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Abstract

Principal component analysis (PCA) is routinely used to analyze genome-wide single-nucleotide polymorphism (SNP) data,
for detecting population structure and potential outliers. However, the size of SNP datasets has increased immensely in
recent years and PCA of large datasets has become a time consuming task. We have developed flashpca, a highly efficient
PCA implementation based on randomized algorithms, which delivers identical accuracy in extracting the top principal
components compared with existing tools, in substantially less time. We demonstrate the utility of flashpca on both
HapMap3 and on a large Immunochip dataset. For the latter, flashpca performed PCA of 15,000 individuals up to 125 times
faster than existing tools, with identical results, and PCA of 150,000 individuals using flashpca completed in 4 hours. The
increasing size of SNP datasets will make tools such as flashpca essential as traditional approaches will not adequately scale.
This approach will also help to scale other applications that leverage PCA or eigen-decomposition to substantially larger
datasets.
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Introduction

Principal component analysis (PCA) is a widely-used tool in

genomics and statistical genetics, employed to infer cryptic

population structure from genome-wide data such as single

nucleotide polymorphisms (SNPs) [1,2], and/or to identify outlier

individuals which may need to be removed prior to further

analyses, such as genome-wide association studies (GWAS). This is

based on the fact that such population structure can confound

SNP-phenotype associations, resulting in some SNPs spuriously

being called as associated with the phenotype (false positives). The

top principal components (PCs) of SNP data have been shown to

map well to geographic distances between human populations

[1,3], thus capturing the coarse-grain allelic variation between

these groups.

However, traditional approaches to computing the PCA, such

as those employed by the popular EIGENSOFT suite [1], are

computationally expensive. For example, PCA based on the

singular value decomposition (SVD) scales as O(min (N2p,Np2))

and for eigen-decomposition it is O(min (N3,p3)) (excluding the

cost of computing the covariance matrix itself which is also

O(min (N2p,Np2))), where N and p are the number of samples

and SNPs, respectively. This makes it time-consuming to perform

PCA on large cohorts such as those routinely being analyzed

today, involving millions of assayed or imputed SNPs and tens of

thousands of individuals, with this difficulty only likely to increase

in the future with the availability of even larger studies.

In recent years, research into randomized matrix algorithms has

yielded alternative approaches for performing PCA and producing

these top PCs, while being far more computationally tractable and

maintaining high accuracy relative to the traditional ‘‘exact’’

algorithms [4,5]. These algorithms are especially useful when we

are interested in finding only the first few principal components

(PCs) of the data, as is often the case in genomic analysis.

Here we present flashpca, an efficient tool for performing PCA

on large genome-wide data, based on randomized algorithms. Our

approach is highly efficient, allowing the user to perform PCA on

large datasets (100,000 individuals or more), extracting the top

principal components while achieving identical results to tradi-

tional methods.

Results

First we used an LD-pruned HapMap3 genotype data [6]

consisting of 957 human individuals across 11 populations assayed

for 14,389 SNPs (Materials). We compared flashpca with smartpca

from EIGENSOFT v4.2 (http://www.hsph.harvard.edu/alkes-

price/software/) and shellfish (http://www.stats.ox.ac.uk/

,davison/software/shellfish/shellfish.php). In addition, we in-

cluded the R 3.0.2 [7] prcomp function which is based on SVD

rather than eigen-decomposition, after replacing its original

standardization with the one used by smartpca (Equation 4).

The analysis of HapMap3 data revealed the expected ancestry via

the first two PCs (Figure 1a), with individuals of east Asian origin

(CHB, CHD, JPT) clustered in the bottom right-hand side corner,

those of European origin (TSI, CEU) in the top, and those of

African origin in the bottom left-hand side corner (ASW, LWK,

YRI, and MKK). All methods showed close to perfect agreement

on the top PC (Figure 1b), with an absolute correlation of 1.00

between the 1st PC of each pair of methods (the sign of the

eigenvectors is arbitrary hence the correlation may be negative as
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well). The next nine PCs showed close to perfect agreement as well

(see File S1 and the online documentation for results for PCs 1–

10).

Next, we analyzed an LD-pruned celiac disease Immunochip

dataset consisting of 16,002 individuals and 43,049 SNPs after

thinning by LD [8] (Materials). We then randomly sampled

subsets of the original dataset with increasing size (N~500, 1000,

2500, 5000, 7500, 10,000, 15,000), and recorded wall time for

flashpca, smartpca, and shellfish performing PCA on these subsets.

We also examined larger setups (N~50,000, 100,000, and

150,000) by duplicating the original dataset several times as

required.

Due to the substantial time required by shellfish and smartpca

to complete the largest runs, we only ran flashpca on the larger

datasets (N§50,000) (we attempted to run shellfish on the

N~50,000 dataset but it did not complete due to running out

of memory, and we stopped smartpca after 100,000 sec).

Each experiment was repeated three times. All programs used

multi-threaded mode with 8 threads. All experiments were run on

a machine with 4|10-core Intel Xeon E7-4850 CPU @

2.00 GHz with 512 GiB RAM running 64-bit Ubuntu Linux

12.04. Note that wall time here is defined as time from program

start to successful exit, inclusive of any loading of data, scaling,

computation of the covariance matrix, eigen-decomposition, and

so on, however, the majority of the run time is taken by computing

the covariance and the eigen-decomposition. smartpca was run

without excluding potential population outliers.

Figure 2 shows that flashpca was substantially faster than either

smartpca or shellfish: for analysis of 15,000 samples, flashpca took

an average of 8 minutes, whereas smartpca required an average of

almost 17 h (|125 slower). Examining the large datasets, flashpca

was able to analyze a dataset of N~150,000 in ,4 h, which

would not be sufficient time for smartpca to complete a PCA on

10,000 samples, as 6.5 h were required for that. While shellfish

was also substantially faster than smartpca, it was still considerably

slower than flashpca when the number of individuals was large,

with a run time of ,1h for N~15,000 (and did not complete for

subsets with N§50,000).

Importantly, the time taken by flashpca to compute PCA on

N~150,000 did not differ much from the time taken on the

N~100,000 subset; this is because flashpca automatically

transposes the data when Nwp, as the PCA can be computed

on the original data or its transpose with only minor modifications

to the algorithm; computing the p|p covariance matrix and its

eigen-decomposition has lower computational complexity than

using the N|N covariance matrix, for the same values of N and

p, hence when Nwp the main computational cost will not grow

substantially with N.

Discussion

Principal component analysis is an important tool in genomics

for discovery of population structure or other latent structure in

the data, such as batch effects. Early approaches such as smartpca

from EIGENSOFT have proven useful for this goal and have been

widely used for analysis of SNP datasets. However, many current

datasets assay tens of thousands of individuals, making traditional

approaches extremely time consuming. In contrast, our approach,

flashpca, is based on careful combination of randomized

algorithms for PCA together with parallelization, and allows the

analyst to easily perform PCA on large datasets consisting of many

thousands of individuals in a matter of minutes to hours. Despite

relying on an approximation strategy, this approach suffers from

essentially no loss in accuracy for the top eigenvalues/eigenvectors

compared with traditional approaches. One practical limitation of

the current implementation of flashpca is its memory requirements

for large datasets: using 15,000 individuals with 43K SNPs

requires ,14 GiB RAM, and 150,000 requires ,145 GiB. Future

work will involve reducing these memory requirements without

Figure 1. (a) The first two principal components from analyzing the HapMap3 dataset. (b) Scatter plots showing near-perfect absolute Pearson
correlation (lower left-hand corner) between the 1st PCs estimated by smartpa, flashpca, shellfish, and R’s prcomp (using the standardization from
Equation 4). Note that since eigenvectors are only defined up to sign, the correlations may be negative as well as positive. In addition, the scale of the
PCs may differ between the methods, however, this has no bearing on the interpretation of the PCs.
doi:10.1371/journal.pone.0093766.g001
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incurring a substantial performance penalty. Randomized PCA

also provides the potential to de-correlate samples (‘‘whitening’’),

thus essentially removing the effects of population from data prior

to further downstream association analysis [9]; this will be

examined in future work. It has been shown that standard PCA

may be an inconsistent estimator of the true principal components

in certain high dimensional settings [10], and there may be benefit

from utilizing other approaches such as sparse (‘1-penalized) PCA

[11,12]; however, standard PCA remains widely used in practice

and flashpca provides an effective way to perform such routine

analyses highly efficiently.

More generally, the approach behind flashpca could prove

useful for accelerating other methods that depend on performing a

large number of eigen-decompositions across many samples, such

as varLD [13] which assesses local differences in SNP LD between

populations or FaST-LMM which implements linear mixed

models of SNP data [14].

Materials and Methods

Ethics
All subjects included in the celiac disease dataset provided

written and informed consent. For details, see the original

publication [8].

Datasets
HapMap3. The HapMap phase 3 dataset consists of 1184

human individuals across 11 populations (ASW: African ancestry

in Southwest USA; CEU: Utah residents with Northern and

Western European ancestry from the CEPH collection; CHB:

Han Chinese in Beijing, China; CHD: Chinese in Metropolitan

Denver, Colorado; GIH: Gujarati Indians in Houston, Texas;

JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, Kenya;

MEX: Mexican ancestry in Los Angeles, California; MKK:

Maasai in Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba

in Ibadan, Nigeria) assayed for 1,440,616 SNPs [6]. We performed

QC on the data, including removal of SNPs with MAFv1%,

missingness w1%, and deviation from Hardy-Weinberg equilib-

rium Pv5|10{6. We removed non-founders and individuals

with genotyping missingness w1%, leaving 957 individuals. Next,

we removed several regions of high LD and/or known inversions

(chr5:44 Mb–51.5 Mb, chr6:25 Mb–33.5 Mb, chr8:8 Mb–

12 Mb, chr11:45 Mb–57 Mb) [15]. Finally, we used PLINK

[16] –indep-pairwise 1000 10 0.02 to thin the SNPs by LD

(r2v0:02), leaving 14,389 SNPs.

Celiac disease immunochip. The celiac disease Immuno-

chip dataset [8] consists of 16,002 case/control individuals of

British descent, assayed for 139,553 SNPs. The QC has been

previously described [8]. In addition, we removed SNPs with

MAFv0:5% and non-autosomal SNPs, leaving 115,746 SNPs.

Next, we removed the same four regions as for the HapMap3 data,

and finally, we thinned the SNPs by LD with PLINK –indep-

pairwise 50 10 0.5, leaving 43,049 SNPs.

Figure 2. Total wall time (seconds) for flashpca versus EIGENSOFT’s smartpca and shellfish on increasing subsets of the celiac
disease dataset, employing multi-threaded mode (8 threads), using 43,049 SNPs. shellfish did not complete PCA for the N§50,000
subsets, and smartpca was stopped after 100,000 sec. The results shown are averages over 3 runs. Results for Nƒ15,000 are based on
subsamples of the original dataset N = 16,002 (light blue background), whereas results for N§50,000 are based on duplicating the original samples
(light yellow background).
doi:10.1371/journal.pone.0093766.g002
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Principal Component Analysis
We represent the genotypes as an N|p matrix X, where the N

samples index the rows and the p SNPs index the columns. We

denote the transpose of the matrix as XT . For the following, we

assume that the matrix X has been centered so that the mean of

each column j is zero (see below for variants on this).

PCA relies on finding the eigenvectors of the N|N covariance

matrix S~XXT (for notational clarity we will ignore the scaling
1

N{1
factor which can be accounted for later). This decompo-

sition is performed using either the singular value decomposition

(SVD) of the matrix X or the eigen-decomposition of the

covariance matrix itself.

The SVD of X is

X~UDVT , ð1Þ

where U an is an N|k matrix (UTU~I) the columns of which

are the eigenvectors of XXT , D is a k|k diagonal matrix of

singular values (square root of the eigenvalues of XXT and XTX),

and V is a p|k matrix (VTV~I) of the eigenvectors of XTX,

where k is the matrix rank (this SVD is also called the ‘‘economy

SVD’’). Note that SVD does not require the covariance matrix S

to be computed explicitly.

In the eigen-decomposition approach, the covariance matrix S

is first explicitly computed, then the eigen-decomposition is

performed such that

S~ULUT , ð2Þ

where diag(L)~l1,. ...., lk~diag(D2) are the eigenvalues and U

The principal components (PCs) P of the data are given by the

projection of the data onto the eigenvectors

P~XV~UD, ð3Þ

where we usually truncate the matrix P to have as many columns

as required for any down-stream analysis (say, 10).

Note that some tools, such as smartpca and shellfish, output the

eigenvectors U as the principal components without weighting by

the singular values D, leading to different scales for the PCs. In

addition, since the (empirical) covariance is typically scaled by a

factor of
1

N{1
, then in order to maintain the interpretation of the

singular values D as the square-root of the eigen-values of the

scaled covariance
1

N{1
XXT , the singular values must be scaled

by a factor of
1

ffiffiffiffiffiffiffiffiffiffiffiffi

N{1
p as well (as implemented in R’s prcomp).

Note, however, that these scale differences have no effect on the

interpretation of the principal components for ascertaining or

correcting for potential population structure in data.

In traditional PCA, such as that implemented in R’s prcomp,

prior to running the SVD/eigen-decomposition itself, the matrix

X is first mean-centered by subtracting the per-column (SNP)

average from each column. In contrast, smartpca [1], first centers

the data, then divides by a quantity proportional to the standard

deviation of a binomial random variable with success probability

pj

X
0
ij~

Xij{mj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pj(1{pj)
p , ð4Þ

where pj~mj=2 and mj~
1

N

XN

i~1
Xij . To maintain compatibility

with smartpca, flashpca employs the same standardization method

by default (other scaling methods are available as well).

Fast Principal Component Analysis
Performing PCA on large matrices (with both N and p large), is

time consuming with traditional approaches. To enable fast PCA,

we employ an algorithm based on a randomized PCA approach

[5]. Briefly, randomized PCA relies on first constructing a

relatively small matrix that captures the top eigenvalues and

eigenvectors of the original data, with high probability. Next,

standard SVD or eigen-decomposition is performed on this

reduced matrix, producing near identical results to what would

have been achieved using a full analysis of the original data. Since

in most genomic applications we are interested only in a few of the

top eigenvectors of the data (typically 10), this allows reduction of

the data to a substantially smaller matrix, and the computational

cost of decomposing this matrix is negligible (see Table 1:

Algorithm 1). (Note, however, that this method is general and is

just as useful for extracting a much larger number of PCs).

Focusing on the eigen-decomposition approach (Equation 2),

the two main computational bottlenecks are (i) computing the

N|N covariance matrix S and (ii) when N is large, the eigen-

decomposition step itself. In our fast PCA approach, the first

bottleneck cannot be avoided but can be mitigated through

parallel computation (see Implementation). The second bottleneck

is circumvented via the randomized approach, by constructing a

Table 1. Algorithm 1.

X
0
~standardize(X)

R~randn(p,dze)

Y~normalize(X
0
R)

S~X
0
X

0T

for iter = 1:maxiter do

j Y~normalize(SY)

end

½Q,R�~qr(Y)

B~QTX
0

S~BBT

½ ~Ud ,ld �~eigen(S)

Ud~Q
~
Ud

Dd~diag(

ffiffiffiffiffiffiffiffiffiffiffiffi

ld

N{1

r

)

Pd~UdDd

Pseudocode for the eigen-decomposition variant of the fast PCA, based on the
randomized algorithm of [5] for the case where Nvp. standardize(:) is the
standardization in Equation 4. randn(m,n) is a function generating an m|n iid
multivariate normal matrix, e is the user-defined number of extra dimensions,
qr(:) is the QR decomposition, normalize(:) is a function that divides each

column j by its ‘2 norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i~1
X2

ij

q

, eigen(:) is the eigen-decomposition

producing the d-top eigenvectors d and vector of d-top eigenvalues ld . Pd is
the matrix of d principal components.
doi:10.1371/journal.pone.0093766.t001
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matrix B of size (dze)|p, from which the small (dze)|(dze)

matrix BBT is formed and used for the eigen-decomposition,

where d is the number of required eigenvectors (say 10), and e is

the number of auxiliary dimensions used to increase accuracy

which can be discarded later. We have found that a total

dimension of dze~200 is more than sufficient for producing

good results in the first 10 PCs; hence the eigen-decomposition

need only be performed on 200|200 matrix while producing near

identical results to a full PCA on the original data.

Another computational shortcut for the case where Nwp,

applying equally to PCA and to randomized PCA, is simply

transposing the data X, then standardizing the rows instead of the

columns. An identical PCA algorithm is then run on the

transposed data, with the only difference being that the estimated

matrix Ud will now contain the top-d eigenvectors of X
0TX

0

instead of X
0
X

0T , and hence the final d principal components will

be Pd~X
0
Ud . This procedure makes it possible to analyze large

datasets with N&p at a cost not much greater than when N~p.

While the SVD approach is generally recommended for reasons

of better numerical stability and speed, we have found that when

N and p are in the thousands, the above eigen-decomposition

approach is substantially faster since the matrix multiplication is

trivially parallelizable (and is parallelized in practice in flashpca),

allowing the decomposition to be performed on the small matrix

S~BBT which is of size (dze)|(dze) rather than a more

expensive non-parallelized SVD of the matrix B, which is an

N|(dze) matrix, with no discernible effect on accuracy of the

top principal components; however, both methods are imple-

mented in flashpca (yet another possibility is to perform SVD on

S, but this is not implemented yet).

Implementation
flashpca is implemented in C++ and relies on Eigen [17], a C++

header-only library of numerical linear algebra algorithms, which

allows for native parallelization of certain computations through

OpenMP threads when multiple CPU cores are available. flashpca

natively reads PLINK [16] SNP-major BED files, avoiding the

need to convert these files to other formats. flashpca is licensed

under the GNU Public License (GPL) v3; source code and

documentation are available at https://github.com/gabraham/

flashpca.

Prior to PCA, thinning of the SNPs by LD and removal of

regions with known high LD or other artefacts such as inversions

have been recommended [1,15], as high correlations between the

SNPs can distort the resulting eigenvectors. For this purpose we

recommend using PLINK v2 (https://www.cog-genomics.org/

plink2) which is substantially faster than PLINK v1.07. Reducing a

dataset to ,10,000–50,000 SNPs is usually sufficient to achieve an

accurate PCA, and can be done using –indep-pairwise.

Supporting Information

File S1 Concordance in principal components 1–10 between

smartpca, flashpca, shellfish, and R’s prcomp on the HapMap3

dataset.

(PDF)
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