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Abstract
Organ- and body-scale cell atlases have the potential to transform our understanding of human biology.
To capture the variability present in the population, these atlases must include diverse demographics
such as age and ethnicity from both healthy and diseased individuals. The growth in both size and
number of single-cell datasets, combined with recent advances in computational techniques, for the first
time makes it possible to generate such comprehensive large-scale atlases through integration of
multiple datasets. Here, we present the integrated Human Lung Cell Atlas (HLCA) combining 46 datasets
of the human respiratory system into a single atlas spanning over 2.2 million cells from 444 individuals
across health and disease. The HLCA contains a consensus re-annotation of published and newly
generated datasets, resolving under- or misannotation of 59% of cells in the original datasets. The HLCA
enables recovery of rare cell types, provides consensus marker genes for each cell type, and uncovers
gene modules associated with demographic covariates and anatomical location within the respiratory
system. To facilitate the use of the HLCA as a reference for single-cell lung research and allow rapid
analysis of new data, we provide an interactive web portal to project datasets onto the HLCA. Finally, we
demonstrate the value of the HLCA reference for interpreting disease-associated changes. Thus, the HLCA
outlines a roadmap for the development and use of organ-scale cell atlases within the Human Cell Atlas.

Introduction
Single-cell genomics has been enabling scientists to study tissues at unprecedented scale and
resolution1–3. Rapid technological improvements over the past decade have allowed datasets to grow
both in size and number4. This has led consortia, such as the Human Cell Atlas, to pursue the generation
of large-scale reference atlases of human organs and the entire human body5,6. Such atlases, capturing
the diversity of the cellular landscape of human tissues in health, development, normal aging, lifestyles,
environmental exposures, and in disease, will advance insights into the molecular underpinnings of
natural variation in healthy tissues, as well as mechanisms of disease inception, progression, remission,
and treatment response7. To capture diversity on the population scale, these atlases must include data
from thousands of individuals. The generation of atlases of this scale by a single group is currently not
feasible. However, the cumulative datasets generated by the research community at large now contain
hundreds of individual tissue donors, sampled at various anatomical locations within an organ.
Integration of these disconnected studies into a single harmonized model may offer superior and much-
needed8 coverage of relevant donor demographic variables, which are expected to impact the molecular
phenotypes of the cells in a tissue.

The power of large-scale single-cell cross-dataset analysis has been demonstrated in several recent
studies9–15. We previously performed the first single-cell meta-analysis of the respiratory system,
aggregating expression data of three genes important for SARS-CoV-2 cell entry from 31 datasets,
spanning over 200 individuals11. This study showed cell-type specific effects of sex, age and smoking
status on gene expression, which could not have been recovered in any individual dataset. Especially
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when large numbers of individuals, rather than cells, are aggregated, it becomes possible to answer
population-level questions using single-cell data. However, currently available integrated atlases are
limited in the number of genes11, human samples12,14, datasets14, or cell types9,12, and include only non-
harmonized or limited cell type annotations9–13 and subject metadata9–13 (e.g. age, BMI, smoking
status). These limitations constrain the potential of atlases to serve as a “reference”, as they fail to
represent and catalog the diversity of cellular phenotypes within the organ and among individuals.
Moreover, choice of integration approach can impact the resulting reference16, and only a retinal atlas
systematically assessed the quality of data integration10.

Overcoming batch effects through data integration is an essential step in building a high-quality atlas
and remains one of the key challenges in the field. As each dataset represents a unique view of an organ,
containing specific information and biases due to its experimental design, it is paramount to separate
technical biases from biologically relevant information when integrating datasets. Successful integration
of the available datasets into a single tissue atlas will therefore be a critical step to achieve the goals of
the Human Cell Atlas5.

Here, we present the first integrated single-cell transcriptomic atlas of the human respiratory system,
including the upper and lower airways, from published and newly generated datasets (Fig. 1). The Human
Lung Cell Atlas Core Reference (HLCA core) combines data from 14 datasets, 107 individuals, 168
healthy samples, and 584,000 cells to represent the cellular diversity of the human lung. The HLCA core
contains detailed, consensus-based hierarchical cell type annotations with associated marker genes,
recovers rare cell types from constituent datasets, and associates cell type-specific gene modules with
covariates such as age, BMI, and anatomical location. Through transfer learning, the HLCA core can be
used to annotate and interpret new datasets from healthy and diseased individuals, enabling discovery of
novel cell types and states associated with normal variability and disease. We demonstrate the power of
this approach by extending the HLCA to a total of 2.2 million cells and 444 donors, mapping 32 new
human lung datasets from healthy and diseased lungs to the HLCA core. The HLCA thus forms the first
consensus single-cell transcriptomic reference for healthy lung tissue.

Together, we provide a roadmap for building and using comprehensive, interpretable, and up-to-date
organ- and population-scale cell atlases.

Results

Successful data integration into the Human Lung Cell Atlas
establishes a core reference
To build a foundation for the HLCA, we collected scRNA-seq data and detailed, harmonized technical,
biological and demographic metadata from 14 different datasets (9 published, 5 unpublished)1,2,17−22.
These datasets include samples from 107 individuals, with diversity in age (ranging from age 10 to 76),



Page 9/53

sex (60% male, 40% female), ethnicity (65% white, 14% black, 2% latino, 2% mixed, 2% Asian, 14%
unannotated), BMI (ranging from 20 to 49), and smoking status (52% never, 16% former, 15% active
smoker, 17% unannotated) (Fig. 2a). Cells from the donors were obtained from 166 tissue samples, using
a variety of sampling methods, experimental protocols, and sequencing platforms, and coming from
different tissue donors (e.g. organ donor, healthy volunteer, Supplementary Data Table 1, Supplementary
Data Table 2). To obtain a broad reference of the lung and both upper and lower airways, we included
samples from nose, lower airways (multiple locations) and lung parenchyma (Supplementary Data
Table 2). Sample locations were projected onto a 1-dimensional common coordinate framework (CCF) to
standardize the anatomical location of origin. The CCF quantifies location along the respiratory tract
between the outside world and the alveolar sac in the lung parenchyma by assigning a score between 0
and 1, with 0 representing the most proximal location in the upper airways (inferior turbinate) and 1
representing the most distal location (alveolar sac) (Fig. 2a, Supplementary Data Table 2, Supplementary
Data Table 3).

Single-cell studies in lung tissue have described several novel lung cell types and states1,17,23. However,
consensus definitions of cell types based on single-cell transcriptomic data, particularly of transitional
cell states, are lacking. To enable supervised data integration and downstream integrated analysis, we
harmonized cell-type nomenclature between the different datasets using a 5-level hierarchical cell identity
reference framework (Supplementary Data Table 4, Fig. 2b). We collected cell identity labels for every
dataset as provided by the data generator, and mapped these to the hierarchical reference framework. At
the coarsest level (level 1) cells were labeled as epithelial (48%), immune (38%), endothelial (9%), and
stromal (4%). Most datasets did not provide the finest level of annotation for all cells, likely due to
limitations in cell numbers, such that overall 94%, 66% and 7% of cells were annotated at level 3, 4, and 5,
respectively (Fig. 2b). As expected, cell type composition varied between samples, and especially between
locations along the CCF (Fig. 2c).

To perform integration and remove dataset-specific batch effects, we evaluated 12 different batch
integration methods on 12 datasets (Fig. 2d, Extended Data Fig. 1), using our previously established
benchmarking pipeline24–33. This benchmarking pipeline includes 12 metrics that evaluate the quality of
an integration, quantifying both the removal of batch effects and the conservation of biological variation
after integration. Based on these criteria, scANVI24 was the top-performing integration method (Fig. 2d).
We therefore integrated the collected datasets using scANVI, creating the HLCA core, a reference atlas of
the healthy human respiratory system containing 584,844 cells from 107 individuals (Fig. 3a).

The HLCA includes consensus-based detailed cell identity
annotations
A large-scale integrated atlas provides the unique opportunity to systematically investigate the extent of
consensus in cell type labels that are found across subjects. To identify areas of consensus and
disagreement, we iteratively clustered the HLCA core and investigated subject diversity and cell-type label
agreement in these clusters using entropy scores (see Methods). Most clusters contained cells from
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many subjects (median 47 subjects per cluster, range 2-102), as illustrated by high subject entropy (> 
0.43, Fig. 3b, Extended Data Fig. 2) for 79 out of 93 final clusters. Low subject entropy clusters (n = 14)
were largely immune cell clusters (n = 13, of which 7 macrophage clusters, 4 T cell clusters and 2 mast
cell clusters), representing subject- or group-specific phenotypes. High cell type label entropy can identify
both annotation disagreements between studies, and clusters of doublets. Indeed, six small clusters with
high label entropy even at the coarsest level of annotation highlighted doublet populations (identified via
marker gene expression), not labeled as such in the original datasets. These clusters were removed from
the HLCA core, bringing the total number of clusters to 93. Of these 93, 61 clusters showed low label
entropy (< 0.56), suggesting overall agreement of cell-type labels assigned in the original datasets (Fig.
3a,b). The remaining 32 clusters exhibited high label entropy, highlighting cellular phenotypes that were
differently labeled across datasets (Fig. 3a,b). For example, one cluster of myeloid cells (cluster 1.2.1)
contained cells originally labeled as monocytes, macrophages, and dendritic cells at annotation level 3
(Fig. 3c). Sub-clustering and marker gene expression suggested that this cluster included a homogeneous
subcluster of type 2 dendritic cells (DC2s), and the cells in this subcluster were partly mis-labeled as
monocytes and macrophages in the foundational datasets (Fig. 3c, Extended Data Fig. 3). Similarly, we
find several such cases among stromal and epithelial cell populations, as well as in continuous cell
phenotypes (e.g., goblet and club cells), for which individual studies set different boundaries between cell
type labels. The presence of these high label entropy populations, identifying mislabeled cell types,
indicates the need for consensus re-annotation of the integrated atlas. As a first step to achieve such a
consensus on the diversity of cell types present in the HLCA core, we performed a full re-annotation on the
basis of iterative graph-based clustering of the integrated data. Clusters were annotated taking into
account the original cell type labels from each study, and a consensus of opinions from 6 lung experts
who evaluated the cluster marker genes, to generate tentative consensus cell identity annotations (Fig.
3d). While our consensus cell type annotations partly correspond to original labels (Fig. 3e, e.g. AT1, AT2,
mast cells), there were also substantial re-annotations (Fig. 3e, e.g. submucosal gland (SMG) duct cells,
migratory dendritic cells (DCs)) or refinements of the original labels (Fig. 3e, e.g. endothelial cell
subtypes). In total, we found that 41% of cells were originally given precise and accurate cell type labels
that conform to current consensus knowledge, 28% of cells were correctly labeled but at lower granularity
(“under-labeled”), and 31% of cells were originally mis-labeled (Fig. 3e). Mis-labeled cells often differed
from the final annotation at the finest level, but matched at a lower level of granularity (e.g. adventitial
instead of alveolar fibroblast, Extended Data Fig. 4). Out of 58 final cell types, 15 included mostly mis-
labeled cells. A potential reason for this mis-labeling is that marker genes used for the original labeling
were based on individual publications, and might not generalize well. Therefore, we established a
‘universal’ set of marker genes that generalizes across lung studies, by calculating cell type marker genes
over our 14 datasets for every annotation (Extended Data Fig. 5, Supplementary Data Table 5). The fully
re-annotated HLCA core thus combines data from a diverse set of studies to provide a carefully curated
reference for cell type annotations and marker genes in healthy lung tissue.

The HLCA recovers rare cell types across datasets
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Rare cell types such as ionocytes, tuft cells, neuroendocrine cells, or specific immune cell subsets are
often hard to identify in individual datasets. To determine whether the higher number of cells in the HLCA
core provides better power for identifying rare cell types, we explored the quality of rare cell clustering and
their labels. Ionocytes, tuft and neuroendocrine cells make up only 0.08%, 0.01% and 0.02% of the cells in
the HLCA core according to the original labels, and were originally identified in only 7, 2 and 4 datasets
out of 14, respectively. Despite their low abundance, these cells formed three separate clusters of the
HLCA core, with 78%, 76% and 96% of the cells carrying the original label in each cluster (Fig. 3f). Marker
expression shows that the HLCA core correctly excludes cells mis-labeled as rare epithelial cells from
these clusters, but also successfully recovers rare cells that were not recognized as such in the original
studies (Fig. 3f, Extended Data Fig. 6a). Thus, our re-analysis increases the number of datasets in which
these rare cells are detected up to three-fold (to 10, 7 and 9 datasets, for ionocytes, tuft and
neuroendocrine cells). The correct clustering of rare cell types has been shown to depend on the
conservation of subtle biological variation when integrating studies16. Importantly, other integration
methods tested during our benchmarking, such as Harmony32 and Seurat’s RPCA28, indeed failed to
separate rare cells into distinct clusters, showing the importance of integration method selection when
building an atlas (Extended Data Fig. 6b).

Due to the increased power in the HLCA core, we were also able to detect rare cell identities that were not
labeled in any of the constituent datasets. Through iterative clustering we identified two small clusters
(312 cells, 0.05% of all cells) in the immune cell population that contained cells from 12 datasets and
thus represent cellular heterogeneity common to multiple studies. Cells from these clusters were a subset
of DCs and had distinct and high expression of CCR7, a marker for migratory DCs (Fig. 3g, Extended Data
Fig. 6c)34,35. The HLCA core thus enables improved detection and identification of rare cell types.

The HLCA reveals cell-type specific effects of technical and
demographic variables
Demographic and other biological covariates are known to affect cellular transcriptional phenotypes11,22.
Better insight into the impact of these covariates (e.g. sex, BMI, smoking) on cell-type gene expression
could shed light on the contribution of the covariates to progression from healthy to diseased states. In
addition to these biological covariates, technical covariates such as sample type, or number of transcripts
detected per cell can affect transcriptomic variation16. The diversity in demographics (e.g. smoking
status, age, ethnicity and BMI) and experimental protocols represented in the HLCA core, combined with
its single-cell resolution, makes it possible to explore these effects simultaneously and at the level of cell-
type specific transcriptomes. To determine the contribution of each covariate to cell-type specific gene
expression variation, we calculated the fraction of inter-sample variance that could be explained by the
covariate for every cell type (Fig. 4a, right). To focus on robust correlations detected across studies, we
excluded all cell types detected in fewer than 40 samples from this analysis (Methods, Extended Data
Fig. 7a-c). For many cell types, including epithelial, immune, endothelial and stromal cells, anatomical
location is the biological variable explaining most of the variance (Fig. 4a). In transitional club-AT2 cells
interindividual variance is more strongly associated with sex than in any other cell type. Similarly, BMI is
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most associated with transcriptomic variation in B and T cells, whereas ethnicity is most associated with
variation in adventitial fibroblasts. Smoking status is associated with most transcriptomic variation in
lymphatic endothelial cells and innate lymphoid/NK cells. Furthermore, for several cell types (e.g. mast
cells, basal cells, B cells, and DC2s) the tissue sampling method (brush, biopsy, surgical resection, etc.)
explains most variance of all technical as well as biological covariates recorded. Different sampling
methods are associated with specific anatomical locations as well as with specific sample processing
workflows, and may sample different states of cell activation or differentiation, all of which will
contribute to the high degree of variation observed between samples. Nevertheless, despite being
sampled with diverse methods, other cell types (e.g. T cells, innate lymphoid/NK cells) are largely
unaffected by sampling method (Fig. 4a, Extended Data Fig. 7d). Therefore, depending on the cell type of
interest, sampling methods might need to be harmonized in experimental design. Thus, through this
analysis, the HLCA core can help guide important choices in study design.

To better understand how biological variables affect cellular phenotypes, we modeled their cell-type
specific effect at the gene level using generalized linear mixed models36,37. We found 936 significant
associations of genes with demographic covariates in 29 cell types, and 25,468 significant associations
with sample anatomical location (Supplementary Data Table 6). Leveraging the diversity in anatomical
locations of HLCA core samples, which we encoded into a continuous CCF score (Supplementary Data
Table 3), we found cell type-specific programs that change with proximal (low CCF score) to distal (high
CCF score) location along the respiratory tract. While previous findings highlighted gene expression
differences between epithelial cells from the lower airways and the nose18, we find that several of these
genes also exhibit gradual changes in expression with more distal locations in the tracheobronchial tree.
For example, LMO3, previously found to be consistently higher expressed in epithelial cells from the nose
compared to the lower airways, also displays a gradient along the proximo-distal axis within the
tracheobronchial tree. Gene set enrichment analysis shows that gene expression programs that were
down-regulated towards distal locations in the tracheobronchial tree in secretory, multiciliated and basal
cells were associated with metabolic activity (e.g. cellular respiration, peptide biosynthesis, glycolipid
catabolism, Fig. 4b). Moreover, antigen presentation by MHC-I programs are down-regulated in basal,
secretory and multiciliated cells, and keratinization and cornification programs are down-regulated in
multiciliated cells towards distal locations along the tracheobronchial tree (Fig. 4b, Supplementary Data
Table 7). In contrast, secretory and multiciliated cells show increased expression of developmental
pathway genes along this axis (Fig. 4b, Supplementary Data Table 7), while basal cells decrease in
number (Extended Data Fig. 8a) in accordance with previous findings38. These data show presence of
gradients in both cell type abundance and transcriptional phenotypes of individual cell types along the
tracheobronchial tree, indicating functional adaptations of the cells of the airway wall to their location in
the lung.

Similarly, several cell types display transcriptomic changes in subjects with increasing BMI. AT2 cells,
secretory cells, plasma cells and alveolar macrophages show the highest numbers of gene sets
associated with BMI (Supplementary Data Table 7). Of these, AT2 cells, secretory cells and alveolar
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macrophages exhibit down-regulation of a range of biological processes, including cellular respiration,
differentiation, proliferation, and synthesis of peptides and other molecules (Fig. 4c, Extended Data
Fig. 8). In secretory cells, a down-regulation of the insulin-response pathway is also associated with
higher BMI, in line with the insulin resistance observed in subjects with obesity39,40 (Fig. 4c). In alveolar
macrophages, inflammatory responses involving JAK/STAT signaling are associated with higher BMI
(Fig. 4c, Supplementary Data Table 7). This signaling pathway has been widely described as a mediator
of obesity-induced chronic systemic inflammation40, which we can now link to cell type-specific effects in
the lung. In contrast to the up-regulation of immune response pathways in alveolar macrophages, in
plasma cells high BMI is associated with down-regulation of gene sets associated with immune
response, and up-regulation of gene sets associated with cellular respiration, cell cycle and DNA repair
(Fig. 4c). This is consistent with obesity being a known risk factor for multiple myeloma, a plasma cell
malignancy41. This analysis constitutes a first systematic assessment of the effects of BMI on the lung
at single-cell resolution. Thus, the HLCA enables a detailed understanding of the effects of anatomical
and demographic covariates on the cellular landscape of the lung, and their relation to disease.

The HLCA transfers detailed cell-type annotations to new
data and identifies unknown cell types
The HLCA core contains an unprecedented diversity of subjects, sampling protocols, and cell identities,
and has the potential to serve as a transcriptomic reference for future lung research. Mapping new
datasets to this reference can substantially speed up data analysis by generating an informative
representation of the data and transferring cell identity annotations. To determine how well annotations
can be transferred from the HLCA core to new datasets, we mapped a recently released dataset to the
HLCA core using scArches, our recently published transfer learning tool42 (Extended Data Fig.9, a-c). This
dataset includes several novel cellular identities that were detected by jointly analyzing single-cell, single-
nucleus, and spatial data from 10X Visium43 to the HLCA core. We transferred cell-type annotations from
the HLCA core to the new dataset on the basis of transcriptomic similarity in the batch-corrected joint
embedding (Methods, Extended Data Fig.9, a-c). Importantly, the uncertainty of each transferred label
(indicating how confidently the label is assigned) is quantified, and cells with high uncertainty scores are
labeled as “unknown”. Most cells in the new dataset were annotated with high confidence, indicating a
high similarity with the cell types already present in the HLCA core (Fig.5a, Extended Data Fig.9 d). High
levels of uncertainty were observed specifically in regions representing continuous transitions from one
cell type to another, and among cellular identities not currently present in the HLCA core. For example,
cells in the continuum between monocytes and dendritic cells displayed high label transfer uncertainty
(Fig.5a). Several cell identities that were not present in the HLCA core were correctly labeled as
“unknown”, even when only few cells of that identity were present in the projected dataset (erythrocytes
(n=328), chondrocytes (n=42), Schwann myelinating (n=7), Schwann non-myelinating (n=29); Fig.5b,
Extended Data Fig.9 e). Incorrect annotations (i.e. transferred annotations with high certainty, but not
matching the original label) highlighted two different cases: cell types that are part of a continuum, with
cutoffs between cell types chosen differently in the reference than in the projected data (e.g. secretory,
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club and goblet cells); and cell types lacking from the HLCA core that have high transcriptional similarity
to other cell types that are present in the HLCA, which was observed for several finely annotated immune
cell identities. For example, gamma-delta T cells, innate lymphoid cells (ILCs), megakaryocytes, NKT cells,
and regulatory T cells were not annotated in the HLCA core, as these cell types could not be distinguished
with confidence in the integrated object, and were often lacking in the constituent datasets. Indeed, cell
types from the T cell/ILC/NK lineages are known to be particularly difficult to annotate in detail using
transcriptomic data only14. Therefore, cells annotated with these labels in the projected dataset were
largely incorrectly annotated as CD4 + T cells, CD8 + T cells, and NK cells through label transfer (Fig. 5b,
Extended Data Fig. 9e). Overall, the transferred labels were correct in the majority of cases, with 69% of
the cells correctly labeled, 12% of labels incorrect, and 18% set to “unknown”, highlighting the presence of
cell types in the projected dataset absent from the HLCA core (Fig. 5b). Label transfer from the HLCA core
thus performs competitively with manual cell type labeling as performed in the original studies (Fig. 3e,
5b), is highly time-efficient, and provides a higher level of annotation detail. Taken together, the HLCA core
can be used as a reference for label transfer to achieve highly detailed annotation of new datasets, and
allows identification of new and unknown cell types in those datasets based on label transfer uncertainty.
This greatly speeds up the analysis of new lung datasets.

The HLCA provides crucial context for understanding
disease
Single-cell studies of disease rely on adequate, matching control samples to allow correct identification
of disease-specific changes. Even when such matching controls are available, it can be challenging to
distinguish where disease effects differ from natural variation using a single dataset. The HLCA core can
provide this context needed for the study of disease. To demonstrate the ability of the HLCA core to
contextualize disease data and facilitate their interpretation, we mapped scRNA-seq data from lung
cancer samples44 to the HLCA core with scArches (Extended Data Fig. 10a-c). Using HLCA core-based
label transfer, we correctly identified cell states missing from the HLCA core as “unknown” (cancer cells
and erythroblasts). The remaining cells were annotated correctly in 77%, incorrectly in 1%, and as
unknown in 22% of cases (Extended Data Fig. 10d-g). A result of the original study was the separation of
endothelial cells into “tumor-associated" and “normal”44. Clustering the projected dataset with our
reference showed that cells expressing the suggested tumor-associated marker ACKR1 were also
abundant in healthy tissue from the HLCA core, specifically in venous ECs (Fig. 5c, Extended Data
Fig. 11a, b). Indeed, “tumor marker” expression in tumor cells is not higher than that of healthy cells in
these clusters (Fig. 5c). This suggests that ACKR1 is a general marker of venous ECs rather than a tumor-
specific EC marker, (Fig. 5c, Extended Data Fig. 11c). Similarly, the reported ‘normal EC’ marker EDNRB
characterizes aerocyte capillary ECs, both in tumor and in healthy tissue (Fig. 5c, Extended Data Fig. 11d).
As EC numbers in the original study were low, correctly identifying and distinguishing these cell types
without a larger healthy reference is challenging. Thus, without the HLCA core context, limitations in
sampling and experimental design can be misinterpreted as meaningful differences between healthy and
disease tissue. By mapping disease data to the HLCA core, we can ensure a representative comparison
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with healthy cells. This projection provides context that is crucial to correctly interpret disease-related
phenotypes, especially when healthy controls are limited.

In addition, the HLCA can provide context to the results of large-scale genetic studies of disease. Genome-
wide association studies (GWAS) link disease with specific genomic variants that may confer an
increased risk of disease. Previous studies have linked such variants to cell-type specific mechanistic
hypotheses, which are often lacking in the initial association study45,46. As the HLCA core has a strongly
increased resolution in cell type annotations compared to existing atlases1,2,18, it can serve as a resource
for linking disease variants to specific lung cell types at a much higher granularity. To demonstrate the
value of the HLCA core in contextualizing genetic data, we mapped association results from four GWA
studies of lung function or disease47–50 to the HLCA core cell types51 (Fig. 5d, Extended Data Fig. 13;
Methods). We show that genomic variants associated with lung function (forced vital capacity) are
associated with peribronchial fibroblasts (p = 0.052), subpleural fibroblasts (p = 0.052), and
myofibroblasts (p = 0.052), suggesting these fibroblast subtypes play a causative role in inherited
differences in lung function (Fig. 5d). Interestingly, epithelial and immune cell types show no association
with lung function. We further find a significant association of lung T cells with asthma-associated single
nucleotide polymorphisms (SNPs) (p = 0.02). Lung adenocarcinoma-associated variants show a
significant association with AT2 cells (p = 0.007), and myofibroblasts and smooth muscle cells are
significantly associated with COPD GWAS SNPs (p = 0.03, p = 0.02 resp.) (Fig. 5d). Thus, by linking
genetic predispositions to lung cell types, the HLCA core serves as a valuable resource to improve our
understanding of lung function and disease.

Projecting new data onto the HLCA refines HLCA
annotations
As knowledge of cell types in the lung expands, and the size of newly generated datasets increases,
annotations in the HLCA core will need to be further refined. The HLCA and its annotations can be
updated by learning from new data projected onto the reference. We simulated such an HLCA update
using the previously projected healthy lung dataset, specifically focussing on the novel cell identities that
were distinguished based on their tissue location in matched spatial transcriptomic data (“spatially
annotated cell types”). These cell identities (i.e. immune-recruiting fibroblasts, perichondrial fibroblasts,
non-myelinating and myelinating Schwann cells, epineurial and endoneurial nerve-associated fibroblasts,
and chondrocytes) were predominantly from the mesenchymal lineage, and were present at very low
frequencies (median: 0.004% of all cells, Extended Data Fig. 12a). In the updated atlas, that combines the
HLCA core and the projected data, 3 out of 7 spatially annotated cell types (perichondrial fibroblasts, non-
myelinating Schwann cells, and endoneurial nerve-associated fibroblasts, 16, 29 and 35 cells,
respectively) could not be recovered in distinct clusters, possibly due to low cell numbers in the projected
dataset and clustering parameterization (Methods). In contrast, all spatially annotated mesenchymal cell
types with more than 40 cells (immune-recruiting fibroblasts and chondrocytes), and two rare cell types
(myelinating Schwann cells and epineurial nerve-associated fibroblasts), were recovered in distinct
clusters (“spatially annotated clusters”) (Fig. 5e, Extended Data Fig. 12a, b). Thus, the combined
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embedding of the HLCA core and the projected dataset retains subtle biological variation present in the
newly projected data, which can be used to update the atlas. Moreover, three out of four spatially
annotated clusters also contained cells from the HLCA core, thereby enabling a refinement of existing
HLCA core annotations using the spatial context from the projected dataset. For example, HLCA core
annotations could be extended for a small subset of fibroblasts to immune-recruiting fibroblasts, which
we confirmed using marker gene expression (Extended Data Fig. 12c). The fourth spatial cluster
(chondrocytes) exclusively contained cells from the projected data, suggesting this cell type was absent
in the HLCA but could nonetheless be detected as a separate cluster in the combined embedding. Thus,
the HLCA core and its annotations can be refined by mapping new datasets to the atlas and incorporating
annotations from these new datasets into the reference.

The HLCA allows large-scale mapping of new data and
identification of new cell types and states in healthy and
diseased lungs
To extend the atlas and include samples from lung disease, we mapped 1,647,652 cells from 338 healthy
and diseased individuals from 34 datasets (6 unpublished43, 28 published3,15,17,21,44,52−66) to the HLCA
core using scArches42, bringing the HLCA to a total of 2.2 million cells from 444 individuals (Fig. 6a). To
test the HLCA as a reference for lung tissue in both health and disease across single-cell technologies, we
included healthy samples and samples from numerous lung diseases containing single-cell as well as
single-nucleus RNA-seq data, and generated by technologies such as Drop-Seq and SeqWell
(Supplementary Data Table 1). Label transfer from the HLCA core to the newly mapped datasets enabled
detailed cell type annotation across datasets even for rare cells. In comparison, rare cell type
identification with conventional annotation approaches67 is challenging, especially in smaller datasets,
and is linked to several instances of mislabelling (Fig. 3e, Extended Data Fig. 4). For example, 1,996
migratory DCs could be identified across 25 datasets via label transfer (which constitute 0.1% of all cells
in these datasets), whereas this cell type was originally labeled in only 2 of the datasets of the 7 for
which cell type labels were available (Extended Data Fig. 14).

As label transfer uncertainty highlights cell identities not captured in the HLCA, we investigated whether
the uncertainty metric can also be used to identify disease-associated states of healthy cell types
captured in the HLCA core. High label transfer uncertainty can indicate (1) insufficient batch removal
when mapping new datasets, (2) outlier samples in the mapped data, and (3) cell identities not captured
in the HLCA core. Based on correspondence between transferred annotations and original labels of 7
datasets (Methods), we found that a mean label transfer uncertainty above 0.2 at the dataset level
suggests that residual batch effects (biological or technical) are still present. Out of 34 new datasets, 24
had a mean uncertainty score below this threshold, indicating that mapping of new data to the HLCA core
is of high quality in the majority of cases. These 24 datasets include disease samples, as well as single-
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nucleus and Drop-Seq single-cell data (Fig. 6b), demonstrating the potential of the HLCA core as a
universal reference.

Datasets with a mean uncertainty above 0.2 were often from COVID-19 studies and associated with
specific technical covariates (bronchoalveolar lavage fluid (BALF), autopsy, and 10X 5’-sequencing) (Fig.
6b). As control samples from BALF and 10X 5` datasets showed uncertainty levels below 0.2, high label
transfer uncertainty for the remaining datasets was likely due to disease-related cell identities in the data
(not present in the healthy reference), rather than residual technical batch effects. Indeed, high
uncertainty values in these datasets were driven by macrophages and monocytes (Extended Data
Fig. 15), which are activated and recruited in SARS-CoV-2 pneumonia65,66

Pulmonary diseases are characterized by the emergence of unique disease-associated transcriptional
phenotypes2,17,19,21,68 We observed higher levels of label transfer uncertainty in datasets from diseased
lungs (Fig. 6b, condition), possibly flagging cell types changed in response to disease. For example,
labels of various fibroblast and macrophage cell types known to be affected by idiopathic pulmonary
fibrosis (IPF) are transferred with higher uncertainty in IPF samples than in samples from healthy controls
from the same dataset62 (Fig. 6c, Extended Data Fig. 16a, b). Label uncertainty thus detects cell identities
that are specifically altered in the context of disease, an essential step in the analysis of diseased tissue
data.

In addition to detecting transferred annotations altered in disease, we investigated whether uncertainty
scores, which are quantified per cell, also directly highlight the cells from these annotations that are most
affected by the disease condition, thereby immediately focusing on the relevant populations. To identify
these cellular subsets, and learn matching disease-specific gene signatures, we compared gene
expression between high-uncertainty and low-uncertainty cells in samples from patients with IPF
(Supplementary Data Table 8, Supplementary Data Table 9). For both alveolar fibroblasts and
macrophages, the genes more highly expressed in high-uncertainty cells are indeed lowly expressed in
healthy samples (Fig. 6d), indicating that uncertainty scores can be used to discover new disease-
associated cell states and extract disease-specific gene expression programs. Genes down-regulated in
high-uncertainty IPF macrophages compared to their low-uncertainty counterparts are associated with
homeostatic functions of tissue-resident alveolar macrophages and lipid metabolism (PPARG, FABP4,
and others)19,21,57, while up-regulated genes are associated with extracellular matrix remodeling and scar
formation (SPP1, PLA2G7, CCL2; Supplementary Data Table 8)19,21,57. A more detailed analysis
demonstrated that these differentially expressed genes identify distinct subsets of homeostatic tissue-
resident and profibrotic monocyte-derived macrophages (Extended Data Fig. 16c). Thus, the HLCA core
can be used to annotate new data, identify previously unreported populations, and detect disease-
affected cell states and corresponding gene signatures. This vastly speeds up analysis and interpretation
of new data, immediately prioritizing the most relevant populations.

Discussion
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We built the Human Lung Cell Atlas, an integrated reference atlas of the human respiratory system that
contains over 2.2 million cells from 46 datasets, covering all major lung single-cell RNA-seq studies
published to date. The core of this atlas consists of a fully integrated healthy reference of 14 datasets
with a consensus reannotation of, and robust marker genes for 58 cell identities, representing a first data-
derived consensus annotation of the cellular landscape of the human lung. We leveraged the
unprecedented complexity of the HLCA in the number of cells and samples to optimize recovery of rare
cell types which could not be annotated in individual datasets, and to identify cell-type specific gene
modules associated with relevant covariates such as lung anatomical location, and age, sex, BMI and
smoking status of the tissue donor. To provide the HLCA reference as a tool for the community, we built
an scArches reference model of the HLCA that enables efficient projection of new data onto the atlas. By
projecting data onto the HLCA, we showed that the HLCA enables a fast, detailed annotation of new
datasets, including detection of rare cell identities. When applied to disease data, HLCA reference
mapping facilitates direct identification of unique, disease-associated cell states and corresponding gene
signatures. Taken together, the HLCA is a universal reference for single-cell lung research that promises to
accelerate future studies into pulmonary health and disease.

The constituent datasets of the HLCA widely vary in their experimental design (sampling method, subject
selection, single cell platform etc.) and therefore exhibit dataset-specific batch effects. Reduction of such
batch effects, while retaining biological information, is crucial for integrated analysis of the data. We
showed that the high quality of the HLCA hinged on the choice of integration method, with methods like
Seurat’s RPCA28 and Harmony32 being unable to correctly group rare cell identities into separate clusters.
Importantly, integration of datasets inherently entails a trade-off between removal of batch-effect and
conservation of biological variation16. While conserving biological variation in the HLCA enabled
capturing subtle biological heterogeneity, such as rare cell types or altered cell states, it also resulted in
some clusters being dominated by cells from single individuals. These clusters may represent residual
batch effects or rare biological variation. As we showed that substantial transcriptomic variance is
associated with demographic covariates, which vary between individuals, residual differences observed
between individuals may be related to biological variation. Most subject- or group-specific clusters are
observed in immune cells, which have been reported to show strong subject-specific transcriptome
variation69. Notwithstanding, we observe gene expression programs that are consistently associated with
covariates across the integrated HLCA, indicating that biological variation is well retained.

The ultimate goal of a human lung cell atlas is to provide a comprehensive overview of all cells in the
lung, and their variation from individual to individual. The HLCA contains healthy lung samples from 107
individuals in its core, and from 444 individuals in the extended atlas. These sample numbers make it
possible to systematically assess the contribution of demographic covariates to inter-individual variation
at single-cell resolution for the first time. While the HLCA is the most diverse lung study to date, it is still a
reflection of the limited diversity in single-cell studies of the respiratory system. Thus, the HLCA core
consists of data from 65% white individuals, highlighting the urgent need for diversification of the
population sampled in lung studies. Similarly, the current HLCA core does not include BALF, autopsy or
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sputum samples. Expanding the atlas with these sample types will further diversify captured cell
identities, and could improve the quality of the HLCA core as a reference for new datasets acquired by
these sampling methods.

Future extensions of the HLCA could further increase the power to detect the effects of demographic
variables, such as age, BMI, and smoking status. Indeed, in the current HLCA the effect of smoking on cell
types was relatively modest, also compared to other demographic covariates. As metadata on pack years
and smoking frequency was not available for most subjects, a coarser encoding of smoking status
(current, ever, never) was necessary, increasing the within-group variance and thus decreasing statistical
power. A larger number of subjects in the HLCA would counteract this limitation and could provide the
power needed to detect more nuanced effects. Similarly, in the current HLCA core certain subsets of T
cells (regulatory T cells, gamma-delta T cells) could not be identified as separate clusters. Mapping of
additional, well-annotated immune cell data could provide the power to confidently detect these cell
identities. Indeed, we showed that mapping datasets to the HLCA enabled refinement of HLCA
annotations.

The HLCA core is publicly available as a data portal and a model repository to explore, download, and use
as a reference for new datasets. As the atlassing community has multiple outlets for newly generated
data, we made the atlas available in Sfaira70, Zenodo71, Azimuth14, CellTypist72, and FASTGenomics73.
Mapping new datasets to the HLCA core using scArches can be done via interactive portals, such as
FASTGenomics and Azimuth, as well as locally using our Zenodo model74, which lends itself to
integration into bioinformatics pipelines. As more lung datasets become available and the respiratory
community progresses in charting the cellular landscape of the lung, for example via novel sampling
techniques or multi-modal analysis such as combined spatial and single-cell analysis, knowledge of the
lung and its cell types will also expand. This underlines the importance of viewing the HLCA as a ‘live’
resource that requires continuous updates. Indeed, recent studies1,17,22,43 have proposed more, novel cell
types that have not yet been included in the hierarchical, harmonized HLCA annotations as these do not
yet have support from multiple studies or consensus within the field. Using recent advances in transfer
learning, we can robustly and iteratively extend the current HLCA. We illustrated, by mapping a newly
annotated dataset to the HLCA core, that incorporating novel data in the atlas enables the refinement of
HLCA annotations. To consolidate this incorporation of new knowledge, the HLCA core will be
continuously updated by adding new datasets as these become available. New builds of the HLCA will be
established by fully re-integrating the original and new datasets into an updated HLCA core. In addition,
versions of every build will include fast, transfer learning-based mappings of individual, newly published
datasets to the latest available HLCA core build. With the integration of new datasets and the open
access of all HLCA infrastructure, the HLCA can serve as a community- and data-driven platform for open
discussion on lung cell heterogeneity, thus providing the basis for reaching consensus on updated lung
cell type annotations. Through this iterative process, the HLCA will function as a central reference for lung
data, reflecting the latest knowledge of the lung and its cell identities in health and disease.



Page 20/53

In the future, multimodal data of the human respiratory system - including epigenomic, spatial, and
imaging data - will become increasingly available. While first ideas for integrating such data have been
proposed75, a systematic study of multimodal atlas building is not yet feasible due to limited data.
Similarly, integrating single-cell atlases with large population cohort studies assaying human
transcriptomic variation on the bulk level would greatly extend the represented diversity that is lacking in
available single-cell studies. Integration across bulk and single-cell data would however require
methodological advances in bulk deconvolution and imputation. Overall, we expect future versions of the
HLCA to also contain a multimodal and a spatial “track”, which will enable deeper insights into cellular
phenotypes within the organ.

Taken together, the HLCA represents a major milestone for the respiratory community, providing a single-
cell resource of unprecedented size and quality. It offers a model framework for building integrated,
consensus-based, population-scale atlases for further organs within the Human Cell Atlas. The HLCA is
publicly available, and combined with an open-access platform to map new datasets to the atlas, this
resource paves the way towards a better and more complete understanding of both health and disease in
the human lung.

Methods

Re-processing of published data
The raw sequencing data of 4 previously published studies was re-aligned to GRCh38, ensembl 84 for the
HLCA (Krasnow_2020, Barbry_Leroy_2020, Seibold_2020, Meyer_2021). For the Krasnow_2020 and
Barbry_Leroy_2020 studies, the CellRanger 3.1.0-based HLCA pipeline was used for re-alignment.
Seibold_2020 and Meyer_2021 data were processed as previously described22,43, but with reference
genome and genome annotation adapted to the HLCA (GRCh38, ensembl84). All other datasets in the
HLCA core were originally already aligned to GRCh38, ensembl84, except data from the
Lafyatis_Rojas_2019 study (GRCh38, ensembl93) (Supplementary Data Table 1).

Single-cell sequencing and preprocessing of unpublished
data
Unpublished data was generated as follows:

Barbry_unpubl: Barbry_unpubl: Nasal and tracheobronchial samples were collected from IPF patients
after obtention of their informed consent, following a protocol approved by CHU Nice, registered at
clinicaltrials under reference NCT04529993. The libraries were prepared as described in Deprez et al13,
and yielded an average of 61,000 ± 11,000 cells per sample, with a viability above 95%. The single cell
suspension was used to generate single cell libraries following the V3.1 protocol for 3’ chemistry from
10x Genomics (CG000204). Sequencing was performed on a NextSeq 500/550 sequencer (Illumina). Raw
sequencing data were processed using the cellranger-6.0.0 pipeline, with reference genome and
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annotation GRCh38 and ensembl98. For each sample, cells with less than 200 transcripts or more than
40 000 transcripts were filtered out, as well as genes expressed in less than 3 cells. Normalization and
log-transformation was done using the standard Scanpy76 pipeline. PCA was performed on 1000 HVG to
compute 50 PCs and the Louvain algorithm was used for clustering. Those clusters were then annotated
by hand for each sample. Raw counts and the thus obtained cell annotations were used as input for the
HLCA.

Schiller_2021: Tumor-free, uninvolved lung samples (peri-tumor tissues) were obtained during tumor
resections at the lung specialist clinic “Asklepios Fachkliniken Munich-Gauting” and accessed through the
bioArchive of the Comprehensive Pneumology Center Munich (CPC-M). The study was approved by the
local ethics committee of the Ludwig-Maximilians University of Munich, Germany (EK 333 − 10 and 382 − 
10) and written informed consent was obtained from all patients.

Single-cell suspensions for single-cell RNAseq were generated as previously described15. In brief, lung
tissue samples were cut into smaller pieces, washed with PBS and enzymatically digested using an
enzyme mix composed of dispase, collagenase, elastase and DNAse for 45 min at 37°C while shaking.
After inactivating the enzymatic activity with 10% FCS/PBS, dissociated cells were passed through a 70
µm cell strainer, pelleted by centrifugation (300 x g, 5 min), and subjected to red blood cell lysis. After
stopping the lysis with 10% FCS/PBS, the cell suspension was passed through a 30 µm strainer and
pelleted. Cells were resuspended in 10%FCS/PBS, assessed for viability and counted using a Neubauer
hematocytometer. Cell concentration was adjusted to 1,000 cells/µl and around 16,000 cells were loaded
on a 10x Genomics Chip G with Chromium Single Cell 3′ v3.1 gel beads and reagents (3′ GEX v3.1, 10x
Genomics). Libraries were prepared according to the manufacturer’s protocol (10x Genomics,
CG000204_RevD). After quality check, single-cell RNA-seq libraries were pooled and sequenced on a
NovaSeq 6000 instrument.

The generation of count matrices was performed by using the Cellranger computational pipeline (v3.1.0,
STAR v2.5.3a). The reads were aligned to the hg38 human reference genome (GRCh38, ensembl99).
Downstream analysis was performed using the Scanpy76 package (v1.8.0). We assessed the quality of
our libraries and excluded barcodes with less than 300 genes detected, while retaining those with a
number of transcripts between 500 and 30,000. Further, cells with a high proportion (> 15%) of transcript
counts derived from mitochondrial-encoded genes were removed. Genes were considered if they were
expressed in at least 5 cells. Raw counts of cells that passed filtering were used as input for the HLCA.

Duong_HuBMAP_unpubl: All post-mortem human donor lung samples were obtained from the
Biorepository for Investigation of Neonatal Diseases of the Lung (BRINDL) supported by the NHLBI
LungMAP Human Tissue Core housed at the University of Rochester. Consent, tissue acquisition, and
storage protocols can be found on the repository’s website (brindl.urmc.rochester.edu/). Data was
collected as part of the Human Biomolecular Atlas Program (HuBMAP). For isolation of single nuclei, 10
cryosections (40 um thickness) from OCT embedded tissue blocks stored at -80℃ were shipped on dry
ice and processed according to a published protocol77. Single nucleus RNA-sequencing was completed
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using 10X Chromium Single-Cell 3’ Reagent Kits v3 according to a published protocol77,78. Raw
sequencing data was processed using the 10X Cell Ranger v3 pipeline and GRCh38 (hg38) reference
genome. For downstream analysis, mitochondrial transcripts and doublets identified by
DoubletDetection79 v2.4.0 were removed. Samples were then combined and cell barcodes were filtered
based on genes detected (> 200, < 7500) and gene UMI ratio (gene.vs.molecule.cell.filter) using Pagoda2
(github.com/hms-dbmi/pagoda2). Also using Pagoda2 for clustering, counts were normalized to total
counts per nucleus. For batch correction, gene expression was scaled to dataset average expression.
After variance normalization, all significantly variant genes 4519 were used for PCA. Clustering was done
at different k values (50, 100, 200) using the top 50 principal components and the infomap community
detection algorithm. Then, principal component and cluster annotations were imported into Seurat28

v4.0.0. Differentially expressed genes for all clusters were generated for each k resolution using Seurat
FindAllMarkers (only.pos = TRUE, max.cells.per.ident = 1000, logfc.threshold = 0.25, min.pct = 0.25).
Clusters were manually annotated based on distinct differentially expressed marker genes. Raw counts
and the thus obtained cell annotations were used as input for the HLCA.

Banovich_Kropski_2020: Data was a combination of published data17 and unpublished data (Vanderbilt
IRB nos. 060165 and 171657 and Western IRB no. 20181836). Unpublished data was generated as
previously described17, using reference genome GRCh38, ensembl84. Both published and unpublished
data were combined and processed together using Seurat v4. Cells containing less than 500 identified
genes or more than 25% of reads arising from mitochondrial genes were filtered out. Sctransform80 with
default parameters was performed to normalize and scale the data, PCA was used for dimensionality
reduction using the top 3000 most variable genes. Cell type annotation was performed using Seurat28,80

FindTransferAnchors and TransferData functions, using the annotated object from the published data17

as reference. Raw counts and the thus obtained cell annotations were used as input for the HLCA.

Nawijn_2021: Data was a combination of published2 and unpublished data. In both cases, healthy
volunteers were recruited for bronchoscopy at the University Medical Center Groningen, after giving
informed consent and according to the protocol approved by the Institutional Review Board. Inclusion
criteria and tissue processing were performed as previously described2. In short, all subjects were 20–65
years old and had a history of smoking < 10 pack-years. To exclude respiratory disease, the following
criteria were used: absent history of asthma or COPD, no use of asthma or COPD-related medication, a
negative provocation test (PC20 methacholine > 8 mg/ml), no airflow obstruction (FEV1/forced vital
capacity (FVC) ≥ 70%) and absence of lung function impairment (that is FEV1 ≥ 80% predicted). All
subjects underwent a bronchoscopy under sedation using a standardized protocol81. Nasal brushes were
obtained from the lateral inferior turbinate in a subset of the volunteers right before bronchoscopy using
Cyto-Pak CytoSoft nasal brush (Medical Packaging Corporation, Camarillo, CA, USA). Six macroscopically
adequate endobronchial biopsies were collected for this study, located between the third and sixth
generation of the right lower and middle lobe. Bronchial brushes were obtained from a different airway at
similar anatomical locations using a CellCellebrity bronchial brush (Boston Scientific, Massachusetts,
USA). Extracted biopsies and bronchial and nasal brushes were processed directly, with a maximum of 1
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hour delay. Bronchial biopsies were chopped biopsies using a single edge razor blade. A single-cell
solution was obtained by tissue digestion using 1mgml − 1 collagenase D and 0.1mgml − 1 DNase I
(Roche) in HBSS (Lonza) at 37°C for 1h with gentle agitation for both nasal brushes and bronchial
biopsies. Single-cell suspensions were filtered forced using 70µm nylon cell strainer (Falcon), followed by
centrifugation at 550g, 4°C for 5min and one wash with a PBS containing 1% BSA (Sigma-Aldrich). The
single-cell suspensions used for 10X Genomics scRNA-seq analysis were cleared of red blood cells by
using a red blood cell lysis bufer (eBioscience) followed by live cell counting and loading of 10,000 cells
per lane. We used 10XGenomics Chromium Single-Cell 3’ Reagent Kits v2 and v3 according to the
manufacturers’ instructions. Raw sequencing data were processed using the CellRanger 3.1.0-based
HLCA pipeline, with reference genome and annotation GRCh38 and ensembl84. Ambient RNA correction
was performed using FastCAR (https://github.com/LungCellAtlas/FastCAR), using an empty library
cutoff of 100 UMI and a maximum allowed contamination chance of 0.05, ignoring the mitochondrial
RNA. Data were merged and processed using Seurat28, filtering to libraries with > 500 UMIs and > 200
genes and to the libraries containing the lowest 95% of mitochondrial RNA per sample and < 25%
mitochondrial RNA, normalized using sctransform80 while regressing out % mitochondrial RNA. In
general, 15 principal components were used for the clustering, at a resolution of 0.5 to facilitate manual
annotation of the dataset. Clusters in the final object that were driven by single donors were removed.
Raw counts and cell annotations were used as input for the HLCA.

Jain_Misharin_2021: Nasal epithelial samples were collected from healthy volunteers who provided
informed consent at Northwestern Medicine, Chicago, USA. Protocol was approved by Northwestern
University IRB (STU00214826). Briefly, subjects were seated and asked to extend their neck. A nasal
curette (Rhino-pro, VWR) was inserted into either nare and gently slid from posterior-to-anterior about one
centimeter along the lateral inferior turbinate. Five curettes were obtained per participant. The curette tip
was then cut and placed in 2 ml of hypothermosol and stored at 4C until processing. Single cell
suspension was generated using cold-active dispase protocol reported by Deprez, Zaragosi and
colleagues18,82 with slight modification. Specifically, EDTA was omitted and cells were dispersed by
pipetting 20 times every 5 min using a 1ml tip instead of trituration using a 21/23G needle, the final
concentration of protease from Bacillus Licheniformis was 10 mg/ml. Total digestion time was 30 min.
Following the wash in 4 ml of 0.5% BSA in PBS and centrifugation at 400 rcf for 10 min, cells were
resuspended in 0.5% BSA in PBS and counted using Nexcelom K2 Cellometer with AO/PI reagent. This
protocol typically yields ~ 300–500,000 cells with viability > 95%. The resulting single cell suspension
was then used to generate single cell libraries following protocol for 5’ V1 (10x Genomics, CG000086 Rev
M) or V2 chemistry (10x Genomics, CG000331 Rev A). Excess cells from 2 of the samples were pooled
together to generate 1 additional single cell library. After quality check, the libraries were pooled and
sequenced on a NovaSeq 6000 instrument. Raw sequencing data were processed using the CellRanger
3.1.0 pipeline, with reference genome and annotation GRCh38 and ensembl84. To assign sample
information to cells in the single-cell library prepared from 2 samples, we ran souporcell83 v.2.0 for that
library and 2 libraries that were prepared from these samples separately. We used common genetic
variants prepared by the souporcell authors to separate cells into 2 groups by genotype for each library,
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and Pearson correlation between the identified genotypes across libraries to establish correspondence
between genotype and sample. Cell annotations were assigned to cell clusters based on expert
interpretation of marker genes for each cluster. Cell clusters were derived with Seurat28 v3.2 workflow:
samples were normalized with sctransform80, 3000 HVGs selected and integrated, and clusters derived
from 30 principal components using Louvain algorithm with default parameters. Clusters with low
number of UMIs and high expression of ribosomal or mitochondrial genes were excluded as low-quality.
Raw counts and the thus obtained cell annotations were used as input for the HLCA.

Misharin_2020: Protocol was approved by Northwestern University IRB (STU00212120). Two biopsies
that included the main left bronchus and distal parenchyma from the upper lobe were obtained from
another donor lung that was not placed for transplant (donor 1). A single biopsy from a distal lung
parenchyma (donor 2) was obtained from wedge resection of the donor lung for size reduction during
lung transplantation. Lung and airway tissues were infused with a solution of Collagenase D (2 mg/ml)
and deoxyribonuclease I (0.1 mg/ml) in RPMI, cut into ~ 2-mm pieces, and incubated in 10 ml of
digestion buffer with mild agitation for 30 min at 37°C. The resulting single-cell suspension was filtered
through a 70-m nylon mesh filter, and digestion was stopped by addition of 10 ml of PBS supplemented
with 0.5% BSA and 2 nM EDTA (staining buffer). Cells were pelleted by centrifugation at 300 rcf for 10
min, supernatant was removed, and erythrocytes were lysed using 5 ml of 1× Pharm Lyse solution (BD
Pharmingen) for 3 min. The single-cell suspension was resuspended in Fc-Block (Human TruStain FcX,
BioLegend) and incubated with CD31 microbeads (Miltenyi Biosciences, 130-091-935), and the positive
fraction, containing endothelial cells and macrophages, was collected. The negative fraction was then
resuspended in staining buffer, the volume was adjusted so the concentration of cells was always less
than 5E6 cells/ml, and the fluorophore-conjugated antibody cocktail was added in 1:1 ratio (EpCAM,
Clone 9C4, PE-Cy7, BioLegend, catalog number 324222, RRID:AB_2561506, 1:40; CD206, Clone 19.2, PE,
Thermo Fisher Scientific, catalog number 12-2069-42, RRID:AB_10804655, 1:40; CD31, Clone WM59, APC,
BioLegend, catalog number 303116, RRID: AB_1877151, 1:40; CD45 Clone HI30, APCCy7, BioLegend,
catalog number 304014, RRID: AB_314402, 1:40; HLA-DR, Clone LN3, eFluor450, Thermo Fisher Scientific,
catalog number 48-9956-42, RRID:AB_10718248, 1:40). After incubation at 4°C for 30 min, cells were
washed with 5 ml of MACS buffer, pelleted by centrifugation, and resuspended in 500 ul of MACS buffer 
+ 2 ul of SYTOX Green viability dye (Thermo Fisher Scientific). Cells were sorted on a FACSAria III SORP
instrument using a 100-m nozzle and 20 psi pressure. Macrophages were sorted as live/CD45 + HLA-DR 
+ CD206 + cells, epithelial cells were sorted as live/CD45 − CD31 − EpCAM+, and stromal cells were sorted
as live/ CD45 − CD31 − EpCAM − cells. Cells were sorted into 2% BSA in Dulbecco's PBS (DPBS, without
calcium and magnesium), pelleted by centrifugation at 300 rcf for 5 min at 4°C, and resuspended in 0.1%
BSA in DPBS to ~ 1000 cells/l concentration. Concentration was confirmed using K2 Cellometer
(Nexcelom) with AO/PI reagent, and ~ 5000 to 10,000 cells were loaded on a 10x Genomics Chip B with
Chromium Single Cell 3′ gel beads and reagents (3′ GEX V3, 10x Genomics). Libraries were prepared
according to the manufacturer’s protocol (10x Genomics, CG000183_RevB). After quality check, single-
cell RNA-seq libraries were pooled and sequenced on a HiSeq 4000 or NovaSeq 6000 instrument. Raw
sequencing data were processed using the CellRanger 3.1.0 pipeline, with reference genome and
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annotation GRCh38 and ensembl84. Each sample was processed with Seurat28 v3.2 workflow to split
cells into clusters: data was normalized with sctransform80, a number of principal components was
selected based on gene weights within the component, and cells were clustered with Louvain algorithm.
Clusters with low-quality cells were excluded, while clusters expressing markers of multiple cell types
were further sub-clustered by repeating the workflow only on those cells. Cell annotations were assigned
to clusters based on marker genes for each cluster. Raw counts and the thus obtained cell annotations
were used as input for the HLCA.

Data and metadata collection
To accommodate data protection legislation, single cell RNA sequencing datasets of healthy lung tissue
were shared by dataset generators (Supplementary Data Table 2) as raw count matrices, thereby
obviating the need to share genetic information. Unpublished raw count matrices and cell annotations
were generated as described above. For the Barbry_2020 study, count matrices provided had ambient
RNA removed. Count matrices were generated using varying software (Supplementary Data Table 2). All
count matrices of the HLCA core except one study (see above, "re-processing of published data") were
based on alignment to reference genome GRCh38, annotation ensembl 84. For all datasets from the
HLCA core, a pre-formatted sample metadata form was filled out by the dataset providers for every
sample, containing metadata such as subject ID of the donor from which the sample came, the donor’s
age, the type of sample, the sequencing platform, etc. (Supplementary Data Table 2). Cell type
annotations from dataset providers were included in all datasets.

Cell type reference creation and metadata harmonization
for the HLCA core
To harmonize cell type labels from different datasets, a common reference was created to which original
cell type labels were mapped (Supplementary Data Table 4). To accommodate labels at different levels of
detail, the cell type reference was made hierarchical, with level 1 containing the coarsest possible labels
(immune, epithelial, etc.), and level 5 containing the finest possible labels (e.g. naive CD4 T cells). Levels
were created in a data-driven fashion, recursively breaking up coarser level labels into finer ones where
finer labels were available. Anatomical location of the sample was encoded into a continuous score, with
0 representing the most proximal samples (nose, inferior turbinate) and 1 representing the most distal
possible sample (parenchyma, alveolar sacs) (Supplementary Data Table 3). A distinction was made
between upper and lower airways. First, an anatomical coordinate score was applied to the upper
airways, starting at 0 and increasing linearly (with a value of 0.5) between each of the following
anatomical locations: inferior turbinate, nasopharynx, oropharnyx, vesibula, and larynx. The trachea
received the next anatomical coordinate score using the same linear increment as in the upper airways
(score of 2.5). In the lower airways, the coordinate score within the bronchial tree was based on the
generation airway, with trachea being the first generation and the total number of generations assumed to
be 2384. The alveolar sac was assigned the coordinate score of the 23rd generation airway. The
coordinate score of each generation airway was calculated by taking the log-2 value of the generation,
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and adding that to the score of the trachea. Using this methodology, the alveolus received the anatomical
coordinate score of 7.02. To calculate the finat CCF coordinate, the coordinates scores (ranging from 0 to
7.02) were scaled to a value between 0 (inferior turbinate) and 1 (alveolus). Samples were then mapped
to this coordinate system using the best approximation of the sampling location for each of the samples
of the Core HLCA.

General data preprocessing for the HLCA core
Patients with lung conditions affecting larger parts of the lung, such as asthma or pulmonary fibrosis,
were excluded from the HLCA core, and later added to the extended atlas. For the HLCA core, all matrices
were gene-filtered based on cellranger ensembl84 gene type filtering85 (resulting in 33694 gene IDs). Cells
with fewer than 200 genes detected were removed (removing 2335 cells, and 21 extra erythrocytes with
close to 200 genes expressed, these hampered SCRAN normalization, see below), and genes expressed in
fewer than 10 cells were removed (removing 5167 out of 33694 genes).

Total counts normalization with SCRAN
To normalize for differences in total unique molecular identifier (UMI) counts per cell, we performed
SCRAN normalization86. Since SCRAN assumes that at least half of the genes in the data to normalize
are not differentially expressed between subgroups of cells, we performed SCRAN normalization within
clusters. To that end, we first performed a total counts normalization, by dividing each count by its cell’s
total counts, and multiplying by 10,000. We then performed a log transformation using natural log and
pseudocount 1. A principal component analysis was subsequently performed. Using the first 50 principal
components, a neighborhood graph was calculated with the number of neighbors set to k = 15. Data were
subsequently clustered with louvain clustering, at resolution r = 0.5. SCRAN normalization was then
performed on the raw counts, using the louvain clusters as input clusters, and with the minimum mean
(library size-adjusted) average count of genes to be used for normalization set to 0.1. The resulting size
factors were used for normalization. For the final HLCA (and not the benchmarking subset), cells with
abnormally low size factors (< 0.01) or abnormally high total counts after normalization (> 10e5) were
removed from the data (267 cells in total).

Preprocessing of data for integration benchmarking
For computational efficiency, benchmarking was performed on a subset of the total atlas, including data
from 10 studies split into 13 datasets (Lafyatis_Rojas_2020 was split into 10Xv1 and 10Xv2 data,
Seibold_2020 was split into 10Xv2 and 10Xv3 data, and Banovich_Kropski_2020 was split into two based
on processing site). The data came from 72 subjects, 124 samples and 372,111 cells. Preprocessing of
the benchmarking data included the filtering of cells (minimum number of total UMI counts: 500) and
genes (minimum number of cells expressing the gene: 5).

For integration benchmarking, the scIB benchmarking framework was used16. All benchmarked methods
except scGen (i.e. BBKNN, ComBat, Conos, fastMNN, Harmony, Scanorama, scANVI, scVI and Seurat
RPCA) were run at least twice: on the 2000 most highly variable genes, and on the 6000 most highly
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variable genes. Of those methods, all methods that did not require raw counts as input were run twice on
each gene set: once with gene counts scaled to have mean 0 and standard deviation 1, one with unscaled
gene counts. scVI and scANVI, which require raw counts as input, were not run on scaled gene counts.
scGen was only tested on 2000 unscaled highly variable genes. For highly variable gene selection, first,
highly variable genes were calculated per dataset, using cellranger-based highly variable gene selection87

(default parameter settings: min_disp = 0.5, min_mean = 0.0125, max_mean = 3, span = 0.3, n_bins = 20).
Then, genes that were highly variable in all datasets were considered overall highly variable, followed by
genes highly variable in all datasets but one, in all datasets but two etc. until a predetermined number of
genes was selected (2000 or 6000 genes).

For scANVI and scVI, genes were subset to the highly variable gene set and the resulting raw count matrix
was used as input. For all other methods, SCRAN-normalized (as described above) data were used. Genes
were then subset to the pre-calculated highly variable gene sets. For integration of gene-scaled data, all
genes were scaled to have mean 0 and standard deviation 1.

Two integration methods allowed for input of cell type labels to guide the integration: scGen and scANVI.
As labels, level 3 harmonized cell type labels were used (Supplementary Data Table 4), except for blood
vessel endothelial, fibroblast lineage, mesothelial and smooth muscle cells, for which we used level 2
labels. Since scGen does not accept unlabeled cells, cells that did not have annotations available at these
levels (i.e. cells annotated as cycling, epithelial, stromal, or lymphoid cells with no further annotations;
4499 cells in total) were left out of the benchmarking data.

Data integration benchmarking
Integration methods were run using default integration parameter settings as previously described42.
Maximum memory usage was set to 376Gb, and all methods requiring more memory were excluded from
the analysis. The quality of each of the integrations was scored using 12 metrics, with 4 metrics
measuring the batch correction quality, and 8 metrics quantifying conservation of biological signal after
integration (Extended Data Fig. 1, metrics previously described16). Overall scores were computed by
taking a 40:60 weighted mean of batch effect removal to biological variation conservation (bio-
conservation), respectively. Methods were ranked based on overall score (Extended Data Fig. 1). The top
performing method (scANVI, 2000 hvgs, unscaled) was used for integration of the HLCA core.

Splitting of studies into datasets
For integration of the data into the HLCA core, we first determined in which cases studies had to be split
into separate datasets (which were treated as batches during integration). Reasons for possible splitting
were 1) different 10X versions used within a study (e.g. 10Xv2 versus 10Xv3), or 2) processing of
samples at different institutes within a study. To determine if these covariates caused batch effects
within a study, we performed principal component regression88. To that end, we preprocessed single
studies separately (total counts normalization to median total counts across cells, and subsequent
principal component analysis (PCA) with 50 principal components (PCs). For each study, we then
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calculated the fraction of the variance in the first 50 PCs that could be explained (“pcexpl”) by the
covariate of interest (i.e. 10X version or processing institute):

where var(pcI|cov) is the variance in scores for the ith PC across cells that can be explained by the
covariate under consideration, based on a linear regression.

Then, 10X version or processing institute assignments were randomly shuffled between samples, and
pcexpl was calculated for the randomized covariate. This was repeated over 10 random shufflings, and
the mean and standard deviation of the pcexpl was then calculated for the covariate. If the non-
randomized pcexpl was more than 1.5 standard deviations above the randomized pcexpl, we considered
the covariate a source of batch effect and split the study into separate datasets. Thus both
Jain_Misharin_2021 and Lafyatis_Rojas_2019 were split into 10Xv1 and 10Xv2, Seibold_2020 was split
into 10Xv2 and 10Xv3, while Banovich_Kropski_2020 was not split based on 10X version nor based on
processing location.

Dataset integration
For integration of the datasets into the HLCA core, coarse cell type labels were used as described for
integration benchmarking, except cells with lacking annotations were set to “unlabeled” instead of being
removed. scANVI was run on the raw counts of the 2000 most highly variable genes (calculated as
described above), using datasets as the batch variable. The following parameter settings were used:
number of layers: 2, number of latent dimensions: 30, encode covariates: True, deeply inject covariates:
False, use layer norm: both, use batch norm: none, gene likelihood: nb, n epochs unsupervised: 500, n
epochs semi-supervised: 200, frequency: 1. For the unsupervised training, the following early-stopping
parameters were used: early stopping metric: elbo, save best state metric: elbo, patience: 10, threshold: 0,
reduce lr on plateau: True, lr patience: 8, lr_factor: 0.1. For the semi-supervised training, the following
early-stopping-parameter settings were used: early stopping metric: accuracy, save best state metric:
accuracy, on: full dataset, patience: 10, threshold: 0.001, reduce lr on plateau: True, lr_patience: 8,
lr_factor: 0.1. The latent embedding generated by scANVI was used for downstream analysis (clustering
and visualization). For gene-level analyses (differential expression, covariate effect modeling) un-
corrected counts were used.

Data embedding and clustering
To cluster the cells in the HLCA core, a nearest neighbor graph was calculated, based on the 30 latent
dimensions that were obtained from the scANVI output, with the number of neighbors set to k = 30. This
choice of k, while improving clustering robustness, could impair the detection of very rare cell types.
Coarse leiden clustering was done on the graph with resolution r = 0.01. For each of the resulting level 1
clusters, a new neighbor graph was calculated using scANVIs 30 latent dimensions, with the number of

pcexpl =
∑

50
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∑
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neighbors again set to k = 30. Based on the new neighbor graph, each cluster was clustered into smaller
“level 2” clusters with leiden clustering at resolution r = 0.2. The same was done for level 3, 4 and where
needed 5, with k set to 15, 10, and 10 respectively, and resolution set to 0.2. Clusters were named based
on their parent clusters and sister clusters, e.g. cluster 1.2 is the third biggest subcluster (starting at 0) of
cluster 1. For visualization, a two-dimensional Uniform Manifold Approximation and Projection89 (UMAP)
of the atlas was generated based on the 30-nearest-neighbor graph.

Calculation of cluster entropy of cell type labels and
subjects
To calculate cluster cell type label entropy for a specific level of annotation, Shannon entropy was

calculated as , where are the set of labels at that annotation level,
and  is the fraction of cells in the cluster that was labeled as . Cells without a label at the level
under consideration were not included in the entropy calculation. If fewer than 20% of cells were labeled
at the level, entropy was set to NA. Entropy of subjects per cluster was calculated in the same way. To set
a threshold for "high label entropy”, we calculated the label entropy of a hypothetical cluster with 75% of
cells given one label, and 25% of cells given another label. Clusters with a label entropy above that level
(0.56) were considered high label entropy clusters. To set a threshold for “low subject entropy”, we
calculated the label entropy for a hypothetical cluster with 95% of cells from one subject, and the
remaining 5% of cells distributed over all other subjects. Clusters with a subject entropy below that level
(0.43) were considered clusters with low subject entropy.

Rare cell type analysis
To determine how well rare cell types (ionocytes, neuroendocrine cells and tuft cells) were clustered
together and separate from other cell types after integration, we calculated recall (% of all cells annotated
as a specific rare cell type that were grouped into the cluster) and precision (% of cells from the cluster
that were annotated as a specific rare cell type) for all level 3 clusters. Nested clustering on Harmony32,89

and Seurat’s RPCA28 output was done based on PCA of the corrected gene counts, re-calculating the PCs
for every parent cluster when performing clustering into smaller children clusters, and proceeding
clustering as described above. The level 3 clusters with the highest sensitivity for each cell type are
shown in figures.

Manual cell type annotation and marker gene selection
Re-annotation of cells in the HLCA core was done by six investigators with expertise in lung biology (EM,
MCN, AVM, LEZ, NEB, JAK), based on original annotations and differentially expressed genes of the HLCA
core clusters. Annotation was done per cluster, using finer clusters where these represented specific
known cell types or states rather than subject-specific variation. Annotations were hierarchical (as the cell
type reference), and each annotated cluster was annotated at all levels up to its highest known level.

Marker genes were calculated by performing a t-test-based differential expression analysis on a given cell
type (based on SCRAN-normalized, logarithmized counts), compared to the rest of the cells from the

−∑
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same level 1 annotation (i.e. epithelial, endothelial, stromal or immune cells). Genes were then filtered
further according to the following criteria: minimum fraction of cells within the cluster in which the gene
was detected: 0.25; maximum fraction of cells from outside the cluster in which gene was detected; 0.5,
minimum fold change; 1. The top 10 most significant genes that passed filtering were selected as top
marker genes. For highly similar cell types, a second differential expression analysis was done, this time
comparing the cell type to its closest sister annotations (e.g. submucosal gland (SMG) serous (nasal)
cells compared to the remaining SMG cell types). For those cell types, top 10 marker genes consisted of
the top 5 genes from the first and second comparison, respectively. Where fewer than 10 genes passed
filtering criteria, only those genes were included as markers.

Variance between individuals explained by technical and
biological covariates
To quantify to what extent different technical and biological covariates correlated with inter-individual
variation in the atlas, we calculated the “variance explained” by each covariate for each cell type. We first
split the data in the HLCA core by cell type annotation, merging substates of a single cell type into one
(Supplementary Data Table 10). For every cell type, we excluded samples that had fewer than 10 cells of
the sample. We then summarized covariate values per sample for every cell type as follows: mean across
cells from sample for scANVI latent components (integration results), UMI count per cell, and fraction of
mitochondrial UMIs; for all other covariates (i.e. dataset, 3’ or 5’, BMI, cell ranger version (1, 2, 3 or 4), cell
viability %, ethnicity, sampling method (e.g. biopsy, brush, donor lung), sequencing platform, sex, single
cell chemistry (e.g. 10X 3’ v2), smoking status (active, former or never), subject status (alive disease, alive
healthy or organ donor), age, and anatomical region (CCF score)), each sample had only one value,
therefore these values were used.

We then performed “PC regression” on every covariate, as described earlier, now using scANVI latent
component scores instead of principal component scores for the regression. Samples that did not have a
value for a given covariate (e.g. where BMI was not recorded for the subject) were excluded from the
regression. Categorical covariates were converted to dummy variables. Celltype - covariate pairs for which
only one value was observed for the covariate were excluded from the analysis.

To check to what extent covariates correlated with each other, thereby possibly acting as confounders in
the PC regression scores, we determined dependence between all covariate pairs for every cell type. If at
least one covariate was continuous, we calculated the fraction of variance in the continuous covariate
that could be explained by the other covariate (dummying categorical covariates), and took the square
root (equal to Pearson r for two continuous covariates). For two categorical covariates, if both covariates
had more than two unique values we calculated normalized mutual information (NMI) between the
covariates using scikit-learn90, since a linear regression between these two covariates is not possible.

To control for spurious correlations between inter-individual cell type variation and covariates due to low
sample numbers, we assessed the relationship between sample number and mean variance explained
across all covariates for every cell type. We found that for cell types sampled in fewer than 40 samples,
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mean variance explained across all covariates showed a high negative correlation with the number of
samples (Extended Data Fig. 7, a). We reasoned that for these cell types, correlations between
interindividual variation and our covariates were inflated due to under-sampling. Moreover, we note that at
lower sample numbers, technical and biological covariates often strongly correlate with each other across
subjects (Extended Data Fig. 7, c). This might lead to the attribution of true biological variation to
technical covariates, and vice versa, complicating interpretation of observed inter-individual cell type
variation. Consequently, we consider 40 a recommended minimum number of samples to avoid spurious
correlations between observed inter-individual variation and tested covariated, and excluded results from
cell types with fewer samples.

Modeling variation between individuals at the gene level
and gene set enrichment analysis
To model the effect of demographic and anatomical covariates (sex, age, BMI, ethnicity, smoking status,
and anatomical location of sample) on gene expression, we employed a generalized linear mixed model
(GLMM). We used sample-level pseudo-bulks (split by cell type), since the covariates modeled also varied
at sample- or subject level, and not at cell level. Modeling these covariates at cell level, i.e. treating single
cells as independent samples even when coming from the same sample, has been shown to inflate p-
values36,37. We encoded smoking status as a continuous covariate, setting never to 0, former to 0.5, and
current to 1. Anatomical region was encoded into anatomical region ccf-scores as described earlier. As we
noted that changes from nose to the rest of the airways and lungs were often independent from
continuous changes observed in the lungs only, we encoded “nasal” as a separate covariate, setting
samples from the nose to 1, and all others to 0. BMI and age were re-scaled, such that the 10th percentile
of observed values across the atlas was set to 0, and the 90th percentile set to 1 (25 and 64 for age,
respectively, and 21.32 and 36,86 for BMI). First, we split the lung cell atlas by cell type annotation,
pooling detailed annotations into one subtype (e.g. grouping all lymphatic EC subtypes into one)
(Supplementary Data Table 10). We then proceeded the same way for every cell type: we filtered out all
genes that were expressed in fewer than 50 cells, and all samples that had fewer than 10 cells of the cell
type. We furthermore filtered out datasets with fewer than 2 subjects, and refrained from modeling
categories in covariates that had fewer than three subjects in their category, for that cell type. To
determine if covariance between covariates was low enough for modeling, we calculated the variance
inflation factor (VIF) between covariates at subject level. The VIF quantifies multi-collinearity among
covariates of an ordinary least squares regression, and a high VIF indicates strong linear dependence
between variables. If the VIF was higher than 5 for any covariate for a specific cell type, we concluded
covariance was too high and excluded that cell type from the modeling. As many cell types lacked
sufficient representation of other ethnicities than ‘’white”, while including ethnicity in the analysis
simultaneously reduced the samples that could be included in the analysis to only those with ethnicity
annotations, we excluded ethnicity from the modeling.

Gene counts were summed across cells for every sample, within cell type. Sample-wise sums (i.e. pseudo-
bulks) were normalized using edgeR’s calcNormFactors function, using default parameter settings. We
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then used voom91, a method designed for bulk RNA-seq that estimates observation-specific gene
variances and incorporates these into the modeling. Specifically, we used a voom extension (differential
expression testing with linear mixed models or “Dream”) that allows for mixed effect modeling, and
modeled gene expression as:

where dataset is treated as a random effect, and all other effects are modeled as fixed effects. Resulting
p-values were corrected for multiple testing within every covariate using the Benjamini-Hochberg
procedure.

Gene set enrichment analysis was performed in R92 using the cameraPR function93 in the limma
package94 with the differential expression test statistic. Gene ontology (GO) biological process terms95,96

were tested separately for each comparison. These sets were obtained from MSigDB (v7.1)97 as provided
by the Walter and Eliza Hall Institute (https://bioinf.wehi.edu.au/MSigDB/index.html).

Mapping of GWAS results to the lung cell atlas cell types
To stratify GWAS results from several lung diseases by lung cell type, we applied stratified sc-LDSC, a
method that can link GWAS results to cell types based on proximity of disease-associated variants to
genes differentially expressed in the cell type51. GWAS summary statistics of COPD49 (GWAS catalog ID:
GCST007692, dbGaP accession number: phs000179.v6.p2, n_cases = 35,735, n_controls = 222,076), and
of lung cancer48 (GWAS catalog ID: GCST004748, dbGaP accession number: phs001273.v3.p2, n_cases 
= 29,266, n_controls = 56,450) were made available on dbGap upon request. Summary statistics of lung
function50 (GWAS catalog ID: GCST007429, n = 321,047 individuals), of asthma47 (GWAS catalog ID:
GCST010043, n_cases = 88,486 n_controls = 447,859), and of depression98 (used as negative control,
GWAS catalog ID: GCST005902, n_cases = 113,769, n_controls = 208,811) were publicly available. A
differential gene expression test was done for every grouped cell type (Supplementary Data Table 10) in
the HLCA using a t-test, testing against the rest of the atlas. The top 1000 most significant genes with
positive fold-changes were stored as genes characterizing that cell type (“cell type genes”), and used as
input for sc-LDSC. Gene coordinates of cell type genes were obtained based on the GRCh37.13 genome
annotation. For single nucleotide-polymorphism (SNP) data (names, locations, and linkage-related
information), the 1000 genomes European reference (GRCh37) was used, as previously described51. Only
SNPs from the HapMap3 project were included in the analysis. For identification of SNPs in the vicinity of
cell type genes, we used a window size of 100,000 base pairs. Genes from X and Y chromosomes, as well
as HLA genes, were excluded because of their unusual genetic architecture and linkage patterns. For ld-
score calculation, a 1 centiMorgan window was used. P-values yielded by scLDSC were corrected for
multiple testing for every disease tested, using the Benjamini-Hochberg correction procedure. As a
negative control, the analysis was performed with a GWAS of depression, and no cell types were found to
be significant (Extended Data Fig. 13).

log (normcount) ∼ 1 + age + sex + BMI + smoking + nose + ccfscore + (1|dataset)
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Extension of the HLCA core by mapping of scRNA-seq and
snRNA-seq lung data
To map unseen scRNA-seq and snRNA-seq data to the HLCA, we used scArches, our transfer-learning
based method that enables mapping of new data to an existing reference atlas42. scArches trains an
adaptor added to a reference embedding model, thereby enabling it to generate a common embedding of
the new data and the reference, allowing re-analysis and de novo clustering of the joint data. The data to
map was subsetted to the same 2000 highly variable genes (“hvgs”) that were used for HLCA integration
and embedding, and hvgs that were absent in the new data were set to 0 counts for all cells. Raw counts
were used as input for scArches. Healthy lung data (Meyer_2021) was split into two datasets: 3’ and 5’-
based. Lung cancer data (Thienpont_2018) was also split into two datasets: 10Xv1 and 10Xv2.

The model that was learned previously for HLCA integration using scANVI was used as the basis for the
scArches mapping. scArches was then run to train adapter weights that allowed for mapping of new data
into the existing HLCA embedding, using the following parameters: freeze-dropout: true, surgery_epochs:
500, train base model: false, metrics to monitor: accuracy and elbo, weight-decay: 0, frequency: 1. The
following early-stopping criteria were used: early stopping metric: elbo, save best state metric: elbo, on:
full dataset, patience: 10, threshold: 0.001, reduce lr on plateau: True, lr patience: 8, lr_factor: 0.1.

Identification of clusters with spatially annotated cell types
The Meyer_2021 study of healthy lung included cell type annotations based on matched spatial
transcriptomic data. Many of these annotations were not present in the HLCA core. To determine if these
new “spatial cell types” could still be recovered after mapping to the HLCA core, we looked for clusters
specifically grouping these cells. We focused on seven spatial cell types: perichondrial fibroblasts,
epineurial nerve-associated fibroblasts, endoneurial nerve-associated fibroblasts, CCL adventitial
fibroblasts, chondrocytes, myelinating schwann cells, and non-myelinating schwann cells. As these cell
types were often present at very small frequencies, we performed clustering at different resolutions to
determine if these cells were clustered separately at any of these resolutions. We clustered at resolutions
0.1, 0.2, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 80, and 100. Minimum recall (% of cells with the spatial cell
type annotation captured in cluster) was set to 20%, and minimum precision (% of cells from Meyer_2021
study in the cluster that had the spatial cell type annotation) was set to 25%. The cluster with the highest
recall was selected for every spatial cell type (unless this cluster decreased precision by more than 50%
compared to the cluster with the second highest recall). If precision of the next best cluster was doubled
compared to the cluster with highest recall, and recall did not decrease with more than 20%, this cluster
was selected.

Cell type label transfer from the HLCA core to new datasets
To perform label transfer from the HLCA core to the mapped datasets from the extended HLCA, we used
the scArches k-nearest neighbor based label transfer algorithm42. Briefly, a k-nearest neighbor graph was
generated from the joint embedding of the HLCA core and the new, mapped dataset, setting the number
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of neighbors to k = 50. Based on the abundance in a cell’s neighborhood of reference cells of different
types, the most likely cell type label for that cell was selected, and a matching uncertainty score was
calculated. For label transfer to lung cancer and healthy, spatially annotated projected data (Fig. 5b, e),
cells with an uncertainty score above 0.3 were set to “Unknown”. For the extended atlas, we calibrated the
uncertainty score cutoff by determining which uncertainty levels indicate possible failure of label transfer.
To determine the uncertainty score at which technical variability from residual batch effects impairs
correct label transfer, we evaluated how label transfer performed at the level of datasets, as these
predominantly differ in experimental design. To determine an uncertainty threshold indicative of possible
failure of label transfer, we harmonized original labels for 7 projected datasets17,21,53,57,62,64 (one
unpublished: “Duong_lungMAP_unpubl”) and assessed the correspondence between original labels with
the transferred annotations. To assess the optimal uncertainty cutoff for labeling a new cell as
“unknown”, we used these results to generate an ROC curve. We chose a cutoff around the elbow point,
keeping the false positive rate below 0.5 (uncertainty cutoff 0.2, true positive rate 0.88, false positive rate
0.49) to best distinguish correct from incorrect label transfers (Extended Data Fig. 17). False positives are
either due to incorrect label transfer, or due to incorrect annotations in the original datasets. Cells with an
uncertainty higher than 0.2 were set to “unknown”.

Disease signature score calculation
To learn disease-specific signatures based on label-transfer uncertainty scores, cells from the mapped
data with the same transferred label were split into low-uncertainty cells (< 0.2) and high-uncertainty cells
(> 0.4). We then performed a differential expression analysis on SCRAN-normalized counts using
diffxpy99 with default parameters, comparing high- and low-uncertainty cells, including only genes that
were expressed in at least 20 cells. The 20 most up-regulated genes based on log-fold changes were
selected, after filtering out genes with an FDR-corrected p-value above 0.05 and genes with a mean
expression below 0.1 in the high-uncertainty group. To calculate the “score” of a cell for the given set of
genes, the average expression of the set of genes was calculated, after which the average expression of a
reference set of genes was subtracted from the original average, as previously described100. The
reference set consists of a randomly sampled set of genes for each binned expression value. The
resulting score was considered the cell’s “disease signature score”.
Version information:

diffxpy: 0.7.4+18.gb8c6ae0

edgeR: 3.28.1, R 4.1.1 (covariate modeling)

LDSC: 1.0.1

Limma: 3.46.0, R 4.0.3 (GSEA)

Scanpy: 1.7.2

scArches: 0.3.5
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scIB: 0.1.1

scikit-learn: 0.24.1

scvi-tools (scANVI): 0.8.1

Code availability

The HLCA pipeline for processing of sequencing data to count matrices, used for a subset of HLCA
datasets (Methods): https://github.com/LungCellAtlas/scRNAseq_pipelines.

Code used for HLCA project: https://github.com/LungCellAtlas/HLCA_reproducibility

Code for users to map new data to the HLCA core (for automated mapping, see HLCA platforms below):
https://github.com/LungCellAtlas/mapping_data_to_the_HLCA

HLCA data portals and mapping to the HLCA:

Automated mapping to the HLCA and label transfer can be done with scArches42 at FASTGenomics
(https://beta.fastgenomics.org/p/hlca) 

Automated mapping to the HLCA, and label transfer with Azimuth14,42 (not shown in manuscript) can be
done at: azimuth.hubmapconsortium.org.

Label transfer with CellTypist72 (not shown in manuscript): https://www.celltypist.org/models

Data availability

The HLCA (raw and normalized counts, integrated embedding, cell type annotations and clinical and
technical metadata) is publicly available and can be downloaded via FASTGenomics:

https://beta.fastgenomics.org/p/hlca or via cellxgene

https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293

The HLCA core reference model and embedding for local mapping to the HLCA can moreover be found on
Zenodo: https://zenodo.org/record/6337966#.Yid5Vi9Q28U.

The original, published datasets that were included in the HLCA can be accessed under GEO accession
numbers GSE135893, GSE143868, GSE128033, GSE121611, GSE134174, GSE150674, GSE151928,
GSE136831, GSE128169, GSE171668, GSE132771, GSE126030, GSE161382, GSE155249, GSE135851,
GSE145926, EGA study IDs EGAS00001004082, EGAS00001004344, EGAD00001005064,
EGAD00001005065, and under urls https://www.synapse.org/#!Synapse:syn21041850,
https://data.humancellatlas.org/explore/projects/c4077b3c-5c98-4d26-a614-246d12c2e5d7,

https://github.com/LungCellAtlas/scRNAseq_pipelines
https://paperpile.com/c/GrmBlA/pWate
https://beta.fastgenomics.org/p/hlca
https://paperpile.com/c/GrmBlA/pWate+4CLiH
https://paperpile.com/c/Dcxxhs/n7mp
https://www.celltypist.org/models
https://beta.fastgenomics.org/p/hlca
https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293
https://zenodo.org/record/6337966#.Yid5Vi9Q28U
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https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001750.v1.p1,
https://www.nupulmonary.org/covid-19-ms2/?ds=full&meta=SampleName,
https://figshare.com/articles/dataset/Single-cell_RNA-
Seq_of_human_primary_lung_and_bronchial_epithelium_cells/11981034/1,
https://covid19.lambrechtslab.org/downloads/Allcells.counts.rds, https://s3.amazonaws.com/dp-lab-
data-public/lung-development-cancer-progression/PATIENT_LUNG_ADENOCARCINOMA_ANNOTATED.h5,
https://github.com/theislab/2020_Mayr, https://static-
content.springer.com/esm/art%3A10.1038%2Fs41586-018-0449-
8/MediaObjects/41586_2018_449_MOESM4_ESM.zip, http://blueprint.lambrechtslab.org/#/099de49a-
cd68-4db1-82c1-cc7acd3c6d14/*/welcome (see also Supplementary Data Table 1).
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Figure 1

Human Lung Cell Atlas study overview. Harmonized cell annotations, raw count data, harmonized patient
and sample metadata, and sample anatomical locations encoded into a common coordinate framework
were collected and generated as input for the Human Lung Cell Atlas (HLCA) core (left). After integration
of the core datasets, the atlas was extended by mapping 34 additional datasets, including disease
samples, to the HLCA core, bringing the total number of cells in the extended HLCA to 2.2 million. The
HLCA core provides detailed consensus cell annotations with matched consensus cell type markers (right,
top), gene modules associated with technical, demographic, and anatomical covariates in various cellular
identities (right, middle), GWAS-based association of lung conditions with cell types (right, middle), a
reference projection model to annotate new data (right, middle) and discover new cell types, transitional
cell states, and disease-associated cell states (right, bottom).
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Figure 2

Composition and construction of the HLCA core. a, Subject and sample composition in the HLCA core for
demographic and anatomical variables, respectively. Subjects/samples without annotation for a specific
variable are shown under “NA” (gray bars). Anatomical region common coordinate framework (CCF)
score ranges from 0 to 1, with 0 representing the most proximal part of the lung and airways (nose), and
1 the most distal (distal parenchyma). b, Overview of the HLCA core cell type composition, based on the
5-level hierarchical reference to which cell type labels of all datasets were mapped. Cell types were
labeled up to the finest level of labeling available, and set to “None” if no cell type label was available at
the level under consideration. Cell type composition is shown for level 1 (left), 2 (middle) and 3 (right).
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Level 4 and 5 annotations can be found in Supplementary Data Table 4. Each level is broken down into
more detailed labels in the following level. Cell labels making up less than 0.02% of all cells are not
shown. AT1, 2: alveolar type 1, 2. EC: endothelial cell. NK: natural killer cell. c, Cell type composition per
sample, based on level 2 labels. Samples are ordered by anatomical region CCF score, and split into nose,
airway and parenchyma groups. d, Summary of dataset integration benchmarking results. Benchmarking
was performed on a subset of 12 datasets from the HLCA. Methods are ordered by overall score. Overall
score is a weighted mean of batch-correction and biology-conservation performance. For each method,
the results are shown only for the best-performing preprocessing of the data for that method.
Preprocessing of data is specified under HVG and scaling. HVG: whether or not genes were subsetted to
the 2000 most highly variable genes (“HVG”) or to 6000 genes (“FULL”) before integration. Scaling:
whether or not genes were scaled to mean 0 and standard deviation 1 before integration. Output: format
of the method’s integrated output.
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Figure 3

The HLCA core conserves detailed biology and enables consensus-driven annotation. a, A Uniform
Manifold Approximation and Projection (UMAP) of the integrated HLCA, colored by level-1 annotation. b,
Cluster label entropy of leiden 3 clusters of the HLCA. HLCA was split into three compartments (immune,
epithelial, and endothelial and stromal) for ease of visualization. Cells from every cluster are colored by
the shannon-entropy of level 3 labels in the cluster, with higher entropy indicating more contradictory
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labels in the cluster. Entropy was not calculated for clusters with fewer than 20% of cells annotated at
level 3 (clusters colored gray). c, Cell type label composition of the immune cluster with the highest
cluster entropy (left), with original labels (left), and matching manual re-annotations (right). d, UMAPs of
the immune, epithelial, and endothelial and stromal compartments of the HLCA core with cell identity
annotations from the consensus-based manual re-annotation. e, Percentage of cells originally mis-
labeled or under-labeled (i.e. only labeled at a coarser level), as compared to final manual re-annotations.
Percentages were calculated per manual annotation, as well as across all cells (right bar). f, UMAP of
HLCA clusters annotated as rare epithelial cell types (i.e. ionocytes, neuroendocrine cells and tuft cells).
Final annotations, original labels and study of original are shown (top), as well as expression of ionocyte
marker FOXI1, tuft cell marker LRMP, and neuroendocrine marker CALCA. g, Log-normalized expression of
migratory DC marker CCR7 in cells identified as migratory DCs versus other DCs. DC: dendritic cell. AT1, 2:
alveolar type 1, 2 cells. EC: endothelial cells. FB: fibroblasts. Mφ: macrophages. MT: metallothionein. NK
cells: natural killer cells. SM: smooth muscle. SMG: submucosal gland.

Figure 4

Demographic and technical variables driving inter-individual variation. a, Fraction of total inter-sample
variance in the HLCA core integrated embedding that can be explained by specific covariates. Covariates
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are split into technical covariates (left), and biological covariates (right). Cell types are ordered by the
number of samples in which they were detected, and only cell types present in at least 40 samples are
shown. Fraction of total variance explained is calculated per cell type. Sampling method represents the
way a sample was obtained, e.g. surgical resection or nasal brush. Subject status: state of the subject at
the moment of sample collection, e.g. organ donor, diseased alive or healthy alive. UMI count per cell:
mean of log10(total UMIs detected) among cells of a cell type in a sample. Fraction of mitochondrial
UMIs: mean of the fraction of mitochondrial RNA counts across cells from a cell type in a sample.
Heatmap is masked gray where fewer than 40 samples were annotated for a specific covariate, or where
only one value was observed for all samples for a specific cell type. AT1, 2: Alveolar type 1, 2 cells. EC:
endothelial cells. NK: natural killer cells. b, Selection of gene sets that are significantly associated with
anatomical location, in different epithelial cell types. All gene sets are gene ontology biological process
terms. Sets up-regulated towards distal lungs are shown in green, sets down-regulated are shown in blue.
*full name: Antigen processing and presentation of peptide antigen via MHC class I. c, Selection of gene
sets significantly up- (green) or down-regulated (blue) with increasing BMI, in four different cell types. P-
values are FDR-corrected using the Benjamini-Hochberg procedure.
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Figure 5

The HLCA core as a reference for label transfer and data contextualization. a, UMAP of the jointly
embedded HLCA core and the projected healthy lung dataset. UMAP is colored by label transfer
uncertainty of cells from the new dataset, with cells from the HLCA colored in gray. HLCA cell types
surrounding regions of high uncertainty are labeled. b, Percentage of cells from newly mapped healthy
lung dataset that are either annotated correctly or incorrectly by label transfer annotation, or annotated as
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unknown, subdivided by original cell type label. The number of cells in the mapped dataset labeled with
each label are shown between brackets after cell type names. Cell type labels not present in the HLCA are
boxed. c, Top: percentage of cells derived from tumor tissue, per EC cluster from the joint HLCA core and
lung cancer data embedding. Only clusters with at least 10 tumor cells are shown. Clusters are named
based on the dominant HLCA core cell type annotation in the cluster. Middle: Boxplot of expression of
EDNRB in EC clusters, subdivided by tissue source. Boxes show median and interquartile range, data
points outside more than 1.5 times the interquartile range outside the low and high quartile are
considered outliers and not shown. Whiskers extend to the furthest non-outlier point. Bottom: as middle
panel, but showing expression of ACKR1. d, Association of cell types with four different lung phenotypes.
Association is based on phenotype-related genomic variants from GWA studies, and cell-type specific
differentially expressed genes calculated from the HLCA core. Horizontal dashed lines indicate
significance threshold alpha=0.05. p-values are multiple-testing-corrected with the Benjamini-Hochberg
procedure. fvc: forced vital capacity. COPD: chronic obstructive pulmonary disease. e, UMAP of fibroblast-
dominated clusters from the jointly embedded HLCA core and the mapped healthy lung dataset. UMAP is
colored by spatial clusters, with cells outside of the indicated clusters colored in gray. AT1, 2: alveolar
type 1, 2 cells. DC: dendritic cells. EC: endothelial cells. ILCs: innate lymphoid cells. Mφ: macrophages. NK
cells: natural killer cells. NKT cells: natural killer T cells. SMG: submucosal gland.
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Figure 6

The extended HLCA highlights disease-associated cell states. a, UMAP of the HLCA, including both the
HLCA core, and the 34 datasets from the atlas extension. Cells from the HLCA core are colored by coarse
annotation, whereas cells from the atlas extension (mapped to the HLCA core) are colored gray. b,
Uncertainty of label transfer from the HLCA core to newly mapped datasets, categorized by several
experimental features. Mean uncertainties per dataset are shown. Datasets with samples from multiple
categories (e.g. including healthy and diseased samples) were split according to category. Categories
with fewer than 2 instances are not shown. CF: cystic fibrosis. IPF: idiopathic pulmonary fibrosis. ILD:
interstitial lung disease. c, Label transfer uncertainty distribution of cells from a mapped IPF dataset,
subdivided by transferred label. Uncertainty is shown for cells from healthy samples (blue) and from IPF
samples (orange) from the same dataset. Cell types are sorted by difference in uncertainty between
healthy and IPF cells. d, Uncertainty-based disease signature scores among alveolar fibroblasts (left) and
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alveolar macrophages (right), as annotated through label transfer. Cells are split into cells from healthy
samples (blue), low-uncertainty cells from IPF samples (light orange), and high-uncertainty cells from IPF
samples (bright orange). For both b and d, boxes show median and interquartile range, data points
outside more than 1.5 times the interquartile range outside the low and high quartile are considered
outliers and not shown. Whiskers extend to the furthest non-outlier point. AT1, 2: alveolar type 1, 2 cells.
DC: dendritic cells. DC1, 2: DC type 1, 2. EC: endothelial cells. SMG: submucosal gland.
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