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Principal component analysis (PCA) is routinely used to analyze genome-wide single-nucleotide polymorphism (SNP) data,
for detecting population structure and potential outliers. However, the size of SNP datasets has increased immensely in
recent years and PCA of large datasets has become a time consuming task. We have developed flashpca, a highly efficient
PCA implementation based on randomized algorithms, which delivers identical accuracy in extracting the top principal
components compared with existing tools, in substantially less time. We demonstrate the utility of flashpca on both
HapMap3 and on a large Immunochip dataset. For the latter, flashpca performed PCA of 15,000 individuals up to 125 times
faster than existing tools, with identical results, and PCA of 150,000 individuals using flashpca completed in 4 hours. The
increasing size of SNP datasets will make tools such as flashpca essential as traditional approaches will not adequately scale.
This approach will also help to scale other applications that leverage PCA or eigen-decomposition to substantially larger

Citation: Abraham G, Inouye M (2014) Fast Principal Component Analysis of Large-Scale Genome-Wide Data. PLoS ONE 9(4): €93766. doi:10.1371/journal.pone.

Received January 28, 2014; Accepted March 7, 2014; Published April 9, 2014

Copyright: © 2014 Abraham, Inouye. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge support and funding from NHMRC grant no. 1062227. Ml was supported by an NHMRC Early Career Fellowship (no. 637400).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Principal component analysis (PCA) is a widely-used tool in
genomics and statistical genetics, employed to infer cryptic
population structure from genome-wide data such as single
nucleotide polymorphisms (SNPs) [1,2], and/or to identify outlier
individuals which may need to be removed prior to further
analyses, such as genome-wide association studies (GWAS). This is
based on the fact that such population structure can confound
SNP-phenotype associations, resulting in some SNPs spuriously
being called as associated with the phenotype (false positives). The
top principal components (PCs) of SNP data have been shown to
map well to geographic distances between human populations
[1,3], thus capturing the coarse-grain allelic variation between
these groups.

However, traditional approaches to computing the PCA, such
as those employed by the popular EIGENSOFT suite [1], are
computationally expensive. For example, PCA based on the
singular value decomposition (SVD) scales as O(min (N2p,Np?))
and for eigen-decomposition it is O(min (N*,p*)) (excluding the
cost of computing the covariance matrix itself which is also
O(min (N?p,Np?))), where N and p are the number of samples
and SNPs, respectively. This makes it time-consuming to perform
PCA on large cohorts such as those routinely being analyzed

today, involving millions of assayed or imputed SNPs and tens of

thousands of individuals, with this difficulty only likely to increase
in the future with the availability of even larger studies.

In recent years, research into randomized matrix algorithms has
yielded alternative approaches for performing PCA and producing
these top PCs, while being far more computationally tractable and
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maintaining high accuracy relative to the traditional “exact”
algorithms [4,5]. These algorithms are especially useful when we
are interested in finding only the first few principal components
(PCs) of the data, as is often the case in genomic analysis.

Here we present flashpca, an efficient tool for performing PCA
on large genome-wide data, based on randomized algorithms. Our
approach is highly efficient, allowing the user to perform PCA on
large datasets (100,000 individuals or more), extracting the top
principal components while achieving identical results to tradi-
tional methods.

Results

First we used an LD-pruned HapMap3 genotype data [6]
consisting of 957 human individuals across 11 populations assayed
for 14,389 SNPs (Materials). We compared flashpca with smartpca
from EIGENSOFT v4.2 (http://www.hsph.harvard.edu/alkes-
price/software/) and  shellfish  (http://www.stats.ox.ac.uk/
~davison/software/shellfish/shellfish.php). In addition, we in-
cluded the R 3.0.2 [7] prcomp function which is based on SVD
rather than eigen-decomposition, after replacing its original
standardization with the one used by smartpca (Equation 4).
The analysis of HapMap3 data revealed the expected ancestry via
the first two PCs (Figure la), with individuals of east Asian origin
(CHB, CHD, JPT) clustered in the bottom right-hand side corner,
those of European origin (I'SI, CEU) in the top, and those of
African origin in the bottom left-hand side corner (ASW, LWK,
YRI, and MKK). All methods showed close to perfect agreement
on the top PC (Figure 1b), with an absolute correlation of 1.00
between the Ist PC of each pair of methods (the sign of the
eigenvectors is arbitrary hence the correlation may be negative as
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Figure 1. (a) The first two principal components from analyzing the HapMap3 dataset. (b) Scatter plots showing near-perfect absolute Pearson
correlation (lower left-hand corner) between the 1st PCs estimated by smartpa, flashpca, shellfish, and R’s prcomp (using the standardization from
Equation 4). Note that since eigenvectors are only defined up to sign, the correlations may be negative as well as positive. In addition, the scale of the
PCs may differ between the methods, however, this has no bearing on the interpretation of the PCs.

doi:10.1371/journal.pone.0093766.9001

well). The next nine PCs showed close to perfect agreement as well
(see File S1 and the online documentation for results for PCs 1—
10).

Next, we analyzed an LD-pruned celiac disease Immunochip
dataset consisting of 16,002 individuals and 43,049 SNPs after
thinning by LD [8] (Materials). We then randomly sampled
subsets of the original dataset with increasing size (N =500, 1000,
2500, 5000, 7500, 10,000, 15,000), and recorded wall time for
flashpca, smartpca, and shellfish performing PCA on these subsets.
We also examined larger setups (N =150,000, 100,000, and
150,000) by duplicating the original dataset several times as
required.

Due to the substantial time required by shellfish and smartpca
to complete the largest runs, we only ran flashpca on the larger
datasets (N >50,000) (we attempted to run shellfish on the
N =50,000 dataset but it did not complete due to running out
of memory, and we stopped smartpca after 100,000 sec).

Each experiment was repeated three times. All programs used
multi-threaded mode with 8 threads. All experiments were run on
a machine with 4 x 10-core Intel Xeon E7-4850 CPU @
2.00 GHz with 512 GiB RAM running 64-bit Ubuntu Linux
12.04. Note that wall time here is defined as time from program
start to successful exit, inclusive of any loading of data, scaling,
computation of the covariance matrix, eigen-decomposition, and
so on, however, the majority of the run time is taken by computing
the covariance and the eigen-decomposition. smartpca was run
without excluding potential population outliers.

Figure 2 shows that flashpca was substantially faster than either
smartpca or shellfish: for analysis of 15,000 samples, flashpca took
an average of 8 minutes, whereas smartpca required an average of
almost 17 h (x 125 slower). Examining the large datasets, flashpca
was able to analyze a dataset of N=150,000 in ~4 h, which
would not be sufficient time for smartpca to complete a PCA on
10,000 samples, as 6.5 h were required for that. While shellfish
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was also substantially faster than smartpca, it was still considerably
slower than flashpca when the number of individuals was large,
with a run time of ~1h for N =15,000 (and did not complete for
subsets with NV >50,000).

Importantly, the time taken by flashpca to compute PCA on
N=150,000 did not differ much from the time taken on the
N =100,000 subset; this is because flashpca automatically
transposes the data when N >p, as the PCA can be computed
on the original data or its transpose with only minor modifications
to the algorithm; computing the p X p covariance matrix and its
eigen-decomposition has lower computational complexity than
using the N X N covariance matrix, for the same values of N and
P, hence when N >p the main computational cost will not grow
substantially with N.

Discussion

Principal component analysis is an important tool in genomics
for discovery of population structure or other latent structure in
the data, such as batch effects. Early approaches such as smartpca
from EIGENSOFT have proven useful for this goal and have been
widely used for analysis of SNP datasets. However, many current
datasets assay tens of thousands of individuals, making traditional
approaches extremely time consuming. In contrast, our approach,
flashpca, is based on careful combination of randomized
algorithms for PCA together with parallelization, and allows the
analyst to easily perform PCA on large datasets consisting of many
thousands of individuals in a matter of minutes to hours. Despite
relying on an approximation strategy, this approach suffers from
essentially no loss in accuracy for the top eigenvalues/eigenvectors
compared with traditional approaches. One practical limitation of
the current implementation of flashpca is its memory requirements
for large datasets: using 15,000 individuals with 43K SNPs
requires ~14 GiB RAM, and 150,000 requires ~145 GiB. Future
work will involve reducing these memory requirements without
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Figure 2. Total wall time (seconds) for flashpca versus EIGENSOFT’s smartpca and shellfish on increasing subsets of the celiac
disease dataset, employing multi-threaded mode (8 threads), using 43,049 SNPs. shellfish did not complete PCA for the N >50,000
subsets, and smartpca was stopped after 100,000 sec. The results shown are averages over 3 runs. Results for N <15,000 are based on
subsamples of the original dataset N =16,002 (light blue background), whereas results for N >50,000 are based on duplicating the original samples

(light yellow background).
doi:10.1371/journal.pone.0093766.9002

incurring a substantial performance penalty. Randomized PCA
also provides the potential to de-correlate samples (“whitening”),
thus essentially removing the effects of population from data prior
to further downstream association analysis [9]; this will be
examined in future work. It has been shown that standard PCA
may be an inconsistent estimator of the true principal components
in certain high dimensional settings [10], and there may be benefit
from utilizing other approaches such as sparse (¢1-penalized) PCA
[11,12]; however, standard PCA remains widely used in practice
and flashpca provides an effective way to perform such routine
analyses highly efficiently.

More generally, the approach behind flashpca could prove
useful for accelerating other methods that depend on performing a
large number of eigen-decompositions across many samples, such
as varLD [13] which assesses local differences in SNP LD between
populations or FaST-LMM which implements linear mixed
models of SNP data [14].

Materials and Methods
Ethics

All subjects included in the celiac disease dataset provided
written and informed consent. For details, see the original
publication [8].

Datasets
HapMap3. The HapMap phase 3 dataset consists of 1184
human individuals across 11 populations (ASW: African ancestry
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in Southwest USA; CEU: Utah residents with Northern and
Western European ancestry from the CEPH collection; CHB:
Han Chinese in Beijing, China; CHD: Chinese in Metropolitan
Denver, Colorado; GIH: Gujarati Indians in Houston, Texas;
JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, Kenya;
MEX: Mexican ancestry in Los Angeles, California; MKK:
Maasai in Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba
in Ibadan, Nigeria) assayed for 1,440,616 SNPs [6]. We performed
QC on the data, including removal of SNPs with MAF <1%,
missingness > 1%, and deviation from Hardy-Weinberg equilib-
rium P<5x107% We removed non-founders and individuals
with genotyping missingness > 1%, leaving 957 individuals. Next,
we removed several regions of high LD and/or known inversions
(chr5:44 Mb-51.5 Mb,  chr6:25 Mb-33.5 Mb,  chr8:8 Mb—
12 Mb, chrl1:45 Mb-57 Mb) [15]. Finally, we used PLINK
[16] —indep-pairwise 1000 10 0.02 to thin the SNPs by LD
(r? <0.02), leaving 14,389 SNPs.

Celiac disease immunochip. The celiac disease Immuno-
chip dataset [8] consists of 16,002 case/control individuals of
British descent, assayed for 139,553 SNPs. The QC has been
previously described [8]. In addition, we removed SNPs with
MAF <0.5% and non-autosomal SNPs, leaving 115,746 SNPs.
Next, we removed the same four regions as for the HapMap3 data,
and finally, we thinned the SNPs by LD with PLINK —indep-
pairwise 50 10 0.5, leaving 43,049 SNPs.
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Principal Component Analysis

We represent the genotypes as an N X p matrix X, where the N
samples index the rows and the p SNPs index the columns. We
denote the transpose of the matrix as X”. For the following, we
assume that the matrix X has been centered so that the mean of
each column j is zero (see below for variants on this).

PCA relies on finding the eigenvectors of the N X N covariance
matrix £=XX" (for notational clarity we will ignore the scaling
ﬁ factor which can be accounted for later). This decompo-
sition is performed using either the singular value decomposition
(SVD) of the matrix X or the eigen-decomposition of the
covariance matrix itself.

The SVD of X is

X=UDV7, 1)

where U an is an N x k matrix (UTU=I) the columns of which
are the eigenvectors of XX7, D is a kx k diagonal matrix of
singular values (square root of the eigenvalues of XX and X7X),
and V is a pxk matrix (V'V=I) of the eigenvectors of XTX,
where k is the matrix rank (this SVD is also called the “economy
SVD?”). Note that SVD does not require the covariance matrix X
to be computed explicitly.

In the eigen-decomposition approach, the covariance matrix X
is first explicitly computed, then the eigen-decomposition is
performed such that

L=UAU7, 2)

where diag(A)= 411, ..., i =diag(D?) are the eigenvalues and U
is the matrix of eigenvectors as before.

The principal components (PCs) P of the data are given by the
projection of the data onto the eigenvectors

P=XV=UD, (3)

where we usually truncate the matrix P to have as many columns
as required for any down-stream analysis (say, 10).

Note that some tools, such as smartpca and shellfish, output the
eigenvectors U as the principal components without weighting by
the singular values D, leading to different scales for the PCs. In

addition, since the (empirical) covariance is typically scaled by a
1 . o . :
factor of N_T then in order to maintain the interpretation of the

singular values D as the square-root of the eigen-values of the

. 1 .
scaled covariance 1XXT, the singular values must be scaled

by a factor of as well (as implemented in R’s prcomp).

1
VvN-—1
Note, however, that these scale differences have no effect on the
interpretation of the principal components for ascertaining or
correcting for potential population structure in data.

In traditional PCA, such as that implemented in R’s prcomp,
prior to running the SVD/eigen-decomposition itself, the matrix
X is first mean-centered by subtracting the per-column (SNP)
average from each column. In contrast, smartpca [1], first centers
the data, then divides by a quantity proportional to the standard
deviation of a binomial random variable with success probability

pj
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where p; =,uj/2 and ;= N Zi:l X;. To maintain compatibility

with smartpca, flashpca employs the same standardization method
by default (other scaling methods are available as well).

Fast Principal Component Analysis

Performing PCA on large matrices (with both N and p large), is
time consuming with traditional approaches. To enable fast PCA,
we employ an algorithm based on a randomized PCA approach
[5]. Briefly, randomized PCA relies on first constructing a
relatively small matrix that captures the top eigenvalues and
eigenvectors of the original data, with high probability. Next,
standard SVD or eigen-decomposition is performed on this
reduced matrix, producing near identical results to what would
have been achieved using a full analysis of the original data. Since
in most genomic applications we are interested only in a few of the
top eigenvectors of the data (typically 10), this allows reduction of
the data to a substantially smaller matrix, and the computational
cost of decomposing this matrix is negligible (see Table 1:
Algorithm 1). (Note, however, that this method is general and is
just as useful for extracting a much larger number of PCs).

Focusing on the eigen-decomposition approach (Equation 2),
the two main computational bottlenecks are (i) computing the
N x N covariance matrix X and (ii) when N is large, the eigen-
decomposition step itself. In our fast PCA approach, the first
bottleneck cannot be avoided but can be mitigated through
parallel computation (see Implementation). The second bottleneck
1s circumvented via the randomized approach, by constructing a

Table 1. Algorithm 1.

X' = standardize (X)
R=randn(p,d +e)

Y = normalize (X/ R)
»=XX7

for iter = I:maxiter do
| Y =normalize(XY)
end

[Q.R]=qr(Y)
B=Q’X

S=BB”

[ﬁd,ld] =eigen(S)

U,=QU,
Dd=dmgq/Afip
P;=UsDy

Pseudocode for the eigen-decomposition variant of the fast PCA, based on the
randomized algorithm of [5] for the case where N <p. standardize() is the
standardization in Equation 4. randn(m,n) is a function generating an m x n iid
multivariate normal matrix, e is the user-defined number of extra dimensions,
qr(°) is the QR decomposition, normalize(*) is a function that divides each

. N . . . .
column j by its ¢ norm ‘/Z;=1 Xi eigen(’) is the eigen-decomposition
producing the d-top eigenvectors I~J,i and vector of d-top eigenvalues 4,. P, is
the matrix of d principal components.

doi:10.1371/journal.pone.0093766.t001
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matrix B of size (d +¢) X p, from which the small (d +¢) x (d +¢)
matrix BB” is formed and used for the eigen-decomposition,
where d is the number of required eigenvectors (say 10), and e is
the number of auxiliary dimensions used to increase accuracy
which can be discarded later. We have found that a total
dimension of d+e=200 is more than sufficient for producing
good results in the first 10 PCs; hence the eigen-decomposition
need only be performed on 200 x 200 matrix while producing near
identical results to a full PCA on the original data.

Another computational shortcut for the case where N>p,
applying equally to PCA and to randomized PCA, is simply
transposing the data X, then standardizing the rows instead of the
columns. An identical PCA algorithm is then run on the
transposed data, with the only difference being that the estimated
matrix Uy will now contain the top-d eigenvectors of XX
instead of X' X7, and hence the final d principal components will
be P[/=X,Ud. This procedure makes it possible to analyze large
datasets with N>p at a cost not much greater than when N =p.

While the SVD approach is generally recommended for reasons
of better numerical stability and speed, we have found that when
N and p are in the thousands, the above eigen-decomposition
approach is substantially faster since the matrix multiplication is
trivially parallelizable (and is parallelized in practice in flashpca),
allowing the decomposition to be performed on the small matrix
S=BB7 which is of size (d+e)x(d+e) rather than a more
expensive non-parallelized SVD of the matrix B, which is an
N x (d+e) matrix, with no discernible effect on accuracy of the
top principal components; however, both methods are imple-
mented in flashpca (yet another possibility is to perform SVD on
S, but this is not implemented yet).

Implementation
flashpca is implemented in CG++ and relies on Eigen [17], a CG++
header-only library of numerical linear algebra algorithms, which
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allows for native parallelization of certain computations through
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under the GNU Public License (GPL) v3; source code and
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regions with known high LD or other artefacts such as inversions
have been recommended [1,15], as high correlations between the
SNPs can distort the resulting eigenvectors. For this purpose we
recommend using PLINK v2 (https://www.cog-genomics.org/
plink2) which is substantially faster than PLINK v1.07. Reducing a
dataset to ~10,000-50,000 SNPs is usually sufficient to achieve an
accurate PCA, and can be done using —indep-pairwise.
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