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Abstract

Itis challenging to associate features such as human health outcomes, diet, environ-
mental conditions, or other metadata to microbial community measurements, due in part
to their quantitative properties. Microbiome multi-omics are typically noisy, sparse
(zero-inflated), high-dimensional, extremely non-normal, and often in the form of count
or compositional measurements. Here we introduce an optimized combination of novel
and established methodology to assess multivariable association of microbial commu-
nity features with complex metadata in population-scale observational studies. Our
approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses
generalized linear and mixed models to accommodate a wide variety of modern epide-
miological studies, including cross-sectional and longitudinal designs, as well as a vari-
ety of data types (e.g., counts and relative abundances) with or without covariates and
repeated measurements. To construct this method, we conducted a large-scale evalua-
tion of a broad range of scenarios under which straightforward identification of meta-
omics associations can be challenging. These simulation studies reveal that MaAsLin
2’s linear model preserves statistical power in the presence of repeated measures and
multiple covariates, while accounting for the nuances of meta-omics features and con-
trolling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset
from the Integrative Human Microbiome (HMP2) project which, in addition to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021

1/27


https://orcid.org/0000-0003-4956-2429
https://orcid.org/0000-0002-9710-0248
https://orcid.org/0000-0002-2199-4310
https://orcid.org/0000-0003-2313-6448
https://orcid.org/0000-0002-2768-2975
https://orcid.org/0000-0002-5436-4219
https://orcid.org/0000-0002-6592-6272
https://orcid.org/0000-0002-5300-1184
https://orcid.org/0000-0002-7385-8994
https://orcid.org/0000-0002-9437-9722
https://orcid.org/0000-0002-8024-5600
https://orcid.org/0000-0002-4134-7612
https://orcid.org/0000-0003-2725-0694
https://orcid.org/0000-0001-8221-7139
https://orcid.org/0000-0002-8798-7068
https://orcid.org/0000-0002-1110-0096
https://doi.org/10.1371/journal.pcbi.1009442
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009442&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009442&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009442&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009442&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009442&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009442&domain=pdf&date_stamp=2021-12-28
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1371/journal.pcbi.1009442
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://huttenhower.sph.harvard.edu/maaslin2

PLOS COMPUTATIONAL BIOLOGY

Microbiome multivariable association discovery

harvard.edu/maaslin2. The software packages used
in this work are free and open source, including
bioBakery methods available via http:/
huttenhower.sph.harvard.edu/biobakery as source
code, cloud-compatible images, and installable
packages. Analysis scripts using these packages to
generate figures and results from this manuscript
(and associated usage notes) are available from
https://github.com/biobakery/maaslin2_
benchmark. The iHMP dataset is publicly available
at the IBDMDB website (https:/ibdmdb.org) and
the HMIP DACC web portal (https://www.hmpdacc.
org/ihmp/). The processed HMP2 datasets
analysed in this manuscript are also available as
Supporting Information.

Funding: This work was funded in part by US
National Science Foundation grant DEB-2028280
(AR), US National Institutes of Health grants
U19A1110820 (CH, to Owen White),
RO1HG005220 (CH, to Rafael Irizarry), and
R24DK110499 and U54DK102557 (CH). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: | have read the journal’s
policy and the authors of this manuscript have the
following competing interests: CH is on the
Scientific Advisory Board for Seres Therapeutics
and Empress Therapeutics. The remaining authors
have declared that no competing interests exist.
Author Yiren Lu was unable to confirm their
authorship contributions. On their behalf, the
corresponding author has reported their
contributions to the best of their knowledge.

reproducing established results, revealed a unique, integrated landscape of inflamma-
tory bowel diseases (IBD) across multiple time points and omics profiles.

Author summary

Recently, several statistical methods have been proposed to identify phenotypic or envi-
ronmental associations with features (e.g., taxa, genes, pathways, chemicals, etc.) from
molecular profiles of microbial communities. Particularly for human microbiome epide-
miology, however, most of these are primarily focused on univariable associations that
analyze only one or a few environmental covariates. This is a critical gap to address, given
the growing commonality of population-scale microbiome research and the complexity of
associated study designs, including dietary, pharmaceutical, clinical, and environmental
covariates, often with samples from multiple time points or tissues. Surprisingly, there
have been no systematic evaluations of statistical analysis methods appropriate for such
studies, nor consensus on appropriate methods for scalable microbiome epidemiology. To
this end, we developed and validated a statistical model (MaAsLin) that provides both the
first unified method and the first large-scale, comprehensive benchmarking of multivari-
able associations in population-scale microbial community studies. We hope that the
MaAsLin 2 implementation, validated through extensive simulations and an application
to HMP2 IBD multi-omics, will be helpful for researchers in future analysis of both
human-associated and environmental microbial communities.

This is a PLOS Computational Biology Software paper.

Introduction

Human-associated microbiota has been convincingly linked to the development and progres-
sion of a wide range of complex, chronic conditions including inflammatory bowel diseases
(IBD), obesity, diabetes, cancer, and cardiovascular disorders [1,2]. Due to recent advances in
multiple high-throughput functional profiling technologies, research has expanded well
beyond bacteria-specific 16S rRNA gene amplicon profiles to multi-omics surveys, i.e., non-
bacterial, metagenomic, metatranscriptomic, metabolomic, and metaproteomic measurements
assessed simultaneously in the same biological specimens [3,4]. Additionally, due to diminish-
ing sequencing costs, longitudinal, within-subject study designs are becoming increasingly
common, especially when assessing the microbiome in population health [5,6]. These large,
complex data contain abundant information to enable microbe-, gene-, and compound-spe-
cific hypothesis generation at scale. However, robust quantitative methods to do so at scale can
still be challenging to implement without excessive false positives—one of the main hurdles in
accurate translational applications of the microbiome to human health.

One of the primary limitations of leveraging such population-wide multi-omics surveys is
thus computational, in part due to the complexity and heterogeneity of microbial community
data that have made reliable application of statistical methods difficult. In particular, best prac-
tices to guard against spurious discoveries in meta-omics datasets remain scarce [7-14]. High-
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throughput meta-omics datasets have specific characteristics that complicate their analyses:
high-dimensionality, count and compositional data structure, sparsity (zero-inflation), over-
dispersion, and hierarchical, spatial, and temporal dependence, among others. To combat
these challenges, specialized methods implemented in usable, reproducible software are
needed to accurately characterize microbial communities within large human population stud-
ies, while maintaining both sensitivity and specificity.

Early advances in microbiome epidemiology focused on omnibus testing for identifying over-
all associations between aggregate microbiome structure and host or environmental phenotypes
and covariates (e.g., disease status, diet, antibiotics or medication usage, age, etc.). Many of these
rely on permutation-based procedures for moderated significance testing [11]. These methods
assess whether overall community patterns of variation are associated with the covariates of inter-
est, but fail to provide feature-level inference to enable follow-up characterization (where a feature
can be any profiled omics abundance, e.g., taxa, genes, pathways, chemicals, etc.) To facilitate
actionable outcomes, it is important to discern feature-specific associations at the highest possible
resolution. This has led to the development of a variety of per-feature (or feature-wise) association
testing methods, most of which are based on similar statistical frameworks, differing primarily in
(i) the choice of normalization or transformation, (ii) observation model or likelihood, and (iii)
the associated statistical inference [11]. As compared to omnibus testing approaches, per-feature
methods (i) identify associations for each individual feature-metadata pair, (ii) facilitate feature-
wise covariate adjustment, and (iii) call out specific features (as opposed to complex combinations
of features implicated in associations in omnibus testing), leading to increased interpretability for
translational and basic biological applications.

Despite a rich literature on feature-wise association testing for microbial communities,
methods that can accommodate a wide variety of modern epidemiological study designs
remain scarce. For instance, many early methods do not explicitly account for the sparsity
observed in microbial meta-omics observations, and only a few scale beyond routine univari-
ate (differential abundance) analyses without becoming overly susceptible to false positive or
false negative results [7,11]. Furthermore, most methods for microbiome data do not explicitly
adjust for repeated measures and multiple covariates in a unified statistical framework, a lack
of which can have a profound (and typically anti-conservative) impact on subsequent epidemi-
ological inference.

Here, we address these issues by providing a flexible approach to identify multivariable
associations in large, heterogeneous meta-omics datasets. We have implemented this method
as MaAsLin 2 (Microbiome Multivariable Associations with Linear Models, with software ver-
sion 2.0 released with this study), a successor to MaAsLin 1 [15,16]. Unlike MaAsLin 1’s sin-
gle-model framework based on applications of arcsine square root-transformed linear model
following Total Sum Scaling (TSS) normalization [15,16], MaAsLin 2 has evaluated and com-
bined the best set of analysis steps to facilitate high-precision association discovery in micro-
biome epidemiology studies. It provides a coherent paradigm through a multi-model
framework with arbitrary coefficients (representing association strengths between phenotypes
and covariates) and contrasts of interest, along with support for data exploration, normaliza-
tion, and transformation options to aid in the selection of appropriate data- and design-driven
statistical techniques for analyzing microbial multi-omics data. In this study, we also con-
ducted a large-scale synthetic evaluation of a broad range of circumstances under which
straightforward identification of meta-omics features can be challenging. These simulation
studies revealed that MaAsLin 2 preserves statistical power in the presence of repeated mea-
surements and multiple covariates while accounting for the nuances of meta-omics features
and, critically, controlling false discovery rates. We concluded with an application to novel bio-
marker discovery in multiple omics datasets from the Integrative Human Microbiome Project

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021 3/27


https://doi.org/10.1371/journal.pcbi.1009442

PLOS COMPUTATIONAL BIOLOGY Microbiome multivariable association discovery

(iHMP or HMP2 [6]). The implementation of MaAsLin 2, associated documentation and tuto-
rial, and example data sets are freely available in the MaAsLin 2 R/Bioconductor software
package at https://huttenhower.sph.harvard.edu/maaslin2.

Design and implementation

MaAsLin 2 provides a comprehensive multi-model system for performing multivariable asso-
ciation testing in microbiome profiles—taxonomic, functional, or metabolomic—with analysis
modules for preprocessing, normalization, transformation, and data-driven statistical model-
ing to tackle the challenges of microbial multi-omics (compositionality, overdispersion, zero-
inflation, variable library size, high-dimensionality, etc.; Fig 1A). The MaAsLin 2 implementa-
tion requires two inputs: (i) microbial feature abundances (e.g., taxa, genes, transcripts, or
metabolites) across samples, in either counts or relative counts; and (ii) environmental, clini-
cal, or epidemiological phenotypes or covariates of interest (together “metadata”). Both meta-
data and microbial features are first processed for missing values, unknown data values, and
outliers. If indicated, microbial measurements are then normalized and transformed to
address variable depth of coverage across samples. Feature standardization is optionally per-
formed, and a subset or the full complement of metadata is used to model the resulting qual-
ity-controlled microbial features and define p-values for each metadata association per feature
using one of a wide range of possible multivariable models. After all features are evaluated, p-
values are adjusted for multiple hypothesis testing and a table summarizing statistically signifi-
cant associations is reported. While the default MaAsLin 2 implementation uses a log-trans-
formed linear model on TSS-normalized quality-controlled data, the software supports several
other statistical models including count models (e.g., Negative Binomial [17]), zero-adjusted
models (e.g., Compound Poisson [18-20], Zero-inflated Negative Binomial (ZINB) [21]), and
multiple normalization/transformation schemes under one estimation umbrella. In the pres-
ence of repeated measures, MaAsLin 2 additionally identifies covariate-associated microbial
features by appropriately modeling the within-subject (or -environment) correlations in a
mixed model paradigm, while also accounting for inter-individual variability by specifying
between-subject random effects in the model. A variety of summary and diagnostic plots are
also provided to visualize the top results.

Results
MaAsLin?2 validation

To identify model components appropriate for MaAsLin 2’s microbiome per-feature associa-
tion testing and to objectively benchmark current association methods, we assessed realistic
synthetic datasets generated by SparseDOSSA [22,23] (full details of individual association
methods, as well as simulation parameters, are described in S1 and S2 Texts and are available
online at https://github.com/biobakery/maaslin2_benchmark). Briefly, SparseDOSSA is a syn-
thetic data generation routine that models biologically plausible synthetic data from diverse
template microbiome profiles by considering (i) feature-feature, (ii) feature-metadata, and (iii)
metadata-metadata correlations, superseding previous efforts by including multiple covariates
and longitudinal designs (S1 Text). As compared to previous simulation schemes, Sparse-
DOSSA allows multivariable spike-in both in the presence and absence of repeated measures,
as well as arbitrary covariance structure in the metadata design matrix.

For this study, we carried out several spike-in experiments to induce and test controlled
associations, as governed by configurable simulation parameters (S1 Fig). When used for this
purpose, SparseDOSSA first generates null microbial community features containing no sig-
nificant association patterns using a Bayesian hierarchical model independently of metadata
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Fig 1. MaAsLin 2 for feature-wise association of microbial communities with phenotypes. A) MaAsLin 2 is a statistical method for
association analysis of microbial community meta-omics profiles. It comprises several steps, including data transformation, multivariable
inference, multiple hypothesis test correction, and visualization. These are based on a set of flexible and computationally efficient linear
models, while accounting for the nuances of microbiome data, repeated measures, and multiple covariates. B) Comprehensive benchmarking
of multivariable methods for microbiome epidemiology. To identify appropriate methods for associating microbiome features with health
outcomes and other covariates, we assessed up to 84 combinations of normalization/transformation, zero-inflation, and regression models
(SIA Fig). These were applied to synthetic data using a hierarchical model (SparseDOSSA, http://huttenhower.sph.harvard.edu/sparsedossa)
to generate realistic, model-agnostic datasets with varying scopes and effect sizes of microbiome associations. Individual per-feature
association methods were performed repeatedly to evaluate method-specific recall and precision measures. C) Association method
performance summary across major evaluation criteria. Three aspects of performance were considered: (i) false discovery, (ii) sensitivity, and
(iii) computational efficiency. Evaluation metrics (S1B Fig) are shown (in rows) for the resulting microbial multivariable association methods
(both state-of-the-art and novel), averaged over all simulation parameters (S1A Fig). The top-performing methods (as measured by average
F1 score) from each class of models (S1C Fig) are shown (in columns). Except for Spearman and Wilcoxon that maintained best performance
on TSS-normalized data, all methods exhibited superior performance with no/default normalization (ANCOM, metagenomeSeq,
metagenomeSeq2, DESeq2, edgeR, MaAsLin 1, MaAsLin 2, limma VOOM, ZIB) or library size normalization in which log-transformed
library size is included as an offset in the associated GLM likelihood (Compound Poisson, Negative Binomial, ZINB). Top colored boxes
represent method characteristics including the capability to handle zero-inflation and random effects. Based on synthetic evaluations,
MaAsLin 2 includes optimized default models for epidemiological testing in microbial multi-omics data.

https://doi.org/10.1371/journal.pchi.1009442.9001

features (Fig 1B and S1 Text). In addition to varying sample size and feature dimension, a
broad range of metadata and experimental designs are then considered, including repeated
measures and univariate and multivariate covariates (both continuous and binary) of varying
dimension and effect size (S1A Fig). Specifically, in each instance, we varied sample sizes from
small (10) to large (200) for a fixed feature size (up to 500), and within each sample size, the
effect size parameter was again varied from modest (e.g., <2-fold differences) to strong
(10-fold). In each simulation, 10% of features (and 20% of metadata for multivariable scenar-
ios) were modified as an in-silico spike-in (S1 Text). Precision and recall measures (S1B Fig)
were averaged over 100 simulation runs. All methods were corrected for multiple hypothesis
testing using standard approaches for FDR control, declaring significant associations at a tar-
get of FDR 0.05. For a fair comparison, a basic, model-free filtering step to remove low-abun-
dance features was performed before statistical modeling for all methods (S2 Text). Methods
unable to process specific simulation configurations due to high computational overhead or
slow convergence were omitted for those cases.

To compare the detection power of various methods in identifying true positive feature
associations, we first comprehensively evaluated published metagenomic tools and
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representative methods from bulk RNA-seq literature within each simulation scenario. These
methods were combined with several microbiome-appropriate normalization, transformation,
and linkage models (S1C Fig and S2 Text). In particular, we considered six distinct categories
of methods in our evaluations: (i) published methods specifically designed for microbial com-
munities, such as metagenomeSeq [24], ANCOM [14,25], and ZIB [26,27], (ii) published bulk
RNA-seq differential expression methods, such as DESeq2 [28], edgeR [29], and limma
VOOM [30,31]; (iii) existing generalized linear model (GLM) count models, such as the nega-
tive binomial [17], (iv) methods based on linear models, such as limma [32] and “pure” linear
models (LMs); (v) representative zero-adjusted methods from the microbiome and single-cell
RNA-seq literature such as the Compound Poisson [18-20] and the ZINB [21,33]; and finally
(vi) traditional, simplistic nonparametric methods, such as Spearman correlation and Wil-
coxon tests. Of note, many of these methods can only compare two groups (i.e., a single binary
metadatum), and not all are compatible with continuous and multivariate metadata, resulting
in a distinct set of comparable methods for each experimental design.

Our first consideration in designing MaAsLin 2 for microbiome epidemiology was to
ensure that both current statistical theory and practical issues were considered during the anal-
ysis of microbiome multi-omics data. To this end, we rigorously characterized finite-sample
properties of various association methods focusing on three broadly defined aspects: (i) false
discovery, (ii) detection power, and (iii) software implementation, with multiple performance
indicators for each category (Figs 1C and S1B). Rather than focusing on a single evaluation
metric like the Area Under the Curve (AUC) or the False Positive Rate (FPR), we ranked meth-
ods based on a combination of metrics (S1B Fig and S2 Text), many not considered in previ-
ous benchmarking. To summarize each evaluation criteria, a normalized continuous score
ranging between 0 and 1 was assigned (S2 Text). Methods were then eliminated based on the
presence of ‘red flags’ with respect to at least one evaluation criteria, i.e., extreme departure
from the best possible value. Finally, metrics that are mainly descriptive rather than quantita-
tive were also evaluated (e.g., the ability to handle complex metadata designs, zero-inflation, or
repeated measures) to achieve a final consensus. For simplicity, we thus abbreviate any
extreme departure from a metric’s best possible value as a ‘red flag’. This tiered strategy not
only allowed us to select a set of "best” methods based on the fewest ‘red flags’ across all scenar-
ios, but also to identify a method that is (i) sufficiently robust to false discovery control and
detection power, (ii) scalable to large multi-omics datasets, and (iii) accommodating of most
modern epidemiological designs and microbial data types.

Notably, previous benchmarking in this area has only focused on differential abundance
testing without the simultaneous consideration of multiple covariates and repeated measures
[7-9]. Additionally, with the exception of Hawinkel et al. [7], these benchmarking efforts
lacked important considerations to the extent that they either (i) did not consider FDR as a
metric of evaluation [9,34,35] or (ii) misreported false positive rate as FDR [8] (S2 Text).
While most of these studies made a final recommendation based on the traditional AUC met-
ric or a combination of sensitivity and specificity, we argue that without considering the FDR-
controlling behavior of a method, the AUC values alone are too optimistic to draw any mean-
ingful conclusions about its practical utility. In other words, particularly for biological follow-
up, high precision among the most confident (lowest recall) predictions is essential. To this
end, our large-scale benchmarking enables a progressive unification of traditional and practi-
cally important evaluation metrics by providing a comprehensive connected view of micro-
biome multivariable association methods, especially in the context of modern study designs,
multiple covariates, and repeated measures.

Opverall, our simulation study revealed that virtually all high-sensitivity methods with an
overoptimistic median AUC, especially those targeted to microbial communities, exhibited a
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highly inflated average FDR (Fig 1C, full results in S1-S8 Data). A similar pattern was
observed for other AUC-like measures such as F1 score and Matthew’s correlation coefficient
(MCC). On the other end of the spectrum, compositionality-corrected methods such as
ANCOM exhibited an extreme departure from ‘good’ performance with respect to several cri-
teria including sensitivity and p-value calibration, as measured by both Conservative and Total
Area [7] (S2 Text). Overall, these simulations reveal that while there is no single method that
outperforms others in all scenarios, MaAsLin 2 was the only multivariable method tested that
controlled FDR with the fewest ‘red flags’ across scenarios (Fig 1C).

This initial phase of our study thus expands the understanding of statistical association
methods appropriate for microbial community data under varying study designs, and it espe-
cially highlights the inability of many common methods to control false discoveries. This is of
critical importance to past and present microbiome association methods, as failure to control
the FDR causes uncertainty in both scientific reproducibility and interpretability. Based on
these evaluations, a linear model with TSS normalization and log transformation was adopted
as the default model in MaAsLin 2, and the software provides several flexible options to apply
a combination of other normalization, transformation, and statistical methods to customize
specific analysis tasks. The implementation of MaAsLin 2, associated documentation, and
example data sets are freely available both as an R/Bioconductor package and a command-line
interface tool at https://huttenhower.sph.harvard.edu/maaslin2.

MaAsLin 2 controls false discovery rate while maintaining power in
differential abundance analysis

Differential abundance testing for microbial community features (taxa, pathways, chemicals,
etc.) is one of the most commonly used strategies to identify features that differ between sam-
ple categories such as cases and controls. Despite a large number of developments in the area,
a lack of consensus on the most appropriate statistical method has been a major concern [11].
To model experimental designs of this type, we used synthetic count data with spiked-in fea-
tures differentially abundant between two defined groups of samples. In particular, we multi-
plied the mean relative abundance of a randomly sampled fraction of 10% of the features with
a given effect size (fold change) in one of the groups and renormalized the ensemble of relative
abundances to a unit sum to create features differentially abundant between groups. We
repeated this procedure for each unique combination of sample size (10, 20, 50, 100, 200), fea-
ture dimension (100, 200, 500), and fold change (1, 2, 5, and 10), each time summarizing per-
formance over 100 simulation runs (S1 Text). Before model fitting, features with a low
prevalence (<10%) were trimmed from the generated data sets.

As in our overall evaluation (Fig 1C), we observed marked differences between the FDR-
controlling behavior of different methods in the simple case of single binary metadatum and
non-longitudinal design, in some cases exceeding 75% (Fig 2). Among the methods with good,
robust FDR control, only those based on linear models achieved moderate power, whereas, for
methods such as DESeq2 and edgeR, the FDR control came at the cost of reduced power.
Among other methods, practically all count and zero-inflated models, as well as newer meth-
ods based on log-ratios such as ANCOM, struggled to correctly control the FDR at the
intended (nominal) level, and the best performance in this class of methods was obtained by
metagenomeSeq2, Compound Poisson, and ZINB (as measured by the F1 score). Many of the
remaining methods were too liberal, with metagenomeSeq and Negative Binomial standing
out with many false positive findings. Overall, linear models (LMs) remained critically the
only class of methods tested that has good control of FDR across study designs, and they all
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Fig 2. MaAsLin 2 controls false discovery rate while maintaining power in differential abundance analysis of
microbial communities. To assess models’ behaviors during differential abundance analysis, we simulated 100
independent datasets per parameter combination, each containing a single binary metadatum and a fixed number of
true positive features (10% of features differentially abundant) for varying association strengths and sample sizes (S1A
Fig). We then evaluated the ability of different microbiome association methods to recover these associations using a
variety of performance metrics and summarized the results across runs. Both sensitivity and false discovery rates
(FDR) are shown for the best-performing method from each class of models (as measured by average F1 score).
Compared to zero-inflated and count-based approaches, MaAsLin 2’s linear model formulation consistently controlled
false discovery rate at the intended nominal level while maintaining moderate sensitivity (full results in S1-S8 Data).
Red line parallel to the x-axis is the target threshold for FDR in multiple testing. Methods are sorted by increasing
order of average F1 score across all simulation parameters in this setting.

https://doi.org/10.1371/journal.pchi.1009442.9002

exhibited a boost in statistical power with increased sample size and association strength (S2
Fig).

We also evaluated the average FPR of these methods by recording the fraction of tested
unassociated (negative) features that were deemed significant following significance testing.
Nearly all methods controlled the FPR well below the imposed level (S3 Fig). Relatedly, we
employed a previously proposed metric called “departure from uniformity” (i.e., departure
from a uniform distribution of p-values under the null), which, complementary to FPR, quan-
tifies the liberal or conservative area (S2 Text) between observed and theoretical quantiles of a
uniform distribution [7]. As expected, methods with high average false discovery rates, includ-
ing zero-inflated and count models, showed extreme departures from uniformity in the liberal
direction, whereas conservative methods such as DESeq2 and edgeR showed the same in the
opposite direction, suggesting extreme violation of uniformly distributed p-values under the
null hypothesis (S4 Fig). While these results raise potential concerns about the FDR-control-
ling behaviors of most existing methods, LM-based approaches did not exhibit this trend. In
general, tools based on linear models (such as limma) performed very similarly when cali-
brated with MaAsLin 2’s default model parameters, as expected, but not with their recom-
mended default parameters (52-54 Figs). Additionally, their options for handling sparsity and
compositionality were generally not appropriate for microbiome data. Amplicon, metage-
nomic taxonomic, and functional profiles each show distinct count and zero-inflation
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properties, for example, that are best handled by a multi-model system. In addition to the
binary metadata design, we repeated the above simulation experiments for univariate continu-
ous metadata as well, which led to similar conclusions (S5 Fig), further supporting MaAsLin
2’s default model’s performance across metadata types and experimental designs.

As a final evaluation, we assessed the impact of various normalization schemes on the asso-
ciated statistical modeling, evaluating all combinations of normalizations appropriate for each
applicable method (S1C Fig and S2 Text). Focusing on the best-performing linear models, we
found that model-based normalization schemes such as relative log expression (RLE [36]) as
well as data-driven normalization methods such as the trimmed mean of M-values (TMM
[37]) and cumulative sum scaling (CSS [24]) led to good control of FDR, but they also led to a
dramatic reduction in statistical power (S2-S5 Figs). In contrast, TSS showed the best balance
of performance among all tested normalization procedures, leading to more powerful detec-
tion of differentially abundant features. These results have potential implications for other
analyses in addition to differential abundance testing, as normalization is usually the first criti-
cal step before any analysis of microbiome data, and an inappropriate normalization method
may severely impact post-analysis inference. In summary, our synthetic evaluation indicates
that TSS normalization, although simplistic in nature, may be superior to other normalization
schemes especially in the context of feature-wise differential abundance testing (and more gen-
erally for multivariable association testing, as described later), in addition to community-level
comparisons as previously described [38].

MaAsLin 2 facilitates multivariable association discovery in population-
scale epidemiological studies

Moving beyond univariate comparisons, we next assessed MaAsLin 2’s performance in multi-
variable association testing in comparison to other multivariable methods. Although wide-
spread in microarray and gene expression literature, multivariable analysis methods have
remained underdeveloped in microbial community studies. From an epidemiological point of
view, coefficients from a covariate-adjusted regression model are arguably more interpretable
than its individual, unadjusted counterparts. As a result, major conclusions from existing
benchmarking studies geared towards univariate associations are not generalizable to this
broader setting, where challenges such as zero-inflation and multiple testing are likely to be
exacerbated, especially in relation to multiple rounds of independently conducted univariate
analyses as commonly practiced.

To introduce multivariable associations into synthetically generated microbial feature pro-
files, we supplemented each “sample” with multiple covariates consisting of both binary and
continuous metadata, either independent or correlated (S1A Fig and S1 Text). In each of
these datasets, 10% randomly selected features were modified (“spiked”) to be associated with
randomly chosen 20% metadata features with a given magnitude (effect size). After spiking in,
samples were rescaled to their original (simulated) sequencing depth. As before, we repeated
this procedure for each unique combination of sample size (10, 20, 50, 100, 200), feature
dimension (100, 200, 500), and effect size (1, 2, 5, 10), each time summarizing performance
over 100 simulation runs.

The results from this set of simulations revealed that MaAsLin 2’s default linear model had
the highest sensitivity among the methods that controlled the FDR at the target level, which
also remained consistent at larger sample sizes and stronger effect sizes (Fig 3). We also
observed an improvement in performance when TSS normalization was employed (as com-
pared to no normalization) but did not observe similar improvement for other normalization
methods (S6 Fig). As before, zero-inflated and count models failed to control the FDR at the
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Fig 3. MaAsLin 2 facilitates multivariable association discovery in large-scale human epidemiological and other microbial community studies.
Synthetic datasets containing five “metadata” with varying types of induced feature associations were analyzed using a variety of multivariable
approaches (S1C Fig). As measured by power (recall) and false discovery rate (FDR), MaAsLin 2’s default linear model outperformed other methods
in controlling FDR while maintaining power across true-positive fold-change values, regardless of the total number of features. As expected,
MaAsLin 2 has better power for stronger effect sizes, eventually attaining the highest power among all FDR-controlling methods (full results in S1-
S8 Data). Red line parallel to the x-axis is the nominal FDR. Values are averages over 100 iterations for each parameter combination. The x-axis
(effect size) within each panel represents the linear effect size parameter; a higher effect size represents a stronger association. For visualization
purposes, the best-performing methods from each class of models (as measured by average F1 score) are shown. Methods are sorted by increasing
order of average F1 score across all simulation parameters in this setting.

https://doi.org/10.1371/journal.pchi.1009442.g003

nominal level, in the sense that the actual FDR was always above the nominal threshold used
for identifying significant features—a phenomenon that was surprisingly consistent regardless
of the metadata covariance structure (S7 Fig). Taken together, these findings further confirm
that MaAsLin 2’s default linear model is able to detect relevant associations across a broad
range of metadata designs, facilitating population-level analyses of microbial communities.

MaAsLin 2 enables targeted microbiome hypothesis testing in the presence
of repeated measures

To further validate MaAsLin 2 for longitudinal (or other repeated measures) microbiome data,
we modified our simulation scheme to introduce subject-specific random effects—a key fea-
ture of modern microbiome population studies [39]. To this end, we tested MaAsLin 2 and
related methods on two types of study designs. The first comprised univariate binary metadata
designed to be challenging by the inclusion of non-independence of the data across time
points. Second, we also simulated more realistic datasets using multiple independent
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Fig 4. MaAsLin 2 enables targeted microbial feature testing in the presence of repeated measures. Results on
simulated data comprising SparseDOSSA-derived compositions with five repeated measures per sample. The FDR is
close to the target 0.05 level for MaAsLin 2’s default linear model but not for zero-inflated and count models (full
results in S1-S8 Data). As before, MaAsLin 2’s linear model is consistently better powered than both negative
binomial and limma VOOM at comparable FDR values, which remains consistent for both univariate continuous
metadata (A) and multivariable metadata designs (B). The red line parallel to the x-axis is the given threshold for FDR
in multiple testing. Within each panel, methods are sorted by increasing order of average F1 score across all associated
simulation parameters in each setting.

https://doi.org/10.1371/journal.pcbi.1009442.9004

covariates specific to longitudinal microbiome studies. In both these regimes, realistic data
were generated using SparseDOSSA each with five time points, as in previous studies [27], but
after introducing within-subject correlations and between-subject random effects drawn from
a multivariate normal distribution (S1 Text). It is to be noted that the set of evaluable models
is greatly reduced from the previous set of cross-sectional association tests, as methods not
capable of assessing repeated measures were discarded.

Using these longitudinal synthetic “microbial communities,” we compared the estimation
and inference from MaAsLin 2 with those of the existing methods, which revealed that MaA-
sLin 2 had much lower false discovery rates than alternatives including ZIB (Figs 4 and S8-
S11), a method specifically designed for microbiome longitudinal data. Both ZIB and MaAsLin
2’s linear mixed effects models are capable of identifying covariate-associated features by
jointly modeling all time points. However, the computational overhead of ZIB is significantly
higher than that of MaAsLin 2, which is prominent even for small datasets (S12 Fig). Notably,
although not nearly as severe as count-based and zero-inflated models, MaAsLin 2 had a
slightly inflated FDR in the univariate repeated measures scenario (Fig 4A) but not in the mul-
tivariable scenario (Fig 4B). Among other methods, methods based on generalized linear
mixed models (GLMMs) such as Negative Binomial and Compound Poisson performed simi-
larly to their non-longitudinal counterparts for both normalized and non-normalized counts
(S8 and S9 Figs). This remained consistent for both univariate continuous metadata (S10 Fig)
as well as multiple, correlated covariates (S11 Fig). Overall, these results suggest that MaAsLin
2’s linear mixed effects model consistently provides lower false discovery rates across metadata

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021 11/27


https://doi.org/10.1371/journal.pcbi.1009442.g004
https://doi.org/10.1371/journal.pcbi.1009442

PLOS COMPUTATIONAL BIOLOGY Microbiome multivariable association discovery

designs and can effectively aid in testing differential abundance and multivariable association
of longitudinal microbial communities.

Multi-omics associations from the Integrative Human Microbiome Project

We applied MaAsLin 2 to identify relevant microbial features associated with the inflamma-
tory bowel diseases (IBD) using longitudinal multi-omics data from the Integrative Human
Microbiome Project i(HMP or HMP2 [39]). The HMP2 Inflammatory Bowel Disease Multi-
omics (IBDMDB) dataset included 132 individuals recruited in five US medical centers with
Crohn’s disease (CD), ulcerative colitis (UC), and non-IBD controls, followed longitudinally
for one year with up to 24 time points each (S3 Text).

Integrated multi-omics profiling of the resulting 1,785 stool samples generated a variety of
data types including metagenome-based taxonomic profiles as well as metagenomic and meta-
transcriptomic functional profiles, producing one of the largest publicly available microbial
multi-omics datasets. Metagenomes and metatranscriptomes were functionally profiled using
HUMANN 2 [40] to quantify MetaCyc pathways [41], and taxonomic profiles from metagen-
omes were determined using MetaPhlAn 2 [42] (S3 Text). For each of these data modalities
(i.e., taxonomic profiles and DNA/RNA pathways), independent filtering was performed
before downstream testing to reduce the effect of zero-inflation on the subsequent inference.
In particular, features for which the variance across all samples was very low (below half the
median of all feature-wise variances) or with >90% zeros were removed [39]. To further
remove the effect of redundancy in pathway abundances (explainable by at most a single
taxon), only features (both DNA and RNA) with low correlation with individual microbial
abundances (Spearman correlation coefficient <0.5) were retained.

We first used the IBDMDB to perform an additional semi-synthetic evaluation of associa-
tion methods’ performance in “real” data, specifically when attempting to associate random-
ized, null microbial taxonomic profiles to covariates (S3 Text). To this end, we permuted all
samples 1,000 times to construct shuffled “negative control” datasets, each time assessing the
number of significant associations (unadjusted p <0.05) for each applicable method. These
were averaged across iterations to derive the expected number of null associations per method
(which should remain near-zero under usual circumstances). In particular, we fit (i) a baseline
model as a function of IBD diagnosis (a categorical variable with non-IBD as the reference
group) while adjusting for enrollment age (as a continuous covariate) and antibiotic use (as a
binary covariate), and (ii) a mixed effects model (with subject as random effects) with IBD dys-
biosis state as an additional time-varying covariate in addition to the time-invariant covariates
considered in the baseline model. Consistent with prior simulations, we found that several
methods produced inflated empirical type I error rates (S13 Fig). This conclusion remained
unchanged across varying significance thresholds, and as a result, we did not further apply
these methods to the non-permuted data. Relevantly and importantly, linear models did not
suffer from this problem, providing additional support for MaAsLin 2’s robustness to false
positive findings.

To dissect dysbiotic changes in IBD at greater resolution, we applied MaAsLin 2 to each
individual microbial feature type (i.e., species and DNA/RNA pathways) to test association
with IBD phenotype while controlling for IBD dysbiosis state, diagnosis, age, and antibiotic
use (Fig 5 and S3 Text). Nominal p-values for UC- and CD-specific effects were subjected to
multiple hypothesis testing correction using the Benjamini-Hochberg method [43] with an
FDR threshold of 0.25. MaAsLin 2 identified a comparable number of significant associations
with those initially reported by the IBDMDB [39]. Among microbial species, MaAsLin 2’s
default linear model identified 222 significant associations (S9 Data), among which 134
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Fig 5. Multi-omics associations from the Integrative Human Microbiome Project. A) Top 10 significant associations (FDR < 0.25) detected by MaAsLin 2’s default
linear model (full results in $9-S14 Data). All detected associations are adjusted for subjects and sites as random effects and for other fixed effects metadata including the
subject’s age, diagnosis status (CD, UC, or non-IBD), disease activity (defined as median Bray-Curtis dissimilarity from a reference set of non-IBD samples), and
antibiotic usage. B,C,D) Representative significant associations with dysbiosis state from each omics profile are shown: species (B), metagenomic (DNA) pathways (C),
and metatranscriptomic (RNA) pathways (D). Values are log-transformed relative abundances with half the minimum relative abundance as pseudo count.

https:/doi.org/10.1371/journal.pchi.1009442.g005
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(60.4%) overlapped with the original study. MaAsLin 2 also reported many significant associa-
tions that were not discovered in the original study (S14 Fig). For instance, we observed a sig-
nificant increase in Bacteroides ovatus in both UC and CD dysbiotic patients that was not
previously captured, as well as detecting (with MaAsLin 2’s increased power) specific depleted
Roseburia species (R. inulinivorans and R. hominis) not captured by the previous analysis.
Notably, top hits from both MaAsLin 2 and the original study yielded nearly identical rankings
across data types, which broadly manifested as a characteristic increase in facultative anaerobes
at the expense of obligate anaerobes, in agreement with the previously observed depletion of
butyrate producers such as Faecalibacterium prausnitzii in IBD (Fig 5A).

As an additional validation, we next re-analyzed the HMP2 taxonomic and functional pro-
files using a zero-adjusted model (implemented in MaAsLin 2 as the Compound Poisson [18-
20]). While this maintained type I error control in our shuffled data validation (as did the
default linear model, S13 Fig), it was generally less desirable due to FDR inflation in simula-
tions (Figs 2-4). In terms of the number of differentially abundant features detected, both the
default linear model and the Compound Poisson model performed similarly, with a significant
overlap between the top hits identified by each method (S15 Fig). Among other methods, ZIB
and limma VOOM also maintained good Type I error control in these experiments (S13 Fig),
although again both underperformed along other axes in our simulation studies. These results
further strengthen the finding that a combination of controlled parametric simulations and
‘negative control’ experiments based on data shuffling are useful together in identifying meth-
ods for real-world applications, as the lack of either can lead to misleading (and irreproduc-
ible) conclusions across independent evaluations [7]. This also highlights the flexibility of
MaAsLin 2’s multi-analysis framework, wherein researchers are well-served with multiple (i)
normalization schemes, (ii) statistical models, (iii) multiplicity adjustments, (iv) fixed and ran-
dom effects specifications, and (v) in-built visualization and pre-processing options, facilitat-
ing seamless application of methods across diverse experimental designs under a single
estimation umbrella.

Finally, in addition to taxonomic associations, MaAsLin 2 also detected 399 and 58 signifi-
cant functional associations for metagenomic (DNA) and metatranscriptomic (RNA) path-
ways, respectively (S10 and S11 Data), among which 358 (89.7%) and 39 (67.2%) overlapped
with the original study. While the original analysis of these data included only community-
wide functional profiles, we extended this by considering metagenomic and metatranscrip-
tomic functional profiles at both whole-community and species-stratified levels to quantify
overall dysbiotic functions while simultaneously assigning them to specific taxonomic contrib-
utors. In particular, this considers a per-feature DNA covariate model [44], in which per-fea-
ture normalized transcript abundance is treated as a dependent variable, regressed on per-
feature normalized DNA abundances along with other regressors in the model (S3 Text). Sur-
prisingly, bioinformatics and statistics for metatranscriptomics are not yet standardized, and
our results indicate that subtle model variations can produce substantially different results,
due to the interactions between two compositions: DNA and RNA relative abundances (S12
Data). This novel modeling strategy thus led to the discovery of several novel transcript associ-
ations relative to the original study (S13 and S14 Data).

In many of these pathways, functional perturbations were driven by shifts in their charac-
teristic contributing taxa (Fig 5B). For example, the most significant DNA pathways enriched
in CD patients were characteristic of facultative anaerobes such as Escherichia coli, which are
broadly more abundant during inflammation. These included pathways such as synthesis of
the enterobactin siderophore, lipid A, and sulfate reduction. A second set of enriched pathways
was depleted due to the loss of microbes such as F. prausnitzii, a particularly prevalent

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021 14/27


https://doi.org/10.1371/journal.pcbi.1009442

PLOS COMPUTATIONAL BIOLOGY Microbiome multivariable association discovery

organism that, when abundant, tended to contribute most of all enriched pathways it encodes
in this cohort (e.g., synthesis of short-chain fatty acids and various amino acids).

With the increased sensitivity of this analysis for species-stratified pathways, the over-
whelming majority of significant metagenomic differences were attributable solely to the most
differential individual organisms, as expected (S13 and S14 Data). Essentially every pathway
reliably detectable in E. coli was enriched during CD, UC, or both, and most F. prausnitzii
pathways depleted, along with many pathways from other gut microbes common in “health”
(Bacteroides vulgatus, B. ovatus, B. xylanisolvens, B. caccae, Parabacteroides spp., Eubacterium
rectale, several Roseburia spp., and others). Interestingly, since both more potentially causal
“driver” pathways, along with all other “passenger” pathways encoded by an affected microbe,
are detected by this more sensitive stratified analysis, it can be in many ways more difficult to
interpret than the non-stratified, community-wide, cross-taxon metagenomic responses to
broad ecological conditions such as immune activity, gastrointestinal bleeding, or oxygen
availability.

Conversely, differentially abundant microbe- and pathway-specific transcript levels
highlighted a much more specific and dramatic shift toward oxidative metabolism, away from
anaerobic fermentation, and towards Gram-negative (often E. coli) growth during inflamma-
tion (Fig 5C) [45]. Many of these processes were either more extreme during (e.g., gluconeo-
genesis) or unique to (e.g., glutathione utilization) active CD, as compared to UC. CD and UC
responses were opposed in a small minority of cases (e.g., glutaryl-CoA degradation). When
stratified among contributing taxa, these differences were almost universally attributable to a
few key species, particularly an increase in E. coli activity during inflammation and decreases
of F. prausnitzii transcript representation. Condition-specific transcriptional changes were
occasionally contributed (or not) by “passenger” Bacteroides spp. (B. fragilis, B. xylanisolvens,
B. dorei) instead. Note that these differences include pathways more likely to be “causal” in
some sense, as significant transcriptional changes were generally a subset of those detected due
to whole-taxon shifts in DNA content (including housekeeping pathways such as general
amino acid or nucleotide biosynthesis). These findings further support the importance of dis-
ease-specific transcriptional microbial signatures in the inflamed gut relative to metagenomic
profiles of functional potential, suggesting that a potential loss of species exhibiting altered
expression profiles in disease may have more far-reaching consequences than suggested by
their genomic abundances alone.

Availability and future directions

Limitations of the current MaAsLin 2 method include, first, its restriction to associating one
feature at a time. While this strategy has the advantage of being straightforward to interpret,
implement, and parallelize, it sacrifices inferential accuracy by ignoring any correlation struc-
ture among features. This can certainly exist due both to compositionality and to biology and
will differ e.g., between taxonomic features (related by phylogeny) vs. functional ones (such as
pathways). A potential extension would be to adopt an additional multivariate framework that
allows modeling simultaneously rather than sequentially, thus improving power by borrowing
strength across non-independent features. Second, as revealed by our synthetic evaluation, not
surprisingly, linear models remain underpowered in detecting weak effects among microbial
communities, especially when accompanied by a small sample size. This is in some ways a nec-
essary consequence of the restrictions of current microbiome measurement technologies, and
it emphasizes the importance of an informed power analysis before study planning to ensure
an optimal sample size with adequate detection power. Third, it is not possible to capture the
full range of differential biases and errors introduced by various bioinformatics pipelines using
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a single, representative template dataset, as considered here. To this end, multiple, diverse tax-
onomic and functional template datasets can be considered for future benchmarking, poten-
tially in combination with other upstream simulation frameworks such as CAMISIM [46] to
investigate the effect of sequence assembly, genome binning, batch effects, taxonomic binning,
taxonomic profiling, and other steps on differential analysis performance. Fourth, while we
have focused on linear associations in this study, non-linear associations may also be of inter-
est (as in other types of molecular epidemiology). Finally, and relatedly, it is not straightfor-
ward to incorporate any type of graph structure knowledge such as phylogeny or pathway-
based functional roles into the per-feature linear model framework. Bayesian linear models
can potentially improve on this by including such information through a suitable prior
distribution.

Several aspects of microbiome epidemiology remain to be investigated both biologically
and computationally, in addition to the challenges addressed here. For example, while it is pos-
sible to obtain strain-level resolution from metagenomic sequencing data, strain variants are
generally unique to individuals rather than broadly carried by many people, presenting unique
challenges for strain-level multi-omics. From a computational point of view, this calls for fur-
ther refinements to MaAsLin 2’s methodology when applied to strain-resolved community
profiles. In addition, the modeling framework adopted here can only inform undirected asso-
ciations, and hence cannot be used to infer causation. Advanced methods from other molecu-
lar epidemiology fields such as causal modeling and mediation analysis methods can help
overcome these issues [47]. Another opportunity for future extension of our method is the
integration of established missing data imputation methods across features and metadata, a
common pitfall in many molecular epidemiology studies [39]. Combined, such extensions will
lead to further improvement in downstream inference, allowing researchers to investigate a
range of hypotheses related to differential abundance and multivariable association.

Discussion

A longstanding goal of microbial community studies, be they for human epidemiology or envi-
ronmental microbiomes, is to identify microbial features associated with phenotypes, expo-
sures, health outcomes, and other important covariates in large, complex experimental
designs. This parallels other methods for high-throughput molecular biology, but microbial
community multi-omics must account for properties such as variable sequencing depth, zero-
inflation, overdispersion, mean-variance dependency, measurement error, and the importance
of repeated measures and multiple covariates. To this end, we have developed and validated a
highly flexible, integrated framework utilizing an optimized combination of novel and well-
established methodology, MaAsLin 2. This accommodates a wide variety of modern study
designs ranging from within-subject, longitudinal to between-subject, cross-sectional, diverse
covariates, and a range of quality control and statistical analysis modules to identify statistically
significant as well as biologically relevant associations in a reproducible framework. The
embedding of these strategies in the paradigm of generalized linear and mixed models enables
the treatment of both simple and quite complex designs in a unified setting, improving the
power of microbial association testing while controlling false discoveries. To validate this
framework, we have extensively evaluated its performance alongside a set of plausible methods
for differential abundance analysis in a wide range of scenarios spanning simple univariate to
complex multivariable with varying scopes and effect sizes of microbiome associations. Finally,
we applied MaAsLin 2 to identify disease-associated features by leveraging the HMP2’s multi-
omics profiles of the IBD microbiome, confirming known associations and suggesting novel
ones for future validation.
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A unique aspect of our synthetic evaluation of microbial community feature-wise associa-
tion methods while developing MaAsLin 2 is their comprehensive assessment in the presence
of multiple covariates and repeated measures, an increasingly common characteristic of mod-
ern study designs. To identify covariate-associated microbial features from longitudinal, non-
independent measurements, it is necessary to jointly model data from all time points and
appropriately account for the within-subject correlations while allowing for multiple covari-
ates. This is particularly critical in the human microbiome, where baseline between-subject dif-
ferences can be far greater than those within-subjects over time, or of the effects of phenotypes
of interest. To the best of our knowledge, the synthetic evaluation presented here is the first to
consider such aspects of large-scale microbiome epidemiology in statistical benchmarking.
This enabled us to investigate key aspects of published methods that would be difficult to gen-
eralize from univariate comparisons alone [7-9]. Note that the resulting conclusion is largely
independent of the association models being evaluated, as the synthetic data was generated
from an additional, completely external model (i.e., the zero-inflated log-normal, S1 Text),
which is fundamentally different from any of the evaluated parametric models. Our simulation
results thus complement the findings of previous studies in several important aspects. Consis-
tent with previous reports, nearly all zero-inflated models suffer from poor performance (i.e.,
inflated false positives and higher computation costs), here in both univariate and multivari-
able scenarios with or without repeated measures. This calls for methodological advancements
in statistical modeling of zero-inflated data, as existing theory seems to differ very surprisingly
from practice when implemented by established optimization algorithms and applied to noisy
data.

One noteworthy finding of our evaluation is that a random effect implementation of the
same underlying statistical model can lead to different substantive conclusions than its fixed
effects counterpart. This was particularly evident for the negative binomial case, where a sub-
stantially better control of FDR (albeit inflated) was observed for the random effects analog.
Interestingly, the negative binomial model (with or without zero-inflation) is in many ways
considered the most “appropriate” model for count-based microbial community profiles, but
we observed extremely inconsistent behavior for existing negative binomial and ZINB imple-
mentations during our evaluation, as also observed in previous findings [48]. In particular, our
negative binomial evaluation used the glm.nb() function from the MASS R package [49] for
fixed effects and the glmer() function from the R package Ime4 [50] for random effects, whereas
the ZINB evaluation used the zeroinfl() function from the R package pscl [51]. This additionally
highlights the potential reproducibility concerns induced by differences in algorithms, imple-
mentations, and computational environments even for the same underlying model, suggesting
that great caution should be taken when interpreting multiple implementations of the same
statistical model for challenging microbial community settings in the absence of an experi-
mentally validated gold standard.

In agreement with previous studies, we confirmed that most RNA-seq differential expres-
sion analysis tools tend to provide suboptimal performance when applied unmodified to zero-
inflated microbial community profiles. Count-based models, due to their strong parametric
assumptions (i.e., parametric specifications of the mean-variance relationship), tend to have
inflated FDR when the assumptions are violated. In sharp contrast to previous claims, how-
ever, compositionality-corrected methods such as ANCOM [14,25] as well as specialized nor-
malization and transformation methods such as CLR [52] did not improve performance over
non-compositional approaches [8,53], consistent with recent findings that compositional
methods may not always outperform non-compositional methods [35]. Importantly, these
conclusions hold regardless of the nature of the modeling paradigm (i.e., univariate vs. multi-
variable), thus providing a generalizable benchmark for future evaluation studies of applied
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microbiome association methods. Though we primarily focused on data generated in micro-
bial community surveys, many of our conclusions are extendible to similar zero-inflated count
data arising in other applications such as single-cell RNA-seq. Taken together, these simula-
tion results revealed that further investigation into the causes of the failure of FDR correction
and development of specialized false positive-controlling methods are important upcoming
challenges in microbiome statistical research.

As currently implemented, MaAsLin 2 is designed to be applicable to most human and
environmental microbiome study designs, including cross-sectional and longitudinal. Clearly,
these can also be extended to additional designs, such as nested case-control and case-cohort.
It is to be noted that MaAsLin 2’s capability extends well beyond association analysis. For
instance, MaAsLin 2’s multi-analysis framework has been used in the context of meta-analysis
[54], and the extracted residuals and random effects from a MaAsLin 2 fit can be used for fur-
ther downstream analysis (e.g., as has been done in the original HMP2 study for cross-mea-
surement correlation analysis [39]). By adhering to a flexible mixed effects framework,
MaAsLin 2 can analyze multiple groups and time points jointly with other associated covari-
ates, which allows formulation of both fixed effects (for cross-sectional associations) and ran-
dom effects (for within-subject correlations) in a single unified framework. This is particularly
appropriate for non-longitudinal studies (those with a small number of repeated measures,
e.g., multiple tissues or families), or from sparse and irregular longitudinal data from many
subjects (e.g., with unequal number of repeated measurements per subject, as commonly
encountered in population-scale epidemiology). This aspect could also be extended in the
future, based on the increasing availability of dense time-series profiles appropriate for non-
linear trajectory-based methods from Bayesian nonparametrics, such as Gaussian processes,
particularly in the presence of multiple covariates [5,55]. Finally, methods need to be devel-
oped to accommodate the increasing availability of microbiome-host interactomics and elec-
tronic health records in population-scale microbiome-wide epidemiology, moving beyond
observational discovery toward translational applications of the human microbiome. In sum-
mary, the methodology presented here provides a starting point for more efficient identifica-
tion of microbial associations from large microbial community studies, offering practitioners
wide set of analysis strategies with state-of-the-art inferential power for the human micro-

o

biome and other complex microbial environments.

Supporting information

S1 Text. Data for differential feature model evaluations. Descriptions of how the synthetic
datasets are generated using SparseDOSSA for both univariate and multivariable metadata
designs (with or without repeated measures) and the associated spike-in procedure to intro-
duce feature-metadata associations.

(DOCX)

S2 Text. Multivariable association test evaluation. Details on how each of the methods com-
pared in the Results section are implemented, run on the simulated data, and evaluated using
various performance metrics.

(DOCX)

S3 Text. Analysis of the iHMP (HMP2) IBDMDB multi-omics dataset. Details on differen-
tial abundance analysis of iIHMP (HMP2) IBDMDB multi-omics dataset using MaAsLin 2,
along with a description of the associated study design, quality control procedures, shuffle data
experiments, and per-feature multivariable models for various microbial measurement types.
(DOCX)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021 18/27


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009442.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009442.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009442.s003
https://doi.org/10.1371/journal.pcbi.1009442

PLOS COMPUTATIONAL BIOLOGY Microbiome multivariable association discovery

S1 Data. Full summary of detection performance in synthetic benchmarking for single
binary metadatum (UVB) without repeated measures. Detection performance measures for
all methods (after ignoring incompatible combinations) as averages over 100 iterations are
provided for single binary metadatum design (UVB) without repeated measures (S1 and S2
Texts).

(XLSX)

$2 Data. Full summary of detection performance in synthetic benchmarking for single
continuous metadatum (UVA) without repeated measures. Detection performance mea-
sures for all methods (after ignoring incompatible combinations) as averages over 100 itera-
tions are provided for single continuous metadatum design (UVA) without repeated measures
(S1 and S2 Texts).

(XLSX)

$3 Data. Full summary of detection performance in synthetic benchmarking for multiple
independent metadata (MVA) without repeated measures. Detection performance mea-
sures for all methods (after ignoring incompatible combinations) as averages over 100 itera-
tions are provided for multiple independent metadata design (MVA) without repeated
measures (S1 and S2 Texts).

(XLSX)

$4 Data. Full summary of detection performance in synthetic benchmarking for multiple
correlated metadata (MVB) without repeated measures. Detection performance measures
for all methods (after ignoring incompatible combinations) as averages over 100 iterations are
provided for multiple correlated metadata design (MVB) without repeated measures (S1 and
S2 Texts).

(XLSX)

S5 Data. Full summary of detection performance in synthetic benchmarking for single
binary metadatum (UVB) with repeated measures. Detection performance measures for all
methods (after ignoring incompatible combinations) as averages over 100 iterations are pro-
vided for single binary metadatum design (UVB) with repeated measures (S1 and S2 Texts).
(XLSX)

$6 Data. Full summary of detection performance in synthetic benchmarking for single
continuous metadatum (UVA) with repeated measures. Detection performance measures
for all methods (after ignoring incompatible combinations) as averages over 100 iterations are
provided for single continuous metadatum design (UVA) with repeated measures (S1 and S2
Texts).

(XLSX)

S7 Data. Full summary of detection performance in synthetic benchmarking for multiple
independent metadata (MVA) with repeated measures. Detection performance measures
for all methods (after ignoring incompatible combinations) as averages over 100 iterations are
provided for multiple independent metadata design (MVA) with repeated measures (S1 and
S2 Texts).

(XLSX)

$8 Data. Full summary of detection performance in synthetic benchmarking for multiple
correlated metadata (MVB) with repeated measures. Detection performance measures for
all methods (after ignoring incompatible combinations) as averages over 100 iterations are

provided for multiple correlated metadata design (MVB) with repeated measures (S1 and S2
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Texts).
(XLSX)

§9 Data. MaAsLin 2 associations between HMP2 multi-omics features (metagenomic spe-
cies) and covariates. List of statistically significant associations (FDR<0.25) between species
profiles and IBD disease phenotype (with non-IBD as reference), IBD dysbiosis state (with
non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default multivariable
linear mixed effects model with subject and site as random effects (S3 Text). Features are
sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates and test sta-
tistics and the associated two-tailed p-values are also reported. Input features and metadata are
also provided.

(XLSX)

S$10 Data. MaAsLin 2 associations between HMP2 multi-omics features (unstratified DNA
pathways) and covariates. List of statistically significant associations (FDR<0.25) between
unstratified DNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dys-
biosis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default
multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-
tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates
and test statistics and the associated two-tailed p-values are also reported. Input features and
metadata are also provided.

(XLSX)

S11 Data. MaAsLin 2 associations between HMP2 multi-omics features (unstratified RNA
pathways) and covariates. List of statistically significant associations (FDR<0.25) between
unstratified RNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dys-
biosis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default
multivariable linear mixed effects model with subject and site as random effects (53 Text). Fea-
tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates
and test statistics and the associated two-tailed p-values are also reported. Input features and
metadata are also provided.

(XLSX)

$12 Data. MaAsLin 2 associations between HMP2 multi-omics features (pathway RNA/
DNA ratios) and covariates. List of statistically significant associations (FDR<0.25) between
pathway RNA/DNA ratios and IBD disease phenotype (with non-IBD as reference), IBD dys-
biosis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default
multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-
tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates
and test statistics and the associated two-tailed p-values are also reported. Input features and
metadata are also provided.

(XLSX)

S$13 Data. MaAsLin 2 associations between HMP2 multi-omics features (stratified DNA
pathways) and covariates. List of statistically significant associations (FDR<0.25) between
stratified DNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dysbio-
sis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default
multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-
tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates
and test statistics and the associated two-tailed p-values are also reported. Input features and
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metadata are also provided.
(XLSX)

S$14 Data. MaAsLin 2 associations between HMP2 multi-omics features (stratified RNA
pathways) and covariates. List of statistically significant associations (FDR<0.25) between
stratified RNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dysbio-
sis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default
multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-
tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates
and test statistics and the associated two-tailed p-values are also reported. Input features and
metadata are also provided.

(XLSX)

S1 Fig. Details of simulation parameters, evaluation metrics, and benchmarking methods.
A) Four broad metadata designs commonly encountered in microbiome epidemiology for
varying sample size, effect size, and feature dimensions are considered: UVA (Single continu-
ous metadata), UVB (Single binary metadata), MVA (Multiple independent metadata), and
MVB (Multiple correlated metadata). For each of this broad metadata design, both cross-sec-
tional and longitudinal cases are evaluated (S1 Text). B) Three aspects of performance are con-
sidered: (i) false discovery, (ii) sensitivity, and (iii) scope and computational efficiency of the
associated software, each comprising multiple evaluation metrics (52 Text). C) A combination
of statistical models, normalization, and transformation schemes are employed to the synthetic
datasets for a variety of association methods, leading up to 84 combinations of normalization/
transformation, zero-inflation, and regression models.

(TIFF)

S2 Fig. Full summary of detection performance for varying effect size, sample size, and fea-
ture dimensions in the simple case of univariate binary metadatum (UVB) without
repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the best-
performing methods from each class of methods (as measured by average F1 score). Values are
averages over 100 iterations for each parameter combination. The x-axis (effect size) within
each panel represents the linear effect size parameter; a higher effect size represents a stronger
association. For visualization purposes, only the best-performing methods from each class of
models (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target
threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1
score across all simulation parameters in this setting. All methods were parallelized using cus-
tom bash scripts in a high-performance computing environment and methods unable to pro-
cess specific simulation configurations due to high computational overhead or slow
convergence were omitted for those cases.

(TIFF)

S3 Fig. Meta-summary of detection performance in the simple case of univariate binary
metadatum (UVB) without repeated measures. Detection performance measures (Sensitiv-
ity, FPR, FDR) for all methods are provided. Values are averages over all parameter combina-
tions each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold
for FDR in multiple testing. Methods are sorted by increasing order of average F1 score across
all simulation parameters in this setting.

(TIFF)

S4 Fig. Meta-summary of p-value calibration performance in the simple case of univariate
binary metadatum (UVB) without repeated measures. P-value calibration measures as
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measured by ‘departure from uniformity’ (Liberal Area, Conservative Area, Total Area; S2
Text) for all methods are displayed. Values are averages over all parameter combinations each
summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for FDR
in multiple testing. Methods are sorted by increasing order of average F1 score across all simu-
lation parameters in this setting.

(TIFF)

S5 Fig. Full summary of detection performance for varying effect size, sample size, and fea-
ture dimensions in the simple case of univariate continuous metadatum (UVA) without
repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the best-
performing methods from each class of methods (as measured by average F1 score). Values are
averages over 100 iterations for each parameter combination. The x-axis (effect size) within
each panel represents the linear effect size parameter; a higher effect size represents a stronger
association. For visualization purposes, only the best-performing methods from each class of
models (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target
threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1
score across all simulation parameters in this setting. All methods were parallelized using cus-
tom bash scripts in a high-performance computing environment and methods unable to pro-
cess specific simulation configurations due to high computational overhead or slow
convergence were omitted for those cases.

(TIFF)

S6 Fig. Meta-summary of detection performance in the presence of multiple independent
metadata (MVA) without repeated measures. Detection performance measures (F1 score,
Matthew’s correlation coefficient, FDR) for all methods are displayed. Values are averages over
all parameter combinations each summarized over 100 iterations. Red line parallel to the x-
axis is the target threshold for FDR in multiple testing. Methods are sorted by increasing order
of average F1 score across all simulation parameters in this setting.

(TIFF)

S7 Fig. Full summary of detection performance for varying effect size, sample size, and fea-
ture dimensions in the presence of multiple correlated metadata (MVB) without repeated
measures. Both sensitivity and false discovery rates (FDR) are shown for the best-performing
methods from each class of methods (as measured by average F1 score). Values are averages
over 100 iterations for each parameter combination. The x-axis (effect size) within each panel
represents the linear effect size parameter; a higher effect size represents a stronger association.
For visualization purposes, only the best-performing methods from each class of models (as
measured by average F1 score) are shown. Red line parallel to the x-axis is the target threshold
for FDR in multiple testing. Methods are sorted by increasing order of average F1 score across
all simulation parameters in this setting. All methods were parallelized using custom bash
scripts in a high-performance computing environment and methods unable to process specific
simulation configurations due to high computational overhead or slow convergence were
omitted for those cases.

(TIFF)

S8 Fig. Meta-summary of detection performance in the simple case of univariate binary
metadatum (UVB) with repeated measures. Detection performance measures (Sensitivity,
FPR, FDR) for all methods are displayed. Values are averages over all parameter combinations
each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for
FDR in multiple testing. Methods are sorted by increasing order of average F1 score across all
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simulation parameters in this setting.
(TIFF)

S9 Fig. Meta-summary of detection performance in the presence of multiple independent
metadata (MVA) with repeated measures. Detection performance measures (Sensitivity,
FPR, FDR) for all methods are displayed. Values are averages over all parameter combinations
each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for
FDR in multiple testing. Methods are sorted by increasing order of average F1 score across all
simulation parameters in this setting.

(TIFF)

$10 Fig. Meta-summary of detection performance in the simple case of univariate continu-
ous metadatum (UVA) without repeated measures. Detection performance measures (Sensi-
tivity, FPR, FDR) for all methods are displayed. Values are averages over all parameter
combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target
threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1
score across all simulation parameters in this setting.

(TIFF)

S11 Fig. Meta-summary of detection performance in the presence of multiple correlated
metadata (MVB) with repeated measures. Detection performance measures (Sensitivity,
FPR, FDR) for all methods are displayed. Values are averages over all parameter combinations
each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for
FDR in multiple testing. Methods are sorted by increasing order of average F1 score across all
simulation parameters in this setting.

(TIFF)

$12 Fig. Runtime of association methods. CPU time (in minutes) is shown for all models fac-
eted by feature dimension (100, 200, 500) and colored by metadata design (i.e., univariate and
multivariable) in both cross-sectional (top) and longitudinal (bottom) settings. Values are
averages over 100 iterations for each parameter combination. All methods were parallelized
using custom bash scripts in a high-performance computing environment and methods
unable to process specific simulation configurations due to high computational overhead or

slow convergence were omitted for those cases.
(TIFF)

$13 Fig. Performance of multivariable association methods on negative training data.
MaAsLin 2’s default linear model produced a consistently lower proportion of significant asso-
ciations on negative training data (or repeatedly shuffled training set) (averaged over 1,000
permutations) than the positive training (unshuffled) counterpart in both baseline and longi-
tudinal models (S3 Text). Values are average percentages of statistically significant associations
(unadjusted P < 0.05) summarized over 1000 permutations. Dashed line parallel to the y-axis
is the desired 5% significance threshold.

(TIFF)

S14 Fig. Statistically significant overlap of detected features by MaAsLin 2 and those found
in the original study. Contingency tables describing the intersection of detected features
(across all covariates, restricted to common associations found by both methods) between
MaAsLin 2 and the original study for various data modalities in the IBDMDB dataset (S3
Text).

(TIFF)
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S15 Fig. Overlap of detected dysbiotic taxonomic features by various MaAsLin models.
Upset plot describing the intersection of detected dysbiotic taxonomic features between vari-
ous MaAsLin 2 models in the IBDMDB dataset reveals significant overlap across methods
(restricted to common associations found by all methods). A similar pattern was observed for
functional profiles (data not shown).
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