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Abstract

The rate of progress in human neurosciences is limited by the inability to easily apply a wide
range of analysis methods to the plethora of different datasets acquired in labs around the
world. In this work, we introduce a framework for creating, testing, versioning and archiving
portable applications for analyzing neuroimaging data organized and described in compli-
ance with the Brain Imaging Data Structure (BIDS). The portability of these applications
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(BIDS Apps) is achieved by using container technologies that encapsulate all binary and
other dependencies in one convenient package. BIDS Apps run on all three major operating
systems with no need for complex setup and configuration and thanks to the comprehen-
siveness of the BIDS standard they require little manual user input. Previous containerized
data processing solutions were limited to single user environments and not compatible with
most multi-tenant High Performance Computing systems. BIDS Apps overcome this limita-
tion by taking advantage of the Singularity container technology. As a proof of concept, this
work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly
used neuroimaging algorithms.

Author summary

Magnetic Resonance Imaging (MRI) is a non-invasive way to measure human brain struc-
ture and activity that has been used for over 25 years. There are thousands MRI studies
performed every year generating a substantial amount of data. At the same time, many
new data analysis methods are being developed every year. The potential of using new
analysis methods on the variety of existing and newly acquired data is hindered by diffi-
culties in software deployment and lack of support for standardized input data. Here we
propose to use container technology to make deployment of a wide range of data analysis
techniques easy. In addition, we adapt the existing data analysis tools to interface with
data organized in a standardized way. We hope that this approach will enable researchers
to access a wider range of methods when analyzing their data which will lead to acceler-
ated progress in human neuroscience.

Introduction

The last 25 years have witnessed a proliferation of methods for imaging the human brain
(including structural, diffusion and functional Magnetic Resonance Imaging, Positron Emis-
sion Tomography, Electroencephalography and Magnetoencephalography). These methods
have been accompanied by literally thousands of different algorithms for signal denoising, nor-
malization, feature extraction, and statistical analysis. Modern analysis pipelines for neuroim-
aging often consist of dozens of steps and rely on software developed by multiple external
groups with each group often developing their own idiosyncratic parameter settings even
when using the same software packages. The increasing complexity of neuroimaging data anal-
ysis has led to many discoveries, and the flexibility provided by the plethora of feature extrac-
tion methods has allowed cognitive and clinical neuroscientists to develop new theories about
the relationships between brain and behavior in healthy and diseased populations.

However, due to the intrinsic heterogeneity of scientific software (arising from the fact that
it rarely is developed for widespread distribution), installing, configuring, and running many
of the available methods is often difficult. Most neuroimaging software packages run natively
on Linux [1] and (to a lesser extent) Mac OS X; however, Windows users often cannot run
software natively. Operating system aside, many scientific packages depend on external librar-
ies (often requiring a particular, sometimes outdated version), and require complex configura-
tions of environment variables and/or data files.

There have been some attempts in the field of neuroinformatics to solve this issue. The
most notable is the NeuroDebian project [2], which provides Debian and Ubuntu Linux
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distributions with packages containing many of the popular neuroimaging software tools.
Installing packages prepared by the NeuroDebian team is very easy, as it can be performed
with the built-in Debian/Ubuntu package management system. However, this solution only
applies to Linux systems, as Mac OS X and Windows users are required to install Linux inside
a Virtual Machine (VM). Additionally, creating new Debian/Ubuntu packages is a non-trivial
task, which may limit the rate at which new software is added to NeuroDebian.

Another consequence of these deployment and installation issues is that they make it very
difficult to perfectly recreate analysis pipelines, which exacerbates reproducibility issues in
neuroimaging|[3]. This is partly due to journal space limitations, which typically preclude a full
accounting of the scientific software stack used to generate results. But even knowing the ver-
sions of all of the software tools employed in an analysis is rarely sufficient to completely
reproduce a workflow. Studies have shown that operating system type, version, and even hard-
ware architecture can influence results in a significant manner [4-6]. Such issues are troubling
in and of themselves and call for thorough investigations into the sources of this variability.
They also raise serious practical concerns for extended longitudinal studies that need to main-
tain the same software (and sometimes even hardware) stack along the time span of an experi-
ment (e.g. a software upgrade midway through the analysis could lead to spurious differences
between groups processed at different points in time).

One potential solution to ease the deployment problem proposed in the bioinformatics
community is to create Virtual Machines (VMs) capturing all of the necessary dependencies
for a workflow [7,8]. Running a Virtual Machine does, however, come with significant perfor-
mance overhead; furthermore, only a few High Performance Computing (HPC) systems
(which have become the primary computational resource for many academics in the last
decade) allow their users to run VMs on large clusters. Building on the virtual machine con-
cept, a more lightweight solution has recently become more prevalent in the industry, known
as ‘operating-system-level-virtualization’ or (more commonly) containers. In contrast to VMs,
containers share the same kernel with the host operating system and thus deliver much better
performance. The bioinformatics community has once again been at the forefront of the adop-
tion of this new technology, with the aim of improving research reproducibility [9-12]. Most
proposed solutions have been based on a particular implementation of the container concept:
‘Docker’, which, due to its kernel and security requirements, is difficult or impossible to use in
a multi-tenant (serving multiple unprivileged users) environment such as an HPC system
(which is often the most cost-effective computational resource available to researchers).

Finally, most existing neuroimaging data processing pipelines expect input datasets to be
organized and described in different and idiosyncratic ways. To account for variability in
input data organization and a lack of consensus in terms of metadata description, data process-
ing workflows often require users to input metadata manually—in a different fashion for each
pipeline. This expandable step can cause errors and lead to incorrect results, while also making
it harder to integrate processing pipelines into automated analysis platforms such as those
developed to provide “Science as a Service” [13].

After careful evaluation of existing solutions for the specific problems faced by the neuro-
imaging community, we have developed a framework for sharing and executing neuroimaging
analysis pipelines that improve ease of use, accessibility, and reproducibility for users of all
three major operating systems, as well as for researchers using HPC or cloud computing sys-
tems. The framework overcomes Docker’s inability to run on multi-tenant HPC systems by
capitalizing on the Singularity [14] container technology developed specifically for HPC use.
To minimize the number of manual inputs required from researchers—and hence reduce the
number of errors arising from misinterpretation of those inputs—the framework capitalizes
on the recently introduced Brain Imaging Data Structure (BIDS) standard [15] for organizing
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and describing datasets. Correspondingly, the proposed framework is named BIDS Apps. We
describe here the anatomy of a BIDS App, the infrastructure used for building, testing and
archiving BIDS Apps, as well as steps necessary to run BIDS Apps in various scenarios.

Results
What is a BIDS App?

A BIDS App is a container image capturing a neuroimaging pipeline that takes a BIDS-format-
ted dataset as input. Since the input is a whole dataset, apps are able to combine multiple
modalities, sessions, and/or subjects, but at the same time need to implement ways to query
input datasets. Each BIDS App has the same core set of command-line arguments, making
them easy to run and integrate into automated platforms. BIDS Apps are constructed in a way
that does not depend on any software outside of the container image other than the container
engine.

BIDS Apps rely upon two technologies for container computing:

1. Docker—for building, hosting as well as running containers on local hardware (running
Windows, Mac OS X or Linux) or in the cloud.

2. Singularity—for running containers on HPCs [14].

BIDS Apps are deposited in the Docker Hub (http://hub.docker.com) repository, making
them openly accessible. Each app is versioned and all of the historical versions are available to
download. By reporting the BIDS App name and version in a manuscript, authors can provide
others with the ability to exactly replicate their analysis workflow.

Docker is used for its excellent documentation, maturity, and the Docker Hub service for
storage and distribution of the images. Docker containers are easily run on personal comput-
ers and cloud services. However, the Docker Engine was originally designed to run different
components of web services (HTTP servers, databases etc.) using cloud resources. Docker thus
requires root or root-like permissions, as well as modern versions of Linux kernel (to perform
user mapping and management of network resources); though this is not a problem in context
of renting cloud resources (which are not shared with other users), it makes it difficult or
impossible to use in a multi-tenant environment such as an HPC system, which is often the
most cost-effective computational resource available to researchers. Singularity, on the other
hand, is a unique container technology designed from the ground up with the encapsulation of
binary dependencies and HPC use in mind. Its main advantage over Docker is that it does not
require root access for container execution and thus is safe to use on multi-tenant systems. In
addition, it does not require recent Linux kernel functionalities (such as namespaces, cgroups
and capabilities), making it easy to install on legacy systems.

How to create a BIDS App?

BIDS Apps forge. Inspired by the conda-forge project (https://conda-forge.github.io/),
BIDS Apps development is centered around a GitHub organization (http://github.com/
BIDS-Apps) that maintains a code repository for each BIDS App (see Fig 1). Every repository
hosts a Dockerfile describing how to build the container image, a lightweight wrapper for
providing a unified command-line interface as well as parsing the BIDS input, and brief docu-
mentation. BIDS Apps are an evolution of lightweight wrappers such as the Interface class
developed within Nipype [16], with the added advantage of being programming language
agnostic. Since BIDS Apps merely serve the purpose of capturing dependencies and providing
a unified way of calling the relevant program (through the command-line interface), the
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Fig 1. Overview of the creation and use of BIDS Apps. The source code of each App is stored in separate GitHub repository. Each repository is
connected to a Continuous Integration server responsible for building testing and deploying the corresponding App. For every new release of an App, a
new container image is deposited in Docker Hub. Users can directly download and run the BIDS Apps container images either directly using Docker on
any Windows, Mac, and Linux machine or convert them to Singularity and run them on an HPC.

https://doi.org/10.1371/journal.pcbi.1005209.9001

repositories in the github.com/BIDS-Apps organization do not actually host the source code
or data of the pipelines and workflows being wrapped: these are contained in the built Docker
image stored on DockerHub. Building a BIDS App starts with creating a new repository and
populating it with a Dockerfile and a run script.

Dockerfile creation. A Dockerfile is a script written in a domain specific language that
describes the steps necessary to build a Docker image. The Docker project provides excellent
documentation and a tutorial on how to write Dockerfiles (https://docs.docker.com/engine/
reference/builder/). However, because the container images built in the BIDS-Apps format are
ultimately intended to alternatively run under Singularity, there are some additional require-
ments that must be followed:

 Apps cannot rely on having elevated permissions inside the container image (in contrast to
Docker, processes inside a Singularity container run with the privileges of the user running
the container).

« Environment variables must be set using the ENV statement within the relevant Dockerfile,
rather than relying on config files (such as /root/.bashrc).

« Apps should not write anywhere outside of /tmp, $HOME, and the specific output folder
provided as a command-line argument.
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To facilitate the process of writing Dockerfiles, we have created a set of templates that
include installation steps for the most popular neuroimaging tools (FSL, FreeSurfer, AFNI,
ANTs etc.): https://github.com/BIDS-Apps/dockerfile-templates. Those templates are also
available as container images that can be used directly as a base for new BIDS Apps Dockerfiles
using the FROM statement.

Command-line interface. To improve user experience and ability to integrate BIDS Apps
into various computational platforms, each App follows a set of core command-line
arguments:

runscript input dataset output folder analysis level

For example:

runscript /data/dsl114 /scratch/outputs participant

« input dataset provides a path to the dataset to be analyzed (read-only), which must
conform to the BIDS standard

« output folder is the folder where results of the analysis will be stored
» analysis_level denotes the stage of the analysis that will be performed

To facilitate easy and efficient execution, analyses in BIDS Apps can be split into stages (see
Materials and Methods). In the simplest design, an App would run in two stages: ‘participant’
and ‘group’. The ‘participant’ stage runs a first level analysis that can be performed indepen-
dently for each subject in the dataset (and thus can be executed in parallel). The analysis may
optionally be restricted to a subset of participants using the—participant labelargu-
ment. The group level analysis runs on the outputs from the participant level analysis and
cannot be split into independent parallel jobs. This scheme is inspired by the MapReduce pro-
gramming model [17]. Multiple such MapReduce steps can be defined for a single pipeline
(full specification of the command-line scheme can be found in the Materials and Methods
section).

There are no restrictions on what language is used to write the wrapper script as long as it
conforms to the prescribed interface. However, to make it easier to generate new BIDS Apps
we have created a basic implementation in Python that can be imported into a new script and
filled with App-specific options: https://github.com/BIDS-Apps/bidscmd. We also provide
several utilities that make it easier to work with BIDS-compatible directory structures—most
notably, the PyBIDS Python package (https://github.com/INCF/pybids), which provides tools
for simple but powerful logical queries over entities defined in the BIDS specification (e.g.,
retrieving a list of all unique subjects; getting the fieldmap files for all subjects with a valid first
scanning run; etc.).

In addition to conforming to a standardized command-line argument scheme, run scripts
are also responsible for validation of the input data before running any analysis. To facilitate
the process we have developed a command-line validator that checks whether the input data-
sets are compliant with the BIDS standard https://github.com/INCF/bids-validator. Because
not all BIDS compatible datasets can be analyzed by all BIDS Apps (e.g. a surface reconstruc-
tion pipeline requires a high-resolution T1 weighted image), the validator can be configured to
reject datasets with particular properties. Integrating the validator is as easy as calling an exter-
nal command; Dockerfiles and container images with the validator pre-installed are also avail-
able. BIDS Apps developers can also choose to implement validation steps themselves if the
requirements of their pipelines cannot be easily checked by the standard validator.

Building and testing container images. For each BIDS App a Docker image is built and
run on a set of lightweight example BIDS datasets [18]. This execution tests that the com-
mand-line interface and BIDS support are correctly implemented (each BIDS App is required
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to include at least one smoke or integration test running on an example BIDS dataset). The
tests are run forcing read-only containers, to ensure compatibility with Singularity (which
imposes read-only mode). If the Docker image builds successfully and passes all tests, it is
assigned a unique version (based on the tag obtained from the corresponding GitHub reposi-
tory) and uploaded to Docker Hub with a version tag. Since version tags are unique and
Docker images stored on Docker Hub are never overwritten, all historical versions of each
BIDS App will always be accessible. Building, testing and archiving of BIDS Apps is performed
automatically through a continuous integration service (CircleCI). Automation of testing and
versioning improves reliability due to minimization of human errors.

To facilitate the process of creating new BIDS Apps we have made an example App that can
also be used as a template for new Apps: https://github.com/BIDS-Apps/example. Additional
documentation and tutorials are available at http://bids-apps.neuroimaging.io. Developers
seeking help are also encouraged to subscribe to the bids-app-dev mailing list at https://
groups.google.com/d/forum/bids-apps-dev.

Available BIDS Apps

At the moment there are 22 BIDS Apps (see Table 1) in the repository, most of which were
developed by participants in the 2016 sprint (see Materials and Methods). The Apps span dif-
ferent imaging modalities (structural, functional and diffusion MRI) as well as languages
(Python, C++, MATLAB/Octave, OpenCL).

Running a BIDS App locally

Running a BIDS App on a local system can be performed using Docker, which is easy to install
on all three major operating systems. To run the first stage of the example BIDS App for partic-
ipant number 01 the user needs to open a console (terminal or cmd) and type:
dockerrun-ti--rm\
-v /Users/cajal/data/ds005:/bids_dataset:ro\
-v /Users/cajal/outputs:/outputs \
bids/example:0.0.4\
/bids dataset /outputs participant --participant label0l
Where /Users/cajal/data/ds005 is the path to the input dataset and /Users/cajal/outputs the
path where results should be stored. If the BIDS App was not run before on this machine, the
Docker image will be automatically downloaded from the Docker Hub.

Running a BIDS App on a cluster (HPC)

On many academic clusters, Singularity can be used to run containers (due to its minimal
dependencies and security concerns Singularity is more likely to be approved for multi-tenant
systems usage than Docker). In these setting, to run a BIDS App, it first needs to be saved to a
Singularity-compatible image file. This step needs to be performed outside of the cluster (for
example on a laptop) and requires Docker:
docker run --privileged-ti --rm\
-v /var/run/docker.sock:/var/run/docker.sock\
-vD:\singularity images:/output)\
singularityware/docker2singularity\
bids/example:0.0.4
Where D:\singularity_images is a path where the Singularity image will be stored. After
transferring the.img file to a cluster it can be run like any other executable:
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Table 1. List of currently available BIDS Apps.

App nhame
example
Freesurfer
ndmg

BROCCOLI

FibreDensityAndCrosssection

SPM
MRIQC
FMRIPREP

Quality Assessment Protocol

Configurable Pipeline for the Analysis of

Connectomes
Hyperalignment
mindboggle

MRtrix3 connectome

nilearn
nipypelines

automatic analysis (aa)

Niak Preprocessing

HPCPipelines
BrainlAK-SRM
OPPNI

MAGeTbrain
tracula

https://doi.org/10.1371/journal.pchi.1005209.t001

Description

Example App that also serves as a template for new apps. Calculates
intracranial volume.

Surface extraction, longitudinal pipeline and study specific template
calculation using FreeSurfer.

One-click reliable and reproducible pipeline for T1w + DWI weighted MRI
connectome estimation.

Fast fMRI analysis on many-core CPUs and GPUs.

Fixel-Based Analysis (FBA) of Fibre Density and Fibre Cross-section.
Statistical Parametric Mapping.

Quality Assessment of structural and functional MRI.

A generic fMRI preprocessing pipeline providing results robust to the input
data quality as well as informative reports.

Quality Assessment of structural and functional MRI.

Pipeline for high throughput processing and analysis of structural and
functional MRI data.

Computes hyperalignment transformations for functional alignment.

Pipeline to improve the accuracy, precision, and consistency of automated
labeling and shape analysis of human brain image data.

Robust generation and statistical analysis of structural connectomes
estimated from diffusion tractography.

Extraction of time-series and connectomes for population analysis.
Preprocessing of functional time series for resting or task analysis
Neuroimaging pipeline system written in Matlab.

Noise reduction, segmentation, coregistration, motion estimation,
resampling.

Anatomical and functional preprocessing pipelines used in the Human
Connectome Project.

Functional alignment using Shared Response Model implementation from
the Brain Imaging Analysis Kit.

Optimization of Preprocessing Pipelines for Neurolmaging, for analysis of
fMRI data.

Multiple Automatically Generated Templates brain segmentation algorithm

Automatic reconstruction of a set of major white-matter pathways from
diffusion-weighted MR images

Applicable
modalities

Tiw
Tiw
T1w, DWI

T1w, fMRI
DWI

T1w, fMRI
T1w, fMRI
T1w, fMRI

T1w, fMRI
T1w, fMRI

fMRI
Tiw

T1w, DWI

fMRI
T1w, fMRI
T1iw, T2w, fMRI,

DWI
fMRI
T1w, T2w, fMRI
fMRI
fMRI

Tiw
T1w, DWI

References

n/a
[19,20]
[21,22]

(23]
[24,25]
[26]
[52]

In

preparation

[27]
(28]

[29]
[30]

[31]

(32]
[16]
(33]

[34]
[35,36]
[37]
[38-41]

[42-45]
[46]

./bids_example-0.0.4.img /bids_dataset /outputsparticipant --

participant label 01

It is worth noting that copying and running Singularity images does not require elevated

permissions.

Discussion

We have proposed a new way of distributing easy-to-use, reproducible neuroimaging analysis
workflows that can run on all three major operating systems as well as multi-tenant clusters.

Each BIDS App encapsulates all of its binary dependencies providing the means for reproduc-
ible analysis as well as an ultimate source of provenance information. Due to the BIDS stan-

dard used for the organization of input data, errors caused by manually provided metadata are
minimized. Finally, the unified command-line interface structure combined with flexible
MapReduce-style execution schemes lends BIDS Apps to easy integration into data analysis
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platforms as well as efficient execution on computational clusters independently of the particu-
lar scheduling software.

To prove the viability of the BIDS Apps concept we have developed 20 Apps representing a
diverse set of neuroimaging software originating from many different labs. We are expecting
that the number of available apps will grow in the future. We are actively encouraging neuro-
imaging methods developers to deploy their tools as BIDS App to further grow the library of
available pipelines.

One of the goals of this project was to deliver software that could be applied to wide range of
datasets without the need for much user interaction. It is important to emphasize that this goal
is not at odds with the ability to modify various parameters of the workflows encapsulated in
BIDS Apps. This is an important ability since many researchers have unique needs and many
data analysis decisions are considered open scientific questions. The ability to modify internal
parameters vary across the presented BIDS Apps, but many of them provide it either in form of
command line parameters or input config files. We hope that with the help of new users app
developers will be able to learn which parameters should be exposed for modification.

It is also important to note that fact that BIDS Apps framework even though is built on con-
tainer technology (which can be misinterpreted as a “black box”) it does not imply a particular
software development philosophy. Some BIDS Apps are interfaces to open source projects
with vibrant developer communities built around public developer interactions while some
are developed in a restricted access setting by a smaller set of developers located at a particular
institute. By choosing GitHub as the platform for hosting BIDS Apps we hope to foster a
vibrant and open community of developers contributing to run scripts, Dockerfiles, and
documentation.

Even though similar solutions based on Docker have been proposed in the past, none have
addressed the problem of running Docker containers on HPCs. One study evaluating Docker
in the context of HPC use [47] had to limit access to the Docker-enabled cluster only to
“trusted” users due to security concerns (personal communication). The solution proposed
here combines mature container building tools provided for multiple operating systems by the
Docker project with HPC compatibility through Singularity.

Additionally, similarly to previous proposals [9,10], the presented solution puts a strong
emphasis on clear versioning of container images and the ability to access all previous versions.
We envisage that this feature will be very valuable in the context of longitudinal studies (where
the same software stack needs to be used over many years) as well as for accurately reporting
a set of computational methods in a publication and later replicating them (which can be
achieved by simply referencing a BIDS App with a corresponding version). Strict versioning of
BIDS Apps is achieved by careful management of Docker images on Docker Hub via a Contin-
uous Integration service which also is responsible for testing the Docker images, further reduc-
ing potential errors.

It is also worth noting that even though containers increase the reproducibility of scientific
results, they do not solve the problem of sensitivity of some results to different operating sys-
tems, architectures or third party libraries. In particular, numerical and statistical instabilities
create an artificial dependence of results on hardware details that can only be addressed algo-
rithmically. Further research is necessary to assess the robustness of published results to these
factors. BIDS Apps can help in this endeavor to a certain extent—for example, a single analysis
can be run using different versions of the same BIDS App to see the variance in results (differ-
ent flavors of the same App using different Linux distributions could be created for this pur-
pose). However this approach has limits, further work is needed to better understand the
potential for variance in results due to different Linux kernel versions across different systems
and hardware architectures since containers do not encapsulate this.
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Another advantage of container-based solutions is that the user can run software in an
almost identical software ecosystem as the one used for its development. This reduces the
number of problems experienced by users due to nuanced differences in system configuration,
such as system libraries or software versions. It also makes maintaining the software signifi-
cantly easier for the developers, who do not need to support a variety of different configura-
tions and can easily reproduce errors.

Even though BIDS Apps as a form of neuroimaging software distribution scheme can be
perceived as performing a similar task as the NeuroDebian project, the two initiatives, in fact,
complement each other. Many of the example BIDS Apps presented in this manuscript use
Debian as their base distribution and benefit from the ease of installation provided by the Neu-
roDebian project. It not only makes Dockerfiles shorter and easier to maintain but due to the
network of NeuroDebian mirror servers the build process is more reliable than downloading
software from their original locations. On the other hand, the NeuroDebian project benefits
from the BIDS App distribution scheme by exposing software previously limited only to
Debian based distribution to all flavors of Linux. This is important considering that many
HPCs run on RedHat and CentOS Linux distributions rather than Debian.

Future work will involve engaging more developers of neuroimaging methods to create
BIDS Apps. Additionally, there are plans for developing a repository that would be indepen-
dent of Docker Hub to provide Open Container Consortium as well as Singularity-compatible
images. This would provide improved sustainability of the project, but also remove the conver-
sion step (from Docker to Singularity) currently necessary for running BIDS Apps on clusters.

Work is currently underway to facilitate the integration of BIDS Apps in other platforms
such as XNAT [48], CBRAIN [49], or cloud-based services like Amazon Web Service (AWS).
The apps will include a machine-readable description of input arguments, their descriptions
and acceptable values (based on the Boutiques application descriptor [50]. Another benefit of
such a description is to allow developers integrating BIDS Apps into their platforms to auto-
matically generate user interfaces, and to improve validation of input parameters.

Singularity is not the only solution proposed to handle containers on HPCs. “Shifter” (as of
September 2016 only available as pre-release beta version) has been discussed in the context of
running containerized academic software [51]. The principles behind Shifter are similar to
Singularity, but Shifter also attempts to tackle the problem of managing the container images.
Because of this, it depends on several services (Redis and MongoDB servers, worker processes,
etc.) that make setting it up and maintaining it more involved than Singularity. However,
despite the differences, all BIDS Apps would be able to run on clusters running Shifter.

Singularity is despite its many advantages is not perfect. The need to convert Docker con-
tainer images outside using docker2singularity tool is less than ideal. In the future, this will be
a new feature of Singularity (currently in development) that will allow HPC users to directly
import container images from Docker Hub (without the requirement of elevated privileges or
access to Docker software). As mentioned above Singularity due to its minimal system require-
ments is easy to install. We are currently aware of 51 HPCs spread around the world that sup-
port Singularity (https://docs.google.com/spreadsheets/d/1Vc_1prq IWHGHOLWtpUBY-
ttKdLLM_TErjnCelmY5m0/pub?gid=1407658660). This list includes systems located at pres-
tigious institutions such as National Institutes of Health, Massachusetts Institute of Technol-
ogy, and Stanford University as well as the 17th most powerful HPC in the world—Stampede,
located at Texas Advanced Computing Center (https://www.top500.0rg/system/177931).
Nonetheless, Singularity is still fairly new and it is fair to assume that it is not installed on most
existing HPCs. Finally, Singularity container images require root permission to create or mod-
ify (this is why conversion from Docker needs to be performed outside of the target HCP).

On one side this can be perceived as inconvenience preventing users from performing quick
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modifications of container images. However, on the other side, the side effect of this limitation
is that users are forced to create a new container image file each time an app is updated which
promotes versioning and reproducibility.

The proposed way of archiving BIDS Apps—using Docker Hub—even though convenient
and cost effective (using Docker Hub is free for public images) might pose challenges in the
long term. Docker Hub does not make any commitments about the availability of images. To
avoid potential loss of images uploaded to Docker Hub we plan to periodically backup all of
the BIDS Apps in a repository dedicated for long term academic storage such as the Stanford
Digital Library.

Despite its relatively young age, we are already seeing interest in various BIDS Apps. Some
of the early adopters helped resolve issues and fix bugs. According to Docker Hub, BIDS Apps
have been so far been downloaded 1389 times. Even though it will take up to two years until
we start seeing papers describing studies that were using BIDS Apps, we already know of two
studies that used BIDS Apps for data preprocessing (personal communication).

In the future, we plan to extend the BIDS Apps framework by adding a specification for
analysis outputs and extending the input specification beyond MRI data. An effort is currently
underway to define BIDS Derivatives specification that would cover description and organiza-
tion of data analysis outputs. Adoption of such standard will allow chaining multiple apps. The
FMRIPREP app already supports an early version of the BIDS Derivatives specification. In a
similar vein, two extensions of the BIDS standard are in final stages of development: BIDS
MEG and BIDS PET. That effort—when finalized—will allow the BIDS Apps family to be
extended by tools dedicated to modalities other than MRI.

It is also worth mentioning that even though the proposed framework is focused on the
analysis of neuroimaging data, a similar scheme could be applied to other types of data. The
only elements that are specific to human neuroimaging in BIDS Apps are the format of
the input data and the naming convention for command line parameters (“participant”
and”group”). Other fields with well-established data standards can easily adopt the same way
of constructing, testing and archiving pipelines with their software dependencies.

BIDS Apps is a framework to help neuroimaging practitioners deploy the complex data
processing workflows that they require in their research. Leveraging existing technologies such
as GitHub and CircleCI and extensively using containers (Docker and Singularity), the pro-
posed ecosystem automatically generates the appropriate container images with a minimized
impact on the researcher’s development flow. This paper shows how these apps are created,
stored, and executed either locally or in HPCs. To maximize interoperability and reduce man-
ual metadata handling, BIDS Apps require that input data are in the BIDS organization format.
The ultimate goal of BIDS Apps is reproducibility, thus this framework is particularly focused
on archiving and versioning of neuroimaging workflows.

Materials and methods
Engaging the community

To kickstart the repository of BIDS Apps, a four-day long coding sprint was organized at Stan-
ford University in August 2016. Leading neuroimaging methods and workflow developers
were invited to learn about BIDS, Docker, and Singularity. In addition, the sprint was adver-
tised on the Stanford Center for Reproducible Neuroscience and Twitter, and outreach was
performed during the 2016 OHBM Meeting in Geneva. The workshop consisted of one day of
training; during the remaining three days, hands-on support was provided by experienced
Docker developers.
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Fig 2. The overall structure of workflows. Workflows will need to decouple the individual level analysis (process independent subjects) from the
group-level analysis. For the analysis of individual subjects, the workflow will require an understanding of the BIDS structure so that the required inputs
for the designated subject are found. The optional reducer module will take up from results generated in the mapper and generate a group output. The
overall workflow has an entrypoint and an endpoint responsible of setting-up the map-reduce tasks and the tear-down including organizing the outputs
for its archiving, respectively. Please mind that each app can implement multiple map and reduce steps (see Advanced use cases).

https://doi.org/10.1371/journal.pcbi.1005209.9002

Command-line specification

This approach to run our workflows requires sticking with three standards: 1) a common com-
mand-line interface, 2) a Docker container to ensure portability, and 3) a standard for organiz-
ing input data. Containers created this way can be easily integrated into OpenfMRI as well as
other data analysis platforms. Thanks to Docker-to-Singularity conversion they can also be
easily run on High Performance Computers (clusters) without the need to install all of the
dependencies.

Each workflow/pipeline will be run independently for each subject (the map step). Results
of this execution (arranged in whatever way the pipeline prefers) can be optionally processed
in a group level analysis (reduce step-see Fig 2).

Command line interface

Each pipeline should have a simple wrapper script used to run it. The script should be a com-
mand-line interface and accept the following command-line arguments (minimally):

1. For the participant level (aka map) step:

» bids_ dir—(positional argument #1) the directory with the input dataset formatted
according to the BIDS standard. This directory is read only.

« output dir—(positional_argument #2) the directory where the output files should be
stored. This is the only directory the pipeline should write to. Can be used to store inter-
mediate files, but they should be removed after the pipeline finishes. This directory is
shared across all of the participant level jobs—it’s up to the script to create subfolders for
each subject.
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o “participant”—(positional_argument #3) indicates that this is a participant level
analysis.

« —-participant label—(optional) label of the participant that should be analyzed.
The label corresponds to sub-<participant_label> from the BIDS spec (so it does not
include “sub-”). If this parameter is not provided all subjects should be analyzed. Multiple
participants can be specified with a space separated list.

Example:

Run processing for every subject independently (map step). Each of these operations can be
performed in parallel. There are no restrictions or specification of how data should be orga-
nized inside the output_dir

./my pipeline/data/my dataset/scratch/outputsparticipant--
participant label 01

./my pipeline/data/my dataset/scratch/outputsparticipant--
participant label 02

./my pipeline/data/my dataset/scratch/outputsparticipant --
participant label 03

2. (Optional) For the group level (aka reduce) step:

« bids dir—(positional argument #1) the directory with the input dataset formatted
according to the BIDS standard. This directory is read only.

» output dir—(positional_argument #2) the directory where the output files should be
stored. This is the only directory the pipeline should write to. Can be used to store inter-
mediate files, but they should be removed after the pipeline finishes. This directory is the
same one that was used in the participant level analysis and should be prepopulated with
participant level results before running the group level.

“group”—(positional_argument #3) indicates that this is a group level analysis.

« —-participant label—(optional) labels of the participants that should be analyzed.
The label corresponds to sub-<participant_label> from the BIDS spec (so it does not
include “sub-”). If this parameter is not provided all subjects should be analyzed. Multiple
participants can be specified with a space separated list. This can be useful if you want to
do a group level analysis on a subset of all participants in your dataset
Example:

./my pipeline/data/my dataset /scratch/outputs group

The script can also accept other arguments specific to your pipeline (see for example - -
template name in FreeSurfer App). Mind that the same set of extra arguments will be
passed to the map (single subject level) and the reduce (group level) stage.

Advanced use cases

» Multiple map reduce steps. In case your pipeline needs to do multiple map reduce steps the
analysis_level (third positional argument) can take additional arguments: participant2,
group2, participant3, group3 etc. In the description of your app please specify
how many map reduce steps are necessary.
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o Within-job multi-CPU parallelization. Each job (on any given level: participant or group)
might be run on a multi-CPU machine; in such case, a parameter - -n_cpus followed by
an integer will be passed with the number of CPUs available.

« If your app is capable of adapting its workflow depending on how much memory is available
on the environment it is running on you can implement an optional - -mem_mb flag. When
running your app the execution system will pass available memory in megabytes.
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