Extended Data Figure 6 | Extended rare variant enrichments. a, For each  underscores the noise in single-tissue outlier discovery. b, As in Fig. 2a,

tissue, rare SNV enrichment in single-tissue outliers compared with non- enrichment for SNV, indels and structural variants in outliers compared
outliers at the same genes for increasing Z-score thresholds. Enrichments with the same genes in non-outliers, either including all rare variants or
calculated as in Fig. 2. The rare variant enrichments varied between tissues  only those outside protein-coding or lincRNA exons in Gencode v.19. The
though the overall pattern mirrored that of multi-tissue outliers when enrichment of rare variants was weaker, but still significant, for all variant
combining all the tissues (Fig. 2b). The high variance in the enrichments types when excluding exonic regions.
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Extended Data Figure 7 | Enrichment of an extended list of functional
genomic annotations. log odds ratios and 95% Wald confidence intervals
from logistic regression models of outlier status as a function of each
genomic feature. Features were calculated among rare SNVs within 10 kb
of the gene. When more than one feature corresponded to the same
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genomic annotation (for example, the number or the presence of rare
variants in a splice region; Supplementary Table 3b), the feature with the
highest enrichment is shown. Lighter shading indicates a non-significant
log odds ratio (nominal P> 0.05).
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Extended Data Figure 8 | Evolutionary constraint and regulatory
control of multi-tissue outlier genes. a, Odds ratio of being intolerant

to synonymous and missense variants for genes with multi-tissue eQTLs
(eGenes), genes with multi-tissue outliers, OMIM and GWAS genes (see
Methods). As expected, GWAS and OMIM genes showed no enrichment
or depletion for synonymous variation intolerant genes. Genes with multi-
tissue outliers and eGenes showed slight depletion for these genes. Genes
with multi-tissue outliers and eGenes were strongly depleted for genes
intolerant to missense variation compared with OMIM and GWAS genes.
b, Comparison of the depletion of disease genes among genes with a multi-
tissue outlier and eGenes. Similar to Fig. 4c, bars represent 95% confidence
intervals from Fisher’s exact test. ¢, For each of ten gene lists, the difference
in the mean number of variants near genes in the list compared with

the mean for all other annotated genes. Results are stratified by minor
allele frequency, and bars indicate the 95% confidence interval for the

Mean RPKM bin (%)

difference from a two-sided t-test. Disease genes had more variants than
control genes in general, and the difference was particularly striking for
rare variants. This suggests that the depletion of outliers and eQTLs for
certain groups of disease genes is not due to less rare variation near these
genes. Instead, we hypothesize that the variation around these genes in our
healthy cohort is less likely to have large regulatory effects. d, Distribution
of the number of tissues with an eQTL for genes with and without outliers.
Genes with multi-tissue outliers had eQTLs in more tissues than genes
without. This suggests that they are more susceptible to shared regulatory
control. This result held for both multi-tissue eQTL definitions (see
Methods; Meta-Tissue: 23 versus 3 tissues, Wilcoxon rank-sum test

P <2.2 x 1071% tissue-by-tissue: 7 versus 3 tissues, P < 2.2 x 10716,

e, This eGene enrichment was robust across different mean expression
levels across tissues (two-sided Wilcoxon rank-sum tests, Bonferroni-
adjusted P<1x 10711).
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*DeLong's approach was used for comparing two AUCs (AUCs in the 3" column here and AUCs in Fig. 5b)

Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | RIVER performance. a, Comparison between
the predictive power of RIVER and that of the genomic annotation

model, as in Fig. 5a, across different Z-score thresholds for outlier calling.

Increasing the Z-score threshold improved AUC values, but reduced

the number of outlier examples, which led to noisy receiver operating
characteristic curves. b, Stability analysis of estimated parameters with
different parameter initializations (see Methods). ¢, Correlations, using
Kendall’s 7, between the fraction of tissues with |Z-score| > 2 and the
test probabilities from the genomic annotation model (left) and RIVER
(right). We calculated test posterior probabilities using tenfold cross-
validation and only considered individual and gene pairs with a fraction
of tissues with | Z-score| > 2 that was significantly different from 0.05
(one-sided binomial exact test, Benjamini-Hochberg adjusted P < 0.05).
d, P values from a one-sided Fisher’s exact test measuring the association

LETTER

between allelic imbalance (see Methods) and the posterior probability

of a functional rare variant according to the genomic annotation model
and RIVER. The posterior probabilities from RIVER were more strongly
associated with allelic imbalance across all four thresholds tested.

e, Assessment of the advantage of incorporating gene expression with
genomic annotations for predicting outlier status using simplified
supervised models (see Methods). All models showed consistent
improvement of the log odds ratio of outlier status when incorporating
expression. f, Performance of models with 12 individual genomic features
compared with the genomic annotation model and RIVER. Some models
with single genomic features provided slightly better AUCs compared with
the genomic annotation model, but they were not statistically different. On
the other hand, RIVER predicted the effects of rare variants significantly
better than each of the models that included a single feature.
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Gene Variant ID (FIG) P(F|G,E) Z-score Disease Variant type
SBDS rs113993991*  0.447 0.985 -5.337  Shwachman-Diamond syndrome nonsense
TPP1 1s119455955* 0619 0.995 411 Ceroulj Ilplofuscmosw neuronal 2, Neuronal ceroid lipofuscinosis, Inborn nonsense
genetic diseases
GAMT rs80338735* 0.162 0.929 -2.813  Deficiency of guanidinoacetate methyltransferase synonymous
SBDS rs113993993* 0.526 0.989 -2.753  Shwachman-Diamond syndrome, susceptibility to aplastic anemia splice donor
OGG1 rs104893751 0.213 0.963 -2.733  Clear cell carcinoma of kidney missense
BBS2 rs121908176* 0.519 0.992 -2.56 Bardet-Bied| syndrome 2 nonsense
SBDS rs113993993* 0.52 0.988 -2.301  Shwachman-Diamond syndrome, susceptibility to aplastic anemia splice donor
NAGA rs121434529 0.047 0.563 -1.663  Schindler disease, type 1 missense
OGG1 rs104893751 0.213 0.239 -1.231  Clear cell carcinoma of kidney missense
SLC25A11 rs140547520 0.009 0.004 -0.7 Amyotrophic lateral sclerosis 18 missense
DSTYK  rs200780796 0.077 0.049 -0.694  Susceptibility to congenital anomalies of the kidney and urinary tract 1 missense
CLPTM1  rs120074114 0.027 0.006 -0.66 Apolipoprotein c-ii variant missense
MUTYH 1534612342 0.078 0.038 065 Endonjetnal carcmomal, MYH-assomated polyposis, Carcinoma of colon, missense
Hereditary cancer-predisposing syndrome
VD rs28940889 0.074 0.045 0.573  Isovaleryl-CoA dehydrogenase deficiency missense
GPR97 rs121908464 0.025 0.009 0.508  Bilateral frontoparietal polymicrogyria missense
ZNF200 rs61732874 0.017 0.003 -0.431  Familial Mediterranean fever missense, 3’ UTR
APOC4  rs120074114 0.038 0.012 0.411  Apolipoprotein c-ii variant missense
SLC7A9 rs79389353 0.044 0.014 -0.375  Cystinuria missense
RPL29 rs121912698 0.023 0.008 -0.371  Aminoacylase 1 deficiency missense
RPS19 rs147508369 0.018 0.013 0.304  Diamond-Blackfan anemia 1 missense
ABHD14B  rs121912698 0.035 0.011 0.224  Aminoacylase 1 deficiency missense
ZNF200  rs104895091 0.022 0.005 0.218  Autosomal dominant familial Mediterranean fever inframe, 3' UTR
ABHD14B  rs121912701 0.02 0.004 0.206  Aminoacylase 1 deficiency missense
ZNF200 rs28940579 0.025 0.006 0.175  Familial Mediterranean fever missense, 3' UTR
RPL29 rs121912698 0.036 0.012 0.153  Aminoacylase 1 deficiency missense
RPL29 rs121912701 0.021 0.005 0.142  Aminoacylase 1 deficiency missense
ABHD14B  rs121912698 0.035 0.011 0.025  Aminoacylase 1 deficiency missense
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Extended Data Figure 10 | See next page for caption.
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Extended Data Figure 10 | Evaluation of known pathogenic variants
using RIVER. a, The 27 GTEx rare SNVs reported as disease variants in
ClinVar. b-d, Relative frequency of the |median Z-score| (b), posterior
probabilities from the genomic annotation model (c) and posterior
probabilities from RIVER (d) for all (individual, gene) pairs (grey) and
27 pairs with pathogenic variants from ClinVar (orange). P values were
computed using two-sided Wilcoxon rank-sum tests. We note that rare
indels and structural variants were not found nearby the genes in the
individuals carrying these pathogenic variants. e, f, The Z-score and
RPKM distributions for SBDS (e) and GAMT (f) were compared with the
values from four individuals carrying regulatory pathogenic variation
(red asterisks and triangles). The median Z-score and RPKM values
across tissues are shown at the top of each plot (black circle). Tissues

are coloured as in Fig. 1 and sorted in decreasing order of the difference

LETTER

between the average Z-score of individual(s) with a regulatory pathogenic
variant and the median Z-score for the tissue. Three individuals carrying
a total of two unique rare variants are shown for SBDS. Both variants are
associated with the recessive Shwachman-Diamond syndrome, which
causes systemic symptoms that include pancreatic, neurological and
haematologic abnormalities*® and can disrupt fibroblast function*”. The
individuals, being heterozygous for these variants, lacked the disease
phenotype. Nonetheless, we saw extreme underexpression of SBDS across
almost all tissues in these individuals, including brain tissues, fibroblasts
and pancreas. One individual had a rare variant for GAMT associated
with cerebral creatine deficiency syndrome 2, shown to cause neurological
deficiencies and also lead to low body fat*®. The individual had the most
extreme underexpression in (subcutaneous) adipose tissue.
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a
:E;)cus Chr:Position iﬁfl SIZIEX Gene Median Z-score  RIVER score g:::: Coding consequence
Outlier 1 7:66459273 T/A 0.004 SBDS -5.337 0.985 2.821 Stop gained
Control 1 7:66459256 T/IC 0.130 SBDS [-2.753, 0.773] [0.003, 0.989] 2.191 Synonymous
Outlier 2 12:4766944 CIT 0.004 NDUFA9  -5.569 0.982 0.609 Stop gained
Control 2 12:4766925 GIT 0 NDUFA9  N/A N/A -0.198  Synonymous
Outlier 3 7:102944937 G/A 0.004 PMPCB -5.936 0.969 5.789 Missense; Splice region; 3 UTR
Control 3 7:102948074 AIG 0 PMPCB N/A N/A 1.995 Synonymous; 3’ UTR
Outlier 4 19:13885293 T/A 0.004 C190rf53  -4.229 0.956 2.184 Start lost
Control 4 19:13885309 CIT 0.256 C190rf53  [-2.496, 0.919] [0.004, 0.400] 2.172 Synonymous
b c Outlier Control
Locus ID sgRNA
Outlier 1 GTGTTTGTAAATGTTTCTAA
Control 1 ACTGATGAGATCTTCCTTTT 0.4+ * r
Outlier 2 TGCTGTGTTGTACTACTCGT (g/c)DNA
Control 2 CTTTCTGCTATTATAGGAAT 5 o ° gDNA
Outlier 3 ATAGTGCTTGCTGCTGCTGG £ 03- @ cDNA
Control 3 GACTTAGCAAAGTTTCATTT 5
Outlier 4 TTCCGCTGCGTGCCGGACCA ;‘ Read count
Control 4 GCAGGGGCAGCGCAAGTTTC 3 02 * 10
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Extended Data Figure 11 | Validation of large-effect rare variants using
CRISPR-Cas9 genome editing. a, SNVs in outliers and controls assayed
for expression effects using CRISPR-Cas9 genome editing. For common
SNVs in controls (MAF >1% in the GTEx cohort), the range of median
Z-scores and RIVER scores are given for all individuals with the minor

allele. Missing values indicate that the variant was absent from our
cohort. b, sgRNAs for four SNVs found in outliers and four control

SNVs in the same genes. ¢, Alternate (installed) gDNA and cDNA allele

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

proportions for four rare, coding SNVs in outliers (left) and four matched
control SNVs (right). Each gDNA and cDNA sample was sequenced in
triplicate (technical replicates). Asterisks denote the Bonferroni-adjusted
significance level from a two-sided t-test of the difference between the
gDNA and cDNA alternate allele proportions: -P < 0.05, *P < 0.01,

##P < 0.001. Although one control SNV showed a significant difference in
the alternate allele proportion between cDNA and gDNA, it displayed an

increase rather than a decrease in expression.
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Life Sciences Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list
items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

» Experimental design

1. Sample size

Describe how sample size was determined. See Figure 1 of a previous GTEx manuscript (PMID: 23715323) for a detailed
description of statistical power and sample size quantification.

2. Data exclusions

Describe any data exclusions. We used the GTEX samples included in the eQTL analyses. The data inclusion/
exclusion criteria are described in that manuscript (submitted concurrently). We
further excluded any individuals with more than 50 multi-tissue outliers, as
described in the methods.

3. Replication
Describe whether the experimental findings were We validated the effects on expression of four rare variants via CRISPR/Cas9
reliably reproduced. genome editing. We attempted to validate two additional variants but excluded

them from our analysis because they failed to amplify successfully, so we could not
accurately measure their effect.

4. Randomization

Describe how samples/organisms/participants were Order of sample processing for library preparation and sequencing was
allocated into experimental groups. randomized to avoid batch effects.

5. Blinding
Describe whether the investigators were blinded to No blinding took place.

group allocation during data collection and/or analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

o

Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a | Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

|X| A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

|X| A statement indicating how many times each experiment was replicated

|X| The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

& A description of any assumptions or corrections, such as an adjustment for multiple comparisons
|X| The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

|X| A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

oo o oo

|X| Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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» Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this RIVER is available at https://bioconductor.org/packages/release/bioc/html/

study. RIVER.html. Additionally, the code for running analyses and producing the figures
throughout the manuscript is available separately (https://github.com/joed3/
GTExV6PRareVariation).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

» Materials and reagents

Policy information about availability of materials
8. Materials availability

Indicate whether there are restrictions on availability of ~ Residual biospecimens are available to all researchers according to the Genotype-
unique materials or if these materials are only available  Tissue Expression (GTEx) project biospecimens access policy. The policy and related
for distribution by a for-profit company. forms can be found on the GTEx Portal (gtexportal.org) under the Biobank Tab.

9. Antibodies

Describe the antibodies used and how they were validated N/A
for use in the system under study (i.e. assay and species).

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used. For the experimental validation, we used a K562 cell line previously described
(PMID:27798611).

b. Describe the method of cell line authentication used.  None.

c. Report whether the cell lines were tested for Yes, the K562 cells were tested for mycoplasma.
mycoplasma contamination.

d. If any of the cell lines used are listed in the database N/A
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived N/A
materials used in the study.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population The human research participants and relevant covariates are described in this
characteristics of the human research participants. manuscript and the GTEx eQTL manuscript submitted concurrently.
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