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Abstract

Archaeogenomic research has proven to be a valuable tool to trace migrations of historic and
prehistoric individuals and groups, whereas relationships within a group or burial site have
not been investigated to a large extent. Knowing the genetic kinship of historic and prehistoric
individuals would give important insights into social structures of ancient and historic cul-
tures. Most archaeogenetic research concerning kinship has been restricted to uniparental
markers, while studies using genome-wide information were mainly focused on comparisons
between populations. Applications which infer the degree of relationship based on modern-
day DNA information typically require diploid genotype data. Low concentration of endoge-
nous DNA, fragmentation and other post-mortem damage to ancient DNA (aDNA) makes
the application of such tools unfeasible for most archaeological samples. To infer family rela-
tionships for degraded samples, we developed the software READ (Relationship Estimation
from Ancient DNA). We show that our heuristic approach can successfully infer up to second
degree relationships with as little as 0.1x shotgun coverage per genome for pairs of individu-
als. We uncover previously unknown relationships among prehistoric individuals by applying
READ to published aDNA data from several human remains excavated from different cultural
contexts. In particular, we find a group of five closely related males from the same Corded
Ware culture site in modern-day Germany, suggesting patrilocality, which highlights the pos-
sibility to uncover social structures of ancient populations by applying READ to genome-wide
aDNA data. READ is publicly available from https://bitbucket.org/tguenther/read.

Introduction

An individual’s genome is a mosaic of different segments inherited from our various direct
ancestors. These segments, shared between individuals, can be referred to as identical by
descent (IBD). Knowledge about IBD segments has been used for haplotype phasing [1, 2],
heritability estimation [3, 4], population history [5], inference of natural selection [6] and to
estimate the degree of biological relationship among individuals [7]. A number of methods
have been developed to estimate the degree of biological relationship by inferring IBD from
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SNP genotype or whole genome sequencing data. The methods for estimating relationship lev-
els implemented in PLINK [8], SNPduo [9], ERSA [10, 11], KING [12], REAP [13] and GRAB
[14] greatly benefit from genome wide diploid data, information about phase, recombination
maps and population allele frequency, and are sometimes able to successfully infer relation-
ships up to 11th degree [11].

Knowing whether a pair of individuals is directly related or not, and estimating the degree
of relationship is of interest in various fields: Genome-wide association studies and population
genetic analyses often try to exclude related individuals since they do not represent statistically
independent samples; in forensics, archaeology and genealogy, individuals and their relatives
can be identified based on DNA extracted from human remains [15, 16]; Breeders and conser-
vation biologists are interested in the relatedness of mating individuals [17, 18]. Current meth-
ods present significant limitations for the analysis of degraded samples as they rely on diploid
genotype calls, low proportions of missing data and sometimes even phase information. Espe-
cially in the fields of forensics and archaeology, the amount of endogenous DNA available for
analysis is limited due to postmortem degradation [19-21]. In archaeology, the analysis of IBD
has the potential to provide an independent means to test kinship behavior and social organi-
zation [22, 23], but current methods would be restricted to exceptionally well-preserved sam-
ples. In forensic science and practice, the dominant approach has been to type several short
tandem repeat (STR) markers, which in most cases provide sufficient information for related-
ness assessment, but the STRs might be hard to type in degraded samples [24]. In addition to
nuclear STRs, mitochondrial and Y-chromosome haplogroups have been widely used to infer
family relationships (e.g. [15, 16, 25, 26]), although they can only exclude certain direct rela-
tionships since most mitochondrial and Y-chromosome haplogroups are relatively common
among unrelated individuals. These uniparental markers can be typed from degraded samples,
and can be used to exclude maternal or paternal relationships, but not to infer the actual
degree of relationship. Genome-wide data, however, can be obtained from degraded samples
at a higher success rate than STRs and it can be used to confidently identify individuals [27].

Single Nucleotide Polymorphism (SNP) data can be obtained from genotyping experiments
(e.g. SNP arrays or RAD sequencing), targeted capture [28], and whole-genome shotgun
sequencing (e.g. [29, 30]). The field of ancient DNA has developed rapidly over the last few
years and allowed pivotal studies of the population history of Europe [23, 28-42] and the peo-
pling of the Americas [40, 43, 44]. However, both whole-genome shotgun sequencing (e.g. [30,
33, 34]) and genome-wide SNP capture (e.g. [28, 35]) usually achieve coverages <1x per infor-
mative site for most individuals which makes diploid genotype calls at all sites virtually impos-
sible. Methods to infer relationships, however, rely on such ideal data to identify IBD blocks
which is a major limitation for applying these methods to ancient DNA data.

However, even low coverage data contain information about the degree of relationship.

To utilize this information, we developed READ (Relationship Estimation from Ancient
DNA), a heuristic method to infer family relationships up to second degree from samples with
extremely low coverage. The method is tested on publicly available data with known relation-
ship, which we sub-sample to resemble the properties of degraded samples. We also apply our
method to a number of ancient samples from the literature and confidently classify individual
pairs as being related.

Results
Method outline

The input for READ are a set of TPED/TFAM files [8] containing pseudo-haploid genotypes
for a population. The biallelic SNP sites included in that file would usually be from some
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Comparison

Individual 1

externally ascertained SNP panel (e.g. Human Origins array or 1000 genomes). The data is
assumed to be pseudo-haploid (i.e. one randomly sampled allele per individual and SNP site)
as the low coverage in aDNA studies normally does not allow to call heterozygous genotypes.
This procedure of randomly sampling one sequencing read per SNP site is widely used in
aDNA studies of low coverage data, see e.g. [23, 28-31, 33-36, 39, 42, 45]. We divide the
genome into non-overlapping windows of 1 Mbps each and for each pair of individuals calcu-
late the proportion of non-matching alleles inside each window (P0). Before classifying the
degree of relationship of a pair of individuals, we need to normalize PO using the expected
value for a randomly chosen pair of unrelated individuals from the same population in order
to make the classification independent of within population diversity, SNP ascertainment and
marker density. In most applications, that expected value is difficult to infer which is why sev-
eral proxies can be used: a pair of unrelated individuals from the same population (similar to
[46, 47]), a pair of individuals from a different population with similar expected diversity, or
the median of all average pairwise PO across all individuals which should correspond to a pair
of unrelated individuals if the sample size is sufficient. The latter setting is the default option
for READ and we are using it in all major simulations as well as the empirical data analysis of
this study. Depending on the normalized proportion of shared alleles, each pair of individuals
is classified as unrelated, second-degree (i.e. nephew/niece-uncle/aunt, grandparent-grand-
child or half-siblings), first-degree (parent-offspring or siblings) or identical individuals/iden-
tical twins (Fig 1). As a method with the goal to classify pairs of individuals, READ always
outputs the best fitting degree of relationship. This decision is based on the point estimate of
the average PO and we observe throughout our simulations that basing classifications on the
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Fig 1. Outline of the general READ workflow to estimate the degree of relationship between two individuals.

https://doi.org/10.1371/journal.pone.0195491.9001
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point estimates has a low number of false positives. The user is provided with a graphical sum-
mary of the classification results which also includes the uncertainties of the different esti-
mates. To additionally express the certainty of each categorization, the distance to the
classification cutofts are expressed as multiples of the standard error of the mean (Z).

Simulations based on modern data with known relationship

READ’s performance was tested on 1,326 individuals of 15 different populations from the
phase 3 data of the 1000 genomes project [48]. A total of 86,336 pairwise comparisons were
tested. The rates of false positives (unrelated individuals classified as related) and false nega-
tives (related individuals classified as unrelated or as wrong degree) are highly dependent on
the amount of data available for pairwise comparison. We measure the amount of available
data as the number of SNP sites (out of a maximum of 1,156,468) with allelic information for
both individuals. READ showed an overall good performance with false positive rates below
three percent for as little as 1,000 overlapping SNP loci (Fig 2A). False negative rates are < 10
percent across all tested pairs and are highest with the lowest amount of overlapping SNPs
between the two individuals. Separating the error rates between first and second degree rela-
tives shows that the false negative rate is much higher for pairs know to be second degree rela-
tives who tend to be classified as unrelated (Fig 2C) while first degree relatives tend to be
classified as second degree relatives if the classification is incorrect (Fig 2B). False positive rates
are low for both degrees of relationship (Fig 2B and 2C). The rate of false negatives increases
up to 7.5% for first degree relationships and 38% for second degree relationships when the
number of SNPs is low (Fig 2B and 2C).

Further complications in the analysis of empirical aDNA data are sequencing and mapping
errors, contamination and post-mortem damage. Ultimately, these issues will increase the pro-
portion of wrongly called alleles at the analyzed SNP sites, which means that READ would ana-
lyze a false allele instead of one of the two alleles actually carried by the individual. To see the
effect of such allelic errors, we repeated the simulations with certain error rates meaning that
alleles were randomly changed with a probability corresponding to a defined site specific allelic
error rate. The results of this simulation are shown in Fig 3. Essentially, wrongly called alleles
lead to an overestimation of genetic distance between individuals. As a consequence, pairs of
individuals tend to get classified into more distant categories which can be seen by an increase
in the false negative rate for higher rates of allelic error. False positive rates are not affected by
wrongly called alleles but false negative rates increase substantially with more errors. In order
to qualitatively investigate a situation where the normalization value is based on a data set with
a different error rate than the data used for classification, we performed an additional set of
simulations: The two populations IBS and YRI (the populations with the highest number of
reported relatives) were split in two halves—one half with a simulated allelic error of 5%, the
other with a simulated allelic error of 10%. For each half, a separate normalization value was
estimated (the median across all pairs) which was then used for the normalization step when
classifying related pairs in the other half of the data. A normalization value based on a lower
allelic error rate resulted in an elevated false negative rate while a normalization value based
on higher allelic errors caused an inflated false positive rate (S4 Table). These results highlight
how important it is to keep the effects of contamination, post-mortem damage and other error
sources low in empirical studies. Careful data curation as well as filtering should be able to
minimize the rate of allelic errors, making error rates <5% realistic for most applications. We
describe some important steps for preparing input data in the Discussion.

To illustrate how much sequencing would be needed to achieve the required SNP numbers,
we estimate the expected number of SNPs covered by at least one read in both individuals
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Fig 2. Simulation based estimates of false positive and false negative rates for different numbers of SNPs. The analysis is based on pairs of
individuals with known degree of relationship in the 1000 genomes data. (A) All degrees of relationship, (B) only first degree relatives and (C) only
second degree relatives. For pairs known to be related but not classified correctly (“False negative”) we distinguish between pairs classified as

unrelated and classified as related but to a wrong degree. Error rates were estimated for 1,000, 2,500, 5,000, 10,000 and 50,000 overlapping SNPs
between the pair of individuals.

https://doi.org/10.1371/journal.pone.0195491.9002
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Fig 3. Effect of allelic errors on READ’s performance. The simulations are identical to those conducted for Fig 2 but including a certain proportion of wrongly called

alleles. The rates of false positives and false negatives were calculated accordingly. Error rates were estimated for 1,000, 2,500, 5,000, 10,000 and 50,000 overlapping SNPs
between the pair of individuals.

https:/doi.org/10.1371/journal.pone.0195491.9003
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Fig 4. Number of SNP sites covered in both individuals dependent on the sequencing coverage for each
individual. This figure shows expected number of SNP sites with overlapping data for two individuals for different
combinations of sequencing depths. The contour lines mark different numbers of SNPs including those used in the
simulations (see Fig 2). The total number of SNPs is set to 1,156,468, identical to what has been used in the simulations
and similar to the 1.2 million SNPs used in the empirical data set [35]. The calculation assumes a Poisson distribution
of sequencing coverage across the genome [49] and that coverage at each SNP site and individual is independent.

https://doi.org/10.1371/journal.pone.0195491.g004

depending on the sequencing coverage for each sample (Fig 4). This example assumes that the
total number of SNP sites in the data set is 1,156,468 (as in the simulations above and similar
to the 1.2 million SNP sites in the empirical aDNA data set studied below [35]) and that the
read depth at each SNP locus follows a Poisson distribution with mean corresponding to the
genome-wide average sequencing coverage [49].

Relationships among prehistoric Eurasians

To investigate READ’s performance on empirical aDNA data, we analyzed a large published
genotype data set of 230 ancient Eurasians from the Mesolithic, Neolithic and Bronze Age
periods [35]. In accordance with the original publications [28, 30, 35], READ inferred
RISE507 and RISE508 to be the same individual and all nine known relationships were cor-
rectly identified as first degree relatives (Table 1). In addition to those, READ identified one
additional pair of first degree relatives as well as six new second degree relationships. All rela-
tives are from the same location and their radiocarbon dates (if available) are overlapping.
READ identified an unknown pair of first degree relationship between two Srubnaya indi-
viduals (10360 and 10354). Notably, Mathieson et al (2015) [35] have excluded 10354 since she
was an outlier compared to other Srubnaya individuals. The classification of 10360 and 10354
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Table 1. Pairs of relatives among the 230 individuals in the aDNA dataset as inferred by READ.

Group Ind1 MTand Y C14 date Ind2 C14 date MT and Y (Ind2) Inferred min(|Z| )®
(Ind1) (Ind1) (Ind2) relationship
Afanasievo® RISE507 Ub5alal 3322-2923 RISE508 3331-2935 Us5alal identical 13.95
(female) calBCE (female) calBCE
Neolithic Anatolia® 10736 (female) | Nlalala 6500-6200 BCE | 10854 (female) | 6500-6200 BCE | Nlalala 1st 4.48
Neolithic Anatolia® 11097 (male) W1; G2a2b2a 6500-6200 BCE | 10744 (male) 6500-6200 BCE | J1c11; G2a2b2a 2nd* 4.66
Bell Beaker, 10111 (female) | H3ao 2475-2204 11530 (male) 2345-2198 H3ao; R1 1st 5.79
Germany® calBCE calBCE
Bell Beaker, 10060 (female) | Kla2c 2428-2149 11530 (male) 2345-2198 H3ao; R1 2nd 0.22
Germany© calBCE calBCE
Corded Ware, 11538 (male) J1c5; Rla 2500-2050 BCE | 11534 (male) 2500-2050 BCE | Klalb2a; R(xR1b) 2nd* 0.73
Germany“
Corded Ware, 11538 (male) J1c5; Rla 2500-2050 BCE | I1541 (male) 2500-2050 BCE | U2elal; Rla 1st 6.84
GermanyC
Corded Ware, 11539 (female) | Jlclbla 2625-2291 11532 (male) 2500-2050 BCE | J1c2e; Rlala 2nd* 1.81
Germany“ calBCE
Corded Ware, 11534 (male) Klalb2a; R 2500-2050 BCE | I1541 (male) 2500-2050 BCE | U2elal; Rla 2nd* 4.52
Germany“ (xR1b)
Corded Ware, 11540 (male) J1c5; Rlal 2500-2050 BCE | I1541 (male) 2500-2050 BCE | U2elal; Rla 1st 7.21
Germany®
Corded Ware, 11541 (male) U2elal; Rla 2500-2050 BCE | 10104 (male) 2559-2296 U4blalal; Rlalal 2nd* 6.96
Germany© calBCE
Chalcolithic Iberia® 11302 (male) J2bla3; 2880-2630 BCE | [1314 (male) 2880-2630 BCE | J2alal; G2a 1st 4.10
G2a2b2b
Chalcolithic Iberia® 11274 (male) H3; 12a2 2880-2630 BCE | 11277 (male) 2830-2820 H3; 12a2a 1st 7.86
calBCE
EN Iberia® 10411 (male) Kla2a; F 5295-5067 10410 (male) 5295-5066 T2cld or T2c1d2; 1st 8.23
calBCE calBCE R1bl
SrubnayaC 10421 (female) | H3g 1850-1600 BCE | 10430 (male) 1850-1600 BCE | H3g; Rlalalb2a2a 1st 7.61
Srubnaya\C 10354% (female) | U5al 2016-1692 10360 (male) 1850-1200 BCE | U5al; Rlal 1st* 3.90
calBCE
Unetice® 10117 (female) |I3a 2272-2039 10114 (male) 2138-1952 13a; [2a2 1st 7.53
calBCE calBCE

Radiocarbon dates and mitochondrial haplotypes as reported by [35]; Y-chromosomes for the five individuals shown in Fig 6 were checked manually, all other Y-

haplotypes are as reported by [35]

$ indicates groups that were shotgun sequenced,

€ indicates SNP capture

$ showing the lower |Z| of both Z scores (one to the upper threshold, one to the lower threshold)

* newly reported relationship

$ potentially haplogroup R, not enough data

9 excluded as population outlier in [35]

https://doi.org/10.1371/journal.pone.0195491.t001

as first degree relatives is probably genuine considering that READ has very low false positive

rates. Fig 5 shows the results for all Srubnaya individuals and these two individuals clearly fall

into the group of first degree relatives even when considering uncertainties in the PO for this

pair and for the normalization. If this prediction was a false positive, it would be very likely

that they are at least second degree relatives as the fraction of unrelated individuals wrongly
classified as first degrees is extremely low (Fig 2B). Furthermore, a highly distinct genetic back-
ground of one of the individuals should rather cause false negatives and not false positives,
which increases the likelihood that the two individuals are in fact related. 10354 could have
been a recent migrant to the region who produced offspring (10360) with a local male, which
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Fig 5. READ estimates for the Srubnaya sample. (A) Sorted non-normalized average P0 values for all pairwise comparisons between Srubnaya individuals. Error bars
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pair used to set the baseline for unrelated individuals. (B) A histogram of the non-normalized average P0 values, vertical dashed and solid lines indicate the same as in
(A). A similar plot is produced as output when running READ.

https://doi.org/10.1371/journal.pone.0195491.9005

would explain both the relationship between 10354 and 10360 and the genomic dissimilarity
between 10354 and other Srubnaya individuals.

Particularly interesting is a group of five related males from the Corded Ware site in Esper-
stedt, Germany (Table 1, Fig 6). Mathieson et al (2015) [35] described two first degree
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Fig 6. Kin-relationship among males at the Corded Ware site in Esperstedt, Germany. The five individuals, their
inferred degree of relationship and their uniparental haplogroups. The dashed line between 11540 and 11538 shows a
second degree relationship missed by READ.

https://doi.org/10.1371/journal.pone.0195491.g006

relationships between 11540 and 11541 as well as between 11541 and 11538. Notably, READ
missed the second degree relationship between 11540 and 11538, which is likely to be a false
negative as the false negative rate for second degree relatives is known to be substantial with
low amounts of data (Fig 2C) and the value for that pair (0.91) is only 0.097 standard errors
above the threshold for second degree relatives (0.90625). Identical radiocarbon dates do not
help to indicate a chronological order, but based on their Y-chromosomes (all likely R1a, S1
Table), one can suggest that they all represent a paternal line of ancestry. 11540 is classified as
Rlal, but the Y-chromosomal marker this call is based on (L120) is missing in individuals
11538 and I1541, so they could all carry the same haplotype. In addition to these three individ-
uals, 11534 is a second degree relative of 11538 and 11541, who was carrier of R(xR1b) but a
more detailed classification was not possible due to the low coverage. 10104, who is a second
degree relative to [1541, might also carry the same Y-chromosome as 11534, 11538, 11540 and
11541, but that cannot be determined due to low coverage in those individuals. Generally, the
data would be consistent with all five individuals carrying the same Y-haplotype as there are
no contradicting calls for R1a defining markers (S1 Table), which would suggest paternal rela-
tionship among them. In total, 13 Corded Ware individuals from Esperstedt were analyzed,
nine of them were males. It is notable that all five related Esperstedt individuals discussed here
were males and only one pair of related Corded Ware individuals from Esperstedt involved a
female (11539 and 11532; Table 1).

Normalization in the aDNA data set

READ uses the average PO from an unrelated pair of individuals to normalize the distribution
for all test individuals. For our empirical data analysis, we assumed the median of all average
PO across pairs of individuals within a test population to represent unrelated individuals, as
high values may be caused by recent migrants and low values by related individuals. Fig 7
shows the distributions of all average PO before normalization highlighting that the popula-
tions exhibit different degrees of background diversity. It is also apparent how the pairs of
related individuals (see Table 1) are outliers with lower pairwise differences (see also Fig 5).
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Fig 7. Population distributions of average PO before normalization. The boxplots show all non-normalized average P0 scores (one per pair of individuals) per
culture. CAP and SG indicate whether the individuals were subject to SNP capture or shotgun sequencing, respectively. A broader chronological/geographical context

is shown on the left.

https://doi.org/10.1371/journal.pone.0195491.g007

Most groups from similar geographic and cultural groups show similar medians. These include
Neolithic groups (except Iberia_ EN) and Yamnaya, and—to some degree—Late Neolithic and
Bronze Age central Europeans. The latter set of populations could almost belong to two sub-
groups which cluster by data type (shotgun versus capture) instead of archaeological culture
(Unetice, Corded Ware and Bell Beaker). This difference was not observed in Yamnaya for
which both data types exist as well. The discrepancy highlights a potential risk of batch effects
which has its consequences for the application of READ. Overestimating the distance between
unrelated individuals could overestimate relationships in the test group and consequently
cause false positives while underestimating the distance between unrelated individuals would
have the opposite effect. The extent of the misclassification would be proportional to the ratio
between true and used normalization value. For example, if the true value was 0.22 (e.g. Mota-
la_HG, Fig 7) but 0.25 was used (e.g. Hungary_EN), an unrelated pair of individuals could be
classified as second degree relatives (0.22/0.25 = 0.88 < 0.90625). Using the shotgun Bell Bea-
ker median (0.245) to normalize the captured Bell Beaker data does not cause any changes in
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the classifications, whereas using the capture Bell Beaker median (0.257) for the shotgun data
would classify RISE563 and RISE564 as second degree relatives. These two individuals might
actually be related, but the value used for normalization would be higher than any pairwise
comparison within the shotgun sequenced Bell Beakers. This violates the assumption that the
normalization value represents the expectation for a pair of unrelated individuals so this result
should be considered a false positive due to a batch effect.

Discussion
Applying READ to aDNA data

Several methods to estimate the degree of relationship between pairs of individuals have been
developed. For genome-wide diploid data with low error rates, they successfully infer relation-
ships up to 11th degree [11]. Since such data cannot be obtained from degraded samples, a loss
in precision was expected. Estimation of second degree relationships (i.e. niece/nephew-aunt/
uncle, grandparent-grandchild, half-siblings) is sufficient to identify individuals belonging to a
core family which were buried together. We can show that obtaining as little as 2,500 overlap-
ping common SNPs is enough to classify up to second degree relationships from effectively
haploid data. The biggest limitations when using such low numbers of SNPs is the high rate of
false negatives for second degree relatives. READ can be considered as a conservative tool that
avoids false positives by having a relatively high false negative rate which can be decreased sub-
stantially with more data. Missing some second degree relationships seems preferable over
wrongly inferring relationships for unrelated individuals. A consequent advantage of our
method is that it is very unlikely that first degree relatives are classified as unrelated but some
second degree relatives might be wrongly classified as unrelated. Shared uniparental haplo-
types or a test result close to the threshold (e.g. less than one standard error difference) could
raise such suspicions and might motivate additional sequencing of the samples in question.
The amount of overlapping SNPs depends on the genome coverage of both individuals (Fig 4;
e.g. two 0.1x individuals will have approximately the same amount of overlapping data as a
0.05x and a 0.2x individual or a 0.01x individual and a 1x individual). The number of SNPs
required for a positive classification as first degree can be obtained by shotgun sequencing all
individuals to an average genome coverage of 0.1x (Fig 4), which is in reach for most archaeo-
logical samples displaying some authentic DNA. More data would be beneficial to avoid false
negatives in the case of second degree relatives. Recently developed methods for modern
DNA, which use genotype-likelihoods to handle the uncertainty of low to medium coverage
data require 1-3x genome coverage to estimate third degree relationships [50-53]. A recent
study successfully studied social organization in ancient DNA data for samples with > 1x
genome coverage [23]. Such approaches are promising for well-preserved samples but these
coverages might not be within reach for most aDNA studies. Other methods specifically
designed for ancient DNA data either require large reference data sets [47, 54] or are not
directly designed to identify relatives and estimate their degrees [55]. A recent development
[56] jointly estimates contamination, sequencing errors and relatedness coefficients for aDNA
data, but it requires larger sample sizes than READ (N > 32 to accurately classify first degree
relatives, N > 48 to classify second degree relatives [56]).

READ does not explicitly model aDNA damage and it only considers one allele at heterozy-
gous sites. This implies that a careful curation of the data is required to avoid errors due to low
coverage, short sequence fragments, deamination damage, sequencing errors and potential
contamination. We recommend a number of well established filtering steps when working
with low coverage aDNA data [28-35, 39]. To avoid batch effects, all samples should be pro-
cessed as similar as possible—at least the bioinformatic pipeline should be identical for all
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samples. Only fragments of 35 bp or longer should be mapped to the human genome as shorter
fragments might represent spuriously mapping microbial contamination [57, 58]. All down-
stream analysis should be restricted to reads and bases with mapping and base qualities of 30
or higher to reduce the potential effects of mismapping and sequencing errors [58, 59]. To fur-
ther reduce the effect of sequencing errors, most aDNA studies only consider biallelic SNPs
known to be polymorphic in other populations, and call pseudo-haploid genotypes by ran-
domly sampling one read covering that position. Deamination damage can be avoided during
the data generation by enzymatic repair of damages [60], or later by computational rescaling
of base qualities before SNP calling [61], or by excluding all transition SNPs as only those are
affected by deamination damage. For humans, millions of polymorphic transversion sites are
known across the genome [48, 62] still leaving substantial amounts of data for analyzing such
data sets. Furthermore, a range of methods exist to estimate human contamination of a partic-
ular sample [63-67] and the analysis could be restricted to fragments displaying characteristic
damage to filter contamination [36, 68]. Finally, each study could simulate data exactly resem-
bling the empirical data analyzed (fragment sizes, damages, contamination) to evaluate how
these factors would affect the downstream analysis [58].

An important part of the READ pipeline is the normalization step. This step makes the clas-
sification independent of within population diversity, SNP ascertainment and marker density.
This property, however, requires at least one additional and unrelated individual from the
same population and ideally the same data type to avoid batch effects. The assignment of all
individuals to a population can be checked with established methods as principal component
analysis (PCA) or outgroup f; statistics [44]. Alternatively, a pair of individuals from a different
population with similar expected diversity could be used for normalization. Fig 7 shows that
most (but not all) groups from similar cultural and geographical backgrounds have relatively
similar normalization scores, but caution should be taken as strong misspecification of the
normalization value can cause false negatives or false positives (see Results section). In prac-
tice, the relationships are not known a priori. For our data analysis, we assumed that the
median across all pairs of individuals from a population of more than four samples represents
a proxy of an unrelated pair (as the number of pairs is "(”; U e.g. 10 pairs for a sample size of 5),
which we also set as the default mode for READ. The implementation of READ also offers to
use the maximum pairwise average PO which should only be used in cases like supposed par-
ent-child-trios (two first degree relationships, one unrelated), where the maximum value
would represent the comparison between supposed mother and supposed father—the only

unrelated pair in the sample. Other methods normalize by obtaining allele frequency data for a
whole population [50, 54], which seems less feasible than obtaining just one unrelated individ-
ual (or a pair of unrelated individuals from a surrogate population). Furthermore, prehistoric
populations are quite differentiated from modern groups [33, 39, 41] so using modern popula-
tions as references for the allele frequencies might introduce biases [23]. A certain limitation
for all kinship estimation methods is if the sampled population itself cannot be considered
homogeneous, for example due to varying degrees of admixture. Only quite recent develop-
ments in inferring relationships can efficiently deal with such cases for modern data [69].

Kinship in prehistoric populations

We successfully applied READ to data obtained from ancient individuals. READ confidently
found all known relationships in the dataset. Furthermore, it identified a number of previously
unknown relationships, mainly of second degree. The combination of genomic data, uniparen-
tal markers and radiocarbon dating allowed us to infer how two individuals were related to
each other. Additional information such as osteological data on the age of the samples or
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stratigraphic information as burial location or depth could further help to assess the direction
of a kinship. Of particular interest was a group of five males from Esperstedt in Germany who
were associated with the Corded Ware culture—a culture that arose after large scale migrations
of males [70] from the east [28, 30]. Around 50 Corded Ware burials, six of them stone cists,
were excavated near Esperstedt in the context of road constructions in 2005 [28, 71]. Charac-
teristic Corded Ware pottery was found in the graves and all male individuals had been buried
on their right hand site [71]. Interestingly, the central individual of the group of related indi-
viduals (11541, Fig 6) was buried in a stone cist approximately 700 meters from the graves of
the other four individuals which were all close to each other [71]. The close relationship of this
group of only male individuals from the same location suggest patrilocality and female exog-
amy, a pattern which has also been found from Strontium isotopes at another Corded Ware
site just 30 kilometers from Esperstedt [15] and suggested for the Corded Ware culture in gen-
eral [72]. This represents just one example of how the genetic analysis of relationships can be
used to uncover and understand social structures in ancient populations. More data from
additional sites, cultures and species other than humans will offer various opportunities for the
analysis of relationships based on genome-wide data.

Materials and methods

Approach to detect related individuals

Our approach is based on the methodology used by GRAB [14] which was designed for
unphased and diploid genotype or sequencing data. This approach divides the genome into
non-overlapping windows of 1 Mbps each and compares for a pair of individuals the alleles
inside each window. Each SNP is classified into three different categories: IBS2 when the two
alleles are shared, IBS1 when only one allele is shared and IBSO when no allele is shared. The pro-
gram calculates the fractions for each category (P2, P1 and P0) per window and, based on certain
thresholds, uses them for relationship estimation. GRAB can estimate relationships from 1st to
5th degree, but it has not been tested with data from different SNP panels or populations [14].
We assume that our input data stems from whole genome shotgun sequencing of an ancient
sample resulting in low coverage sequencing data. In such situations, a common approach in
many ancient DNA studies is to randomly sample one sequencing read per individual and
SNP site and then use the allele carried on that read as pseudo-haploid information. Such
approaches are obviously restricted to a set of biallelic SNPs ascertained in an external dataset.
Consequently, we only expect to observe one allele per individual and SNP site which is either
shared or not shared between the two individuals. READ does not model aDNA damage, so it
is expected that the input is carefully filtered, e.g. by restricting to sites known to be polymor-
phic, by excluding transition sites or by rescaling base qualities before SNP calling [61]. Analo-
gous to GRAB [14], we partition the genome in non-overlapping windows of 1 Mbps and
calculate the proportions of haploid mismatches and matches, PO and P1, for each window.
Since PO + P1 = 1, we can use PO as a single test statistic. The average PO is calculated from the
genome-wide distribution. To reduce the effect of SNP ascertainment, population diversity
and potential batch effects, each individual pair’s average PO scores are then normalized
by dividing all values by the average non-normalized PO score from an unrelated pair of indi-
viduals from the same population ascertained in the same way as for the tested pairs. Such
a normalization step is not implemented in GRAB [14] suggesting that GRAB might be sensi-
tive to ascertainment bias and general population diversity. The normalization sets the
expected score for an unrelated pair to 1 and we can define classification cutoffs which are
independent of the diversity within the particular data set. We define three thresholds to
identify pairwise relatedness as unrelated, second-degree (i.e. nephew/niece-uncle/aunt,
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grandparent-grandchild or half-siblings), first-degree (parent-offspring or siblings) and identi-
cal individuals/identical twins. The general work flow and the decision tree used to classify
relationships is shown in Fig 1. There are four possible outcomes when running READ:
unrelated (normalized P0>0.90625), second degree (0.90625>normalized P0>0.8125), first
degree (0.8125>normalized P0>0.625) and identical twins/identical individuals (normalized
P0<0.625) (Fig 1). The cutoffs were chosen to lie halfway between the probabilities of one
randomly chosen allele for an individual not being IBD to a randomly chosen allele from
another individual considering their degree of relationship: 1/2 = 0.5 identical twins/identical
individuals, 3/4 = 0.75 for first degree relatives, 7/8 = 0.875 for second degree relatives and 15/
16 = 0.9375 for third degree relatives. We do not aim to classify higher degrees than second
degree and, therefore, consider all relationships of third degree or higher as ‘unrelated’. This is
a decision to keep the approach conservative and to allow for some variation within the group
of unrelated individuals. Furthermore, the 1000 genomes data contains very few third degree
relatives making it difficult to estimate error rates for this group. READ is implemented to
classify pairs of individuals in certain categories, so it will always output the best fitting degree
of relationship based on the point estimate of the average P0. As an assessment of confidence
of that classification, we estimate the standard error of the mean of the distribution of normal-
ized PO scores (SE = 6 /+/n where & is the empirical standard deviation of PO across all win-
dows and n is the total number of windows) and calculate the distance to the cutoffs in
multiples of the standard error (similar to a Z score also known as ‘standard score’). Further-
more, the user is provided with a graphical output (see Fig 5) showing the average PO for each
pair, their 95% confidence interval, and the cutoffs for classification together with their 95%
confidence interval.

Relationship Estimation from Ancient DNA (READ) was implemented in Python 2.7 [73]
and GNU R [74]. The input format is TPED/TFAM [8] and READ is publicly available from
https://bitbucket.org/tguenther/read and as S1 File.

Modern data with reported degrees of relationships

Autosomal Illumina Omni2.5M chip genotype calls from 1,326 individuals from 15 different
populations were obtained from the 1000 genomes project (ftp://ftp.1000genomes.ebi.ac.uk/
voll/ftp/release/20130502/supporting/hd_genotype_chip/) [48]. We used vcftools version
0.1.11 [75] to extract autosomal biallelic SNPs with a minor allele frequency of at least 10%
(1,156,468 SNPs in total—similar to the aDNA data set used for the empirical data analysis
[35]; see below) and to convert the data to TPED/TFAM files. The data set contains pairs of
individuals that were reported as related, 851 of them as first degree relationships and 74 as
second degree. We randomly sub-sampled 1,000, 2,500, 5,000, 10,000, and 50,000 SNPs and
also randomly picked one allele per site in order to mimic extremely low coverage sequencing
of ancient samples. In an additional simulation, we introduced different allelic error rates to
the data to assess the possible effects of sequencing and mapping errors, contamination and
post-mortem damage. Allelic errors were introduced by randomly changing alleles to the alter-
native based on a per site error rate, the per site error rates are aimed to reflect different error
rates in different parts of the genome. Per site error rates were drawn from a Gaussian distribu-
tion with a mean corresponding to the average allelic error rate (0.05, 0.1, 0.15 or 0.2) and a
standard deviation of 0.01.

READ was then applied to these data sets and the median of all average POs per population
was used to normalize scores assuming that this would represent an unrelated pair. Addition-
ally, the data was tested employing a 10-fold cross-validation procedure, which allowed to
infer the expected value of PO for a pair of unrelated individuals from a different subset of the
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data than what was used to test the relationships avoiding potential circularity. The average
value of PO obtained for each pair was then used for classification.

To evaluate READ’s performance, we calculate false positive and false negative rates. Unre-
lated individuals classified as related were considered as false positives, related individuals clas-
sified as unrelated or as related but not at the proper degree were considered false negatives.
READ’s performance was similar for both normalization approaches (median and cross-vali-
dation), so we present the results of using the median in the main text and the cross-validation
approach results in Supplementary figures (S1 and S2 Figs). The cross validation approach
would require large sample sizes per population which are not reached in most ancient DNA
studies (see the empirical data set below for an example).

Ancient data

In addition to the modern data, published ancient data was obtained from the study of Mathie-
son et al. (2015) [35]. The data set consisted of 230 ancient Europeans from a number of publi-
cations [28, 30-33, 76] as well as new individuals from various time periods during the last
8,500 years. The data set consisted of haploid data for up to 1,209,114 SNPs per individual. We
extracted only autosomal data for all individuals and applied READ to each cultural or geo-
graphical group (as defined in the original data set of Mathieson et al (2015) [35]) with more
than four individuals separately. Shotgun sequencing data was also analyzed separately from
SNP capture data to avoid batch effects. The median of all average POs per group was used for
normalization assuming that this would represent an unrelated pair. Mathieson et al (2015)
[35] report nine pairs of related individuals and they infer all of them to be first degree relatives
without providing details on how they were classified. Y-chromosome haplotypes of the five
individuals shown in Fig 6 were checked using samtools [77] (applying a minimum mapping
and base quality of 30) and marker information for the haplotypes R1a and R1b from the
International Society of Genetic Genealogy (http://www.isogg.org, accessed January 16, 2017).
The results are shown in S1 Table.

Supporting information

S1 Fig. Simulation based estimates of false positive and false negative rates for different
numbers of SNPs estimated using a cross validation scheme. Compare Fig 2.
(PDF)

S2 Fig. Effect of allelic errors on READ’s performance, simulations conducted employing a
cross validation scheme. Compare Fig 3.
(PDF)

S1 Table. Y chromosome calls for haplogroup R defining markers in the five individuals
shown in Fig 6.
(XLS)

S2 Table. Pairs of first degree related individuals in the 1000 genomes data.
(XLS)

S3 Table. Pairs of second degree related individuals in the 1000 genomes data.
(XLS)

$4 Table. Classification performance for YRI and IBS when one half of the data had a dif-
ferent allelic error rate than the other half.
(DOC)
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