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Abstract

Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that
takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data
containing label, feature, and shape information for further analysis. In this article, we docu-
ment the software and demonstrate its use in studies of shape variation in healthy and dis-
eased humans. The number of different shape measures and the size of the populations
make this the largest and most detailed shape analysis of human brains ever conducted.
Brain image morphometry shows great potential for providing much-needed biological mark-
ers for diagnosing, tracking, and predicting progression of mental health disorders. Very few
software algorithms provide more than measures of volume and cortical thickness, while
more subtle shape measures may provide more sensitive and specific biomarkers. Mind-
boggle computes a variety of (primarily surface-based) shapes: area, volume, thickness,
curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindbog-
gle’s algorithms using the largest set of manually labeled, publicly available brain images in
the world and compare them against state-of-the-art algorithms where they exist. All data,
code, and results of these evaluations are publicly available.

This is a PLOS Computational Biology Software Paper
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html). The Mindboggle software is available
through its GitHub repository (https://github.com/
nipy/mindboggle) and all documentation is
available on the Mindboggle website (http:/
mindboggle.info/).
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Introduction

This article summarizes years of work on the Mindboggle project (http://mindboggle.info),
including development and application of software that automates the extraction, identifica-
tion, and shape analysis of features from human brain magnetic resonance imaging (MRI)
data. The principal original contributions of the Mindboggle software include (1) a hybrid
approach to combine different software packages’ gray/white matter segmentations, (2) new
algorithms for volume and surface shape measures devoted to brain images, including travel
depth and cortical thickness, and (3) new shape-based feature extraction algorithms for brain
structures such as folds, sulci, and fundi. Further contributions described in this article include
(1) evaluations of Mindboggle volume and surface shape measurement algorithms against
other software algorithms, (2) evaluation of Mindboggle’s fundus extraction algorithm against
other software algorithms, (3) Python implementations of algorithms for general-purpose
shape measures such as Laplace-Beltrami spectra and Zernike moments, and (4) application of
Mindboggle to provide the most detailed shape measures computed on human brain image
data. This Introduction provides background and motivation for the project as well as a history
of the project, the Design and Implementation section outlines the software’s processing steps,
the Results section describes evaluations and applications of the software, and the Availability
and Future Directions section provides commentary and future directions.

The promise of brain imaging for finding biological markers of mental
illness

Brain images have been used to derive biological markers of mental illness and disease for
years, most notably to predict prognoses among patients with behavioral disorders, often more
accurately than current behavioral instruments such as widely used scales and structured inter-
views. For example, brain images have been used to predict relapse in methamphetamine
dependence [1], onset of psychosis in at-risk individuals [2,3], recovery from depression eight
months later [4], response to drug treatment for depression [5,6], anxiety [7], and for cognitive
behavioral therapy in schizophrenia [8] and social anxiety disorder [9,10] (see [11] for a more
extensive review). Despite the above promising experimental results, there is still a dearth of
reliable biomarkers [12]. The importance of identifying new biomarkers is reflected in the
National Institute of Mental Health’s Strategic Objectives: “Currently, very few biomarkers
have been identified for mental disorders due in part to their complexity and an incomplete
understanding of the neurobiological basis of mental disorders. ..”

Variation in human brains and the “correspondence problem”

A significant impediment to our understanding of mental health is variation in human brain
anatomy, physiology, function, connectivity, response to treatment, and so on. The normal
range of variation must first be established to determine what is outside of this range, and only
then can we hope to address neuropsychiatric assessment, diagnosis, prognosis, treatment, or
prevention. An effective biomarker traditionally consists of one or more measures that maxi-
mize the separability between groups while minimizing the variance within each group. Brain
images provide many ways of measuring different aspects of the brain, but it is not always
clear how to compare these measures over time or across individuals. Comparing brains pre-
sumes that a brain-to-brain correspondence or mapping has been solved. To do this, scientists
ubiquitously co-register images to each other, either individually or in groups, commonly with
the use of a standard template brain or labeled atlas. However, registration alone does not
guarantee correspondence [13] and templates are often not representative of the group being
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studied [14,15]. Additional factors that affect the quality of registration are often ignored. For
example, we have empirically demonstrated that registration algorithms vary widely in their
accuracy [16], that even the best require removal of non-brain matter to perform adequately
[17,18], and conventional registration is less robust to missing regions than feature-based reg-
istration methods [19]. Despite this, many brain imaging studies co-register brains based on
image similarity, assume alignment of corresponding anatomy [20], and compare the brains at
the level of a small extent such as a sphere or rectilinear volume, which can be on the order of
1/100,000th the volume of the image.

Anatomical feature-based correspondence

Neuroanatomists rely instead on high-level “features” such as distinctive cortical folding pat-
terns and relative positions of subcortical structures to consistently identify anatomical struc-
tures or label brain regions ([21,22] and communications with neuroanatomists [23]). Such
morphological features may also be identified by using multimodal imaging data and classifi-
ers trained on such data [24]. In addition to whole (gyrus and sulcus) folds, components such
as sulcal pits and sulcal fundi hold promise for establishing correspondence across brains. Sul-
cal pits, points of maximal depth or curvature in sulci, are interesting because they may be well
conserved structures formed early in development [25-27] and have been used to characterize
conditions such as polymicrogyria [28]. Sulcal fundi are defined as curves that run along the
depths of sulci. They form branching skeletons that simplify the complex pattern of folds of
the brain, may be measured for morphometry studies, and are used to help define the bound-
aries between gyri [22]. Like pits, fundi are thought to characterize early stages of morphologi-
cal development, and therefore may exhibit abnormalities in neurodevelopmental and
heritable disorders.

Shape measures as biomarkers

To compare features across individuals we need to quantify them. One quantification method
is to characterize the quantities and distributions of grayscale values within a volume, but this
does not work well for features of limited extent, such as a point, line, or surface patch.
Another method is to coregister a given brain or brain feature with a reference and to define
similarity with the reference based on the registration itself (deformation-based morphome-
try). Yet another method is to directly measure shape, where shape is defined as the geometri-
cal information that remains when location, scale and rotation are removed from an object
[29]. Publicly available brain image datasets that include any shape measures usually provide
only a few shape measures per anatomical region: volume (such as the Internet Brain Volume
Database, http://www.nitrc.org/projects/ibvd), surface area, and/or cortical thickness. These
measures are useful for studies of neurogenesis or atrophy in morphological development,
degeneration, injury, and disease progression. Volume measurement is almost ubiquitous in
such studies, and cortical thickness measures derived from structural MRI data have been
reported to help characterize a variety of disorders [30] such as mild cognitive impairment and
Alzheimer’s disease [31-33], multiple sclerosis [34], schizophrenia [35], autism spectrum dis-
order [36], and alcohol dependence [37], and to predict onset or progression of, for example,
Alzheimer’s disease [38-44], major depressive disorder [45], and attention-deficit/hyperactiv-
ity disorder [46].

More subtle shape measures may provide more sensitive and specific biomarkers, and com-
bining shape measures in a multivariate analysis can improve results over any single measure
[47]. The lack of shape measures may be attributable to the paucity of software programs such
as BrainVISA [48,49] (https://www.nitrc.org/projects/brainvisa_ext) that compute more
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nuanced measures. Sulcal width has been used to differentiate between groups with mild cog-
nitive impairment [50] and global and local gyrification indices computed from sulci have
been used to characterize schizophrenia [51] and early-onset vs. intermediate-onset bipolar
disorder as well as bipolar and unipolar depression [52-54]. More abstract shape measures
such as Zernike moments (see below) have been used in patient classification, such as to distin-
guish cases of dementia [55].

History of the Mindboggle project

The Mindboggle project (http://mindboggle.info) has generated anatomically labeled brain
image data and open source software for extracting and measuring the shapes of anatomical
brain structures, and is therefore well positioned to provide the shape-based biomarkers men-
tioned above. This section provides a historical background of the project.

2005: The initial version of the Mindboggle software (https://osf.io/gfwcn/) was written in
Matlab (Mathworks, Inc., Natick, MA) as part of a doctoral dissertation [58]. It introduced a
feature-driven approach to label human brain MRI data using one atlas [19] or multiple atlases
[59].

2009: With generous funding from the National Institute of Mental Health, we began to
write Mindboggle from scratch in Python with some surface mesh measurements pro-
grammed in C++.

2010: To ensure that the most consistent and accurate anatomical labels are assigned to
brain image data, we introduced a new cortical labeling protocol with 62 labels (Fig 1) called
the Desikan-Killiany-Tourville (DKT) protocol [22,23] (http://mindboggle.info/labels.html).
We applied this protocol to manually edit the anatomical labels for 101 individuals (20 individ-
uals also include CMA non-cortical labels [60]). The resulting Mindboggle-101 dataset [22,61]
(http://mindboggle.info/data.html, https://osf.io/nhtur/) is still the largest publicly available set
of manually edited human brain labels in the world. These brains were used to construct mul-
tiple templates [62] and atlases [63], including the joint fusion [64] volume atlas used by the
Mindboggle software for volume-based segmentation and labeling, and the DKT-40 and
DKT-100 surface atlases [63] used for labeling cortical surfaces by the FreeSurfer software
package [65-67] (https://surfer.nmr.mgh.harvard.edu/). The DKT-100 is used as the default
atlas for labeling brains in FreeSurfer (version 6). The Mindboggle-101 brains are used for
evaluations and shape analyses described in the Results section.

2013: A prototype for online, interactive visualization of Mindboggle shape analysis data
won a hackathon challenge at the Human Brain Mapping (HBM 2013) conference. After use
of the XTK (https://github.com/xtk/X) WebGL JavaScript library [68,69], we used the threejs
(http://threejs.org/) and D3 JavaScript libraries in a second (HBM 2015 [70]) and third (HBM
2016) hackathon to create the ROYGBIV online interactive brain image viewer (Fig 1; http://
roygbiv.mindboggle.info), which is under active development (https://github.com/
binarybottle/roygbiv).

2015: Mindboggle processed Alzheimer’s Disease Neuroimaging Initiative (ADNI; adni.
loni.usc.edu; [71]) and AddNeuroMed [72] data for an international Alzheimer’s disease chal-
lenge [73] (https://www.synapse.org/Synapse:syn2290704/wiki/60828). Teams performed sta-
tistical analyses on Mindboggle shape measures to try and determine which brains had
Alzheimer’s disease, mild cognitive impairment, or were healthy, and to try and estimate a cog-
nitive measure (mini-mental state exam score). The Results section presents an analysis of
some of these data.

2016: Mindboggle was launched for broader public use after making the following
improvements:
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ROYGBIV

Shift+click on a label to see stats

ROYGBIV

Shift+click on

Selected Label:
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geodesic meancurv FScurv  FS thick

Fig 1. Cortical labels displayed in the ROYGBIV interactive online brain image viewer. The anatomical labels included in the
DKT cortical labeling protocol [22] used to label the Mindboggle-101 data are displayed on a left cortical surface. These two panels
show the current state of our prototype for a browser-based interactive visualization of the left hemisphere of a human brain [70] and
accompanying plot of some of Mindboggle’s shape measures for a selected region (http://roygbiv.mindboggle.info).

doi:10.1371/journal.pchi.1005350.g001
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o Software ported from Python 2 to Python 3

o Docstring tests provided for almost every function

« GitHub repository transferred to the nipy.org community’s GitHub account
« Online documentation updated automatically

o Online support via NeuroStars with the tag “mindboggle”

« Online tests run automatically

» Mindboggle released as a Docker container

Design and implementation

Mindboggle’s open source brain morphometry platform takes in preprocessed T1-weighted
MRI data, and outputs volume, surface, and tabular data containing label, feature, and shape
information for further analysis. Mindboggle can be run on the command line as
“mindboggle”and also exists as a cross-platform Docker container for convenience and
reproducibility of results [56]. The software runs on Linux and is written in Python 3 and
Python-wrapped C++ code called within a Nipype pipeline framework (http://nipy.org/nipype,
doi: 10.5281/zenod0.50186) to promote a modular, flexible design that captures provenance
information [57]. We have tested the software most extensively with Python 3.5.1 on Ubuntu
Linux 14.04. Running Mindboggle on the Docker installation on a Macbook Pro (2.6 GHz Intel
Core i7 with 16 GB memory; macOS 10.12) took about 100 minutes, of which 20 minutes were
spent optionally computing Laplace-Beltrami spectra and Zernike moments. When only the
surface shapes of gyrus labels were computed, without Laplace-Beltrami spectra or Zernike
moments, Mindboggle took less than 7 minutes. Issues and bugs are tracked on GitHub
(https://github.com/nipy/mindboggle/issues) and support questions are posted on NeuroStars
(https://neurostars.org/tags/mindboggle/) with the tag “mindboggle”.

The documentation is updated online (https://readthedocs.org/projects/mindboggle) and
the tests are updated online (https://circleci.com/gh/nipy/mindboggle) every time a commit is
made to the GitHub repository (https://github.com/nipy/mindboggle).

Mindboggle’s flexible, modular, open source pipeline facilitates the addition of functions for
computing almost any shape measure in any programming language. We initialized Mindboggle
with shape measures that we thought have great potential for describing the shapes of brain
structures and that complement shape measures supplied by existing software packages. It is just
as easy to include functions in Mindboggle for volume-based as it is for surface-based measures,
but we decided to focus primarily on surface-based shape measures to complement the volume-
based methods available in standard brain image analysis packages. We also want to emphasize
in this work intrinsic shape measures of brain structures rather than shapes inferred by registra-
tion-based methods such as voxel-based, tensor-based, and deformation-based morphometry
that rely on a reference or canonical template and are sensitive to errors in registration. We also
do not consider density values to be intrinsic shape measures, as they do not describe the shape
of an object, but quantify values obtained within an object, in an analogous manner as one
would quantify an fMRI signal or PET ligand binding within a voxel or region of interest.

Input and output data

For running individual functions on surface meshes, the only inputs to the software are outer
cortical surface meshes constructed from T1-weighted MRI data by software such as FreeSur-
fer, Caret [74] or BrainVISA [48], once converted to an appropriate format (see below). For
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this study we used FreeSurfer v5.1-derived labels and meshes, but the recently released Free-

Surfer version 6 is recommended because it uses Mindboggle’s DKT-100 surface-based atlas

(with the DKT?31 labeling protocol) by default to generate labels on the cortical surfaces, and

generates corresponding labeled cortical and non-cortical volumes (wmparc.mgz) [75]. To

preprocess data for use by Mindboggle, run the following FreeSurfer command on a

T1-weighted $ IMAGE file (e.g., subjectl.nii.gz) to output a $SUBJECT folder (e.g., subjectl):
recon-all-all -i SIMAGE -s $SSUBJECT

The recon-all command performs many steps (https://surfer.nmr.mgh.harvard.edu/
fswiki/recon-all), but the ones that are most relevant include (1) segmentation of the brain
image into different tissue classes (gray/white/cerebrospinal fluid), (2) reconstruction of a tri-
angular surface mesh approximating the pial surface for each brain hemisphere, and (3) ana-
tomical labeling of each surface and each volume.

To refine segmentation, labeling, and volume shape analysis, Mindboggle optionally takes
output from the Advanced Normalization Tools (ANTS, v2.1.0rc3 or higher recommended;
http://stnava.github.io/ANTs/), which performs various image processing steps such as brain
volume extraction [17,76], tissue-class segmentation [77], and registration-based labeling
[16,18,76]. To generate the ANTS transforms and segmentation files used by Mindboggle, run
the antsCorticalThickness. sh script [76] on the same $ IMAGE file, set an output
$PREFIX,and provide paths to the OASIS-30 Atropos template files in directory
STEMPLATE (backslash denotes a line return):

antsCorticalThickness.sh-d 3 -a IMAGE -o PREFIX\

-e STEMPLATE/T template0.nii.gz\

-t STEMPLATE/T_ template0 BrainCerebellum.nii.gz\

-m STEMPLATE/T_ template0 BrainCerebellumProbabilityMask.nii.
gz \

-f STEMPLATE/T template0 BrainCerebellumExtractionMask.nii.
gz \

-p $TEMPLATE/Priors2/priors%d.nii.gz

Links to the template and example input and output data can be found on the Mindboggle
website. Output formats include NIfTT format for volume files, VIK format for surface
meshes, and comma-delimited CSV format for tables. Each file contains integers that corre-
spond to anatomical labels or features (0-24 for sulci or fundi for either hemisphere). All out-
put data are in the original subject’s space, except for additional surfaces and mean
coordinates in MNI152 space [113]. The S1 Supplement contains a directory tree with outputs
from most of the optional arguments, and does not include interim results stored in a working
directory or downloaded files in a cache directory.

Mindboggle processing steps

Mindboggle performs the following steps. We provide some details of the algorithms at the
end of each step, but for full descriptions, see the relevant software documentation (http://
mindboggle.info/software.html). The S2 Supplement is an automatically generated flow dia-
gram of the processing steps:

1. Convert FreeSurfer formats to NIfTI volumes and VTK surfaces.

2. Optionally combine FreeSurfer and ANTs gray/white segmented volumes and fill with
labels.

3. Compute volumetric shape measures for each labeled region.
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4. Compute shape measures for every cortical surface mesh vertex.
5. Extract cortical surface features.
Segment cortical surface features with labels.

Compute shape measures for each cortical surface label or sulcus.

© N oo

Compute statistics for each shape measure in Step 4 for collections of vertices.

Step 1: Convert FreeSurfer formats to NIfTl volumes and VTK surfaces

Mindboggle performs all of its processing in two open standard formats: NIfTT (.nii.gz; http://
nifti.nimh.nih.gov/) for volume images and VTK (.vtk, Visualization Toolkit; http://www.vtk.
org/) for surface meshes. ANTs output already supports NIfTI; given FreeSurfer input, the first
step that Mindboggle performs is to convert FreeSurfer volume and surface formats to NIfTI
and VTK for further processing. All volume images in this study have a resolution of 1x1x1
mm? per voxel (volume element). All surface-based shape measures are computed on the “pial
surface” (cortical-cerebrospinal fluid boundary) by default, since it is sensitive to differences in
cortical thickness.

Step 2: Optionally combine FreeSurfer and ANTs gray/white segmented
volumes and fill with labels

This optional step of the pipeline will be skipped in the future when methods for tissue class
segmentation of T1-weighted MR brain images into gray and white matter improve. FreeSur-
fer and ANT's make different kinds of mistakes while performing tissue class segmentation
(Fig 2). After visual inspection of the gray/white matter boundaries in over 100 EMBARC
(https://clinicaltrials.gov/ct2/show/NCT01407094) brain images processed by FreeSurfer, we
found that at least 25 brains had significant overcropping of the brain, particularly in ventral
regions such as lateral and medial orbitofrontal cortex and inferior temporal lobe due to poor

Fig 2. FreeSurfer and ANTs gray/white matter segmentation. Left: Coronal slice of a T1-weighted brain MRI. Middle: Cross-section of FreeSurfer inner
(magenta) and outer (green) cortical surfaces overlaid on top of the same slice. The red ellipse circumscribes a region where the FreeSurfer surface
reconstruction failed to include gray matter on the periphery of the brain. Right: Cross-section of ANTs segmentation. The blue ellipse circumscribes a
region where the ANTs segmentation failed to segment white matter within a gyrus that the FreeSurfer correctly segmented (compare with the middle
panel). The purple box in the lower right highlights a region outside of the brain that the ANTs segmentation mistakenly includes as gray matter. To
reconcile some of these discrepancies, Mindboggle currently includes an optional processing step that combines the segmentations from FreeSurfer and
ANTSs. This step essentially overlays the white matter volume enclosed by the magenta surface in the middle panel atop the gray/white segmented volume

in the right panel.

doi:10.1371/journal.pchi.1005350.9002
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surface mesh reconstruction in those regions. This corroborates Klauschen’s observation that
FreeSurfer underestimates gray matter and overestimates white matter [78]. We also found
that ANTS tends to include more cortical gray matter than FreeSurfer, but at the expense of
losing white matter that extends deep into gyral folds, and sometimes includes non-brain tis-
sue such as transverse sinus, sigmoid sinus, superior sagittal sinus, and bony orbit. Mindboggle
attempts to reconcile the differences between FreeSurfer and ANTSs segmentations by combin-
ing them.

Hybrid segmentation algorithm. The relabel volume function converts the
(wmparc.mgz) labeled file generated by FreeSurfer and the (BrainSegmentation.nii.gz) seg-
mented file generated by the ANTs At ropos function [77] to binary files of pseudo-white
matter and gray (including deep gray) matter. The combine 2labels in 2volumes
function overlays FreeSurfer white matter atop ANTs cortical gray, by taking the union of cor-
tex voxels from both binary files as gray matter, the union of the non-cortex voxels from the
two binary files as white matter, and assigning intersecting cortex and non-cortex voxels as
non-cortex. While this strategy often preserves gray matter bordering the outside of the brain,
it still suffers from over-inclusion of non-brain matter, and sometimes replaces true gray mat-
ter with white matter in areas where surface reconstruction makes mistakes.

The FreeSurfer/ANTs hybrid segmentation introduces new gray-white matter bound-
aries, so the corresponding anatomical (gyral-sulcal) boundaries generated by FreeSurfer
and ANTs need to be updated accordingly. Mindboggle uses ImageMath’s
PropagatelabelsThroughMask function in ANTSs to propagate both FreeSurfer and
ANTSs anatomical labels to fill the gray and white matter volumes independently. The Free-
Surfer-labeled cerebellum voxels overwrite any intersecting cortex voxels, in case of overlap.

Step 3: Compute volumetric shape measures for each labeled region

« volume
« thickness of cortical labels (thickinthehead)

As mentioned in the Introduction, the most common shape measures computed for brain
image data are volume and cortical thickness for a given labeled region of the brain. Volume
measurements are influenced by various factors such as cortical thickness, surface area [79],
and microstructural tissue properties [80]. Computing the volume per labeled region is
straightforward: Mindboggle’s volume per brain region function simply multiplies
the volume per voxel by the number of voxels per region. In contrast, cortical thickness can be
estimated using a variety of MRI processing algorithms [49,76,81-84]. Since Mindboggle
accepts FreeSurfer data as input, we include FreeSurfer cortical thickness [81] estimates with
Mindboggle’s shape measures. When surface reconstruction from MRI data produces favor-
able results (see above), FreeSurfer cortical thickness measures can be highly reliable
[82,85,86]. To avoid surface reconstruction-based problems with the cortical thickness mea-
sure, we built a function called thickinthehead that computes a simple thickness measure
for each cortical region from a brain image volume without relying on surface data (Fig 3). See
Results for our evaluation of cortical thickness measures.

Thickinthehead algorithm. The thickinthehead function first saves a brain volume
that has been segmented into cortex and non-cortex voxels into separate binary files, then
resamples these cortex and non-cortex files from, for example, Imm® to 0.5mm” voxel dimen-
sions to better represent the contours of the cortex. Next it extracts outer and inner boundary
voxels of the cortex by morphologically eroding the cortex by one (resampled) voxel bordering
the outside of the brain and bordering the inside of the brain (non-cortex). Then it estimates
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Fig 3. Thickinthehead estimates average cortical thickness per brain region. Mindboggle’s
thickintheheadalgorithm estimates cortical thickness for each brain region without relying on cortical
surface meshes by dividing the volume of a region by an estimate of its middle surface area. Clockwise from
lower left: 3-D cross-section and sagittal, coronal, and axial slices. The colors represent the inner and outer
“surfaces” of cortex created by eroding gray matter bordering white matter and eroding gray matter bordering
the outside of the brain. The middle surface area is estimated by taking the average volume of these inner and
outer surfaces.

doi:10.1371/journal.pcbi.1005350.9003

the middle cortical surface area by the average volume of the outer and inner boundary voxels
of the cortex. Finally, it estimates the thickness of a labeled cortical region as the volume of the
labeled region divided by the middle surface area of that region. The thickinthehead
function calls the ImageMath, Threshold, and ResampleImageBySpacing functions
in ANTs.

Step 4: Compute shape measures for every cortical surface mesh vertex

« surface area
¢ mean curvature
« geodesic depth

o travel depth

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005350 February 23, 2017 10/40
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Fig 4. Surface area per vertex. Mindboggle computes surface area for each surface mesh vertex as the area
of the Voronoi polygon enclosing the vertex. Left: Lateral view of a left cortical hemisphere colored by surface
area per vertex. Right: Close-up of the surface mesh. Mindboggle uses area to normalize other shape values
computed within a given region such as a gyrus or sulcus.

doi:10.1371/journal.pchi.1005350.9004

« convexity (FreeSurfer)
« thickness (FreeSurfer)

Aside from the convexity and thickness measures inherited from FreeSurfer, shape measures
computed for each vertex of a cortical surface triangular mesh are generated by Mindboggle’s
open source C++ code (using the Visualization Toolkit, VTK) developed by Joachim Giard:
surface area, mean curvature, geodesic depth, and travel depth. Surface area is computed per
vertex (as opposed to per face of the mesh to be consistent with all other Mindboggle shape
measures) as the area of the Voronoi polygon enclosing the vertex (Fig 4). Area can be used to
normalize other values computed within a given region such as a gyrus or sulcus [87].

Curvature is an obvious shape measure for a curved and folded surface like the cerebral cor-
tex and has the potential to help make inferences about other characteristics of the brain, such
as sulcus width, atrophy [88,89], structural connections [90] and differential expansion of the
cortex [91]. Mindboggle computes both mean and Gaussian curvatures (Fig 5).

Fig 5. Curvature per vertex. Mindboggle computes curvature for each surface mesh vertex. Left: Lateral view of a left cortical hemisphere colored by
mean curvature per vertex, where color indicates surface curving away from (purple for negative curvature) or toward (yellow for positive curvature) the
local, outward-pointing normal vector. If the surface is locally flat or between negative and positive curvatures, the color is greenish-blue. Right: Mean
curvature on the sulcus folds.

doi:10.1371/journal.pcbi.1005350.9005
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Depth is an important measure characterizing the highly folded surface of the human cere-
bral cortex. Since much of the surface is buried deep within these folds, an accurate measure of
depth is useful for defining and extracting deep features, such as sulci [92,93], sulcal fundus
curves [94-96], and sulcal pits [26,97-99]. Depth may also serve as an indicator of develop-
mental stage [26].

We are aware of three predominant methods for measuring depth of points on the surface
of the cerebral cortex, where depth is the distance between a given point on the brain surface
to an outer reference surface of zero depth (the portions of the brain surface in contact with
the outer reference surface are gyral crowns or crests). The first is Euclidean depth, the dis-
tance along a straight path from the point on the brain to the outer reference surface. A straight
path has the undesirable property that it will cross through anything, which can make a highly
folded surface indistinguishable from a slightly folded surface that fills the same volume. The
second is geodesic depth, the shortest distance along the surface of the brain from the point to
where the brain surface makes contact with the outer reference surface. Geodesic paths are
very sensitive to slight or gradual changes in depth, resulting in exaggerated distances where
the outer reference surface does not wrap the brain closely. Geodesic paths are also greatly
affected by cavities, so distances can be exaggerated where there are irregularities, particularly
in the bottoms of sulcus folds. The third measure, FreeSurfer software’s “convexity,” while not
explicitly referred to as depth, is used to indicate relative depth. It is based on the displacement
of surface mesh vertices after inflating the surface mesh [65]. This can result in assigning posi-
tive depth to points on the outermost surface of the brain such as on a gyral crest, however,
which is not consistent with an intuitive measure of depth.

Travel depth was introduced as a hybrid depth measure for macromolecules, defined as the
shortest distance that a solvent molecule would travel from the convex hull of the macromole-
cule without penetrating the macromolecule surface. It was first defined for surfaces but using
a voxel-based algorithm [100] that uses Dijkstra’s algorithm for finding shortest paths, and was
later refined to use a much faster and more accurate vertex-based computation [101]. Mind-
boggle’s travel depth algorithm uses the latter; it assigns a depth value to every vertex in a
mesh, assigns more reasonable path distances that are less sensitive to surface irregularities
and imaging artifacts than geodesic distances, and is faithful to the topology of the surface.

Fig 6 shows an example of geodesic and travel depth values, and the Results section summa-
rizes our comparison of travel depth with geodesic depth and FreeSurfer convexity measures.

43.84
40

20

Fig 6. Geodesic depth and travel depth per vertex. Mindboggle computes geodesic depth (left) and travel depth (right) for each surface mesh vertex.
This medial view of the sulcus folds from the left cortical hemisphere is colored by depth, with the deepest vertices in yellow. Note that the deepest vertices
according to geodesic depth reside toward the center of the insula (center fold), whereas the deepest vertices according travel depth run along the deepest

furrows of the insula, as one would expect.

doi:10.1371/journal.pchi.1005350.g006
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Curvature algorithms. Mindboggle’s mean and Gaussian curvatures are based on the rel-
ative direction of the normal vectors in a small neighborhood, which works best for low resolu-
tion or for local peaks, but can be sensitive to the local linear geometry of the mesh. Increasing
the radius of the neighborhood mitigates this sensitivity, so a neighborhood parameter corre-
sponding to the radius of a geodesic disk is defined in the unit of the mesh. If coordinates are
in millimeters, the default setting of 2 results in an analysis of the normal vectors within a
2mm radius disk. Other options include computing both mean and Gaussian curvatures based
on the local ratios between a filtered surface and the original surface area (the filtering is done
using Euclidean distances, so it’s best for less accurate but fast visualization), or computing the
mean curvature based on the direction of the displacement vectors during a Laplacian filtering
(a good approximation based on the Laplacian, but underestimates very large, negative or posi-
tive, curvatures due to saturation).

Travel depth algorithm. The travel depth algorithm constructs a combination of Euclid-
ean paths outside the cortical surface and estimated geodesic paths along the cortical surface.
The principal idea of the algorithm lies in the classification of a surface into “visible” and “hid-
den” areas (Fig A in the S3 Supplement). A point on the surface is considered “visible” by
another point if they can be connected by a straight line without intersecting the volume
enclosed by the surface. In other words, there is a “line of sight” between the two points that
does not run through the interior of the surface. A point is considered “hidden” from another
point if it is not visible and can only be reached by a path running either along the surface or
connecting points of the surface without intersecting the enclosed volume. The above imple-
mentations of travel depth use a convex hull (Fig B in the S3 Supplement), as do most measures
of cortical depth such as the adaptive distance transform [102], while other algorithms do not
define a zero-depth reference surface but rely instead on convergence of an algorithm, such as
the depth potential map [103]. The shape of the brain is concave in places, resulting in some
gyral crowns that do not touch the convex hull. For example, in Fig C of the S3 Supplement,
the gyri of the medial temporal lobe are assigned positive depth, resulting in an unreasonably
high depth for the folds of that region. Since the convex hull is not suitable for application to
brain images, or for surfaces with global concavities, we define and construct a different refer-
ence surface that we call the wrapper surface (Fig E in the S3 Supplement). The wrapper surface
has to be chosen such that the top of a gyrus has zero depth. We compute a wrapper surface as
follows. We create a volume image representing the interior of the mesh, dilate this image with
a probe of radius r, then erode it with the same probe. This operation is also known as morpho-
logical closing, and it is important to carefully set the probe radius. If the radius is too large, the
wrapper surface will be similar to the convex hull, and if the radius is too small, the wrapper
surface will be too close to the original surface and the travel depth will be close to zero even
inside folds. We used an empirically determined radius of 5 mm. The wrapper surface mesh is
an isosurface of this morphologically closed image volume, created using the marching cubes
algorithm. On a brain mesh with 150,000 vertices and 300,000 triangles, the algorithm takes
around 200 seconds on an ordinary computer when the wrapper surface is provided. The gen-
eration of the wrapper surface takes an additional 20 seconds for a probe radius of 5 mm.

Step 5: Extract cortical surface features

« folds
« fundus per fold

Mindboggle extracts hierarchical structures from cortical surfaces [104,105], including folds
and fundus curves running along the depths of the folds. A fold is a group of connected, deep

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005350 February 23, 2017 13/40



.@' PLOS COMPUTATIONAL
~Z) ’ BIOLOGY Mindboggling morphometry of human brains

Fig 7. Cortical fold extraction and sulcus segmentation. Top left: Lateral view of the left hemisphere of a brain with folds labeled red. Mindboggle
extracts cortical surface folds based on a depth threshold that it computes from the distribution of travel depth values. Bottom left: individually colored folds
from the same brain. The red surface shows that folds can be broadly connected, depending on the depth threshold, and therefore do not map one-to-one
to anatomical region labels. Top right: The same folds with individually colored anatomical labels. These labels can be automatically or manually assigned
(as in the case of this Mindboggle-101 subject). Bottom right: Individually colored sulci. Mindboggle uses the anatomical labels to segment folds into sulci,
defined as folded portions of cortex whose opposing banks are labeled with sulcus label pairs in the DKT labeling protocol [22]. Each label pair is unique to
one sulcus and represents a boundary between two adjacent gyri, so sulcus labels are useful to establish correspondences across brains. Portions of folds
that are missing in the bottom right panel compared to the top right panel are not defined as sulci by the DKT labeling protocol.

doi:10.1371/journal.pcbi.1005350.9007

vertices (left side of Fig 7). When assigned anatomical labels, folds can be broken up into sulci
(right side of Fig 7).

Fold extraction algorithm. To extract folds, a depth threshold is used to segment deep
vertices of the surface mesh. We have observed in the histograms of travel depth measures of
cortical surfaces that there is a rapidly decreasing distribution of low depth values (correspond-
ing to the outer surface, or gyral crowns) with a long tail of higher depth values (corresponding
to the folds). Mindboggle’s find depth thresholdfunction therefore computes a histo-
gram of travel depth measures, smooths the histogram’s bin values, convolves to compute
slopes, and finds the depth value for the first bin with zero slope. The extract folds func-
tion uses this depth value, segments deep vertices, and removes extremely small folds (empiri-
cally set at 50 vertices or fewer out of a total mesh size of over 100,000 vertices).

A fundus is a branching curve that runs along the deepest and most highly curved portions
of a fold (Fig 8). As mentioned above, fundi can serve as boundaries between anatomical
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Fig 8. Sulcal fundi. This figure shows three views of the outside of a single sulcus (taken from the top middle
fold in Fig 7) to clearly show a simple example of a fundus (red branching curve). Mindboggle extracts one
fundus from each fold by finding the deepest vertices inside the fold, finding endpoints along the edge of the
fold, connecting the former to the latter with tracks that run along deep and curved paths, and running a final
filtration step. Just as anatomical labels segment folds into sulci, sulcus labels segment fold fundi into sulcal
fundi.

doi:10.1371/journal.pcbi.1005350.9008

regions and are interesting for their relationship to morphological development and disorders.
But they are too tedious, time-consuming, and difficult to be drawn in a consistent manner on
the surface meshes derived from MR images. Mindboggle provides multiple functions for
extracting fundi that are optionally generated from the command line.

Fundus extraction algorithm. Mindboggle uses its extract fundi function by
default, which is evaluated against other fundus extraction methods in the Results section.
This function extracts one fundus from each fold by finding the deepest vertices inside the
fold, finding endpoints along the edge of the fold, connecting the former to the latter with
tracks that run along deep and curved paths (through vertices with high values of travel depth
multiplied by curvature), and running a final filtration step. A more detailed description of
these four steps follows. In the first step, the deepest vertices are those with values at least two
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median absolute deviations above the median (non-zero) value. If two of these deep vertices
are within (a default of) 10 edges from each other, the vertex with the higher value is chosen to
reduce the number of possible fundus paths as well as to reduce computation time. To find the
endpoints in the second step, the find outer endpoints function propagates multiple
tracks from seed vertices at median depth in the fold through concentric rings toward the
fold’s edge, selecting maximal values within each ring, and terminating at candidate endpoints.
The final endpoints are those candidates at the end of tracks that have a high median value. If
two candidate endpoints are within (a default of) 10 edges from each other, the endpoint with
the higher value is chosen; otherwise the resulting fundi can have spurious branching at the
fold’s edge. The connect points erosion function connects the deepest fold vertices to
the endpoints with a skeleton of 1-vertex-thick curves by erosion. It erodes by iteratively
removing simple topological points and endpoints in order of lowest to highest values, where a
simple topological point is a vertex that when added to or removed from an object on a surface
mesh (such as a fundus curve) does not alter the object’s topology.

Step 6: Segment cortical surface features with labels

« sulci from folds
o fundus per sulcus

Since folds are defined as deep, connected areas of a surface, and since folds may be connected
to each other in ways that differ across brains, there usually does not exist a one-to-one map-
ping between folds of one brain and those of another. To address the correspondence problem,
we need to find just those portions of the folds that correspond across brains. To accomplish
this, Mindboggle segments folds into sulci, which do have a one-to-one correspondence across
non-pathological brains (right side of Fig 7). Mindboggle defines a sulcus as a folded portion
of cortex whose opposing banks are labeled with one or more sulcus label pairs in the DKT
labeling protocol. Each label pair is unique to one sulcus and represents a boundary between
two adjacent gyri, and each vertex has one gyrus label.

Sulcus and fundus extraction algorithms. The extract sulci function assigns ver-
tices in a fold to a sulcus in one of two cases. In the first case, if a vertex has a label that is in
only one label pair in the fold, it is assigned that label pair’s sulcus if it can be connected
through vertices with one of the pair’s labels to the boundary between the two labels. In the
second case, the segment regions function propagates labels from a label boundary to
vertices whose labels are in multiple label pairs in the fold. Once sulci are defined, the
segment by regionfunction uses sulcus labels to segment fold fundi into sulcal fundi,
which, like sulci, are features with one-to-one correspondence across non-pathological
brains.

Step 7: Compute shape measures for each cortical surface label or
sulcus

» surface area

« Laplace-Beltrami spectrum

o Zernike moments

In addition to shape measures computed for each vertex of a surface (Step 4), Mindboggle also
computes shape measures that apply to collections of vertices such as gyri and sulci (Step 6): sur-
face area (sum of surface areas across vertices), Laplace-Beltrami spectra, and Zernike moments.
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Fig 9. Laplace-Beltrami spectra. Mindboggle computes a Laplace-Beltrami spectrum for each feature (gyrus, sulcus, etc.), which relates to its intrinsic
geometry, after Reuter et al.’s “Shape-DNA” method [106—108]. The components of the spectrum correspond roughly to the level of detail of the shape,
from global to local, shown left to right for the 2nd, 3rd, and 9th spectral components for two different left brain hemispheres (top and bottom).

doi:10.1371/journal.pcbi.1005350.9009

Martin Reuter established important properties of the spectrum that relates to a shape’s
intrinsic geometry with his “Shape-DNA” method [106-108]. This approach is specifically
valuable for non-rigid shapes, such as anatomical structures: it is insensitive to local bending,
as it quantifies only non-isometric deformation, e.g., stretching. The spectrum corresponds to
the frequencies of the modes of the shape, and its real-valued components, the eigenvalues,
therefore describe different levels of detail (from more global low-frequency features to local-
ized high-frequency details, Fig 9).

Laplace-Beltrami algorithm. The eigen-decomposition of the Laplace-Beltrami operator
is computed via a finite element method (FEM). Mindboggle’s Python fem laplacian
function is based on Reuter’s Shape-DNA Matlab implementation, and their eigenvalues agree
to the 16th decimal place, attributable to machine precision.

To calculate the distance between the descriptors of two shapes, Reuter describes several
approaches, e.g., LP-norm, Hausdorff distance and weighted distances. One of the more prom-
inent and simple distance measures is the Euclidean distance (L2 norm) of the first N smallest
(non-zero) eigenvalues, where N is called the truncation parameter. To account for the linearly
increasing magnitude of the eigenvalues (Weyl’s law), Reuter recommends dividing each value
by its area and its index (done by default in Mindboggle). As an alternative, the Weighted
Spectral Distance (WESD) [109] is included in Mindboggle (but not used by default). It com-
putes the LP-norm of a weighted difference between the vectors of the N smallest eigenvalues.
This approach forms a pseudo-metric and also avoids domination of higher components on
the final distance, making it insensitive to the truncation parameter N (with a decreasing influ-
ence as N gets larger). Additionally, the choice of p (for the LP-norm) influences how sensitive
the metric is to finer as opposed to coarser differences in the shape; as p increases, WESD
becomes less sensitive to differences at finer scales.
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Moments can describe the shape of objects, images, or statistical distributions of points,
and different types of moments confer different advantages [110]. Geometric moments of 3-D
coordinates have been used to construct shape descriptors for human brain morphometry
[111] because of desirable characteristics such as invariance to rotation, symmetry, and scale,
and they can be computed for any topology. Zernike moments [112] have also been applied to
human brain morphometry for classifying dementia patients [55] and confer several advan-
tages over geometric moments. They form a set of orthogonal descriptors, where each descrip-
tor contains independent information about the structure, allowing the original shape to be
reconstructed from the moments. They have been extensively characterized for shape retrieval
performance and are robust to noise. Zernike moments can also be calculated at different
orders (levels of detail): low order moments represent low frequency information while high
orders represent high frequency information.

Zernike moments algorithm. Mikhno et al. [55] implemented Pozo et al.’s [113] efficient
3-D implementation of Zernike moments in Matlab, and helped us test our Python implemen-
tation to ensure they give consistent results. The length of the descriptors exponentially
increases with order, so order 20 yields 121 descriptors while order 35 yields 342, for example.
Values are generally less than or equal to one, with values much greater than one indicating
instability in the calculation, which could be due to the way the mesh is created or due to calcu-
lating at an order that is too high given the resolution or size of the object.

Step 8: Compute statistics for each shape measure in Step 4 for
collections of vertices

o median

« median absolute deviation

e Mmean

standard deviation

« skewness

« kurtosis

« lower quartile
o upper quartile

There can be thousands of vertices in a single feature such as a gyrus, sulcus, or fundus, so it
makes sense to characterize a feature’s shape as a distribution of per-vertex shape values (Step
4) when the shape measures don’t apply to collections of vertices (Step 7). Mindboggle’s
stats_per label function generates tables containing both, with summary statistical
measures representing the distributions of per-vertex shape values.

Results

Mindboggle has been and continues to be subjected to a variety of evaluations (https://osf.io/
x3up7/) and applied in a variety of contexts. In this section, we compare related shape mea-
sures, evaluate fundus extraction algorithms, and evaluate the consistency of shape measures
between scans. We also demonstrate Mindboggle’s utility in measuring shape differences
between left and right hemispheres, and in measuring brain shape variation.
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Comparisons between brain shape measures

We compared shape measures with one another in a representative individual from the
Mindboggle-101 data set (Fig 10) and for the entire data set (Figs 11, 12 and 13) to emphasize
to the reader that shape measures are not independent of one another and that care must be
taken when comparing differently defined shape measures or when using one as a proxy for
another. Fig 10 plots over 130,000 vertices of one brain hemisphere, where the coordinates are
two different shape measures assigned to each vertex: geodesic depth by travel depth (top) and
mean curvature by travel depth (bottom). This figure demonstrates that curvature is positively
correlated with depth and that geodesic depth produces higher shape values than travel depth,
and may exaggerate depth, such as in the insula (also clearly evident in Figs 6 and 11).

While it may be useful to compare the distributions of two different shape measures for
each region over a population (as in Figs 11, 12 and 13), we also computed the distance cor-
relation between related shape measures for each cortical region in the Mindboggle-101 sub-
jects (Table 1; https://ost.io/9cn7s/). To compare related (travel and geodesic depth, mean
and FreeSurfer curvature) surface shape measures, we computed the distance correlation
between each pair of shape measures across all of the vertices per region, and computed the
average of the distance correlations per region across the 101 subjects. Distance correlation
enabled a comparison of the pattern of values for a given region between two shape measures
without regard for their absolute values. Mindboggle’s travel depth and geodesic depth mea-
sures were very highly correlated for 60 of the 62 regions, with distance correlations ranging
from 0.91 to 1.00 (all but four greater than 0.95). The two outliers were the left and right
insula (0.29 and 0.31), which corroborates our earlier assertion that geodesic depth can exag-
gerate depth values compared to travel depth in regions such as the insula. Mindboggle’s
mean curvature and FreeSurfer’s curvature measures had distance correlations ranging from
0.73 (insula) to 0.91 (rostral middle frontal), with the top 10 values all for frontal and parietal
regions. Since thickinthehead values are computed per region, not per vertex, to com-
pare thickinthehead with median FreeSurfer thickness values, we constructed a pair of
vectors for each region with 101 values, each value corresponding to the shape measure for
that region in a subject, and computed the distance correlation between the two vectors. The
highest distance correlations (0.8 to 0.7) were obtained by frontal and parietal regions, and
the lowest correlations (0.3 to 0.2) by precuneus, parahippocampal, fusiform, and cingulate
regions. See the “Comparison between cortical thickness measures” section below for a com-
parison between absolute cortical thickness measures.

Comparison between travel depth and FreeSurfer’'s convexity measure

As described above, travel depth uses a reference wrapper surface that lies closer to the cortical
surface than a convex hull would. In particular, the wrapper lies closer to the medial temporal
lobe, so the gyri in this area have depth values equal to zero as one would want. FreeSurfer’s
convexity measure [81], often used to indicate relative depth, leads to non-zero and even nega-
tive values for vertices on these gyri (Fig D in the S3 Supplement). We computed the mean
and standard deviation of four statistical measures of travel depth and FreeSurfer’s convexity
values for over 130,000 vertices in a representative cortical surface. For this comparison, we
consider a point to be close to the wrapper surface if the distance between the two is smaller
than 0.1 mm, a depth value is considered small if it is less than 0.1 mm, and a convexity value
is considered small if it is less than the smallest convexity value for all the vertices in the mesh.
For travel depth, by definition all vertices (and only those vertices) that are close to the wrapper
surface have a small depth. For convexity, almost all vertices (97.71%) that have a small con-
vexity value are close to the wrapper surface, but they represent only 6.89% of the vertices close
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Fig 10. Relationships between brain shape measures. In these plots, we compare a pair of shape
measures for each vertex of each right cortical region in a representative individual from the Mindboggle-101
brains, colored arbitrarily by region. Top: In this plot comparing two measures of depth, geodesic depth is
higher than travel depth, and may exaggerate depth, such as in the insula (gray dots extending to the upper
left). Bottom: In this plot of mean curvature by travel depth, we again see that the shape measures are not
independent of one another. As one might expect, we see greater curvature at greater depth.

doi:10.1371/journal.pcbi.1005350.9010
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Fig 11. Comparison between cortical depth measures. This superposition of two box and whisker plots is a comparison between two measures of
cortical surface depth applied to the 101 Mindboggle-101 brains: Mindboggle’s travel depth and geodesic depth. These surface measures are
computed for every mesh vertex, so the plots were constructed from median depth values, with one value per labeled region. The pattern of geodesic
depth and travel depth measures are very similar across the 62 cortical regions, but deviate considerably for the insular regions (far right); this is not

surprising, given that geodesic paths are very sensitive to gradual changes in depth and to cavities.

0o0i:10.1371/journal.pchi.1005350.9011

to the wrapper surface (Table A in the S3 Supplement). One conclusion we drew from this
comparison is that while both travel depth and FreeSurfer’s convexity measures represent
depth well for deep portions of a surface, travel depth provides a more faithful representation

for shallow portions.

Comparison between cortical thickness measures

We are aware of only one study directly comparing FreeSurfer with manual cortical thickness
measures, where the manual estimates were made in nine gyral crowns of a post-mortem
brain, selected for their low curvature and high probability of having been sampled

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005350 February 23, 2017
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and ANTs cortical thickness estimates in different populations, including the Mindboggle-101

subjects (Fig 13) and in the 40 EMBARC control subjects (https://ost.io/jwhea/). For 16 corti-
cal regions in the 40 subjects, we measured scan-rescan reliability of cortical thickness mea-

sures, and we compared thickness measures with published estimates based on manual
delineations of MR images of living brains [115]. Forty percent of FreeSurfer estimates for

the 640 labels were in the published ranges of values, whereas almost ninety percent of
thickinthehead'sestimates were within these ranges (as mentioned above, Klauschen

perpendicular to the plane of section [114]. We compared thickinthehead, FreeSurfer,
observed that FreeSurfer underestimates gray matter and overestimates white matter [78]).

Mindboggle curvature measures were greater than the FreeSurfer curvature measures for aimost all regions, with the notable exception of the entorhinal

Fig 12. Comparison between cortical curvature measures. This superposition of two box and whisker plots is a comparison between two measures of
regions (fourth pair from the left).

cortical surface curvature applied to the 101 Mindboggle-101 brains: Mindboggle’s mean curvature and FreeSurfer’s curvature measure. These surface
measures are computed for every mesh vertex, so the plots were constructed from median curvature values, with one value per labeled region. The

doi:10.1371/journal.pcbi.1005350.9012

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005350 February 23, 2017
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ANTs values deviated further from the published estimates and were less reliable (greater
inter-scan and inter-subject ranges) than the FreeSurfer or thickintheheadvalues.

This section presents the first quantitative comparison of fundus extraction software algo-
rithms. Since there exists no ground truth for fundus curves, we must resort to other means of
evaluation. We leave it to future work to determine their utility for practical applications such
as diagnosis and prediction of disorders. Since the DKT labeling protocol defines many of its

Evaluation of fundus extraction algorithms

Fig 13. Comparison between cortical thickness measures. This superposition of two box and whisker plots is a comparison between two
measures of cortical thickness applied to the 101 Mindboggle-101 brains: Mindboggle’s thickinthehead (black) and FreeSurfer’s thickness (red)

measures. FreeSurfer’s thickness is defined per surface mesh vertex, so the red plot was constructed from median thickness values, with one value

per labeled region. The pattern of Mindboggle and FreeSurfer thickness measures are very similar across the 62 cortical regions, and differ from
each other by one to two millimeters. See text for comparison against published estimates of cortical thickness based on manual delineations of MR

images of living brains.
doi:10.1371/journal.pchi.1005350.g013

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005350 February 23, 2017
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Table 1. Distance correlations between related shape measures. To compare pairs of related (travel and geodesic depth, mean and FreeSurfer curva-
ture) surface shape measures, we computed the distance correlation between vectors of shape values for all vertices in each cortical region, and averaged
the distance correlations across the 101 Mindboggle-101 subjects. For thickinthehead and FreeSurfer thickness measures, we computed the distance
correlation between vectors of median shape values for all 101 Mindboggle-101 subjects for each cortical region.

Cortical region travel depth vs. geodesic depth mean curvature vs. FreeSurfer thickinthehead vs. FreeSurfer
curvature thickness

left right left right left right
caudal anterior cingulate 0.97 0.96 0.83 0.83 0.39 0.38
caudal middle frontal 0.99 0.99 0.88 0.88 0.72 0.70
cuneus 0.99 0.99 0.84 0.83 0.52 0.51
entorhinal 0.96 0.96 0.77 0.75 0.38 0.33
fusiform 0.97 0.97 0.83 0.83 0.22 0.20
inferior parietal 0.99 0.99 0.88 0.88 0.56 0.50
inferior temporal 0.98 0.98 0.84 0.84 0.31 0.39
isthmus cingulate 0.91 0.93 0.78 0.79 0.19 0.30
lateral occipital 0.99 0.99 0.86 0.86 0.54 0.57
lateral orbitofrontal 0.92 0.92 0.80 0.81 0.54 0.54
lingual 0.97 0.98 0.83 0.82 0.45 0.62
medial orbitofrontal 0.97 0.97 0.82 0.82 0.42 0.57
middle temporal 0.99 1.00 0.88 0.88 0.49 0.40
parahippocampal 0.96 0.97 0.81 0.84 0.44 0.26
paracentral 0.99 0.99 0.87 0.87 0.64 0.59
pars opercularis 0.98 0.98 0.89 0.89 0.65 0.47
pars orbitalis 0.98 0.98 0.90 0.90 0.43 0.50
pars triangularis 1.00 1.00 0.90 0.90 0.63 0.47
pericalcarine 0.96 0.97 0.76 0.78 0.34 0.37
postcentral 1.00 1.00 0.87 0.87 0.71 0.63
posterior cingulate 0.99 0.99 0.84 0.83 0.29 0.38
precentral 0.99 0.99 0.88 0.88 0.70 0.54
precuneus 0.98 0.98 0.86 0.86 0.29 0.48
rostral anterior cingulate 0.98 0.97 0.80 0.79 0.26 0.35
rostral middle frontal 0.99 0.99 0.91 0.91 0.75 0.61
superior frontal 0.99 0.99 0.89 0.89 0.80 0.71
superior parietal 0.99 0.99 0.89 0.89 0.69 0.76
superior temporal 0.99 0.99 0.86 0.85 0.59 0.52
supramarginal 1.00 1.00 0.88 0.87 0.65 0.60
transverse temporal 0.97 0.98 0.76 0.74 0.67 0.69
insula 0.29 0.31 0.73 0.73 0.46 0.38

doi:10.1371/journal.pcbi.1005350.t001

anatomical label boundaries along approximations of fundus curves, we used the manually
edited anatomical label boundaries in the Mindboggle-101 dataset as gold standard data to
evaluate the positions of fundi extracted by four different algorithms in 2013. Specifically, for
each of the 48 fundi/sulci defined by the DKT protocol, we computed the mean of the mini-
mum Euclidean distances from the label boundary vertices in the sulcus to the fundus vertices
in the sulcus, as well as from the fundus vertices in the sulcus to the label boundary vertices in
the sulcus. The algorithms included Mindboggle’s default connect points erosion
function described above, Forrest Bao’s pruned minimum spanning tree algorithm [104],
Gang Li’s algorithm [116], and an algorithm in the BrainVISA software [96]. That last algo-
rithm was omitted from the results because too few fundi were extracted to make an adequate
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comparison (BrainVISA extracts 65 sulci per hemisphere, and it is possible that the program
did not define some folds as sulci that contain fundi according to the DKT labeling protocol).

All of the fundi, summary statistics, and results are available online (https://osf.io/r95wb/).
While there was no clear winner, we can summarize our comparison by computing the mean
distance between fundi and label boundaries across all sulci for the three methods and by tally-
ing how many sulci had the smallest mean distance among the methods. When measured
from label boundaries to fundi, Gang Li’s and Mindboggle’s fundi were closer than were For-
rest Bao’s (mean distances of 2.09mm and 2.38mm vs. 3.65mm, respectively; 25 and 21 vs. 2
closest sulci), whereas when measured from fundi to label boundaries, Forrest Bao’s fundi
were closer than were Mindboggle’s or Gang Li’s (mean distances of 3.33mm vs. 4.06mm and
4.65mm, respectively; 41 vs. 5 and 2 closest sulci). When measuring from either direction, the
maximum distances averaged across all sulci were higher for Forrest Bao’s fundi (11.65mm
and 11.61mm) than for Mindboggle’s (10.84mm and 9.75mm) or Gang Li’s (11.12mm and
6.87mm).

Consistency of shape measures between MRI scans of the same person

For a shape measure to be useful in comparative morphometry, it should be more sensitive to
differences in anatomy than to differences in MRI scanning setup or artifacts. To get a sense of
the degree of scan/rescan consistency of our shape measures, we ran Mindboggle on 41 Mind-
boggle-101 subjects with a second MRI scan (OASIS-TRT-20 and MMRR-21 cohorts). We
computed the fractional shape difference per cortical region as the absolute value of the differ-
ence between the region’s shape values for the two scans divided by the first scan’s shape value.
For the volumetric shape measures (volume and thickinthehead cortical thickness),
shape value is computed by region; for the surface-based shape measures (area, travel and geo-
desic depth, mean and FreeSurfer curvature, and FreeSurfer thickness), shape value is assigned
the median value across all vertices within a region. All shape tables, statistical summary tables,
and accompanying plots are available online (https://osf.io/mhc37/).

Table A in the S4 Supplement gives the average across the 41 subjects of the fractional
shape differences between MRI scans for each of the 31 left cortical regions, and for each shape
measure, and Table 2 gives a statistical summary of the differences. In general, the values are
low enough to suggest high inter-scan shape consistency, but we will point out values greater
than or equal to 0.10. Of the volumetric shape measures (volume and thickinthehead),
only one value exceeded or equaled 0.10: entorhinal volume (0.21). Entorhinal cortex had the
second smallest volume of manually labeled MRI cortical regions in 101 healthy human brains
[22] (after transverse temporal cortex; see https://osf.io/st7nk/), and low scan/rescan consis-
tency for small brain structures corroborates Jovicich’s observation in 2013 [117]: “We found
that the smaller structures (pallidum and amygdala) yielded the highest absolute volume
reproducibility errors, approximately 3.8% (average across sites), whereas all other structures
had errors in the range 1.8-2.2% (average across sites), with the longitudinal segmentation
analysis. Our absolute % errors in test-retest volumetric estimates are comparable to those
reported by previous studies (Kruggel et al., 2010; Morey et al., 2010; Reuter et al., 2012).”
Regarding cortical thickness measures, Jovicich observed: “The thickness reproducibility
results of the various structures were largely consistent across sites and vendors, with errors in
the range 0.8-5.0% for the longitudinal analysis (table 7).” Of the surface shape measures, the
following exceeded or equaled 0.10 for three measures (travel depth, geodesic depth, and Free-
Surfer curvature): entorhinal, medial orbitofrontal, and (caudal anterior, rostral anterior, and
isthmus) cingulate regions; and for at least one of the measures: lateral orbitofrontal, parahip-
pocampal, pericalcarine, and insular regions. The greatest differences were for FreeSurfer
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Table 2. Summary statistics of shape differences between MRI scans. This table gives a statistical summary of the shape differences between two
scans of the same brain for 41 brains. The “mean” column is the average of the mean values in Table A of the S4 Supplement, while the other columns contain
averages of their respective values over the 31 regions; for example, the “std” column contains the average of the standard deviations computed for each of
the 31 regions. [>0.50 and >0.25 give the number of regions (out of 1,271 = 31 regions times 41 subjects) where the fractional absolute difference was above

0.50 and 0.25, respectively.]

mean
volume 0.047
thickinthehead 0.052
area 0.039
travel depth 0.061
geodesic depth 0.059
mean curvatures 0.044
FreeSurfer curvature 0.094
FreeSurfer thickness 0.041

std min 25% 50% 75% max >0.50 >0.25
0.044 0.002 0.019 0.035 0.063 0.213 5 21
0.046 0.001 0.017 0.039 0.078 0.183 0 16
0.038 0.001 0.014 0.030 0.054 0.182 2 6
0.050 0.002 0.024 0.050 0.085 0.229 1 36
0.049 0.002 0.022 0.048 0.082 0.222 2 35
0.038 0.001 0.016 0.033 0.059 0.170 0 7
0.091 0.004 0.033 0.070 0.127 0.433 17 78
0.036 0.001 0.014 0.032 0.060 0.147 0 0

doi:10.1371/journal.pcbi.1005350.t002

curvature in the pericalcarine (0.34), insula (0.28), and rostral anterior cingulate (0.23), fol-
lowed by entorhinal volume (0.21) and travel depth (0.20). FreeSurfer curvature had the great-
est number of outliers (Table 2) and was the only shape measure that spanned negative to
positive values, so regions with very small median curvature values could have inflated

these fractions. Future evaluations will assess the impact that differences in scans have on
morphometry-based clinical research.

Measuring shape differences between left and right hemispheres

To measure interhemispheric shape differences, we computed the fractional shape difference
per cortical region as in the preceding section, replacing inter-scan differences with interhemi-
spheric differences (https://ost.io/dp4zy/), and using all 101 Mindboggle-101 brains. Table B
of the S4 Supplement gives the average across the 101 subjects of the fractional shape differ-
ences between hemispheres for each of the 31 cortical regions, and for each shape measure,
and Table 3 gives a statistical summary of the differences. The values are much higher than the
corresponding inter-scan differences in the previous section, suggesting that shape differences
between hemispheres are greater than shape differences between MRI scans of the same
hemisphere.

Table 3. Summary statistics of shape differences between left and right hemispheres. This table gives a statistical summary of the interhemispheric
shape differences for the 101 Mindboggle-101 brains. The “mean” column is the average of the mean values in Table B of the S4 Supplement, while the other
columns contain averages of their respective values over the 31 regions; for example, the “std” column contains the average of the standard deviations com-
puted for each of the 31 regions. [>0.50 and >0.25 give the number of regions (out of 3,131 = 31 regions times 101 subjects) where the fractional absolute dif-

ference was above 0.50 and 0.25, respectively.]

mean std min 25% 50% 75% max >0.50 >0.25
volume 0.129 0.091 0.002 0.058 0.117 0.180 0.448 38 443
thickinthehead 0.044 0.036 0.001 0.017 0.037 0.064 0.169 0 4
area 0.183 0.163 0.002 0.074 0.148 0.248 1.025 165 744
travel depth 0.198 0.199 0.003 0.074 0.150 0.257 1.251 211 764
geodesic depth 0.173 0.163 0.002 0.067 0.133 0.229 1.009 148 658
mean curvatures 0.104 0.113 0.002 0.038 0.079 0.141 0.872 59 192
FreeSurfer curvature 0.190 0.435 0.003 0.074 0.150 0.250 3.890 205 626
FreeSurfer thickness 0.050 0.077 0.001 0.018 0.036 0.062 0.691 23 28
doi:10.1371/journal.pcbi.1005350.t003
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https://osf.io/dp4zy/

®'PLOS

COMPUTATIONAL

BIOLOGY

Mindboggling morphometry of human brains

Measuring human brain shape variation

To estimate the normal range of variation in the shapes of healthy adult human brains, we
applied Mindboggle software in 2015 to compute shape measures for our Mindboggle-101
dataset. The result is the largest set of shape measures computed on healthy human brain data
(See the S5 Supplement and https://osf.io/gzshf/ for detailed results) [118,119]. We are treating
these as normative data against which anyone can compare similarly processed images of dif-
ferent healthy adult populations as well as patient populations.

The data we analyzed consist of repeated measurements on five distinct real-valued shape
measures (mean curvature, geodesic depth, travel depth, FreeSurfer convexity, and FreeSurfer
thickness) for each of 31 distinct regions per brain hemisphere in each of the 101 subjects.
Each subject was scanned at one of five different laboratories. At the bottom of Fig 14 is one
example of the many heatmap tables we have generated from these data (all results are accessi-
ble at https://osf.io/d7hx8/). Each table presents one value for each labeled region or sulcus for
each of the 101 subjects. The value is either volume or thickinthehead cortical thickness
for volumetric images, or for one of the five surface shape measures above, one of eight sum-
mary statistical measures (mean, median, median absolute deviation, standard deviation,
lower and upper quartiles, skewness, and kurtosis) computed across all vertices in the surface
mesh of the labeled region or sulcus.

We organized the data in a nested fashion: brain hemisphere is nested within subject, and
subject is nested within laboratory. In addition to the five shape measurements and the three
nested classification factors, the data also include three covariates: sex (male, female), age (inte-
ger variable), and handedness (left, right; we relabeled two ambidextrous subjects as left-
handed). Given the grouped nature of the data, we used linear mixed models for the statistical
modeling of the data. To assess the importance of each of the covariates and nested classifica-
tion factors, we fitted 24 distinct linear mixed models for each shape measure and brain region
combination to assess the importance of each of the covariates (sex, handedness, and age as
fixed effects) and nested classification factors (laboratory, subject, and brain hemisphere as
random effects). For each shape measure, we decomposed the total variance into the variance
between laboratories, between subjects within a laboratory, between brain hemispheres within
a subject, and within brain hemispheres.

For each shape measure and brain region combination, we used the Bayesian Information
Criterion (BIC) score to select the best model among the 24 competing models. A BIC score is
a goodness of fit measure used to perform model selection among models with different
dimensions (number of parameters), and is proportional to the negative log likelihood of the
model penalized by the number of parameters in the model. It strikes a balance between
model fit (measured by the log-likelihood score) and model complexity (measured by the
number of parameters in the model). In the context of linear models, an over-parameterized
model will always have a larger log-likelihood score than a more parsimonious model, but it
will also likely overfit the data. Nonetheless, by including a penalty proportional to the number
of parameters in the model, the BIC score can be used to compare models with different
dimensions since over-parameterized models are penalized to a greater extent. The smaller the
BIC score, the better the model fits the data.

Two models stood out as the best models for the mean curvature, travel depth, FreeSurfer
convexity, and FreeSurfer thickness shape measures across the 31 brain regions (S5 Supple-
ment). Both models include handedness and age as fixed effects. They only differ by the inclu-
sion of the extra “subject within lab” nesting level. For all shape measures and brain regions,
the bulk of the variability was concentrated in the residual, not in the hemisphere (“side”), sub-
ject, or laboratory (top of Fig 14).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005350 February 23, 2017 27/40


https://osf.io/gzshf/
https://osf.io/d7hx8/

®'PLOS

COMPUTATIONAL
BIOLOGY

Mindboggling morphometry of human brains

subject.var
side.var
residual.var

subject.var
side.var
residual.var

subject.var
side.var
residual.var

subject.var
side.var
residual.var

subject.var

_side.var
residual.var

Color Key

Brain region shape variation

o
g 2
S8 3 53 g
55 5 2 2_3% 8 ol e 5
38 _52_ @ o038 v O @ 55,25 @
=0 2558 o228 © © =3 O NCTon<
o 2038 OF ] OFETDCED
23 72335 o583 _3vaq. =2 2358852
o oc o5 =055 o= 3T
) 30538 22500 =8%0vo Sg® X059
S o 295 SOURTImza0a8238 R
sa 53029 SRTRTERoRcRgoa=0=2282
802508335 _58382883825885595830
5] 3383=338933@588228%38383 .
@zxclom3@8 3533032858 g3a@gcaxn323
€0533528c53393383c98c85c05238833
PRS2 00p=3c305 0P oapadp330050c
TEGR3 NS00 550003060000y

I

Sulcus travel depth MAD

fissure
fissure

Ih-olfactory.sul
Ifactory.
Ih-sylvian.
rh-sylvian.

Ih—parietooc:

rh—circt

Ih-paracentral.sul

sulci

mean.curvature

travel.depth

geodesic.depth

FreeSurfer.convexity

FreeSurfer.thickness

Ih—precent
rh-precentral.sul

Mindboggle-101 subjects

Fig 14. Brain shape variation in healthy humans. Top: Overview of the variance results for five shape
measures computed on each of 31 manually labeled cortical regions (combined across both hemispheres for

this figure) in the 101 Mindboggle-101 healthy human brains. The blue color-coded heatmap shows the

relative contributions of subject, hemisphere, and residual to describe the variability for each shape measure,
with a greater contribution coded by a darker blue. For all shape measures and brain regions, most of the
variability was concentrated in the residual. See the S5 Supplement for a description of the statistical models.
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Bottom: An example heatmap table containing 4,848 cells, where each cell is color-coded (increasing from
red to yellow) to represent the median absolute deviation of travel depth values across all vertices in each of
48 sulcus surface meshes for the 101 subjects. It is clear that there is greater consistency across subjects for
a given region (colors within a column) than across regions for a given subject (colors within a row).

doi:10.1371/journal.pcbi.1005350.9014

We repeated the same analysis as above on two scans acquired three years apart from hun-
dreds of the ADNI participants (126 with Alzheimer’s, 199 healthy controls) as part of an inter-
national Alzheimer’s challenge (see “History of the Mindboggle project” section above) to see
if we could find changes in brain shape measures that correlate with changes in ADNI-MEM
cognitive scores over the course of three years. This resulted in the most detailed shape analysis
of brains with Alzheimer’s disease ever conducted [119] (https://osf.io/d7hx8/). To identify
shape measures associated with Alzheimer’s disease, we used the average of the ranks of the
following tests in that study: Kolmogorov-Smirnov test to see if there was a difference between
distributions at baseline and at three years, and correlation of change in shape and change in
ADNI-MEM cognitive scores.

We found that healthy brains and brains with Alzheimer’s disease have similar shape statis-
tical summaries, but changes in the following shape measures after a three-year interval were
significantly correlated with changes in ADNI-MEM cognitive score:

« Volume for right caudal anterior cingulate and left: entorhinal, inferior parietal, (middle,
superior) temporal, superior frontal, precuneus, and supramarginal gyri

o FreeSurfer thickness for left and right: entorhinal, fusiform, inferior parietal, (inferior, mid-
dle, superior) temporal, superior frontal, precuneus, and supramarginal gyri; left: (caudal
middle/lateral, orbito/rostral middle) frontal, and pars triangularis gyri; right lingual gyrus

o Mean curvature for left and right rostral middle frontal gyri; left (middle, superior) temporal
gyri; right inferior temporal gyri

Availability and future directions

In this article, we have documented the Mindboggle open source brain morphometry platform
and demonstrated its use in studies of shape variation in healthy and diseased humans. There
are many ways in which the open source software community can extend Mindboggle’s capa-
bilities, and there are many possible applications for Mindboggle to brain and non-brain data.
Here we will provide links to the software and data used in this study, briefly summarize the
study results, and point toward possible further evaluations and alternative approaches.

Software and data used in this study

Mindboggle home: http://mindboggle.info
Mindboggle software: https://github.com/nipy/mindboggle

« Documentation: https://readthedocs.org/projects/mindboggle

« Issues and bugs: https://github.com/nipy/mindboggle/issues

« Support questions (post with tag “mindboggle”): https://neurostars.org/tags/mindboggle/
« Continuous integration tests: https://circleci.com/gh/nipy/mindboggle

 BIDS-Apps Docker app: https://github.com/BIDS-Apps/mindboggle
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o Brain image viewer: https://github.com/binarybottle/roygbiv
Third-party software dependencies:

« Anaconda Python distribution: https://docs.continuum.io/

o Visualization Toolkit: http://www.vtk.org/

o Nipype: https://github.com/nipy/nipype

o Nibabel: https://github.com/nipy/nibabel

« ANTs: http://stnava.github.io/ANTSs

o FreeSurfer output: https://surfer.nmr.mgh.harvard.edu/fswiki
Data: https://osf.io/ydyxu/

« Example preprocessed data: https://osf.io/8cf5z/

« Anatomical labeling protocol: http://mindboggle.info/labels.html

o Anatomically labeled data: http://mindboggle.info/data.html, https://ost.io/nhtur/

Summary of results

In this section we summarize the findings of our evaluations in the Results section. The num-
ber of different shape measures and the size of the populations make this the largest and most
detailed shape analysis of human brains every conducted. We computed over 8,000 values cor-
responding to statistical summaries of shape measures and coefficients of shape measures for
each of the 101 brain images in the Mindboggle-101 dataset and for each of thousands of brain
images in the ADNI and AddNeuroMed datasets. Shape measures are not independent of one
another, and some related shape measures exaggerate values for certain morphological struc-
tures (such as geodesic vs. travel depth for the insula). Mindboggle’s thickinthehead cor-
tical thickness measure is consistent across scans and across brains and generated values that
are closer to published ranges of values than FreeSurfer or ANTSs values. Mindboggle’s travel
depth measure provides a more faithful representation of depth for shallow portions than Free-
Surfer’s convexity measure. Mindboggle’s fundi are comparable to Gang Li’s fundi in terms of
average proximity to manual label boundaries, but there was no clear winner in our evaluation
of fundus extraction algorithms. Mindboggle’s shape measures are reasonably consistent
across scans of the same brain, with some exceptions (such as entorhinal volume). We found
that for the shape measures and populations we studied that shape differences between hemi-
spheres were greater than shape differences between MRI scans of the same hemisphere, and
that the variability within each brain hemisphere was higher than the variability between brain
hemispheres in a participant or between participants. Finally, we reported which brain regions
were significantly correlated with changes in ADNI-MEM cognitive score after a three-year
interval as part of an international Alzheimer’s challenge.

Further evaluations and enhancements of Mindboggle

The Mindboggle software will continue to be subjected to evaluations of its algorithms as well
as of its applicability to new datasets of healthy and diseased brains. Data exist to conduct eval-
uations of test/retest reliability and reproducibility [120,121], with different imaging parame-
ters [122], with genetic information [123], with heritability information [124], at higher field
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strengths [125], etc. Some data also exist for evaluating features such as sulcal pits [126].
Including different types of brain images can enable multivariate analyses, independent cor-
roboration of morphology, and can even help to better interpret the factors that influence mor-
phology [80]. We leave for future work real-world evaluations of Laplace-Beltrami spectra and
Zernike moments, as well as comparisons of shape measures generated by Mindboggle and
other brain morphometry software, such as BrainVISA. We also intend to evaluate Mindbog-
gle output by analyzing interactions among shape measures to find higher order morphologi-
cal relationships with brain shape differences.

There are many ways to enhance Mindboggle’s functionality and applicability to pathologi-
cal brains. Taking advantage of different and multiple types of images, atlases, labels, features,
and shape measures are clear ways to expand and improve Mindboggle, and the software was
built using the Nipype framework specifically to enable modular and flexible inclusion of dif-
ferent algorithms, and to easily generate different outputs using different input data or param-
eter settings. We took advantage of this flexibility to generate multiple outputs for comparison
in our evaluation studies. In the future, Mindboggle could accept different preprocessed inputs
to take advantage of promising new algorithms that combine surface reconstruction with
whole-brain segmentation in a way that is more robust to white-matter abnormalities [127].
The current version of Mindboggle does not take advantage of probabilistic labels, features,
and shape measures, and such probabilistic assignments could lead to more careful interpreta-
tions of morphometry studies.

Alternative approaches to Mindboggle: Deep learning and beyond

The Mindboggle software extracts and identifies features for shape analysis. This approach is
based on human-designed features (brain structure and label definitions and algorithmic
implementations) and assumes the validity of the designed feature model. The tremendous
success that machine learning (especially deep learning) approaches have had across domains
[128] is strong evidence that such approaches may improve automated feature extraction,
identification and labeling for features that a human would never consider designing. Machine
learning has recently been demonstrated to recognize the multi-modal ‘fingerprint’ of cortical
areas [24]. In 2011, we advocated a novel application of convolutional networks to build dis-
criminative features and were able to demonstrate automated volumetric labeling of the cere-
bral cortex, without human intervention to build handcrafted features or to provide other
prior knowledge [129]. At the time we had very limited training data (40 manually labeled
brains), but with the Mindboggle-101 dataset, tables of shape statistics generated by Mindbog-
gle, and with improved deep learning architectures, we may now be in a better position to
apply deep learning to this problem. It may be helpful to explore ways in which priors and
invariances can be modeled and integrated into deep learning approaches to reduce the
amount of required training data and to integrate human expert information. This may be par-
ticularly beneficial for pathological conditions with tumors, lesions, and edemas, etc. that do
not conform to a canonical reference brain or are difficult to obtain in sufficient quantities to
train a deep learning algorithm. Indeed, thousands or millions of curated and labeled examples
are usually required for deep learning algorithms, which points to the promise of unsupervised
approaches that do not require expert feedback during training and can learn from messier
data or from less data. Combining algorithmic approaches to feature extraction and mor-
phometry with machine learning and unsupervised approaches has great potential applications
in characterizing not just healthy human brain variation but in diagnosing, tracking, and pre-
dicting unhealthy conditions.
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