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Abstract

The coordinated behaviour of populations of cells plays a central role in tissue growth and

renewal. Cells react to their microenvironment by modulating processes such as movement,

growth and proliferation, and signalling. Alongside experimental studies, computational

models offer a useful means by which to investigate these processes. To this end a variety

of cell-based modelling approaches have been developed, ranging from lattice-based cellu-

lar automata to lattice-free models that treat cells as point-like particles or extended shapes.

However, it remains unclear how these approaches compare when applied to the same bio-

logical problem, and what differences in behaviour are due to different model assumptions

and abstractions. Here, we exploit the availability of an implementation of five popular cell-

based modelling approaches within a consistent computational framework, Chaste (http://

www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assump-

tions within these models. In each case we provide full details of all technical aspects of our

model implementations. We compare model implementations using four case studies, cho-

sen to reflect the key cellular processes of proliferation, adhesion, and short- and long-

range signalling. These case studies demonstrate the applicability of each model and pro-

vide a guide for model usage.

Author summary

In combination with molecular and live-imaging techniques, computational modelling

plays an increasingly important role in the study of tissue growth and renewal. To this end

a variety of cell-based modelling approaches have been developed, ranging in complexity

from lattice-based cellular automata to lattice-free models that treat cells as point-like par-

ticles or extended shapes. However, it remains unclear how these approaches compare

when applied to the same biological problem, and under which circumstances each
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approach is valid. Here we implement five classes of such model in a consistent computa-

tional framework, Chaste. We apply each model to four simulation studies, chosen to

illustrate how the cellular processes such as proliferation, adhesion, and short- and long-

range signalling may be implemented in each model. These case studies demonstrate the

applicability of each model and highlight where one may expect to see qualitative differ-

ences between model behaviours. Taken together, these findings provide a guide for

model usage.

Introduction

Cells in eukaryotic organisms respond to physical and chemical cues through processes such

as movement, growth, division, differentiation, death and secretion or surface presentation of

signalling molecules. These processes must be tightly orchestrated to ensure correct tissue-

level behaviour and their dysregulation lies at the heart of many diseases. The last decade has

witnessed remarkable progress in molecular and live-imaging studies of the collective self-

organization of cells in tissues. In combination with experimental studies, mathematical

modelling is a useful tool with which to unravel the complex nonlinear interactions between

processes at the subcellular, cellular and tissue scales from which organ- and organism-level

function arises. The classical approach to modelling these processes treats the tissue as a con-

tinuum, using some form of homogenization argument to average over length scales much

larger than the typical diameter of a cell. It can thus be difficult to incorporate heterogeneity

between cells within a population, or investigate the effect of noise at various scales, within

such models.

Facilitated by the reduction in cost of computing power, a number of discrete or ‘individ-

ual-based’ approaches have been developed to model the collective dynamics of multicellular

tissues (Fig 1). Such models treat cells, or subcellular components, as discrete entities and pro-

vide natural candidates for studying the regulation of cell-level processes in tissue dynamics.

However, they are less amenable to mathematical analysis than their continuum counterparts.

The precise rules and methods of implementation differ between models and must be adapted

to a particular biological system. However, they can be broadly categorised as on- and off-lat-

tice, according to whether or not cells are constrained to lie on an artificial lattice. In the pres-

ent work, we choose to focus on five of the most widely used approaches. Each of the models

described below have been helpful in furthering our knowledge but, like all models, they are

simplifications and so have limitations.

Arguably the simplest individual-based models are cellular automata (CA), where each lat-

tice site can contain at most a single cell (Fig 1(a)). The system is evolved discretely, using a

fixed time-stepping [1] or event-driven [2] approach, with the new state of each cell deter-

mined using deterministic or stochastic rules and the state of the system at the previous time

step. The computational simplicity of CA renders them amenable to simulating large numbers

of cells.

Another class of on-lattice model is the cellular Potts (CP) model [3], which represents each

cell by several lattice sites, allowing for more realistic cell shapes (Fig 1(b)). The shape of each

cell is evolved via some form of energy minimization. Unlike CA, the CP model can incorpo-

rate mechanical processes such as cell membrane tension, cell-cell and cell-substrate adhesion,

and cell volume conservation. The CP model has been used to study biological processes rang-

ing from cell sorting [4] and morphogenesis [5] to tumour growth [6].
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The removal of a fixed-lattice geometry in off-lattice models enables the more detailed

study of mechanical effects on cell populations. Two common descriptions of cell shape in off-

lattice models are (i) ‘overlapping spheres’ (OS) or quasi-spherical particles [7] and (ii)

through Voronoi tessellations (VT) [8]; in both approaches, the centre of each cell is tracked

over time. In the former, cells are viewed as particles that are spherical in the absence of any

interactions but which deform upon cell-cell or cell-substrate contact (Fig 1(c)). In the latter,

the shape of each cell is defined to be the set of points in space that are nearer to the centre of

the cell than the centres of any other cell; a Delaunay triangulation is performed to connect

those cell centres that share a common face, thus determining the neighbours of each cell [9]

(Fig 1(d)). In either case, Monte Carlo methods or Langevin equations may be used to simulate

cell dynamics.

An alternative off-lattice approach commonly used to describe tightly packed epithelial cell

sheets is the vertex model (VM) framework, in which each cell is modelled as a polygon, repre-

senting the cell’s membrane (Fig 1(e)). Each cell vertex, instead of centre, moves according to a

balance of forces due to limited compressibility, cytoskeletal contractility and cell-cell adhe-

sion. Additional rules govern cell neighbour rearrangements, growth, mitosis and death.

For the remainder of this work, we focus on the five classes of model outlined above; how-

ever, we note that a variety of other cell-based models have been developed, and are reviewed

in detail elsewhere [10], [11], [12]. These include (among others) the finite element method

[13], immersed boundary method [14] and subcellular element method [15].

A key advantage of cell-based models is that they can be straightforwardly coupled to other

continuous models [16]. Several cell-based models have coupled descriptions of nutrient or

morphogen transport and signalling to cell behaviour [17], [18], [19], [20], [21]. For example,

a hybrid CA was used by Anderson and colleagues to study the role of the microenvironment

Fig 1. Schematics of the cell-basedmodels considered in this study. (a) Cellular automaton (CA). (b)
Cellular Potts (CP) model. (c) Overlapping spheres (OS) model. (d) Voronoi tessellation (VT) model. (e)
Vertex model (VM). (f) Flow chart of cell-based simulation algorithm. See text for full details.

doi:10.1371/journal.pcbi.1005387.g001
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on solid tumour growth and response to therapy [22], while Aegerter-Wilmsen et al. coupled a

vertex model of cell proliferation and rearrangement with a differential algebraic equation

model for a protein regulatory network to describe the interplay between mechanics and sig-

nalling in regulating tissue size in the Drosophila wing imaginal disk [17].

As the use of cell-based models becomes increasingly widespread in the scientific commu-

nity, it becomes ever more useful to be able to compare competing models within a consistent

computational framework, to avoid the potential danger of artifacts associated with different

methods of numerical solution. To date there has not been a comparison of the classes of mod-

els described above, due in part to the lack of a common computational framework in which

to carry out such a comparison. The development of Chaste, an open-source C++ library for

cell-based and multiscale modelling [23], [24], addresses this issue.

Here we present a systematic comparison of five classes of cell-based models through the

use of four case studies. We demonstrate how the key cellular processes of proliferation, adhe-

sion, and short- and long-range signalling can be implemented and compared within the com-

peting modelling frameworks. Moreover, we provide a guide for which model is appropriate

when representing a given system. We concentrate throughout on the two-dimensional case,

but note that many of these models have also been implemented in three dimensions.

The remainder of this paper is structured as follows. We begin by presenting the five mathe-

matical frameworks and discuss their implementation. Next, we use our four case studies to

demonstrate how the modelling frameworks compare. Finally, we discuss our results and pres-

ent a guide to which framework to use when modelling a particular problem.

Materials andmethods

In this study we compare the implementation and behaviour of: cellular automata (CA); cellu-

lar Potts (CP); cell-centre, both overlapping sphere (OS) and Voronoi tessellation (VT); and

vertex (VM) models. We begin by briefly describing the governing rules and equations for

each of these models focussing on the way they implement the common processes of cell-cell

interaction and cell division. Throughout, full references are given to previous publications

giving much fuller details of the derivation and implementation of each of these models. We

also present a consistent numerical implementation for the models.

Cellular automaton (CA) model

There are several possible ways to represent cell movement in a CA. Here we focus on compact

tissues so consider movement driven by division and cell exchange, using a shoving-based

approach [25]. The spatial domain is discretised into a regular lattice with cells occupying the

individual lattice sites (Fig 1(a)). The area Ai of each cell i in this model is given by 1 squared

cell diameter (CD2).

In common with all of the cell-based models presented here, cell proliferation is determined

by a model of how cells progress through the cell cycle, which in turn specifies when cells

divide. Our model of cell-cycle progression varies across the four examples considered. How-

ever, in all cases a dividing cell selects a random lattice site from its Moore neighbourhood

(the eight cells that surround it), and all cells along the row, column or diagonal from the

dividing cell’s location are instantaneously displaced or ‘shoved’ to make space for the new

cell.

We use a Metropolis-Hastings algorithm to make additional updates to the state of the tis-

sue using asynchronous updating. At each time step Δt, after checking for and implementing

any cell divisions, we sample with replacement NCells cells, where NCells is the number of cells

in the tissue at time t (thus, it may be the case that a cell is sampled more than once in a time
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step, while others are not sampled). This sweeping of the domain is also known as a Monte

Carlo Step (MCS). We randomly select a neighbouring lattice site from each sampled cell’s

Moore neighbourhood for a potential swap. The swapping of cells is intended to model ran-

dommotility and the affinity of cells to form and break connections with adjacent cells.

Assigning the MCS to a time step Δt allows us to parametrize the timescale of the switching

process and relate this to cell division. A probability per hour is assigned for the cells (or

empty lattice site, which we refer to as a void) to swap locations, pswap, which is calculated as

pswap ¼ kswapminð1; e�DH=TÞ; ð1Þ

where κswap represents the rate of switching and T represents the background level of cell

switching, modelling random cell fluctuations. If T = 0 then only energetically favourable

swaps happen, and we use this as the default value for our simulations; as T increases, more

energetically unfavourable swaps occur. Finally, ΔH =H1 −H0 denotes the change in adhesive

energy due to the swap, withH0 andH1 being the energy in the original and changed configu-

rations respectively, which is defined to be the sum of the adhesion energy between lattice sites:

H ¼
X

ði;jÞ2N
gðtðiÞ; tðjÞÞ; ð2Þ

where γ(a, b) is a constant whose value depends on a and b, representing the adhesion energy

between cells (or void) of type a and b, Ç(k) is the type of cell k (or void if there is no cell on

the lattice site) andN is the set of all neighbouring lattice sites. Here Ç(k) takes the values ‘A’,

‘B’ and ‘void’, but can in principle be extended to more cell types. Note that while we have

chosen the particular implementation of our CA to accommodate the case studies below, a

variety of alternative implementations exist based on other updating schemes and cell divi-

sion algorithms [26].

Cellular Potts (CP) model

As in the CA, we discretize the spatial domain into a lattice. Although, as in the CA case, the

structure and connectivity of this lattice may be arbitrary, for simplicity we restrict our atten-

tion to a regular square lattice of size N ×N. In contrast to the CAmodel, each cell is repre-

sented by a collection of lattice sites, with each site contained in at most one cell with the cell

type of a lattice site being referred to as its spin. The area Ai of each cell i in this model is given

by the sum of the area of all the lattice sites contained in the cell. In the present study, we repre-

sent a cell by 16 lattice sites (i.e. 1 CD2 equals 16 lattice sites). This is illustrated in Fig 1(b).

In a similar manner to the CA, the system evolves by attempting to minimize a total ‘energy’

or Hamiltonian, H, over discrete time steps using a Metropolis-Hastings algorithm. The pre-

cise form ofH varies across applications but can include contributions such as cell-cell adhe-

sion, hydrostatic pressure, chemotaxis and haptotaxis [5]. One iteration of the algorithm

consists of selecting a lattice site and a neighbouring site (from the Moore neighbourhood) at

random and calculating the change in total energy resulting from copying the spin of the first

site to the second, ΔH =H1 −H0. The spin change is accepted with probability

pcopy ¼ min 1; e�DH=Tð Þ; ð3Þ

where T, referred to as the ‘temperature’, characterizes fluctuations in the system; broadly

speaking, at higher values of T cells move more freely, and hence system fluctuations increase

in size. At each time step, Δt, we choose to sample with replacement N ×N lattice sites. Note

that this established algorithm for simulating CP models permits cell fragmentation, in princi-

ple; however, recent work has overcome this limitation [27].
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In this study, we use a Hamiltonian of the form

H ¼
X

NCellsðtÞ

i¼1

aðAi � A
ð0Þ
i Þ2 þ bðCi � C

ð0Þ
i Þ2

h i

þ
X

ði;jÞ2N
ð1� dsðiÞ;sðjÞÞgðtðiÞ; tðjÞÞ;

ð4Þ

where the first and second terms on the right-hand side represent the area and perimeter con-

straint energies, summed over each cell in the system, and the third term represents the adhe-

sion energy. Here Ã(k) denotes the index of the cell containing lattice site k (note we let Ã(k) =

0 if no cell is attached to the lattice site and we denote this to be the void), and δa,b is the delta
function, which equals 1 if a = b and 0 otherwise. Ç(k) denotes that cell’s ‘type’ (with the type

void if Ã(k) = 0), and γ denotes the interaction energies between cells occupying neighbouring

lattice sites i and j. AgainN is the set of all neighbouring lattice sites and we allow γ to take dif-
ferent values for homotypic and heterotypic cell-cell interfaces and for ‘boundary’ interfaces

between cells and the surrounding medium. Here Að0Þ
k and Cð0Þ

k denote a specified ‘target area’

and ‘target perimeter’ for cell k, respectively, which can depend on internal properties of the

cell, allowing for cell growth to be modelled. Here we assume all cells are mechanically identi-

cal and set Að0Þ
k ¼ Að0Þ and Cð0Þ

k ¼ Cð0Þ. The parameters α and β influence how fast cells react to

the area and perimeter constraints, respectively. Upon cell division, half the lattice sites are

assigned to each daughter cell (with 2 cells of n + 1 and n lattice sites, respectively, if the parent

cell has 2n + 1 lattice sites).

Cell-centre models

Here cells are represented by their centres, which are modelled as a set of points {r1,. . .,rNCells
}

which are free to move in space. For simplicity, we assume all cells to have identical mechanical

properties and use force balance to derive the equations of motion. We balance forces on each

cell centre and, making the standard assumption that inertial terms are small compared to dis-

sipative terms (as cells move in dissipative environments of extremely small Reynolds number

[28]), we obtain a first-order equation of motion for each cell centre, ri, given by

Z
dri
dt

¼ FiðtÞ ¼
X

j2N iðtÞ
FijðtÞ; ð5Þ

where η denotes a damping constant and Fi(t) is the total force acting on a cell i at time t

which is assumed to equal the sum of all forces, coming from the connections with all neigh-

bouring cells j 2 N iðtÞ adjacent to i at that time, Fij(t). The definition ofN iðtÞ varies between
the OS and VT models; in the former, it is the set of cells whose centres lie within a distance

rmax from the centre of cell i, while in the latter, it is the set of cells whose centres share an

edge with the centre of cell i in the Delaunay triangulation. We solve this equation numeri-

cally using a simple forward Euler scheme with sufficiently small time step Δt to ensure
numerical stability:

riðt þ DtÞ ¼ riðtÞ þ
Dt

Z

X

j2N iðtÞ
FijðtÞ: ð6Þ

Upon cell division, we generate a randommitotic unit vector m̂ and the daughter cells are

placed at ri � �m̂, where � is a constant division separation parameter and is dependent on the

particular cell-centre model being used.
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Overlapping spheres (OS). Here, each cell i has an associated radius Ri. Two cells i and j

are assumed to be neighbours if their centres satisfy ||ri − rj||< rmax for a fixed constant rmax,

(where ||⋅|| is the Euclidian norm) known as the interaction radius, where rmax> 2Ri for all i.

The area of the cell is defined as [29]

Ai ¼ pðReff
i Þ

2

; ð7Þ

where

Reff
i ¼ 1

6

X

j2N iðtÞ

1

2
ðRi � Rj þ jjrijjjÞ þ Rið6� sizeðN iðtÞÞÞ

" #

: ð8Þ

Here rij(t) = rj(t) − ri(t) is the vector from cell i to cell j at time t. An illustration of cell con-

nectivity is given in Fig 1(d).

In the OS model we define the force between cells as [29]

FijðtÞ ¼

mijsijðtÞr̂ijðtÞ log 1þ
jjrijðtÞjj � sijðtÞ

sijðtÞ

 !

; for jjrijðtÞjj < sijðtÞ;

mijðjjrijðtÞjj � sijðtÞÞr̂ijðtÞ exp �kC
jjrijðtÞjj � sijðtÞ

sijðtÞ

 !

;

for sijðtÞ � jjrijðtÞjj � rmax;

0; for jjrijðtÞjj > rmax:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð9Þ

Here ¿ij is known as the “spring constant” and controls the size of the force (and depends

on the cell types of the connected cells), by default ¿ij = ¿ for all interactions, rij(t) = ri(t) − rj(t),

r̂ijðtÞ is the corresponding unit vector, kC is a parameter which defines decay of the attractive

force, and sij(t) is the natural separation between these two cells. For the OS model sij(t) is the

sum of the radii of the two cells, and here the cell’s radius increases from 0.25 to 0.5 CDs over

the first hour of the cell cycle, and hence is a function of time. Note that there is a cut-off dis-

tance, rmax, such that once ||rij(t)||> rmax the cells are not connected so the force is zero.

Voronoi tessellation (VT). In the VT model we represent cells by the Voronoi region of

the cell centres (this is defined as the region of space that is nearer to one cell centre than any

other). Example cell regions are shown as solid lines in Fig 1(d). In this model, the area Ai of a

cell i is defined to be the area of the corresponding Voronoi region. Cell connectivity is defined

by the dual of the Voronoi region, known as a Delaunay triangulation and this is shown by the

dashed lines in Fig 1(d). Two cell centres are assumed to be connected if they share an edge in

the Delaunay triangulation.

In the VT model we define the force between cells to be [8], [30],

FijðtÞ ¼ mijr̂ijðtÞ jjrijðtÞjj � sijðtÞ
� �

: ð10Þ

Here ¿ij is the spring constant (defaulting to ¿ij = ¿), rij(t) = ri(t) − xj(t), r̂ijðtÞ is the corre-
sponding unit vector and sij(t) is the natural separation between these two cells. For the VT

model this increases linearly from s = � (= 0.1) to s = 1 over the first hour of the cell cycle.

When using a Delaunay triangulation to define cell connectivity, on a growing tissue, long

edges can form between distant cells causing unrealistic connections to be made. There are

two methods used to overcome this. The first is to introduce a cut-off length, rmax, such that

cells further apart than the cut-off length are no longer connected (analogous to the OS

Comparing individual-basedmodels of the self-organization of multicellular tissues
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model). The second method is to introduce ghost nodes, which are extra nodes introduced into

the simulation which surround the tissue, which do not exert any forces on the cells, and pre-

clude any long connections from forming. Moreover these ghost nodes ensure that the Voro-

noi regions, and therefore cell areas, are finite. In order for the ghost nodes to surround the

tissue, as it grows, cells exert a force on the ghost nodes (and ghost nodes exert forces on other

ghost nodes) causing them to move with the cells. The force applied is calculated using Eq

(10). For more details on ghost nodes see [31].

Vertex model (VM)

In the VM a tissue is represented by a collection of non-overlapping connected polygons

whose vertices are free to move and each polygon corresponds to a cell. In this model, the area

Ai of a cell i is given by the area of the associated polygon. An illustration of cells in a VM is

given in Fig 1(e). As in cell-centre models we consider a set of points {r1,. . .,rNVertices
}. Here we

derive a force on each vertex from a phenomenological energy function, which we balance

with a viscous drag term, leading to a first-order equation of motion (alternative formulations

assume that the tissue evolves quasistatically [32], [33]):

ZV
dri
dt

¼ �ri

X

NCellsðtÞ

j¼1

a Aj � A
ð0Þ
j

� �2

þ b Cj � C
ð0Þ
j

� �2
� �

" #

�ri

X

NCellsðtÞ

j¼1

X

Mj

m¼1

gðtðjÞ; tðjmÞÞLj;m

 !" #

;

ð11Þ

where ri is the position of vertex i, ηV is an associated drag constant,ri is the gradient with

respect to ri and NCells(t) denotes the number of cells in the system at time t. The variables Aj

and Cj denote the area and the perimeter of cell j, respectively, andMj is the number of vertices

of cell j. Lj,m is the length of the line connecting verticesm andm + 1 in cell j and jm is the

neighbour of cell j which shares the edge connecting verticesm andm + 1 in cell j. Similar to

the CP model, A(0) is the cell’s natural (or target) area, and C(0) is its natural perimeter. Finally,

α and β are positive constants that represent a cell’s resistance to changes in area or perimeter,

respectively. γ again denotes the interaction energies between neighbouring cells. We allow γ
to take different values for homotypic and heterotypic cell-cell interfaces and for ‘boundary’

interfaces between cells and the surrounding medium.

For simplicity here we set all cells to have a target area of A(0) = 1 and therefore a target

perimeter of Cð0Þ ¼ 2
ffiffiffi

p
p

. See [34] for a discussion on the other growth options and their influ-

ence on simulations. Cell division is implemented by placing a new edge along the shortest

axis through the dividing cell’s centroid [35] and placing two new vertices at the intersection

of this edge and the cell’s perimeter, thus creating two daughter cells.

To maintain a non-overlapping tessellation of the domain we need to introduce a process

where cell edges can swap, known as a T1 transition. This process allows cell connectivity to

change as cells grow and move and is instrumental in the process of cell sorting. When an edge

between two cells, A and B, becomes shorter than a given threshold, lr, we rearrange the con-

nectivity so that the cells A and B are no longer connected and the other cells that contain the

vertices on the short edge, C and D, become connected. Other processes may also be required,

such as a T2 transition where small triangular elements are removed to simulate cell death. For

further details of these elementary operations, see [35].

As with all of these models, other force laws could be used to define cell interactions [36].

For full details of the forces used in the vertex model, along with how they differ in both imple-

mentation and simulation results, see [35].
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Implementation

Now that we have briefly introduced all the cell-based models used in this study we proceed to

discuss their implementation. Each simulation takes the form given in Fig 1(f). All compo-

nents of this algorithm are the same for each simulation type except for the CA model where

cells may also move due to the division of other cells. All models have been non-dimensiona-

lised so that the units of space are cell diameters (CDs) and time is measured in hours.

Parameter values are, where possible, taken from published studies using the models. In

these papers the parameters were identified by fitting global simulation behaviour to that of

the biological system. Some parameters have been modified from their original values in order

to make cell movement as similar as possible between models.

We implement all model simulations within Chaste, an open source C++ library that pro-

vides a systematic framework for multiscale multicellular simulations [24]. Further details on

the implementation of VM and CP models within Chaste can be found in [35] and [37],

respectively. All code used to generate the results presented in this paper, along with tutorials

for running it, is released under an open source (BSD) license and is available at https://chaste.

cs.ox.ac.uk/trac/wiki/PaperTutorials/CellBasedComparison2017.

Results

We now present a series of case studies that illustrate how cellular processes can be represented

in each cell-based model and how differences in representation may influence simulation

results.

Adhesion

Cell-cell adhesion is a fundamental property of tissue self-organization. If embryonic cells of

two or more histological types are placed into contact with each other, they can undergo spon-

taneous reproducible patterns of rearrangement and sorting. This process can, for example,

lead to engulfment of one cell type by another. Explanations for this phenomenon include the

differential adhesion hypothesis, which states that cells tend to prefer contact with some cell

types more than others due to type-specific differential intercellular adhesion [38]; and the dif-

ferential interfacial tension hypothesis, which states that cells of different types instead exert

different degrees of interfacial tension when in contact with other cell types or any surround-

ing medium [39]. Computational modelling has played a key role in comparing these hypothe-

ses [40].

As our first case study, we simulate cell sorting due to differential adhesion in a monolayer

of cells in the absence of cell proliferation or respecification. We consider a mixed population

of two cell types, A and B, which we assume to exhibit differential adhesion. This is imple-

mented in the CA, CP and VMmodels by having different values of the parameter γ for differ-
ent cell types. Specifically, we choose γ(A, A) = γ(B, B)< γ(A, B) and γ(A, void)< γ(B, void)
to drive type-A cells to engulf type-B cells. In the cell-centre (OS and VT) models, we instead

assume that for any pair of neighbouring cells located a distance farther apart than the rest

length, the spring constant, ¿, is reduced by a factor ¿het = 0.1 if the cells are of different types.

Additionally, in the OS model we use a larger interaction radius, rmax = 2.5, to encourage cell

sorting.

In addition to the update rules and equations of motion outlined in the previous section,

we consider each cell to be subject to randommotion. This randommotion is intrinsic to the

CA and CP models and is adjusted by changing the parameter T in Eqs (1) and (3). For the

OS, VT and VMmodels we introduce an additional random perturbation force acting on each
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cell or vertex,

F
rand ¼

ffiffiffiffiffi

2x

Dt

r

η; ð12Þ

where η is a vector of samples from a standard multivariate normal distribution and ¿ is a

parameter that represents the magnitude of the perturbation [35]. This size is scaled by the

time step to ensure that when the equations of motion are solved numerically, the amplitude

of the random perturbation force is independent of the size of time step. We simulate each

model ten times, starting from an initial rectangular domain of width Lx and height Ly, com-

prising 50% type-A cells and 50% type-B cells. For all models, the edge of the domain is a free

boundary, with no modification being made in the force (or update rule) on each boundary

cell or vertex.

The time step of the CA and CP models dictates how many MCS occur per hour and, along

with the temperature, T, can influence the dynamics of the simulation [37]. Here we perform

an ad hoc calibration of T and Δt so that the temporal dynamics of the CA and CP models

match those of the other models as far as possible [37]. A full list of parameter values is pro-

vided in Tables 1 and 2.

Table 1. Table of parameters used in themodels across case studies.

Parameter Description Model(s) Value Reference

Δt Time step CA, CP 0.01 h [37]*

OS, VT, VM 0.005 h [35] [30]

A(0) Cell target area CA 1 LS (1.0 CD2) –

OS π/4 CD2 –

CP 16 LS (1.0 CD2) –

VT
ffiffiffi

3
p

=2 CD2 –

VM 1 CD2 [35]

C(0) Cell target perimeter CP 16 LS (4 CD) [37]

VM 2
ffiffiffi

p
p

CD [35]

α Volume deformation coefficient CP 0.1 [37]

VM 50.0 [35]

β Surface deformation coefficient CP 0.01 [37]

VM 1.0 [35]

γ(cell, cell) Cell-cell adhesion coefficient CA, CP 0.1 [37]*

VM 1 [35]

γ(cell, void) Cell-boundary adhesion coefficient CA, CP 0.2 [37]*

VM 10 [35]

kC Decay of attraction force OS 5 [29]

T Temperature CA 0.0 –

CP 0.1 [37]

η Drag coefficient OS, VT 1.0 [30]

VM 1 [35]

μ Spring constant OS, VT 50.0 [8], [41]

s Mature cell spring rest length OS, VT 1.0 CD [30]

κswap rate of cell switching CA 1 –

rmax Force cut-off length OS 1.5 –

lr Cell rearrangement threshold VM 0.1 CD [35]

Asterisks (*) denote parameters whose values are taken for the CP model from the given reference, with the same value being assumed for the CA model.

doi:10.1371/journal.pcbi.1005387.t001
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The results of a single simulation of each model are shown in Fig 2. In each case, the tissue

evolves to a steady state where cells of each type are more clustered than the initial configura-

tion. In the CA, CP and VMmodels, type-A cells are eventually completely engulfed; note that

for other parameter values, each model can exhibit dissociation or checkerboard patterning

[4], [40]. In the other models, the tissue evolves to a local steady state (a dynamic equilibrium

at a local minimum in the global energy landscape) that does not correspond to complete

engulfment.

A quantitative comparison of cell sorting dynamics is shown in Fig 3. In particular we show

how cell sorting is affected by the level of randommotion applied to cells by multiplying the

temperature T (for CA and CP simulations) or perturbation force magnitude ¿ (for OS, VT

and VM simulations) by the multiplier kpert which we vary between 10−2 and 102. This is dem-

onstrated by computing the fractional length, defined as the total length of edges between cells

of different types for each simulation. These are then normalised by the length at t = 0 for com-

parison. The dashed black line represents the fractional length for optimal engulfment (a circu-

lar region of 200 type A cells surrounded by type B cells). We find that the CA and CP models

undergo repeated annealing due to their stochastic updating, and eventually end up at the

global minimum (corresponding to complete engulfment). However, large amounts of noise

can cause disassociation of cells in the CP model.

As Fig 3 (left) shows, for the off-lattice models the total energy of the system evolves to a local

minimum in the absence of random cell movement. However, we can recover more complete

engulfment through the addition of random cell movement. A relatively large amount of noise

is required to alter cell neighbours in the Delaunay triangulation, illustrated by the flat lines in

Fig 3(Left, VT). However, if there is too much noise then cells can become dissociated and move

amongst the ghost nodes; in this case, if a cell reaches the edge of the ghost node region, its

Table 2. Table of parameters specific to the differential adhesion simulations.

Parameter Description Model(s) Value Reference

Lx Initial width of tissue All 20 CD –

Ly Initial height of tissue All 20 CD –

tcycle Mean cell cycle duration All 16 h –

tend Simulation duration All 100 h –

γ(A, B) Heterotypic cell-cell adhesion coefficient CA 0.2 *

CP 0.5 *

VM 2 *

γ(B, void) Type B cell-boundary adhesion coefficient CA 0.4 *

CP 1.0 *

VM 20 *

μhet Heterotypic spring constant OS, VT 0.1 [42]

rmax Force cut-off length OS 2.5 *

T Base ‘temperature’ CA 0.1 *

CP 0.2 [37]*

ξ Base level of perturbation OS 0.05 *

VT 0.1 *

VM 0.1 *

kpert Perturbation multiplier All [10−2, 102] –

Asterisks (*) denote parameters whose values in the CA and CP models are chosen to ensure that engulfment occurs over a similar timescale to that

observed in the OS, VT and VMmodels.

doi:10.1371/journal.pcbi.1005387.t002
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Voronoi area becomes ill-defined and we can no longer define the fractional length and there-

fore halt these simulations. A similar sensitivity is exhibited by the VM; in this case, if the

amount of noise is too high, cell shapes can become inverted due to vertices randomly intersect-

ing edges, again we halt these simulations if this occurs. From the fractional length plots it is

clear that for certain simulations there is an increased level of fluctuation in fractional length. In

Fig 3 (right) we present how the level of fluctuation in fractional length varies as we increase the

perturbations applied to the models. We calculate the magnitude of the fluctuations as the mean

squared error between the original curves and smoothed versions of the same curves, using a 10

hour smoothing range. For all models the magnitude of the fluctuations increases as kpert is

Fig 2. Simulations of cell sorting due to differential adhesion. Snapshots are shown at selected times for
each model. Cells of type A and B are shown in purple and green, respectively. Engulfment of type-B cells
occurs most readily in the CA, CP and VMmodels. Parameter values are given in Tables 1 and 2, with kpert =
1. A video of these simulations is given in S1 Movie.

doi:10.1371/journal.pcbi.1005387.g002
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Fig 3. Comparison of cell sorting dynamics across differential adhesion simulations. Left, as a
measure of sorting, the fractional length is computed as a function of time for each model. Results are shown
for varying multiples of the baseline level of noise, T or ξ (whose value is defined for each model in Table 2),
by multiplying by kpert. Each line is the mean value of 10 simulations. Right, the magnitude in the fluctuation of
the fractional length curves (calculated as the mean squared error between the original curves and smoothed
versions of the same curves, using a 10 hour smoothing range). The simulations from Fig 2 (with kpert = 1) are
denoted, on the left and right, by black lines and black crosses, respectively. Parameter values are given in
Tables 1 and 2.

doi:10.1371/journal.pcbi.1005387.g003
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increased. The exception to this is that the fluctuations for CP simulations for large kpert are

effectively zero, this is because cells have become dissociated and the fractional length is zero.

In order to illustrate the effect of perturbations on the patterning of the tissue, in Fig 4 we

present snapshots of the tissue at t = 100 (where possible) for increasing levels of perturbation

(kpert). We see that for each model as we increase the perturbation we move from an unsorted

Fig 4. Effect of perturbations on cell sorting. Snapshots at t = 100 (unless otherwise indicated) for the simulations presented in Fig 2 for
varying kpert = 10−2, 10−1, 1, 10, 102. Parameter values are given in Tables 1 and 2. For CP simulations with kpert = 102 a snapshot is given at
t = 3 as by this time in the simulation cells are already dissociated and have left the viewing window. For VT simulations with kpert = 102 a
snapshot is given at t = 3 as by this time in the simulation a cell has left the tissue domain and caused an infinite Voronoi region and the
simulation is halted. For VM simulations with kpert = 101 a snapshot is given at t = 1 as by this time in the simulation the perturbations cause
cells to become inverted and the simulation is halted. There is no plot for VM simulations with kpert = 102 as for this level of perturbation cells
become inverted at the first time step so the simulations are not run. Note the central column corresponds to the t = 100 snapshots in Fig 2.

doi:10.1371/journal.pcbi.1005387.g004
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state to the sorted states presented in Fig 2 but as we increase the perturbations further cells

become dissociated, and for VT and VMmodels assumptions of connectivity and concavity of

cells can become void (shown by incomplete lines in Fig 3 and missing snapshots in Fig 4).

To summarise, we find that the degree of cell sorting observed in our simulations depends

on how much random cell movement can be accommodated within each model. We note that

there is no reason a priori to suppose that the configuration corresponding to the global mini-

mum is biologically realistic; this depends on how the typical time scale which complete sort-

ing occurs compares to other embryogenic processes. Comparing the different models, we

note that the OS and VT models considered in Fig 2 will always differ from the CA, CP and

VMmodels, in that given sufficient time they will fully separate rather than undergo complete

engulfment.

Proliferation, death and differentiation

Embryonic development and adult tissue self-renewal both rely on careful control of cell pro-

liferation, differentiation and apoptosis to ensure correct cell numbers. The intestinal epithe-

lium offers a particularly well-studied example of such tightly orchestrated cell dynamics. It is

folded to form invaginations called crypts and (in the small intestine) protrusions called villi.

The disruption of cell proliferation and migration in intestinal crypts is the cause of colorectal

cancers. Experimental evidence indicates a complex pattern of cell proliferation within the

crypt, in which cells located at the base of the crypt cycle significantly more slowly than those

further up. One possible explanation for this is contact inhibition, in which stress due to over-

crowding causes a cell to proliferate more slowly, enter quiescence or even undergo apoptosis

[43]. The biological mechanism through which shear stress affects the expression of key com-

ponents in the Wnt signalling pathway, which in turn plays an important role in cell prolifera-

tion and adhesion in this tissue, has been elucidated through a number of studies [44], [45].

A variety of cell-based models have been developed to study aspects of intestinal crypt

dynamics [46], including defining the role of the Wnt signalling pathway [47]. The process

and consequences of contact inhibition have also been described using cell-based modelling

approaches in a more general setting [48], [49], [50]. A recent study used a cell-centre model-

ling approach to investigate how combined changes in Wnt signalling response and contact

inhibition may induce altered proliferation in radiation-treated intestinal crypts [42].

As our second case study, we simulate the spatiotemporal dynamics of clones of cells within

a single intestinal crypt. This example demonstrates how multicellular models and simulations

(in particular Chaste) can include the coupling of cell-level processes to simple subcellular pro-

cesses and deals with cell proliferation, death and differentiation.

Our underlying model of a colonic crypt has been described in detail previously [31], [51],

[52]. We restrict cells to lie on a fixed cylindrical crypt surface, defined by the two-dimensional

domain [0, Lx] × [0, Ly], where Lx and Ly denote the crypt’s circumference and height, respec-

tively. Periodicity is imposed at the left- and right-hand boundaries x 2 {0, Lx}. We impose a

no-flux boundary condition at the crypt base (y = 0) and remove any cell that reaches the crypt

orifice (y = Ly). In each simulation, we start with a regular tessellation of cells occupying this

domain; the crypt is then evolved for a duration tstart to a dynamic equilibrium, before cell

clones are recorded and the crypt evolved for a further duration tend.

For each cell-based model considered, we implement cell proliferation and differentiation

as follows. Any cell located above a threshold height yprolif from the crypt base is considered to

be terminally differentiated, and can no longer divide. Any cell located below yprolif can prolif-

erate. On division a random cell cycle duration is drawn independently for each daughter cell.

Specifically, we draw the duration of each cell’s G1 phase, tG1, from a truncated normal
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distribution with mean ¿G1 = 2, variance s2

G1 ¼ 1 and lower bound tG1min
= 0.01, and we set the

remainder of the cell cycle as tS = 5, tG2 = 4 and tM = 1, for the durations of the S phase, G2

phase, and M phase, respectively.

In addition the duration of G1 phase depends on the local stress, interpreted as the devia-

tion from a cell’s preferred area. A cell pauses in the G1 phase of the cell cycle if

Ai < rCIAi
ð0Þ; ð13Þ

where rCI is the quiescent area fraction and Ai, A
ð0Þ
i is as earlier defined for each model [53].

This description allows for quiescence imposed by transient periods of high compression, fol-

lowed by relaxation. If a cell is compressed during the G2 or S phases then it will still divide,

and thus cells whose areas are smaller than the given threshold may still divide.

The dimensions of the crypt domain are chosen in line with [41] but are scaled to decrease

simulation time. A full list of parameter values is provided in Tables 1 and 3.

The results of a single simulation of each model are shown in Fig 5. In each case, the num-

ber of clones decreases over time as the crypt drifts to monoclonality. A more quantitative

comparison of clonal population dynamics is shown in the left column of Fig 6. For each simu-

lation we compute the number of clones remaining in the crypt as a function of time. All mod-

els exhibit the same qualitative behaviour, with a sharp initial drop as all clones corresponding

to cells outside the niche are rapidly lost, followed by a more gradual decay in the number of

clones at the crypt base due to neutral drift. However, we note that the number of clones

reduces more slowly in the VM than other models, since the implementation of the ‘no flux’

boundary condition at the crypt base causes cells to remain there for longer in this model. This

highlights the effect that the precise implementation of boundary conditions can have in such

models. Finally, we note that for models where contact inhibition can be imposed, we see a

slight effect of the degree of contact inhibition on the clonal population dynamics. In most of

the models contact inhibition slows the process of monoclonal conversion, due to there being

more compression at the crypt base. In contrast, in the VM the number of clones present in

the crypt decreases more quickly when rCI is larger. This effect is due to there being higher

rates of division, resulting in cells more frequently being ‘knocked’ from the crypt base; in the

other models this effect is counteracted by compression from above.

Table 3. Table of parameters specific to the colonic crypt simulations.

Parameter Description Model(s) Value Reference

tstart Pre-simulation duration All 100 h –

tend Simulation duration All 1000 h –

rCI Quiescent volume fraction All 0−1 –

Lx Width of crypt All 15 CD Scaled from [41]

Ly Height of crypt All 12 CD Scaled from [41]

h Height at which cells are sloughed All 12 CD Scaled from [41]

μG1 G1 phase duration mean All 2 h –

s2

G1
Cell cycle variance All 1 h –

tG1min
MinimumG1 Phase duration All 0.01 h –

tS S Phase duration All 5 h –

tG2 G2 Phase duration All 4 h –

tM M Phase duration All 1 h –

yprolif Proliferation height threshold All 6 CD Scaled from [41]

doi:10.1371/journal.pcbi.1005387.t003
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A quantitative comparison of cell velocity profiles up the crypt is shown in the right column

of Fig 6. Additionally we present the average number of cells in the crypt for all simulations in

Fig 7. This extends the comparison previously made of cell-centre and vertex models of crypt

dynamics in [51]. For each simulation we compute the vertical component of cell velocity at

different heights up the crypt, averaging over the x direction. We find that all models are simi-

lar when considering a ‘position-based’ cell-cycle model (in which cell proliferation occurs

below a threshold height up the crypt, corresponding to a threshold Wnt stimulus). However

we see more pronounced differences when incorporating more restrictive contact inhibition

into the cell-cycle model, in particular we see that the VT model is affected much more than

the other models and the CA model is unaffected (as all cells have the same constant size). This

is because, with the parameters being used, cells in the VT model are more compressed than in

the other models, as seen by the increased number of cells in the simulation (shown in Fig 7).

Due to this increased compression a greater number of cells experience contact inhibition. In

fact the OS cells are also as compressed (as seen by a similar number of cells) but due to the dif-

ferent calculation of cell area fewer cells experience contact inhibition and therefore the veloc-

ity is influenced less than in the VT model.

Fig 5. Simulations of monoclonal conversion in the colonic crypt. Snapshots are shown at selected
times for each model. In each simulation at time t = 0, every cell is regarded as a clonal population and given a
different colour, which is inherited by its progeny. These populations evolve in time due to cell proliferation and
sloughing from the crypt orifice, resulting in a single clone eventually taking over the entire crypt. Parameter
values are given in Tables 1 and 3, with rCI = 0.8. A video of these simulations is given in S2 Movie.

doi:10.1371/journal.pcbi.1005387.g005

Comparing individual-basedmodels of the self-organization of multicellular tissues

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005387 February 13, 2017 17 / 34



Fig 6. Comparison of clonal population dynamics and cell velocity across crypt simulations for
varying levels of contact inhibition. Left: the number of clones remaining in the crypt is computed as a
function of time for each model: CA; CP; OS; VT; and VM. Right: the vertical component of cell velocity is
computed for each model. For each model, the mean and standard error (not shown on clonal plots for clarity)
from 10 simulations are shown for three levels of contact inhibition, quantified by the parameter rCI. The
vertical dotted line corresponds to the height of the proliferative compartment, yprolif. Parameter values are
given in Tables 1 and 3.

doi:10.1371/journal.pcbi.1005387.g006

Comparing individual-basedmodels of the self-organization of multicellular tissues

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005387 February 13, 2017 18 / 34



Short-range signalling

In many developmental processes, distinct states of differentiation emerge from an initially

uniform tissue. Lateral inhibition, a process whereby cells evolving towards a particular fate

inhibit their immediate neighbours from doing so, has been proposed as a mechanism for gen-

erating such patterns. This process is known to be mediated by the highly conserved Notch sig-

nalling pathway, which involves ligand-receptor interactions between the transmembrane

proteins Notch and Delta or their homologues [54].

Lateral inhibition through Notch signalling has been the subject of several mathematical

modelling studies [55], [56], [57], [58], [59], [60]. Such models have largely focused on the

conditions for fine-grained patterns to occur in a fixed cell population; little attention has been

paid to its interplay with cell movement, intercalation and proliferation. To illustrate how cell-

based modelling approaches may be utilised to investigate such questions, as our third case

study we simulate Notch signalling in a growing monolayer. This example demonstrates how

intercellular signalling may be incorporated within each cell-based model.

In this example, cells proliferate if located within a radius RP from the origin, and are

removed from the simulation if located more than a radius RS > RP from the origin. For each

proliferative cell, we allocate a probability pdiv of division per hour, once the cell is above a

minimum age, tmin. This is implemented by independently drawing a uniform random num-

ber r* U [0, 1] for each cell at each time step and executing cell division if r< pdivΔt.

This description is coupled to a description of Notch signalling between neighbouring cells

that is based on a simple ordinary differential equation model previously developed by Collier

et al. [55]. This represents the temporal dynamics of the concentration of Notch ligand, Ni(t),

and Delta receptor, Di(t), in each cell i in the tissue. A feedback loop is assumed to occur,

whereby activation of Notch inhibits the production of active Delta. Signalling between cells is

reflected in the dependence of Notch activation on the average level of Delta among a cell’s

immediate neighbours. The precise set of equations for this signalling model takes the form

dNi

dt
¼

�DnN
i

kN þ �DnN
i

� Ni; ð14Þ

Fig 7. Number of cells in the crypt for varying contact inhibition. For eachmodel, the mean number of
cells from 10 simulations are shown for three levels of contact inhibition, quantified by the parameter rCI.
Parameter values are given in Tables 1 and 3.

doi:10.1371/journal.pcbi.1005387.g007
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dDi

dt
¼ rDN

kD

kD þ NnD
i

� Di

� �

; ð15Þ

where �Di denotes the average value of fDjðtÞ : j 2 N iðtÞg, andN iðtÞ is the set of neighbours
of cell i. A full list of parameter values is provided in Tables 1 and 4. At the start of the simula-

tion, values of each Ni and Di are independently drawn from a U[0, 1] distribution. Upon divi-

sion, the values of Ni and Di are inherited by each daughter cell.

Eqs (14) and (15) are coupled to the cell-based models using the following algorithm. At

each time step, having updated the cell-based model, we calculate �D based on the current con-

nectivity and, assuming �D remains constant on the short interval Δt, we solve the Notch signal-

ling model numerically over the interval [nΔt, (n + 1)Δt] using a Runge-Kutta method. In

terms of software implementation, all Delta-Notch simulations share a common function that

contains just a few lines for initialising the subcellular level of Delta-Notch.

Simulation snapshots for each model are shown in Fig 8. In each case, we see that lateral

inhibition successfully leads to patterning of cells in ‘high Delta’ steady state surrounded by

cells in a ‘low Delta’ steady state in the outer ring of non-proliferating cells. This patterning is

disrupted in the inner proliferating region, as cells frequently change neighbours and hence

are unable to synchronise their Delta-Notch dynamics. The degree of this disruption increases

with cell division rate and is most apparent in the VM simulation. A lattice-induced anisotropy

is clearly visible in the CA simulation, where cell shoving causes significantly more cell rear-

rangements and, as a result, less patterning along diagonals. This phenomenon also occurs, to

a lesser extent, in the CP simulation.

A quantitative comparison of the patterning dynamics across models is shown in Fig 9

(Left). As a measure of patterning we plot the ratio of cells in the heterogeneous steady state to

those not in this state at the end of each simulation, computed as a radial distribution across

the tissue. Note that the ‘kinks’ observed in the CA results (Fig 9(Left CA)) are due to the pres-

ence of discrete cells on a fixed lattice. We also present the level of cell compression (repre-

sented as the number of cells per unit target area, for each model, as proliferation is varied in

Fig 9(Right). We see that there is significantly less patterning in the proliferative region for all

models and that as the rate of division is increased the difference is exaggerated. This is due to

cells becoming more compressed in the central proliferative zone (Fig 9(Right)) and causing

cells to expand outwards faster. For higher proliferation rates this leads to exchanging neigh-

bours more frequently, even in regions without proliferation. This is most apparent in the VT

and VM simulations where there is a larger degree of compression in the proliferative zone.

Note that several of the models show an increase in cell numbers (per unit target area) on the

edge of the tissue. This is due to cells being removed once the center of the cell had passed the

the right of the outer-most bin which allows more cell centers in the outer-most bin without

being compressed.

Long-range signalling

Morphogens are secreted signalling molecules that provide positional information to cells in a

developing tissue and act as a trigger for cell growth, proliferation or differentiation. The pro-

cesses of morphogen gradient formation, maintenance and interpretation are well studied,

most notably in the wing imaginal disc in the fruit flyDrosophila [61], a monolayered epithelial

tissue. A key morphogen called Decapentaplegic (Dpp) forms a morphogen gradient along the

anterior-posterior axis of this tissue. Dpp is known to determine the growth and final size of

the wing imaginal disc, although the mechanism by which its gradient is established remains

unclear.
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Fig 8. Simulations of lateral inhibition in a proliferating tissue. For each model, snapshots are shown for
three levels of cell proliferation, quantified by the parameter pdiv. Parameter values are given in Tables 1 and
4. A video of these simulations, for pdiv = 0.1, is given in S3 Movie.

doi:10.1371/journal.pcbi.1005387.g008

Table 4. Table of parameters specific to the lateral inhibition simulations.

Parameter Description Model(s) Value Reference

tend Simulation duration All 1000 h –

tsteady Time simulations are in dynamic equilibrium All 200 h –

pdiv Cell division rate All {0.01, 0.05, 0.1} cell−1 h−1 –

tmin Minimum division age All 1 h –

kN Dependence of Notch on Delta All 0.01 [55]

kD Dependence of Delta on Notch All 0.01 [55]

nN Notch Hill coefficient All 2 [55]

nD Delta Hill coefficient All 2 [55]

rDN Relative rate of Delta activity All 1 h−1 [55]

RP Radius of proliferative compartment All 5 CD –

RS Removal zone radius All 15 CD –

rmax Force cut-off length OS 1 CD –

doi:10.1371/journal.pcbi.1005387.t004
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Fig 9. Comparison of cell fate patterning, and cell compression across lateral inhibition simulations.
Left: as a measure of patterning, the ratio of cells in the heterogeneous steady state to those not in this state is
computed, by averaging across times t = tsteady to t = tend, as a radial distribution across the tissue (calculated
using a bin size of 1 CD) for each model: CA; CP; OS; VT; and VM. Right: as a measure of compression, the
number of cells per unit target area, for each model, is averaged as for the patterning ratios. For each model,
the mean and standard error from 10 simulations are shown for three levels of cell proliferation, quantified by
the parameter pdiv. The vertical dotted line corresponds to the radius of the proliferative compartment,RP.
Parameter values are given in Tables 1 and 4.

doi:10.1371/journal.pcbi.1005387.g009
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A number of cell-based models have been proposed for the cellular response to morphogen

gradients and mechanical effects in developing tissues such as the wing imaginal disc [62],

[63], [18]. As our final case study, we simulate the growth of an epithelial tissue in which cell

proliferation is coupled to the level of a diffusible morphogen. This case study represents an

abstraction of a wing imaginal disc and illustrates how continuum transport equations may be

coupled to cell-based models.

Our description of morphogen-dependent cell proliferation is based on that proposed by

[19] and is implemented as follows. The probability of a cell dividing exactly n time steps after

its last division is given by pdivunΔt, where pdiv is a fixed parameter and the weighting un satis-

fies the recurrence relation

unþ1
¼ unð1þ Dtgð1þ lcnÞð1� unÞÞ; ð16Þ

with u0 = uN/2 where uN denotes the parent cell’s weighting value immediately prior to divi-

sion. Here λ is a fixed parameter quantifying the effect of the morphogen on cell growth, cn
denotes the morphogen concentration at that cell at that time step, and g is a random variable

independently drawn upon division from a truncated normal distribution with mean ¿g, vari-

ance s2

g and minimum value gmin.

When initialising the simulation, a value of g is drawn independently for each cell from a

truncated normal distribution (as on division), and a value of u0 is drawn independently from

a U[0.5, 1] distribution.

Each cell-based model is coupled to a continuum model of morphogen transport based on

that proposed by [19]. We assume that the morphogen is secreted in a central ‘stripe’ of tissue

and diffuses throughout the whole tissue, being transported by the cells, while being degraded.

In this description, the morphogen concentration c(x, t) is defined continuously for times

t� 0 in the spatial domain x 2 Ot defined by the boundary of the cell population (see below).

This concentration evolves according to the reaction-advection-diffusion equation

@c

@t
þ w � ðrcÞ � r � ðDrcÞ ¼ f ðxÞ � kcc; ð17Þ

with zero-flux boundary conditions at the edge of the domain. In line with most work, we do

not account for the exclusion of diffusing chemicals from the space occupied by cells. The vec-

tor field w denotes the velocity of the cells moving in the tissue (and is found in the weak for-

mulation in [19]). Its inclusion in Eq (17) denotes the advection of Dpp with the cells. The

parameters D and kc denote the morphogen diffusion coefficient and degradation coefficient,

respectively. Finally, the function f specifies the rate of production of morphogen in the central

stripe of tissue, and is given by

f ðx; yÞ ¼
fprod for x 2 ð�Lprod; LprodÞ;

0 otherwise:

(

ð18Þ

To solve Eq (17) numerically, we first discretise the spatial domain defined by the cells to

make a computational mesh. For the VT model we use the triangulation defined by the dual of

the Voronoi tessellation; for the vertex model we use the triangulation defined by dividing

each polygonal cell into a collection of triangles (made up from the set of vertices and the cen-

tre of the polygon) as in [19]; and for the CA, CP and OS models we create a triangulation by

calculating the constrained Delaunay triangulation of the centres of the cells. This tessellation

changes over time as the tissue grows.
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We solve Eq (17) using a method of lines approach along the characteristic curves

dc

dt
¼ @c

@t
þ w � ðrcÞ; ð19Þ

and a continuous Galerkin finite element approximation to the spatial derivatives.

We approximate the solution of Eq (17) using a Forward Euler discretization for time and a

linear finite element approximation in space. As we generate the computational mesh from the

cells, the mesh moves with velocity w. We can therefore account for the advective term of Eq

(17) by moving the solution with the moving cells. Finally in each model when a cell divides it

creates a new node in the mesh and the solution at the new node is defined to be the same as

the node attached to the parent cell. A full list of parameter values is provided in Tables 1 and 5.

Simulation snapshots for each model are shown in Fig 10. As expected, over time the mor-

phogen biases the shape of the tissue, which exhibits greater growth in the y direction. This is

confirmed in Fig 11 (right), which shows a quantitative comparison of tissue shape dynamics

across models. A quantitative comparison of the spatio-temporal morphogen dynamics across

models is shown in Fig 11 (left). In each case, the morphogen distribution is plotted at different

times as an average over the x direction and over 20 simulations. While the mean behaviour is

conserved across models, the CA exhibits significantly greater variation about this mean. This

is due to the discrete nature of cell movement, and hence morphogen advection, in these mod-

els. We would expect this greater variation to be less pronounced if a simpler approach often

taken when simulating CAmodels, that of neglecting advection due to cell movement, were

taken. Looking at the snapshots in Fig 10 we see that despite being an off-lattice model the VT

model exhibits some regularity in shape through growth, witnessed by straighter than expected

edge segments (shown in detail in Fig 12). This is due to the method for calculating connectiv-

ity in the VT model and can introduce artefacts when considering freely growing domains as

seen here.

Discussion

The field of mathematical modelling in biology has matured beyond recognition over the past

decade. One indication of this is the move towards quantitative comparison with data taking

Table 5. Table of parameters specific to themorphogen-dependent proliferation simulations.

Parameter Description Model(s) Value Reference

Δt Time step All 0.005 h –

tend Simulation duration All 100 h –

Lr Initial radius of tissue All 5 CD [19]

D Dpp diffusion coefficient All 10−4 CD2h−1 [19]

kc Dpp degradation rate All 0.01 h−1 [19]

f Maximal Dpp production rate All 0.01 h−1 [19]

WDpp Width of Dpp production zone All 4 CD [19]

pdiv Average baseline cell division rate All 0.1 h−1 [19]

λ Morphogen effect on cell growth All 0.01 [19]

fprod Level of production of Dpp in sripe All 0.01 [19]

Lprod Half the width of stripe of Dpp production All 2 CD [19]

μg Cellular growth rate mean All 0.05 –

s2

g Cellular growth rate variance All 0.0001 –

gmin Minimum cellular growth rate All 0.01 –

doi:10.1371/journal.pcbi.1005387.t005
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precedence over qualitative comparison. In this context, we must investigate if the model

framework chosen might amplify or diminish the effects of certain processes. To this end, the

present work seeks to advance our comparative understanding of different classes of models in

the context of cell and tissue biology.

Fig 10. Simulations of morphogen-dependent proliferation. Snapshots of the tissue and associated
morphogen distribution are shown at selected times for each model. Parameter values are given in Tables 1
and 5. A video of these simulations is given in S4 Movie.

doi:10.1371/journal.pcbi.1005387.g010
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Fig 11. Comparison of spatio-temporal morphogen and tissue shape dynamics across simulations.
Left: the morphogen distribution is plotted at selected times as an average over the x direction and over 20
simulations. Results are shown for each model: CA; CP; OS; VT; and VM. Right: as a measure of tissue
anisotropy, the ratio of the widths of the tissue in the x and y directions is computed as a function of time for
each model. For each model, we plot the mean and standard error of this ratio across 20 simulations.
Parameter values are given in Tables 1 and 5.

doi:10.1371/journal.pcbi.1005387.g011
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A variety of cell-based approaches have been developed over the last few years. These mod-

els range from lattice-based cellular automata to lattice-free models that treat cells as point-like

particles or extended shapes. Such models have proven useful in gaining mechanistic insight

into the coordinated behaviour of populations of cells in tissues. However, it remains difficult

to accurately compare between different modelling approaches, since one cannot distinguish

between differences in behaviour due to the underlying model assumptions and those due to

differences in the numerical implementation. Here, we have exploited the availability of an

implementation of five popular cell-based modelling approaches within a consistent computa-

tional framework, Chaste. This framework allows one to easily change constitutive assump-

tions within these models. In each case we have provided full details of all technical aspects of

our model implementations. An important finding of this study is that, with variable levels of

success, it is possible to use each model investigated to represent the various behaviours of

interest. Moreover, even though individual simulations may have visual differences, the bulk

properties of the simulations were comparable in almost every case. However, there were dif-

ferences (detailed below) and these could influence biological conclusions being drawn from

the simulations.

We compared model implementations using four case studies, chosen to reflect the key cel-

lular processes of proliferation, adhesion, and short- and long-range signalling. These case

studies demonstrate the applicability of each model and provide a guide for model usage.

While on a qualitative level each model exhibited similar behaviour, this was mainly achieved

through parameter choice and fitting. Parameters were chosen to give consistent behaviour

where possible. When choosing which model to use, one should bear in mind the following.

Certain case studies presented in this study are more aligned with particular models. For

instance, in the adhesion example the CP and VMmodels are designed to explicitly represent

cell sorting (through cell boundary energy terms) whereas the other models needed modifica-

tion to represent the same phenomena. In fact, in the OS and VT (and to some extent the VM)

models, the ability to sort completely was limited by the presence of local energy minima and a

Fig 12. Illustration of edge artefact in VT simulations on growing domains.Closeup of bottom right of
the t = 100 snapshot from the VTmodel in Fig 10.

doi:10.1371/journal.pcbi.1005387.g012
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noise component of cell motion was required to mitigate this. However, as the level of noise

was increased, artefacts can be introduced into the models, for example the tessellation may

become non-conformal leading to voids in the tissue.

The implementation of other features, such as boundary conditions, can also influence sim-

ulation outcomes. This was observed in the proliferation example where the rate of neutral

drift was significantly different in the VM compared to the other models, due to additional

adhesion of cells to the bottom of the domain. In this study we did not implement contact inhi-

bition for the CAmodel as our definitions of contact inhibition required cells to be different

sizes. It is possible to implement an alternative form of contact inhibition in the CA model by

restricting division events to only occur when there is sufficient free space [64]; however, this

would again result in a different behaviour to our simulations.

A key difference between the models we considered lies in the definition of cell connectiv-

ity. It is possible for cells in the same configuration to have different neighbours under differ-

ent models. For example, when under compression, cells in the OS model can have more

neighbours than similarly sized cells in the CP, VT or VMmodels. The effects of this can be

seen in the short-range signalling example with a high degree of proliferation.

Finally, the models differ vastly on how long they take to simulate. In their original uncou-

pled forms, the least computationally complex model to simulate is the CA, followed in order

by the CP, OS, VT and VM. However, this complexity depends on what is coupled to the mod-

els, at both the subcellular and tissue levels. Specifically, in order to make the CP model equiva-

lent to the other models when coupling to subcellular and tissue level processes, we have

chosen to use a time step that is smaller than that typically used in CP simulations, increasing

the computation time.

In the following we compare the computational times for each case study as measured from

our implementation of the different models in Chaste. To illustrate relative computation

times, we record in Table 6 the run time for a typical simulation of each case study, across the

five models considered. We emphasise that these times are heavily dependent on the imple-

mentation of each model within Chaste, which is more heavily optimised for off-lattice mod-

els. In particular, the computation time for the CP model is likely to be significantly reduced if

other software implementations of this class of model are used [65], [66]. We see that (except

for the CP model) the level of computational time is roughly as expected, increasing with com-

plexity with the OS and VT models being similar. There are exceptions to this. For example,

the CA and CP simulations of the long-range signalling example take longer than may be

expected. This is due to the method used to calculate the growing PDE mesh in our computa-

tional implementation in Chaste, which is optimal for off-lattice models; future work will

involve developing optimised numerical techniques that exploit the lattice structure of the on-

lattice models. On the other hand, the VM simulation of the proliferation example is quicker

than may be expected; this is due to the choice of parameters leading to there being slightly

fewer cells in the VM simulation for this example, reducing the computational demands.

Parallelisation is one way to both decrease computational time and to also be able to solve

larger problems. Of the models considered, the CAmodel is simplest to parallelise. While

Table 6. Approximate simulation times.Run time (in seconds, on a single core of an Intel i7 processor) for typical single runs for each case study.

Example CA CP OS VT VM

Adhesion 34 1638 168 625 321

Proliferation 44 4336 1218 2752 2419

Short-range signalling 166 7536 2837 4433 9983

Long-range signalling 1393 23741 804 789 5803

doi:10.1371/journal.pcbi.1005387.t006
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more advanced, the CP model has been parallelised in publicly available software packages

[65], as has the OS model [67]. In the VT and VM cases, the implementations are much more

involved. These considerations are summarised in Table 7.

The present study provides a starting point for a number of further avenues for research.

First, there remains a need for theoretical and computational tools with which to easily per-

form quantitative model comparisons. Our results indicate that for many of the sorts of ques-

tions these types of model are currently being used to address, there is likely to be little

difference in model predictions. However, such models are nevertheless moving toward a

more quantitative footing, particularly as the resolution of experimental data at the cell to tis-

sue scale improves. Further progress in this area will be accelerated by advances in automating

the process of model specification and implementation, for example through extended use of

mark-up languages such as SBML, FieldML and MultiCellDS.

Here we have made use of a consistent simulation framework, Chaste, within which to

compare different classes of cell-based model. A longer-term challenge is to extend such

comparison studies across simulation tools, of which there is an increasing ecosystem,

including CompuCell3d [65], Morpheus [66], EPISIM [68], CellSys [69], VirtualLeaf [70],

Biocellion [71], BioFVM [72], LBIBCell [73] and EmbryoMaker [74]. We emphasize here the

lack of ‘benchmarks’ on which to make such comparisons. We propose that the present

study offers four examples that could offer such benchmarks. Since some modelling para-

digms are capable of reproducing certain biological phenomena and others are not, there is

no benchmark on which all models will produce the same result; here, by selecting several

simple biologically-inspired test cases we have gone some way to narrowing down the search

for suitable benchmarks.

Throughout this study we have concentrated on 2D studies. However, many of the models

considered have also been implemented in three dimensions both in previous studies and in

the Chaste modelling framework, for example in the case of overlapping spheres models of the

intestinal crypt [42], [75] or 3D vertex models of the mouse blastocyst [76]. Of the models con-

sidered in the present study, vertex models are arguably the most technically challenging to

Table 7. Appropriatemodels. Level of appropriateness of model: highly appropriate—model was developed in order to investigate this mechanism; appro-
priate—model can be used for this mechanism with minimal effort; less appropriate—model can only be used with this mechanism through careful tuning of
parameters to match more appropriate models. Where appropriate advantages and disadvantages of each model in each example are given.

Example CA CP OS VT VM

Adhesion Appropriate: required
Potts-like extension for
differential adhesion

Highly appropriate: this is
the model problem for the

CP model

Less appropriate:
unnatural differential

adhesion, no
engulfment

Less appropriate:
unnatural differential

adhesion, no engulfment

Highly appropriate: a
model problem for the

VM

Proliferation Less appropriate: no cell
compression

Appropriate:motility
parameters tuned for

stability

Highly appropriate:
similarities to the VT
model give same

advantages

Highly appropriate:
established paradigm for
crypt models, previously fit

to data

Appropriate: boundary
conditions influence

natural drift

Short-range
signalling

Less appropriate: lattice
artifacts, instantaneous
neighbour transition

Less appropriate: lattice
artifacts, excessive

stochasticity with chosen
parameters (required for
mechanical stability)

Highly appropriate:
smooth neighbour

transition, copes with
high levels of
compression

Highly appropriate:
smooth neighbour

transition, copes with high
levels of compression

Appropriate:
parameter choice to
prevent inverted

elements from hyper
proliferation

Long-range
signalling

Less appropriate: costs
for calculating FE mesh,
lattice artifacts, extra

transport of morphogen
with movement

Appropriate: costs for
calculating FE mesh

Appropriate: costs for
calculating FE mesh

Highly appropriate:
ready built FE mesh with
1-1 correspondence

between cells and nodes

Highly appropriate:
FE mesh generation
from cells, FE mesh

more refined than cells

doi:10.1371/journal.pcbi.1005387.t007
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extend to three dimensions, due to the complexity of the possible cell rearrangements and

force calculations.

Work has also been done to model individual cells at a finer resolution by considering them

to be composed of mesoscopic volume elements, which enables cell geometry and mechanical

response to be emergent, rather than imposed, properties. These include the subcellular ele-

ment model [77], which may be thought of as a natural extension of the cell centre model, and

the finite element model [13] and immersed boundary model [14], which use alternative

approaches to decompose cell shapes into volumetric or surface elements in a much more

detailed manner than the cell-based models considered in this study.

Supporting information

S1 Movie. Video of simulations of cell sorting due to differential adhesion, from Fig 2.

Cells of type A and B are shown in purple and green, respectively. Engulfment of type-B

cells occurs most readily in the CA, CP and VMmodels. Parameter values are given in

Tables 1 and 2.

S1_Movie.mp4 or https://youtu.be/4YZp_WmBZTI.

(MP4)

S2 Movie. Video of simulations of monoclonal conversion in the colonic crypt, from Fig 5.

In each simulation at time t = 0, every cell is regarded as a clonal population and given a differ-

ent colour, which is inherited by its progeny. These populations evolve in time due to cell pro-

liferation and sloughing from the crypt orifice, resulting in a single clone eventually taking

over the entire crypt. Parameter values are given in Tables 1 and 3, with rCI = 0.8.

S2_Movie.mp4or https://youtu.be/F04IlE2PyY0.
(MP4)

S3 Movie. Video of simulations of lateral inhibition in a proliferating tissue, from Fig 8.

Parameter values are given in Tables 1 and 4 with pdiv = 0.1.

S3_Movie.mp4or https://youtu.be/SX2GFOr0Dus.

(MP4)

S4 Movie. Video of simulations of morphogen-dependent proliferation, from Fig 10.

Parameter values are given in Tables 1 and 5.

S4_Movie.mp4or https://youtu.be/Yl2GT2x2ohc.
(MP4)
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2. Block M, Schöll E, Drasdo D. Classifying the expansion kinetics and critical surface dynamics of grow-
ing cell populations. Phys Rev Lett. 2007; 99:248101. doi: 10.1103/PhysRevLett.99.248101 PMID:
18233492

3. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts
model. Phys Rev Lett. 1992; 69:2013. doi: 10.1103/PhysRevLett.69.2013 PMID: 10046374

4. Glazier JA, Graner F. Simulation of the differential adhesion driven rearrangement of biological cells.
Phys Rev E. 1993; 47:2128–2154. doi: 10.1103/PhysRevE.47.2128

5. Izaguirre JA, Chaturvedi R, Huang C, Cickovski T, Coffland J, Thomas G, et al. CompuCell, a multi-
model framework for simulation of morphogenesis. Bioinformatics. 2004; 20:1129–1137. doi: 10.1093/
bioinformatics/bth050 PMID: 14764549

6. Shirinifard A, Gens JS, Zaitlen BL, Popawski NJ, Swat M, Glazier JA. 3D multi-cell simulation of tumor
growth and angiogenesis. PLOSONE. 2009; 4:e7190. doi: 10.1371/journal.pone.0007190 PMID:
19834621
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