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Rare genetic variants are abundant in humans and are expected to 
contribute to individual disease risk1–4. While genetic association 
studies have successfully identified common genetic variants 
associated with susceptibility, these studies are not practical for 
identifying rare variants1,5. Efforts to distinguish pathogenic 
variants from benign rare variants have leveraged the genetic code 
to identify deleterious protein-coding alleles1,6,7, but no analogous 
code exists for non-coding variants. Therefore, ascertaining which 
rare variants have phenotypic effects remains a major challenge. 
Rare non-coding variants have been associated with extreme gene 
expression in studies using single tissues8–11, but their effects across 
tissues are unknown. Here we identify gene expression outliers, 
or individuals showing extreme expression levels for a particular 
gene, across 44 human tissues by using combined analyses of whole 
genomes and multi-tissue RNA-sequencing data from the Genotype-
Tissue Expression (GTEx) project v6p release12. We find that 
58% of underexpression and 28% of overexpression outliers have 
nearby conserved rare variants compared to 8% of non-outliers. 
Additionally, we developed RIVER (RNA-informed variant effect 
on regulation), a Bayesian statistical model that incorporates 
expression data to predict a regulatory effect for rare variants with 
higher accuracy than models using genomic annotations alone. 
Overall, we demonstrate that rare variants contribute to large gene 
expression changes across tissues and provide an integrative method 
for interpretation of rare variants in individual genomes.

Our analysis focused on individuals with extremely high or extremely 
low expression of a particular gene compared with the population, 
using the GTEx v6p release data, which include RNA-sequencing data 
for 449 individuals and 44 tissues. We refer to these individuals as gene 
expression outliers. The GTEx data enable the identification of both 
single-tissue and multi-tissue expression outliers (Fig. 1a), with the 
latter defined by consistent extreme expression across many tissues 
(see Methods). To account for broad environmental and technical con-
founders, we removed hidden factors estimated by PEER (probabilistic 
estimation of expression residuals)13 from each tissue before outlier 
discovery (Extended Data Figs 1, 2 and Supplementary Tables 1, 2).

We identified a single-tissue expression outlier for ≥ 99% of 
expressed genes in each tissue and a multi-tissue outlier for 4,919 out 
of 18,380 genes that were tested (27%). Each individual was a single- 
tissue  outlier for a median of 83 genes per tissue and a multi-tissue 
outlier for a median of 10 genes. Single-tissue outliers that were found 
in one tissue replicated in other tissues at rates of up to 33%, with higher 
rates among related tissues (Fig. 1b and Extended Data Fig. 3). The 

replication rate for multi-tissue outliers was much higher and increased 
with the  number of tissues used for discovery (Fig. 1c).

We investigated the influence of rare genetic variation on extreme 
expression levels, focusing on the individuals of European ancestry with 
whole-genome sequencing data (1,144 multi-tissue outliers). Multi-
tissue outliers were strongly enriched for nearby rare variants. The 
enrichment was most pronounced for structural variants, as previously 
described14, and greater for short insertions and deletions (indels) than 
for single-nucleotide variants (SNVs) (Fig. 2a and Extended Data Fig. 4).  
Because most rare variants occur as heterozygotes, expression outliers 
driven by rare variants in cis should exhibit allele-specific expression 
(ASE). Both single-tissue and multi-tissue outliers were significantly 
enriched for ASE compared to non-outliers (see Methods; two-sided 
Wilcoxon rank-sum tests, each nominal P <  2.2 ×  10−16; Fig. 2c). For 
underexpression outliers with exonic rare variants, the rare allele 
was generally underexpressed with respect to the common allele and 
conversely so for overexpression outliers, consistent with the rare 
variant causing the effect (two-sided Wilcoxon rank-sum tests, each 
nominal P <  4.0 ×  10−8; Extended Data Fig. 5a). The enrichment for 
rare  variants and ASE was stronger for multi-tissue outliers than for 
 single-tissue outliers (Fig. 2b, c and Extended Data Fig. 6a), especially 
at higher Z-score thresholds.

To characterize the properties of rare variants that correlated with 
large changes in gene expression, we assessed the enrichment of different 
classes of variants in outliers compared to non-outliers (Supplementary 
Table 3a). Outliers were enriched, in order of signifi cance, for structural 
variants, variants near splice sites, introducing frameshifts, at start or 
stop codons, near the transcription start site and in conserved regions 
(Fig. 3a). Variants in coding regions contributed disproportionately 
to outlier expression; enrichments weakened for all variants types 
(SNVs, indels and structural variants) when excluding exonic regions 
(Extended Data Fig. 6b). Additionally, 90% of stop-gain and frameshift 
variants were predicted to trigger nonsense-mediated decay in outliers  
(see Methods), suggesting a biological mechanism for these cases.

We also tested the relationship between outlier gene expression 
and functional annotations. Multi-tissue outliers were strongly 
enriched for variants in promoter or CpG-rich regions and had 
variants with higher conservation15–18 and CADD (combined 
annotation- dependent  depletion)19 scores than non-outliers. We 
observed weaker enrichment in enhancers and transcription- 
factor-binding sites (Fig. 3b and Extended Data Fig. 7). Combining 
all classes of variation, other than non- conserved, non-coding, 
rare variants (excluded as less likely  candidates for causal effects), 
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we observed that 58% of underexpression and 28% of overexpres-
sion outliers had rare variants near the  relevant gene, compared to 
8% for non-outliers (Fig. 3c). Overexpression  outliers were more 

common overall, potentially because detection of underexpression 
outliers for very low expression genes is inherently limited (Extended 
Data Fig. 5b). Overexpression outliers were also less enriched 

0

0.2

0.4

0.6

Adipose, subcutaneous 

Adipose, visceral (omentum) 

Adrenal gland

Artery, aorta 

Artery, coronary 

Artery, tibial 

Brain, anterior cingulate cortex (BA24) 

Brain, caudate (basal ganglia) 

Brain, cerebellar hemisphere 

Brain, cerebellum 

Brain, cortex 

Brain, frontal cortex (BA9) 

Brain, hippocampus 

Brain, hypothalamus 

Brain, nucleus accumbens (basal ganglia) 

Brain, putamen (basal ganglia) 

Breast, mammary tissue 

Cells, EBV-transformed lymphocytes

Cells, �broblasts 

Colon, sigmoid 

Colon, transverse 

Oesophagus, gastroesophageal junction 

Oesophagus, mucosa 

Oesophagus, muscularis 

Heart, atrial appendage 

Heart, left ventricle 

Liver

Lung

Muscle, skeletal 

Nerve, tibial 

Ovary

Pancreas

Pituitary

Prostate

Skin, not sun exposed (suprapubic) 

Skin, sun exposed (lower leg) 

Small intestine, terminal ileum 

Spleen

Stomach

Testis

Thyroid

Uterus

Vagina

Whole blood

b

c

a

0

0.1

0.2

Replication tissue

D
is

c
o

v
e
ry

 t
is

s
u
e

Replication
proportion

≥ 0.3

No sample
overlap

–2.5

Z-score

Median Z-scores 
across tissues

Outlier
Random

Replication
|Median Z-score|

≥1   ≥2

Number of tissues in discovery set

R
e
p

lic
a
ti
o

n
 r

a
te

0.0 2.5 10 15 20 25 30

Figure 1 | Gene expression outliers and sharing between tissues.  
a, A multi-tissue outlier. The individual has extreme expression values 
for the gene AKR1C4 in multiple tissues (red arrows) and the most 
extreme median expression value across tissues. b, Outlier expression 
sharing between tissues, as measured by the proportion of single-tissue 

outliers that have a | Z-score|  ≥  2 with the same effect direction for the 
corresponding genes in each replication tissue. Tissues are hierarchically 
clustered by gene expression. c, Estimated replication rate of multi-tissue 
outliers in a constant held-out set of tissues for different sets of discovery 
tissues.
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Figure 2 | Enrichment of rare variants and ASE in outliers.  
a, Enrichment of SNVs, indels and structural variants (SVs) within 10 kb 
of the transcription start site (TSS) among outliers. For each frequency 
stratum, we calculated enrichment as the relative risk of having a nearby 
rare variant given the outlier status (see Methods). Lines indicate 95% 
Wald confidence intervals of the relative risk estimates. b, Rare SNV 

enrichments at increasing Z-score thresholds. Text labels indicate 
the number of outliers at each threshold. c, ASE at increasing Z-score 
thresholds. ASE is measured as the magnitude of the difference between 
the reference-allele ratio and the null expectation of 0.5. The non-outlier 
category is defined in the Methods.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



1 2  O C T O B E R  2 0 1 7  |  V O L  5 5 0  |  N A T U R E  |  2 4 1

LETTER RESEARCH

for functionally annotated rare variants (Extended Data Fig. 5c).  
Some variant classes had strong directionality concordant with their 
expected impact: duplications caused overexpression, whereas dele-
tions, start- and stop-codon variants and frameshifts coincided with 
underexpression (Fig. 3d). We also observed strong ASE for outliers 
carrying all classes of variants, except non-conserved variants (Fig. 3e).

We hypothesized that functional, large-effect rare variants have 
been under recent selective pressure. As expected, we found that rare 
promoter variants of outliers were significantly less frequent in the 
UK10K cohort of 3,781 individuals3 than rare promoter variants of 

non-outliers for the same genes (two-sided Wilcoxon rank-sum test, 
P =  0.0060; Fig. 4a). Additionally, genes intolerant to loss-of-function 
and missense mutations were depleted of both multi-tissue outliers and 
multi-tissue expression quantitative trait loci (eQTLs; Fisher’s exact 
test, all P <  2 ×  10−15; Fig. 4b and Extended Data Fig. 8a). We observed 
a similar depletion in two curated disease gene lists—genes involved 
in heritable cardiovascular disease and genes in the guidelines of the 
American College of Medical Genetics and Genomics for incidental 
findings20—but not in broader gene lists (Fig. 4c and Extended Data 
Fig. 8b, c). Genes with a multi-tissue outlier were more likely to have a 
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Figure 3 | Stratification of multi-tissue outliers by rare variant classes. 
We considered rare variants in the gene body and within 10 kb of the gene 
(200 kb for structural variants and enhancers). a, Enrichment of disjoint 
variant classes among outliers calculated as the log odds ratio with 95% 
Wald confidence intervals. b, Enrichment of functional annotations for 

rare SNVs. c, Proportion of genes with an outlier potentially explained by 
each rare variant class. d, Distribution of median Z-scores for each variant 
class. e, For each variant class, distribution of ASE (see Methods) averaged 
across tissues. Grey lines mark the median values among non-outliers.
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multi-tissue eQTL (two-sided Wilcoxon rank-sum test, P <  2.2 ×  10−16; 
Extended Data Fig. 8d, e), suggesting that rare and common regulatory 
variation influence similar genes. However, we found evidence that 
genes with outliers were more constrained than genes with multi-tissue  
eQTLs, because genes with outliers had less missense and loss-of-
function variation (Tukey’s range test, missense Z-score P =  0.0070, 
probability of loss-of-function intolerance score P =  0.032; Fig. 4b and 
Extended Data Fig. 8a). This suggests that outlier expression analysis 
can yield unique insights into constraints on gene regulation.

Next, we sought to prioritize rare variants in each individual genome 
by their predicted impact on gene expression. We developed RIVER 
(RNA-informed variant effect on regulation), a Bayesian statistical 
model that jointly analyses genome and transcriptome data from the 
same individual to estimate the probability that a variant has regulatory 
impact (https://bioconductor.org/packages/release/bioc/html/RIVER.
html, see Methods). RIVER uses a generative model that assumes that 
genomic annotations (Supplementary Table 3b) determine the prior 
probability that a variant is a functional regulatory variant, in terms 
of influence on gene expression, which in turn affects whether nearby 
genes are likely to display outlier levels of expression (Fig. 5a). RIVER 
does not require a labelled set of functional/non-functional variants; 

rather it derives its power from identifying expression patterns that 
coincide with predictive genomic annotations.

We trained RIVER on the GTEx v6p cohort, and evaluated the 
model on held-out pairs of individuals who shared the same rare 
 variants. We then computed the RIVER score (the posterior prob-
ability of having a functional regulatory variant) for one individual, 
using both expression and genomic data, and assessed the accuracy 
with respect to the expression levels of the second individual that had 
been held out (see Methods). Incorporating expression data signifi-
cantly improved prediction compared with a model that uses genomic 
annotations alone (area under the curve (AUC) of 0.64 and 0.54, 
respectively, P =  3.5 ×  10−4; Fig. 5b and Extended Data Fig. 9a, b), 
and RIVER learned, unsupervised, to prioritize variants supported by 
both genomic annotations and extreme expression levels across tissues  
(Fig. 5c and Extended Data Fig. 9c). ASE was also enriched among 
the top RIVER hits compared with the genomic annotation model 
(Extended Data Fig. 9d). Finally, even after accounting for the most 
informative genomic annotations or summary scores, personal 
 expression data were highly informative of rare variant effects (average 
log odds ratio, 2.76; Extended Data Fig. 9e, f).

RIVER can be used to predict regulatory effects on gene  expression 
of disease-associated variants and aid in prioritization of rare  variants 
in disease studies. To investigate this potential, we evaluated 27 
 pathogenic variants from ClinVar21 present in 21 GTEx donors (Fig. 5c 
and Extended Data Fig. 10a). Overall, pathogenic variants had RIVER 
scores that were higher than background variants (two-sided Wilcoxon 
rank-sum test, P =  3.3 ×  10−9; Extended Data Fig. 10b–d), and the six 
that were probably regulatory variants (those not annotated as missense 
or as an indel within a coding region) scored in the 99.9th  percentile. 
Several cases, which we evaluated in detail, illustrated that rare  
disease-causing variants can have a regulatory impact evident from 
RNA-sequencing data, even from healthy individuals that have those 
variants (in whom the variants are often heterozygous; Extended 
Data Fig. 10e, f). Note that RIVER trained on healthy cohorts, such as 
GTEx, can then be directly applied to new cohorts that include disease 
samples.

To experimentally validate a subset of the variants that were identi-
fied through outlier analysis, we used CRISPR–Cas9-mediated genome 
editing22,23. In K562 cells, we tested six SNVs and matched controls in 
transcribed regions of genes with an outlier (see Methods and Extended 
Data Fig. 11a, b), and compared the allelic ratios between mRNA and 
genomic DNA (gDNA), which was used as an internal control. All 
 variants that were tested were SNVs in underexpression outliers and 
were therefore expected to decrease expression. Two  variants were 
excluded owing to low cDNA and gDNA total reads counts. The 
four remaining SNVs in outliers all showed lower proportions of 
the  alternate (installed) allele in the cDNA compared to the gDNA, 
 confirming that these variants decreased expression (Extended Data 
Fig. 11c).

In summary, by combining data across multiple tissues, we curated 
a set of gene expression outliers that replicated at higher rates and 
showed stronger enrichment of rare variants than those from any single 
 tissue. We found that rare structural variants, frameshift indels, coding  
variants and variants near the transcription start site were most likely 
to have large effects on expression. However, our ability to characterize 
the genetic basis of multi-tissue outliers remains incomplete. Outliers 
 without an underlying rare variant in our analysis may be due to 
 variants in more distal regions or in annotations we did not consider, 
or may be attributable to residual technical or environmental effects.

Although variant interpretation remains challenging, RIVER demon-
strates the value of incorporating personal gene expression data to 
examine the consequences of rare variants that may be uncertain based 
on the sequence alone. Our results suggest that a general approach 
can be applied to studies that supplement genome sequencing with 
other molecular phenotypes, such as methylation24–26 and histone 
 modification27,28. We anticipate that such integrative approaches will be 
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Figure 5 | Performance of RIVER for prioritizing functional regulatory 
variants. a, RIVER probabilistic graphical model (see Methods).  
b, Predictive power of RIVER compared to an L2-regularized logistic 
regression model using only genomic annotations. Accuracy was assessed 
using held-out individuals, who shared the same rare SNVs as observed 
individuals (AUCs compared with DeLong’s approach29). c, Distribution 
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the corresponding axes.
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essential for effective interpretation of genome-wide genetic  variation 
on a personalized level.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Study population. All human subjects were deceased donors. Informed  consent 
was obtained for all donors via next-of-kin consent to permit the collection and 
banking of de-identified tissue samples for scientific research. The research 
 protocol was reviewed by Chesapeake Research Review Inc., Roswell Park Cancer 
Institute’s Office of Research Subject Protection, and the institutional review 
board of the University of Pennsylvania. We used the RNA-seq, allele-specific 
expression, and whole-genome sequencing (WGS) data from the v6p release of  
the GTEx project. The generation of these data are described in the supplementary 
 information of ref. 12.
Correction for technical confounders. We restricted our expression  analyses to the 
449 individuals and 44 tissues for which sex and the top three  genotype  principal 
components, which capture major population stratification, were  available. For 
each tissue, we log2-transformed all expression values (log2(RPKM +  2)), where 
RPKM is the number of reads per kilobase of transcript per million mapped reads. 
We then standardized the expression of each gene to prevent shrinkage of outlier 
expression values caused by quantile normalization. To remove unmeasured batch 
effects and other confounders, for each tissue separately, we estimated hidden 
factors using PEER13 on the transformed expression values. In each tissue, we 
defined expressed genes and corrected for the same number of PEER factors as in 
the GTEx eQTL analyses (see supplementary information of ref. 12). We regressed 
out the PEER factors, the top three genotype principal components and sex (where 
appropriate) from the transformed expression data for each tissue using the  
following linear model:

∑ ∑ εµ α β γ= + + + +
= =
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where Yg is the transformed expression of a given gene g, µg is the mean expression 
level for the gene, Pn is the nth PEER factor, G1, G2, G3 are the top three genotype 
principal components, and S is the sex covariate. We assumed the residual vector εg 
follows the multivariate normal distribution εg ∼  N(0, σ2

I). Finally, we standardized 
the expression residuals εg for each gene, which yielded Z-scores.

To better understand the effect of PEER correction on the removal of  technical 
and biological confounders, we compared the PEER factors in each tissue sepa-
rately to pre-collected sample and subject covariates. We considered the subset 
of  covariates with > 50 observations in at least 31 tissues, where we first selected 
covariates with more than one unique entry in each tissue. For categorical 
 covariates, we only considered categories with more than 20 observations. For 
each PEER factor and each covariate, we fit a linear model with the PEER factor 
as the response and the covariate as the predictor. From this model, we computed 
the proportion of that PEER factor’s variance explained by the covariate as the 
adjusted R2:
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SST and SSR refer to the total and residual sums of squares, respectively.
To quantify the degree to which each covariate was captured by the combination 

of all PEER factors, genotype principal components and sex (where appropriate) 
for each tissue, we considered the expression component regressed out from the 
uncorrected data:

ε= −W Yg g g

For each covariate, we then fit a linear model with Wg as the response and the 
covariate as the predictor. We assessed the proportion of the variance of Wg 
explained by each covariate by computing the adjusted R2 for the covariate across 
all genes. We used the formula above, but summed across all genes to compute 
SST and SSR.

To assess the impact of PEER correction on rare variant enrichment, we also 
tried removing either the top five PEER factors for each tissue or no PEER factors. 
We then performed multi-tissue outlier calling and tested the enrichment of rare 
and common variants in the two partially corrected datasets (see ‘Enrichment of 
rare and common variants near outlier genes’).
Single-tissue and multi-tissue outlier discovery. Single-tissue and multi-tissue 
outlier calling was restricted to autosomal lincRNA and protein-coding genes. 
For each tissue, an individual was called a single-tissue outlier for a particular 
gene if that individual had the largest absolute Z-score and the absolute value was 

at least 2. For each gene, the individual with the most extreme median Z-score 
taken across tissues was identified as a multi-tissue outlier for that gene provided 
the absolute median Z-score was at least 2. Therefore, each gene had at most one 
single-tissue outlier per tissue and one multi-tissue outlier. Under this definition 
an individual could be an outlier for multiple genes. In addition, we only tested 
for multi-tissue outliers among individuals with expression measurements for the 
gene in at least five tissues. To reduce cases where non-genetic factors may cause 
widespread extreme expression, we removed eight individuals that were multi- 
tissue outliers for 50 or more genes from all downstream analyses, including before 
single-tissue outlier discovery. Removing these individuals with extreme expres-
sion across many genes improved our rare variant enrichments, but the precise 
threshold mattered less (Extended Data Fig. 2g). We chose the threshold of 50 to 
strike a balance between removing extreme individuals while not excluding a large 
proportion of our cohort.
Replication of expression outliers. We calculated the proportion of single-tissue 
outliers discovered in one tissue that had | Z-score|  ≥  2 with the same direction of 
effect for the same gene in the replication tissue. Since certain groups of tissues 
were sampled in a specific subset of individuals, we evaluated the extent to which 
replication was influenced by the size and the overlap of the discovery and repli-
cation sets. We repeated the replication analysis with the discovery and replication 
in exactly 70 overlapping individuals for each pair of tissues with enough samples 
and compared the replication patterns to those obtained by using all individuals. 
To estimate the extent to which individual overlap biased replication estimates, 
for each pair of tissues with sufficient samples, we defined three disjoint groups of 
individuals: 70 individuals with data for both tissues, 69 distinct individuals with 
data in the first tissue, and 69 distinct individuals with data in the second tissue. We 
discovered outliers in the first tissue using the shared set of individuals then tested 
for replication using the same individuals in the second tissue. Then, for each gene, 
we added the identified outlier to the distinct set of individuals and tested the repli-
cation again in the second tissue. We repeated the process running the discovery in 
the second tissue and the replication in the first one. We compared the replication 
rates when using the same or different individuals for the discovery and replication.

We assessed the confidence of our multi-tissue outliers using cross-validation. 
We separated the tissue expression data randomly into two groups: a discovery 
set of 34 tissues and a replication set of 10 tissues. For t =  10, 15, 20, 25, and 30, we 
randomly sampled t tissues from the discovery set and performed outlier calling 
as described above. Owing to incomplete tissue sampling, the number of tissues 
supporting each outlier is at least five but less than t. We computed the replication 
rate as the proportion of outliers in the discovery set with | median Z-score|  ≥  1 
or 2 in the replication set. We set no restriction on the number of tissues required 
for testing in the replication set. To calculate the expected replication rate, we 
randomly selected individuals in the discovery set with at least five tissues that 
expressed the gene and computed the replication rate. We repeated this process 
10 times for each discovery set size.
Quality control of genotypes and rare variant definition. We restricted our 
rare variant analyses to individuals of European descent, as they constituted the 
 largest homogenous population within our dataset. We considered only auto-
somal  variants that passed all filters in the VCF (those marked as PASS in the 
Filter  column). Minor allele frequencies (MAFs) within the GTEx data were 
 calculated from the 123 individuals of European ancestry with WGS data  (average 
 coverage 30× ). The MAF was the minimum of the reference and the alternate 
allele  frequency where the allele frequencies of all alternate alleles were summed 
together. Rare variants were defined as having MAF ≤  0.01 in GTEx, and for SNVs 
and indels we also required MAF ≤  0.01 in the European population of the 1000 
Genomes Project Phase 3 data30. To ensure that population structure among the 
individuals of European descent was unlikely to confound our results, we  verified 
that the allele frequency distribution of rare variants included in our analysis 
(within 10 kb of a protein-coding or lincRNA gene, see below) was similar for the 
five European populations in the 1000 Genomes Project (Extended Data Fig. 4d).
Enrichment of rare and common variants near outlier genes. We assessed 
the enrichment of rare SNVs, indels and structural variants near outlier genes. 
Proximity was defined as within 10 kb of the transcription start site for most 
 analyses. For Fig. 3 and Extended Data Figs 5, 7, 8, we included all variants within 
10 kb of the gene, including the gene body, to also capture coding variants. In Fig. 3  
and Extended Data Figs 5, 8, we extended the window to 200 kb for enhancers 
and structural variants. For each gene with an outlier, we chose the remaining set 
of individuals tested for outliers at the same gene as non-outlier controls. We only 
considered genes that had both an outlier and at least one control. We stratified 
variants of each class into four minor allele frequency bins (0–1%, 1–5%, 5–10%, 
10–25%) to compare the relative enrichments of rare and common variants. We 
also assessed the enrichment of SNVs at different Z-score cutoffs. Enrichment was 
defined as the ratio of the proportion of outliers with a variant whose  frequency 
lies within the range to the corresponding proportion for non-outliers. This 
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 enrichment analysis is equivalent to the relative risk of having a nearby rare  variant 
given outlier status. We used the asymptotic distribution of the log relative risk to 
obtain 95% Wald confidence intervals. Within our set of European individuals, 
we observed some individuals with minor admixture that had relatively more rare 
variants than the rest (Extended Data Fig. 1b). We confirmed that inclusion of these 
admixed individuals did not substantially affect our results (Extended Data Fig. 1c). 
We also calculated rare variant enrichments when restricting to variants outside 
protein-coding and lincRNA exons in the Gencode v.19 annotation (extending 
internal exons by 5 bp to capture canonical splice regions).

To measure the informativeness of variant annotations, we used logistic regres-
sion to model outlier status as a function of the feature of interest; this yielded 
log odds ratios with 95% Wald confidence intervals. Note that for the feature 
enrichment analysis in Fig. 3b and Extended Data Fig. 7, we required that  outliers 
and their gene-matched non-outlier controls have at least one rare variant near 
the gene. We standardized all features, including binary features, to facilitate  
comparison between features of different scale. We also calculated the proportion 
of overexpression outliers, underexpression outliers and non-outliers with a rare 
variant near the gene (within 10 kb for SNVs and indels and 200 kb for structural 
variants). To each outlier instance, we assigned at most one of the 12 rare variant 
classes that we considered (Supplementary Table 3a). If an outlier had rare variants 
from multiple classes near the relevant genes, we selected the class that was most 
significantly enriched among outliers.
Annotation of variants. We obtained structural variant annotations from ref. 14 
and computed features for rare SNVs and indels using three primary data sources: 
Roadmap Epigenomics31, CADD v.1.2 (ref. 19) and VEP v.80 (ref. 32). Promoter 
and enhancer annotation tracks were obtained from the Roadmap Epigenomics 
Project (http://www.broadinstitute.org/∼ meuleman/reg2map/HoneyBadger2_
release/). We mapped 28 unique tissues in the GTEx project to 19 tissue groups in 
the Roadmap Project. Using these annotations, for each individual, we assessed 
whether each SNV or indel overlapped a promoter or enhancer region in at least 
one of the 19 Roadmap tissue groups. Features, including  conservation15–18, 
transcription factor binding and deleteriousness, were extracted from the 
full annotation tracks of the CADD v.1.2 release (downloaded 15 May 2015;  
http://cadd.gs.washington.edu/download). Finally, we obtained protein-coding and 
 transcription-related annotations from VEP and LOFTEE. This information was 
provided in the GTEx v6p VCF file (described in ref. 12). Stop-gain and frameshift 
variants annotated as high-confidence loss-of-function variants by LOFTEE were 
assumed to trigger nonsense-mediated decay. We generated gene-level features 
described in Supplementary Table 3.
Allele-specific expression (ASE). We only considered sites with at least 30 total 
reads and at least five reads supporting each of the reference and alternate alleles. 
To minimize the effect of mapping bias, we filtered out sites that showed mapping 
bias in simulations33, that were in low mappability regions (ftp://hgdownload.cse.
ucsc.edu/gbdb/hg19/bbi/wgEncodeCrgMapabilityAlign50mer.bw) or that were 
rare variants or within 1 kb of a rare variant in the given individual (the variants 
were extracted from the GTEx exome-sequencing data described in ref. 12). The 
first two filters were provided in the GTEx ASE data release. The third filter was 
applied to eliminate potential mapping artefacts that mimic genetic effects from 
rare variants. We measured ASE at each testable site as the absolute deviation of 
the reference-allele ratio from 0.5. For each gene, all testable sites in all tissues were 
included. We compared ASE in single-tissue and multi-tissue outliers at different 
Z-score thresholds to non-outliers using two-sided Wilcoxon rank-sum tests. To 
obtain a matched background, we only included a gene in the comparison when 
ASE data existed for both the outlier individual and at least one non-outlier. In 
the case of single-tissue outliers, we also required the tissue to match between the 
outlier and the non-outlier. All individuals that were neither multi-tissue outliers 
for the given gene nor single-tissue outliers for the gene in the corresponding tissue 
were included as non-outliers.

In cases where outliers had rare coding variants in the gene, if the rare  variants 
were causing the extreme expression in cis, we expected to see ASE at the rare 
 variant matching the direction of the effect. For underexpression outliers, we 
expected the (rare) minor allele to be underexpressed compared to the major allele. 
For overexpression outliers, we expected the minor allele to be overexpressed. To 
test this, we used the same filters as above, but looked exclusively at rare  variants 
(instead of excluding them). We measured ASE as the minor-allele ratio: the 
 number of reads supporting the minor allele over the total number of reads.

We also used ASE to evaluate the performance of both the genomic annotation 
model and RIVER (see below) by testing the association between allelic imbalance 
and model predictions using Fisher’s exact test. Here, we defined allelic imbalance 
as the top 10% of the median absolute deviation, across tissues, of the reference- 
allele ratio from 0.5.
Allele frequency measurements in UK10K. UK10K3 VCF files of whole- 
genome cohorts were downloaded from https://www.ebi.ac.uk. We merged the 

Avon Longitudinal Study of Parents and Children (ALSPAC) EGAS00001000090 
and the Department of Twin Research and Genetic Epidemiology (TWINSUK) 
EGAS00001000108 datasets for a total of 3,781 individuals. We counted the 
occurrence of all rare GTEx SNVs in Roadmap Epigenomics-annotated promoter 
regions among the UK10K samples. GTEx variants absent from the UK10K cohorts 
were assigned a count of 0.
Definition of multi-tissue eGenes. We defined multi-tissue eGenes using two 
approaches. For the tissue-by-tissue approach, we obtained lists of significant 
eGenes (q value ≤  0.05) for each of the 44 tissues from the GTEx v6p release. The 
second approach used cis-eQTLs with shared effects across tissues estimated by 
the RE2 model of the Meta-Tissue software34, as described in ref. 12. We chose, 
for each gene, the variant with the lowest nominal P value from the RE2 model. 
We then determined the number of tissues in which this variant-gene pair showed 
a cis-eQTL effect (m value ≥  0.9 (ref. 34)). For each of the 18,380 genes tested 
for  multi-tissue outliers, we calculated the number of tissues in which the gene 
appeared as a significant eGene (tissue-by-tissue approach) or had a shared eQTL 
effect (Meta-Tissue approach). To show that the enrichment of outlier genes 
as multi-tissue eGenes was not confounded by gene expression level, using the 
Meta-Tissue results, we stratified genes tested for multi-tissue outliers into RPKM 
deciles and repeated the comparison between genes with and without a multi- 
tissue  outlier. When comparing the enrichment for eGenes among constrained and 
 disease gene lists, we classified the top n Meta-Tissue eGenes (ranked by nominal 
P value from the RE2 model) as multi-tissue eGenes and considered the remaining 
genes as background. We selected n to match the number of multi-tissue outliers 
in the comparison.
Evolutionary constraint of genes with multi-tissue outliers. We obtained 
gene-level estimates of evolutionary constraint from the Exome Aggregation 
Consortium35 (http://exac.broadinstitute.org/, ExAC release v.0.3). We inter-
sected the 17,351 autosomal lincRNA and protein-coding genes with constraint 
data from ExAC with the 18,380 genes tested for multi-tissue outliers from GTEx, 
 yielding 14,379 genes for further analysis (3,897 and 10,482 genes with and without 
a  multi-tissue outlier, respectively). We examined three functional constraint scores 
from the ExAC database: synonymous Z-score, missense Z-score and probability  
of loss-of-function intolerance (pLI). Synonymous- and missense-intolerant genes 
were defined as those with corresponding Z-scores above the 90th percentile. We 
defined loss-of-function intolerant genes as those with a pLI score above 0.9,  
following the guidelines provided by ExAC. We calculated odds ratios and 95% 
confidence intervals for the enrichment of genes with multi-tissue outliers in these 
lists using a Fisher’s exact test. We repeated this analysis for three other gene sets: 
19,182 multi-tissue eGenes from GTEx v6p defined using Meta-Tissue, 9,480 
reported GWAS genes from the NHGRI-EBI catalogue36 (http://www.ebi.ac.uk/
gwas, accessed 30 November 2015) and 3,576 OMIM genes (http://omim.org/, 
accessed 26 May 2016).

We tested for a difference in the mean constraint for genes with multi-tissue 
outliers and genes with multi-tissue eQTLs using ANOVA. For each constraint 
score in ExAC, we treated the score for each gene as the response and the status of 
the gene as having a multi-tissue outlier and/or a multi-tissue eQTL as a categorical 
predictor with four classes. After fitting the model, we performed a Tukey’s range 
test to determine whether there was a significant difference in the mean constraint 
between genes with a multi-tissue outlier but no multi-tissue eQTL and genes with 
a multi-tissue eQTL but no multi-tissue outlier.
Overlap of genes with multi-tissue outliers and disease genes. We examined 
the enrichment of genes with multi-tissue outliers in eight disease gene lists: the 
GWAS catalogue and OMIM (described above), as well as ClinVar (6,279 genes; 
http://www.ncbi.nlm.nih.gov/clinvar/), OrphaNet (3,451 genes; http://www.orpha.
net/), ACMG20 (58 genes; http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/), 
Developmental Disorders Genotype-to-Phenotype37 (DDG2P; 1,693 genes;  
http://www.ebi.ac.uk/gene2phenotype/), and two curated gene lists of 86 cardio-
vascular disease genes and 55 cancer genes (described below). We computed odds 
ratios and 95% confidence intervals using a Fisher’s exact test to compare each 
disease gene list to the genes with multi-tissue outliers and repeated the comparison 
for genes with multi-tissue eQTLs.

Heritable cancer predisposition and heritable cardiovascular disease gene lists 
were curated by local experts in clinical and laboratory-based genetics in the two 
respective areas (Stanford Medicine Clinical Genomics Service, Stanford Cancer 
Center’s Cancer Genetics Clinic and Stanford Center for Inherited Cardiovascular 
Disease). Genes were included if both the clinical and laboratory-based teams 
agreed there was sufficient published evidence to support using variants in these 
genes in clinical decision making.

For each of the eight disease gene lists above and for genes with multi-tissue 
outliers or multi-tissue eQTLs, we computed the number of variants (SNVs and 
indels within 10 kb and structural variants within 200 kb of the gene, including the 
gene body) at each gene in the 123 individuals of European ancestry with WGS 
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data. For each gene list and for each MAF bin (0–1%, 1–5%, 5–10%, 10–25%), we 
compared the mean number of variants near genes in the list to the mean number 
near all other annotated autosomal protein-coding and lincRNA genes using a 
two-sided t-test.
The RIVER integrative model for predicting regulatory effects of rare variants. 
RIVER (RNA-informed variant effect on regulation) is a hierarchical Bayesian 
model that predicts the regulatory effects of rare variants by integrating gene 
expression with genomic annotations. The RIVER model consists of three layers: 
a set of nodes G =  G1,..., GP in the topmost layer representing P observed genomic 
annotations over all rare variants near a particular gene; a latent binary variable 
F in the middle layer representing the unobserved functional regulatory status of 
the rare variants; and one binary node E in the final layer representing expression 
outlier status of the nearby gene. We model each conditional probability distri-
bution as follows: 
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where λ is an L2 penalty hyper-parameter derived from the Gaussian prior on β.
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where I is an indicator operator, t is the binary value of expression En, s is the 
 possible binary values of Fn, and C is a pseudo count derived from the Beta prior 
on θ. The E and M steps are applied iteratively until convergence.
RIVER application to the GTEx cohort. As input, RIVER requires a set of 
genomic features G and a set of corresponding expression outlier observations E,  
each over instances of individual and gene pairs. Using the variant annotations 
described above, we generated site-level genomic features for the 116 European 
individuals with GTEx WGS data that had fewer than 50 multi-tissue  outliers. 
We then collapsed these features for all rare SNVs within 10 kb of each tran-
scription start site to generate the gene-level features that are described in 
Supplementary Table 3b. This produced a matrix of genomic features G of size 
(116  individuals ×  1,736 genes) ×  (112 genomic features), where we standardized 
features before use. For the values of E, we defined any individual with | median 
Z-score|  ≥  1.5 as an outlier if expression was observed in at least five tissues; the 
remaining individuals were labelled as non-outliers for the gene. We used this more 
lenient threshold in order to obtain a sufficiently large set of outliers for robust 
training and testing. In total, we extracted 48,575 instances where an individual 
had at least one rare variant within 10 kb of the transcription start site of a gene.

To train and evaluate RIVER on the GTEx cohort, we used the 3,766 instances 
of individual and gene pairs where two individuals had the same rare SNVs near 
a particular gene. We held out those instances and trained RIVER parameters 
with the remaining instances. RIVER requires two hyper-parameters λ and C. To 
select λ, we first applied an L2-regularized multivariate logistic regression with 
features G and response variable E, selecting λ with the minimum squared error 
via tenfold cross-validation (we selected λ =  0.01). We selected C =  50, informed 
simply by the total number of training instances available, as validation data were 
not available for extensive cross-validation. Initial parameters for EM were set to 
θ =  (P(E =  0 |  F =  0), P(E =  1 |  F =  0), P(E =  0 |  F =  1), P(E =  1 |  F =  1)) =  (0.99, 
0.01, 0.3, 0.7) and β from the multivariate logistic regression above, although  
different initializations did not significantly change the final parameters (Extended 
Data Fig. 9b).

The 3,766 held-out pairs of instances were used to create a labelled  evaluation 
set. For one of the two individuals from each pair, we estimated the posterior 
 probability of a functional rare variant P(F |  G, E, β, θ). The outlier status of 
the  second individual, whose data were not observed either during training or 
 prediction, was then treated as a ‘label’ of the true status of functional effect F. 
Using this labelled set, we compared the RIVER score to the posterior P(F |  G, β) 
estimated from the plain L2-regularized multivariate logistic regression model 
with genomic annotations alone. We produced receiver operating characteristic 
curves and computed areas under the curve (AUCs) for both models, testing for 
 significant differences using DeLong’s method29. This analysis relied on outlier 
status  reflecting the consequences of rare variants. Indeed, pairs of individuals who 
shared rare variants tended to have highly similar outlier status even after  regressing 
out effects of common variants (Kendall’s τ rank correlation, P <  2.2 ×  10−16). We 
repeated this evaluation, varying the median Z-score threshold used to define 
outliers, and we also compared RIVER to individual features that were strongly 
enriched among outliers as well as PolyPhen39 and SIFT40.
Supervised model integrating expression and genomic annotation. To assess 
the information gained by incorporating gene expression data in the prediction of 
functional rare variants, we applied a simplified supervised approach to a limited 
dataset. We used the instances where two individuals had the same rare SNVs 
to create a labelled training set where the outlier status of the second individual 
was used as the response variable. We then trained a logistic regression model 
with only two features: (1) the outlier status of the first individual and (2) a single 
genomic feature value, such as CADD or deleterious annotation of genetic variants 
using neural networks (DANN). We estimated parameters from the entire set of 
rare-variant-matched pairs using logistic regression to determine the log odds ratio 
and corresponding P value of expression status as a predictor. While this approach 
was not amenable to training a full predictive model over all genomic annotations 
jointly given the limited number of instances, it provided a consistent estimate of 
the log odds ratio of outlier status. We tested five genomic predictors: CADD19, 
DANN41, transcription-factor-binding site annotations, PhyloP scores15 and one 
aggregated feature: the posterior probability from a multivariate logistic regression 
model learned with all genomic annotations.
RIVER assessment of pathogenic ClinVar variants. We downloaded variants 
from the ClinVar database21 (accessed 04 May 2015) and searched for these disease 
variants within the set of rare variants segregating in the GTEx cohort. Any disease 
variant reported as pathogenic, likely pathogenic or a risk factor for disease was 
considered pathogenic. We further categorized the pathogenic variants as likely 
regulatory if they were annotated as splice-site variants, synonymous or nonsense, 
whereas missense variants were considered unlikely to have a regulatory effect. To 
explore RIVER scores for those pathogenic variants, all instances were used for 
training RIVER. We then computed a posterior probability P(F |  G, E, β, θ) for 
each instance coinciding with a pathogenic ClinVar variant.
Stability of estimated parameters with different parameter initializations. 
We tried several different initialization parameters for β and θ to explore how 
this affected the estimated parameters. We initialized a noisy β by adding K% 
Gaussian noise compared to the mean of β with fixed θ (for K =  10, 20, 50 100, 
200, 400, 800). For θ, we fixed P(E =  1 |  F =  0) and P(E =  0 |  F =  0) as 0.01 and 0.99, 
 respectively, and initialized (P(E =  1 |  F =  1), P(E =  0 |  F =  1)) as (0.1, 0.9), (0.4, 0.6) 
and (0.45, 0.55) instead of (0.3, 0.7) with β fixed. For each parameter initialization, 
we computed Spearman rank correlations between parameters from RIVER using 
the original initialization and the alternative initializations. We also investigated 
how many instances within top 10% of posterior probabilities from RIVER under 
the original settings were replicated in the top 10% of posterior probabilities under 
the alternative initializations (replication accuracy in Extended Data Fig. 9b).
Validation of large-effect rare variants using CRISPR–Cas9 genome editing. To 
select rare, coding SNVs for validation by CRISPR–Cas9 editing, we first restricted 
to the (gene, individual, variant) tuples identified in multi-tissue outliers without a 
rare structural variant or a rare indel within 200 kb or 10 kb of the gene,  respectively. 
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We considered the 116 rare SNVs with a coding consequence for the  corresponding 
gene as annotated by VEP32; coding annotations included stop gained, stop lost, 
splice acceptor variant, splice donor variant, start lost, missense variant, splice 
region variant, stop retained variant, synonymous variant, coding sequence 
variant and 5′ /3′  UTR variant. Using RNA-seq data from ENCODE, we further 
restricted our variant list to the 59 SNVs occurring in genes with an average FPKM 
(fragments per kilobase per million reads) of at least 10 in K562 cells (ENCODE 
experiment accession numbers ENCSR000AEL and ENCSR000AEN)42. Finally, we 
filtered for rare, coding SNVs in (gene, individual) pairs with | median Z-score|  >  4 
and a RIVER score above the 99.5th percentile. These filters yielded a final set of 
13 rare SNVs from which we chose the six exonic SNVs for testing.

As controls, we selected SNVs present within the same cDNA amplicon region 
as the corresponding outlier SNV (see details on targeted sequencing below). We 
first searched for coding SNVs present within these regions in the GTEx cohort 
that did not occur in the outlier individual. If no SNV could be found satisfying 
these criteria, we expanded our search for SNVs using the ExAC database (ExAC 
release v.0.3)35. If multiple possible control variants existed for an outlier SNV, 
we ranked the controls by CADD score19 and prioritized synonymous variants.

Sequences of single-guide RNAs (sgRNAs) used in the study are listed in 
Extended Data Fig. 11b. For each variant, a sgRNA and two donor oligonucleotides 
(with the reference and alternative alleles) were designed such that the PAM was 
located as close to the variant as possible. The donors were 99 bp long centred on 
the variant being installed. The variants were installed into K562 cells as previously 
described22,23. The K562 cells were those generated previously23 and were regularly 
tested for mycoplasma infection. sgRNAs were expressed in the pGH020 (Addgene 
plasmid 85405) expression vector. For each donor oligonucleotide, K562 cells  
constitutively expressing a Cas9–BFP fusion protein were electroporated with 3 µ g 
of sgRNA plasmid DNA and 1 µ l of 100 µ M donor oligonucleotide using the T-016 
program on a Lonza Nucleofector 2b. After electroporation, cells were allowed to 
recover for five days. Cells electroporated with the reference and alternative allele 
donor oligonucleotides were mixed in a 1:1 ratio and grown together for three 
more days to control for differences in culturing conditions. We included cells 
electroporated with the reference allele to ensure that any changes in expression we 
observed were not due to the editing process itself. Because the editing efficiency 
is not 100% and varies between loci, we expected fewer than half the cells to carry 
the alternative allele and for this proportion to vary by locus. One to two million 
cells were collected for RNA and genomic DNA extraction.

Genomic DNA (gDNA) was extracted using the QiaAmp DNA mini kit 
(Qiagen). Total RNA was extracted using QiaShredder and RNeasy Mini kit 
(Qiagen). Subsequently, 6 µ g of RNA was converted into cDNA using AMV reverse 
transcriptase (Promega). cDNA was purified and concentrated with the PCR 
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on a 1% TAE agarose gel. The amplicons were then prepared for sequencing  
using the Nextera XT kit (Illumina) and sequenced together on a NextSeq 500.

Reads were trimmed with cutadapt43 (v.1.13) and aligned using bwa44 
(v.0.7.12-r1039) allowing no mismatches (bwa aln –n 0), which excluded any reads 
with indels created during editing. We used custom reference sequences, one each 
for the reference and alternate alleles of the targeted cDNA and gDNA amplicon 
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 respectively, for the remaining loci). As such, we removed these two loci from 
 further analysis. Finally, to assess the effect of each variant on expression, we 
tested for a significant difference between the cDNA and gDNA alternate allele 
proportions with a two-sided t-test. We corrected for multiple testing using  
the Bonferroni procedure.
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Extended Data Figure 1 | PEER correction. a, Adjusted R2 between top 
15 PEER factors and top 20 sample (left) and subject (right) covariates in 
an example tissue, skeletal muscle. Covariates were ranked by the average 
adjusted R2 across all PEER factors and hierarchically clustered. The 
corresponding data for all tissues are provided in Supplementary Tables 
1, 2. b, Adjusted R2 between the total expression component removed 
by PEER in each tissue and the top 20 sample (left) and subject (right) 
covariates. The covariates were ranked by the average adjusted R2 across  

all tissues, and both axes were hierarchically clustered. White denotes 
missing values, and tissues are coloured as in Fig. 1. PEER factors captured 
slightly different covariates across tissues, with a noticeable difference 
between the brain and other tissues. c, Rare variant enrichments as in  
Fig. 2a for different levels of PEER correction. The fully corrected data 
show substantially stronger rare variant enrichments than the two partially 
corrected datasets.
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Extended Data Figure 2 | Distribution of the number of genes with a 
multi-tissue outlier. a, Distribution of the number of genes for which each 
individual was a multi-tissue outlier. Each individual was an outlier for 
a median of 10 genes. Individuals with 50 or more outliers are coloured 
in grey and were excluded from downstream analyses. b–f, Distribution 
of the number of genes for which individuals, stratified by common 
covariates, were multi-tissue outliers. For race and sex, we compared the 
distributions using an unsigned Wilcoxon rank-sum test, whereas we 
used Spearman’s ρ to test for association with the remaining covariates. 

Only age (Spearman’s ρ =  0.10, P =  0.033) and ischaemic time (Spearman’s 
ρ =  0.18, P =  0.00022) were nominally associated with the number of 
outlier genes per individual. The association with age fails to achieve 
significance after correcting for multiple testing using the Bonferroni 
method. Note that in b we only tested for a significant difference in the 
distribution of the number of outlier genes between white and black 
individuals, because there were too few individuals in the other groups. 
g, Enrichments as shown in Fig. 2a either including all individuals, or 
excluding individuals that are outliers for 50 (matches Fig. 2a) or 30 genes.
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Extended Data Figure 3 | Single-tissue outlier replication. a, Correlation 
between the replication proportions (see Methods) obtained from all 
samples and from a subset of 70 overlapping individuals per tissue pair 
(Pearson’s correlation, P <  2.2 ×  10−16). When restricting to 70 individuals, 
the replication rates decreased more for discovery tissues with larger 
sample sizes in the full dataset, indicating that replication rates were 
underestimated for tissues with small sample sizes. b, Correlation between 
replication in the 70 individuals used for discovery and replication 
assessed in a set of 70 individuals that included the outlier individual and 
69 individuals excluded from the discovery set (Pearson’s correlation, 
P <  2.2 ×  10−16). Replication was higher when computed in the discovery 
individuals rather than in a distinct set of individuals. c, Single-tissue 

outlier replication using all individuals, as in Fig. 1b, but data are only 
shown for pairs with at least 70 overlapping individuals. Tissue pairs with 
insufficient overlap are in grey. d, For each pair of tissues with sufficient 
samples, outlier discovery and replication using 70 individuals sampled in 
both tissues. The replication values decreased compared with replication 
performed in all individuals (c), particularly for tissues with large sample 
sizes in the complete dataset. However, the pattern of replication, with 
more similar tissues having higher replication rates, is maintained. e, For 
each tissue, the proportion of (individual, gene) outlier pairs where the 
individual was also a multi-tissue outlier for the gene. This proportion was 
positively correlated with the tissue sample size (P =  1.4 ×  10−10). Points 
are coloured by tissue as in Fig. 1.
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Extended Data Figure 4 | Number of rare variants per individual and 
population structure. a, The distribution of the number of rare variants of 
each type for individuals of European descent (reported as white). Certain 
individuals had many more rare variants than the population median 
(vertical black line). b, Principal component analysis of all individuals. 
Individuals are plotted according to their first two genotype principal 
components (PCs) and coloured by their reported ancestry. White 
individuals with WGS data, included in a, are coloured in a lighter shade 
of blue and those with 60,000 or more rare variants are circled in black. 

The individuals with an excess of rare variants probably had African or 
Asian admixture. c, Enrichments as in Fig. 2a and excluding individuals 
with > 60,000 rare variants (circled in b), which did not substantially 
affect the enrichment patterns. d, European population allele frequency 
distributions in the 1000 Genomes Project of rare SNVs and indels used in 
our analysis. The rare variants included in our analysis were constrained 
to have MAF ≤  0.01 in the 1000 Genomes European super population, 
but they were also relatively rare in each of the individual European 
populations.
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Extended Data Figure 5 | Comparison of overexpression and 
underexpression outliers. a, ASE at rare exonic variants. ASE is shown 
as the ratio of the number of reads supporting the minor allele to the 
total number of reads at the site. If the rare variant is driving the extreme 
expression, we expect this ratio to be below 0.5 for underexpression 
outliers and above 0.5 for overexpression outliers. Rare coding variants 
were enriched for ASE in the direction of the extreme expression effect 
(two-sided Wilcoxon rank-sum tests, each nominal P <  4.0 ×  10−8).  
b, Expression level distribution of all genes and genes with overexpression 

or underexpression outliers. Expression is shown as the log2 of the median 
(RPKM +  2), where the median was first taken across individuals in each 
tissue then across expressed tissues for each gene. For genes with low 
expression, even an RPKM of 0 may not yield a Z-score ≤  −2. Indeed, 
underexpression outliers were depleted among low expressed genes 
whereas the opposite was true of overexpression outliers (two-sided 
Wilcoxon rank-sum test comparing to all genes, P <  2.2 ×  10−16 for both 
overexpression and underexpression). c, Feature enrichments (as in  
Fig. 3b) shown separately for over and underexpression outliers.
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Extended Data Figure 6 | Extended rare variant enrichments. a, For each 
tissue, rare SNV enrichment in single-tissue outliers compared with non-
outliers at the same genes for increasing Z-score thresholds. Enrichments 
calculated as in Fig. 2. The rare variant enrichments varied between tissues 
though the overall pattern mirrored that of multi-tissue outliers when 
combining all the tissues (Fig. 2b). The high variance in the enrichments 

underscores the noise in single-tissue outlier discovery. b, As in Fig. 2a, 
enrichment for SNVs, indels and structural variants in outliers compared 
with the same genes in non-outliers, either including all rare variants or 
only those outside protein-coding or lincRNA exons in Gencode v.19. The 
enrichment of rare variants was weaker, but still significant, for all variant 
types when excluding exonic regions.
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Extended Data Figure 7 | Enrichment of an extended list of functional 
genomic annotations. log odds ratios and 95% Wald confidence intervals 
from logistic regression models of outlier status as a function of each 
genomic feature. Features were calculated among rare SNVs within 10 kb 
of the gene. When more than one feature corresponded to the same 

genomic annotation (for example, the number or the presence of rare 
variants in a splice region; Supplementary Table 3b), the feature with the 
highest enrichment is shown. Lighter shading indicates a non-significant 
log odds ratio (nominal P >  0.05).
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Extended Data Figure 8 | Evolutionary constraint and regulatory 
control of multi-tissue outlier genes. a, Odds ratio of being intolerant 
to synonymous and missense variants for genes with multi-tissue eQTLs 
(eGenes), genes with multi-tissue outliers, OMIM and GWAS genes (see 
Methods). As expected, GWAS and OMIM genes showed no enrichment 
or depletion for synonymous variation intolerant genes. Genes with multi-
tissue outliers and eGenes showed slight depletion for these genes. Genes 
with multi-tissue outliers and eGenes were strongly depleted for genes 
intolerant to missense variation compared with OMIM and GWAS genes. 
b, Comparison of the depletion of disease genes among genes with a multi-
tissue outlier and eGenes. Similar to Fig. 4c, bars represent 95% confidence 
intervals from Fisher’s exact test. c, For each of ten gene lists, the difference 
in the mean number of variants near genes in the list compared with 
the mean for all other annotated genes. Results are stratified by minor 
allele frequency, and bars indicate the 95% confidence interval for the 

difference from a two-sided t-test. Disease genes had more variants than 
control genes in general, and the difference was particularly striking for 
rare variants. This suggests that the depletion of outliers and eQTLs for 
certain groups of disease genes is not due to less rare variation near these 
genes. Instead, we hypothesize that the variation around these genes in our 
healthy cohort is less likely to have large regulatory effects. d, Distribution 
of the number of tissues with an eQTL for genes with and without outliers. 
Genes with multi-tissue outliers had eQTLs in more tissues than genes 
without. This suggests that they are more susceptible to shared regulatory 
control. This result held for both multi-tissue eQTL definitions (see 
Methods; Meta-Tissue: 23 versus 3 tissues, Wilcoxon rank-sum test 
P <  2.2 ×  10−16; tissue-by-tissue: 7 versus 3 tissues, P <  2.2 ×  10−16).  
e, This eGene enrichment was robust across different mean expression 
levels across tissues (two-sided Wilcoxon rank-sum tests, Bonferroni-
adjusted P <  1 ×  10−11).
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | RIVER performance. a, Comparison between 
the predictive power of RIVER and that of the genomic annotation 
model, as in Fig. 5a, across different Z-score thresholds for outlier calling. 
Increasing the Z-score threshold improved AUC values, but reduced 
the number of outlier examples, which led to noisy receiver operating 
characteristic curves. b, Stability analysis of estimated parameters with 
different parameter initializations (see Methods). c, Correlations, using 
Kendall’s τ, between the fraction of tissues with | Z-score|  ≥  2 and the 
test probabilities from the genomic annotation model (left) and RIVER 
(right). We calculated test posterior probabilities using tenfold cross-
validation and only considered individual and gene pairs with a fraction 
of tissues with | Z-score|  ≥  2 that was significantly different from 0.05 
(one-sided binomial exact test, Benjamini–Hochberg adjusted P <  0.05). 
d, P values from a one-sided Fisher’s exact test measuring the association 

between allelic imbalance (see Methods) and the posterior probability 
of a functional rare variant according to the genomic annotation model 
and RIVER. The posterior probabilities from RIVER were more strongly 
associated with allelic imbalance across all four thresholds tested.  
e, Assessment of the advantage of incorporating gene expression with 
genomic annotations for predicting outlier status using simplified 
supervised models (see Methods). All models showed consistent 
improvement of the log odds ratio of outlier status when incorporating 
expression. f, Performance of models with 12 individual genomic features 
compared with the genomic annotation model and RIVER. Some models 
with single genomic features provided slightly better AUCs compared with 
the genomic annotation model, but they were not statistically different. On 
the other hand, RIVER predicted the effects of rare variants significantly 
better than each of the models that included a single feature.
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Extended Data Figure 10 | See next page for caption.
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Extended Data Figure 10 | Evaluation of known pathogenic variants 
using RIVER. a, The 27 GTEx rare SNVs reported as disease variants in 
ClinVar. b–d, Relative frequency of the | median Z-score|  (b), posterior 
probabilities from the genomic annotation model (c) and posterior 
probabilities from RIVER (d) for all (individual, gene) pairs (grey) and 
27 pairs with pathogenic variants from ClinVar (orange). P values were 
computed using two-sided Wilcoxon rank-sum tests. We note that rare 
indels and structural variants were not found nearby the genes in the 
individuals carrying these pathogenic variants. e, f, The Z-score and 
RPKM distributions for SBDS (e) and GAMT (f) were compared with the 
values from four individuals carrying regulatory pathogenic variation 
(red asterisks and triangles). The median Z-score and RPKM values 
across tissues are shown at the top of each plot (black circle). Tissues 
are coloured as in Fig. 1 and sorted in decreasing order of the difference 

between the average Z-score of individual(s) with a regulatory pathogenic 
variant and the median Z-score for the tissue. Three individuals carrying 
a total of two unique rare variants are shown for SBDS. Both variants are 
associated with the recessive Shwachman–Diamond syndrome, which 
causes systemic symptoms that include pancreatic, neurological and 
haematologic abnormalities46 and can disrupt fibroblast function47. The 
individuals, being heterozygous for these variants, lacked the disease 
phenotype. Nonetheless, we saw extreme underexpression of SBDS across 
almost all tissues in these individuals, including brain tissues, fibroblasts 
and pancreas. One individual had a rare variant for GAMT associated 
with cerebral creatine deficiency syndrome 2, shown to cause neurological 
deficiencies and also lead to low body fat48. The individual had the most 
extreme underexpression in (subcutaneous) adipose tissue.
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Extended Data Figure 11 | Validation of large-effect rare variants using 
CRISPR–Cas9 genome editing. a, SNVs in outliers and controls assayed 
for expression effects using CRISPR–Cas9 genome editing. For common 
SNVs in controls (MAF > 1% in the GTEx cohort), the range of median  
Z-scores and RIVER scores are given for all individuals with the minor 
allele. Missing values indicate that the variant was absent from our 
cohort. b, sgRNAs for four SNVs found in outliers and four control 
SNVs in the same genes. c, Alternate (installed) gDNA and cDNA allele 

proportions for four rare, coding SNVs in outliers (left) and four matched 
control SNVs (right). Each gDNA and cDNA sample was sequenced in 
triplicate (technical replicates). Asterisks denote the Bonferroni-adjusted 
significance level from a two-sided t-test of the difference between the 
gDNA and cDNA alternate allele proportions: ·P <  0.05, * P <  0.01,  
* * P <  0.001. Although one control SNV showed a significant difference in 
the alternate allele proportion between cDNA and gDNA, it displayed an 
increase rather than a decrease in expression.
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    Experimental design

1.   Sample size

Describe how sample size was determined. See Figure 1 of a previous GTEx manuscript (PMID: 23715323) for a detailed 

description of statistical power and sample size quantification.

2.   Data exclusions

Describe any data exclusions. We used the GTEX samples included in the eQTL analyses. The data inclusion/

exclusion criteria are described in that manuscript (submitted concurrently). We 

further excluded any individuals with more than 50 multi-tissue outliers, as 

described in the methods.

3.   Replication

Describe whether the experimental findings were 

reliably reproduced.

We validated the effects on expression of four rare variants via CRISPR/Cas9 

genome editing. We attempted to validate two additional variants but excluded 

them from our analysis because they failed to amplify successfully, so we could not 

accurately measure their effect.

4.   Randomization

Describe how samples/organisms/participants were 

allocated into experimental groups.

Order of sample processing for library preparation and sequencing was 

randomized to avoid batch effects.

5.   Blinding

Describe whether the investigators were blinded to 

group allocation during data collection and/or analysis.

No blinding took place.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 

Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 

study. 

RIVER is available at https://bioconductor.org/packages/release/bioc/html/

RIVER.html. Additionally, the code for running analyses and producing the figures 

throughout the manuscript is available separately (https://github.com/joed3/

GTExV6PRareVariation).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 

unique materials or if these materials are only available 

for distribution by a for-profit company.

Residual biospecimens are available to all researchers according to the Genotype-

Tissue Expression (GTEx) project biospecimens access policy. The policy and related 

forms can be found on the GTEx Portal (gtexportal.org) under the Biobank Tab.

9.   Antibodies

Describe the antibodies used and how they were validated 

for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. For the experimental validation, we used a K562 cell line previously described 

(PMID:27798611).

b.  Describe the method of cell line authentication used. None.

c.  Report whether the cell lines were tested for 

mycoplasma contamination.
Yes, the K562 cells were tested for mycoplasma.

d.  If any of the cell lines used are listed in the database 

of commonly misidentified cell lines maintained by 

ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived 

materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population 

characteristics of the human research participants.

The human research participants and relevant covariates are described in this 

manuscript and the GTEx eQTL manuscript submitted concurrently.


