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A new method to estimate the trajectories of particle motion and the amount of
cumulative beam damage in electron cryo-microscopy (cryo-EM) single-particle
analysis is presented. The motion within the sample is modelled through the use
of Gaussian process regression. This allows a prior likelihood that favours
spatially and temporally smooth motion to be associated with each hypothetical
set of particle trajectories without imposing hard constraints. This formulation
enables the a posteriori likelihood of a set of particle trajectories to be expressed
as a product of that prior likelihood and an observation likelihood given by the
data, and this a posteriori likelihood to then be maximized. Since the smoothness
prior requires three parameters that describe the statistics of the observed
motion, an efficient stochastic method to estimate these parameters is also
proposed. Finally, a practical algorithm is proposed that estimates the average
amount of cumulative radiation damage as a function of radiation dose and
spatial frequency, and then fits relative B factors to that damage in a robust way.
The method is evaluated on three publicly available data sets, and its usefulness
is illustrated by comparison with state-of-the-art methods and previously
published results. The new method has been implemented as Bayesian polishing
in RELION-3, where it replaces the existing particle-polishing method, as it
outperforms the latter in all tests conducted.

1. Introduction

Recent advances in electron-detector technology have allowed
cryo-EM single-particle analysis to uncover the structures of
many biological macromolecules to resolutions sufficient for
de novo atomic modelling. The primary impediment to high-
resolution reconstruction is the radiation damage that is
inflicted on the molecules when they are exposed to an
electron beam. This requires low-dose imaging, and hence
reconstructions from very noisy images. In addition, exposure
to the electron beam leads to motion in the sample, which
destroys information, particularly at high spatial frequencies.

Because the new detectors allow multi-frame movies to be
captured during exposure of the sample, it is possible to
estimate and correct for beam-induced motion. This requires
sufficient signal in the individual movie frames, which is
challenging as each frame only contains a fraction of the total
electron dose, resulting in even lower signal-to-noise ratios.
The earliest approaches to beam-induced motion correction
were performed in FREALIGN (Brilot et al., 2012; Campbell
et al., 2012) and RELION (Bai et al., 2013), and estimated
particle positions and orientations independently in each
movie frame and for each particle. Both programs averaged
the signal over multiple adjacent frames to boost the low
signal-to-noise ratios. Still, these approaches were only
applicable to relatively large (>1 MDa in molecular weight)
particles (i.e. molecules or molecular complexes). These early
studies revealed correlations between the direction and extent
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of motion of particles that are in close proximity to each other.
In this paper, we will refer to this property as the spatial
smoothness of motion.

The approach in Bai et al. (2013) was subsequently extended
to cover smaller molecules. This was possible by (i) still
performing template matching on averages over multiple
adjacent frames, (ii) fitting a linear path of constant velocity
through the unreliably detected positions and (iii) averaging
these constant-velocity vectors over local areas of the micro-
graph. This means that consistency with the observations and
the (absolute) temporal and (partial) spatial smoothness of
the trajectories were imposed one after the other. This algo-
rithm, together with the radiation-dose weighting scheme
described below, was termed particle polishing (Scheres, 2014)
and was implemented as the method of choice for beam-
induced motion correction in the RELION package (Scheres,
2012).

In the meantime, a second class of motion-estimation
algorithms have been developed that do not rely on the
availability of a three-dimensional reference structure, and
which therefore can be applied much earlier in the image-
processing workflow. Instead of comparing individual particles
with their reference projections, these algorithms estimate the
motion entirely from the frame sequence itself by cross-
correlating individual movie frames or regions within them.
Two advantages of reference-free methods are that they are
not susceptible to errors in the references, for example un-
resolved structural heterogeneity, and that sources of struc-
tural noise that move together with the particles, for example
high-contrast contamination, may be used as signal for motion
estimation. An important disadvantage of reference-free
methods, and the main motivation for using a reference in this
paper, is the lower signal-to-noise ratio in the cross-correlation
functions between noisy movie frames compared with the
cross-correlation with a high-resolution reference projection.
In addition, reference-free methods are susceptible to sources
of structured noise on the detector (for example dead or hot
pixels, or imperfect gain normalizations), which favour a zero
velocity. Such noise is typically not present in the reference, as
it is reconstructed from many images in different orientations.

Two of the early reference-free methods, MotionCorr (Li et
al., 2013) and Unblur (Grant & Grigorieff, 2015), relaxed the
spatial smoothness assumption, allowing nonlinear trajec-
tories. While MotionCorr allowed completely free motion over
time, it required discrete regions of the image to move as rigid
blocks. Unblur imposed a certain amount of temporal
smoothness on the motion and required the entire image to
move as a rigid block. The method of Abrishami et al. (2015)
was based on an iterative version of the Lucas—Kanade optical
flow algorithm (Lucas & Kanade, 1981) and abandoned the
idea of rigid regions in favour of a model that allows spatially
smooth deformations of the image. Later, a more robust noise
model was proposed in Zorro (McLeod et al., 2017), which
required uniform movement of the entire micrograph, and a
variant, SubZorro, that worked on rigid regions.

An early method to formulate motion estimation as a
minimization of a cost function in order to simultaneously

satisfy consistency with the observations and temporal
smoothness was alignparts-lmbfgs (Rubinstein & Brubaker,
2015). It estimated the motion of each particle separately, so
that spatial smoothness of the motion was enforced only after
the fact, by forming local averages over trajectories of
neighbouring particles. Although alignparts-lmbfgs works on
individual particles, the program does not use reference
projections, but minimizes a weighted phase difference
between the Fourier components of individual movie frames
of boxed-out particles.

A reference-free method that is very popular today is
MotionCor2 (Zheng et al., 2017). This program enforces
neither spatial nor temporal smoothness absolutely. Instead of
working on individual particles, it splits the micrograph into
tiles and fits the motion of each tile to a global polynomial
function of time and space. This is performed by picking
independent, most likely positions of each block and then
fitting the coefficients of the polynomial to these discrete
positions. We will compare our new method with MotionCor2
in Section 3.

Unlike particle motion, radiation damage cannot be
corrected for explicitly. Nevertheless, the deleterious effects of
radiation damage on the reconstruction can be reduced by
down-weighting the contribution of the higher spatial
frequencies in the later movie frames. This is because radiation
damage affects the signal at high spatial frequencies faster
than the signal at low spatial frequencies (Hayward & Glaeser,
1979). For this reason, it was proposed to discard the later
movie frames for high-resolution reconstruction (Li et al.,
2013). The particle-polishing program in RELION (Scheres,
2014) would then extend this to a continuous radiation-
damage weighting scheme. This approach used a relative
B-factor model (based on the temperature factors that are
commonly used in X-ray crystallography) to describe the
signal fall-off with resolution. Later, building on the idea of a
critical exposure by Unwin & Henderson (1975) and early
calculations and measurements of this exposure by Hayward
& Glaeser (1979) and Baker & Rubinstein (2010), Grant and
Grigorieff measured a more precise exponential damage
model from a reconstruction of a rotavirus capsid (Grant &
Grigorieff, 2015). The latter is currently in use in many
programs.

In this paper, we describe a new method, which we have
termed Bayesian polishing and which has been implemented
in the RELION package. This method still uses the original
B-factor model for the relative weighting of different spatial
frequencies in different movie frames, although we do propose
a new method to estimate the B factors. We chose the B-factor
model because, as opposed to the exponential model of Grant
and Grigorieff, it allows us to model both radiation damage
and any residual motion that is not corrected for. However, as
the B factors can only be determined once the motion has
been estimated, we do use the exponential model during the
initial motion-estimation step.

The two main disadvantages of the motion-estimation
process in the original particle-polishing algorithm in RELION
that prompted these developments were the absolute
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temporal smoothness assumption and the feed-forward nature
of the fitting process: a linear path that best fits the estimated
noisy positions might not be the linear path that leads to the
greatest overall consistency with the observed data. In other
words, the per-frame maxima are picked prematurely. This is
illustrated in Fig. 1. The same is also true for the spatially
smooth velocity field that results from the averaging of
multiple such linear trajectories. The motion-estimation
method that we propose in this paper overcomes both of these
disadvantages.

2. Materials and methods

In the following, we will discuss the different components of
our proposed Bayesian polishing approach. We will begin by
describing the motion model and the motion-estimation
process in Section 2.1. After that, we will explain how the
parameters for our prior, ie. for the statistics of motion, are
determined in Section 2.2. Although these have to be known
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in order to estimate the most likely motion, we chose to
describe their determination afterwards, since its under-
standing requires knowledge of the actual motion model. We
then describe the process of measuring the relative B factors
and recombining the frames in Section 2.3, and we conclude
this section with a description of our evaluation process in
Section 2.5.

2.1. Motion estimation

2.1.1. Outline. The central idea behind our motion esti-
mation consists of finding a set of particle trajectories in each
micrograph that maximize the a posteriori probability given
the observations. Note that we assume that a reference map,
the viewing angles and defoci of the particles, and the para-
meters of the microscope are known by this point.

Formally, we express the particle trajectories as a set of
positions s, , € IR? for each particle p € {1... P} and frame f €
{1...F}. The corresponding per-frame particle displacements
are denoted by v, ;= 5,1 — Spsfor fe {1...F — 1}. We will

@

A simulated example illustrating the issue of premature maximum picking. (a) A Gaussian representing the cross-correlation between the reference and
the observation of a particle. (b) This cross-correlation distorted by Gaussian white noise of realistic intensity for the cross-correlation between a noise-
free reference and one observed frame of one single particle (o = 2; the circle indicates the maximum). (¢) The average over 100 such noisy functions and
its maximum. (d) The maxima of those 100 noisy functions (small circles) and their average (large circle). Note how the average of the noisy maxima (d)
is much further from the true maximum than the maximum of the average (c¢). Our proposed method avoids picking individual maxima of noisy
functions; it instead aims to maximize the cross-correlations of all particles and the prior smoothness assumptions simultaneously.

IUCr) (2019). 6, 5-17

Jasenko Zivanov et al. « Bayesian particle polishing 7



research papers

refer to v, s as per-frame velocities in the following, since they
are equal to the mean velocities between the two frames if
time is measured in units of frames.

Lets={s,/Ap €{l...P}, fe {l...F}} denote the set of all
particle trajectories in a micrograph. The a posteriori prob-
ability PAp(s|obs) of these trajectories given the observations
obs is then given by Bayes’ law,

PAP(S|0bS) X Pprior(S)Pobs(Obs|S)7 (1)

where the term Pp,.(s) describes the prior probability of this
set of trajectories and is described by the statistics of motion,
while P(slobs) describes the probability of making the
observations obs given these trajectories.

We will first describe our motion model that gives rise to
Pprior(s) in Section 2.1.2 and then the observation model that
defines P(s|obs) in Section 2.1.3.

2.1.2. The motion model. We model particle motion using
Gaussian process (GP) regression. GPs have been in use by
the machine-learning community for decades (Rasmussen,
2004), and they have found applications in the fields of
computer vision (Liithi ez al., 2018), computer graphics (Wang
et al., 2008) and robotics (Nguyen-Tuong et al., 2009).

Formally, a GP is defined as a distribution over the space of
functions f(x) such that for every finite selection of x; the
corresponding f(x;) follow a multivariate normal distribution.
A GP can therefore be thought of as an extension of the
concept of a multivatiate normal distribution to cover the
(infinitely dimensional) Hilbert space of functions. Although
the term ‘process’ suggests x to be a one-dimensional time
variable, a GP can in fact be defined over any domain. In our
case, we use the particle positions in the micrograph (i.e. a
two-dimensional plane) as that domain, while the function f(x)
will be used to describe the velocity vectors of particles.

In its most general form, a GP is defined by a mean p(x) and
a covariance function C(x;, x,). In our specific case, we will
assume the mean velocity to be zero, and we will work with
homogeneous GPs, where the covariance between two points
x; and x, depends only on their distance d = |x, — x;|. We will
use the GP to enforce spatial smoothness of the motion
vectors. This means that the covariance C(d) between two
velocity vectors will be greater for particles that are closer
together.

Specifically, the covariance between the velocities of two
particles p and ¢ is modelled by the exponential kernel,

C(VP, Vq) = 0"2, exp(—|sp — sq|/ch), )

where oy describes the expected amount of motion, while o
describes its spatial correlation length. We use a single value of
oy and of op for all micrographs in the data set. Since the
overall beam-induced motion of the particles is generally far
smaller than their mutual distance (a few angstroms
versus hundreds of angstroms), we chose to compute the
covariance based on the initial particle positions alone: this is
why the subscript fis missing in (2).

We can write the covariances of all particles C(v,, v,) into a
P x P covariance matrix Xy, which then describes the per-
frame multivariate normal distribution of all velocity vectors

Vs As is common in GP regression, we perform a singular-
value decomposition on oy to obtain a more practical para-
metrization for our problem:

%, = UAW". 3)

This allows us to define a set of basis vectors b; = AYw,, where
%; € R is the ith singular value and w; € R” is its associated
singular vector (i.e. column of W or row of W’). For each
frame, the x and y components of the velocity vectors v, of all
particles p can now be expressed as linear combinations of b;
with a set of P coefficients c;:

v =3, v =3 b, “)
i i

In this parametrization, the per-frame joint likelihood of this
set of velocities has a particularly simple form:

o) = @n " exp(~3 T lal ). )

For this reason, we use F' — 1 sets of coefficients c;; as the
unknowns in our problem. Since the ¢; only describe the
velocities, they only determine the positions s, up to a per-
particle offset. The complete set of unknowns for a micro-
graph therefore also has to include the initial positions s,.
The initial positions have no effect on the prior probability,
however.

Formally, for c; ;= [cE—f}), csf'f)
a function of all ¢;; by

17, the positions are then given as

=1
Spp = Spo T Vp.£ (©)
=]
-1 P
=s,0+ fZl 2; bic; p. 7

So far, we have only modelled the spatial smoothness of the
motion. To impose temporal smoothness, we define the
complete prior probability as

Pprior(c) = Pspace(c)Plime(C)’ (8)
with
F
Pspace(c) = H Pf(C)v (9)
f=1
F=1 P v, —v, o)
Pijme(€) = exp( —5 L= |, (10)
! fE[z pljl 270} p( 2 %

where o, is the third and final motion parameter that
describes the average acceleration of a particle during a frame,
i.e. the standard deviation of the change in velocity between
two consecutive frames. Again, we use a single value of o4 for
all micrographs in the data set.

The temporal smoothness term Pj,,. corresponds to that
proposed by Rubinstein & Brubaker (2015) for individual
particles. From the orthogonality of the basis b, it follows that
in our parametrization
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P time (C)

F-1 P 1rle r —e oo ]?
- L| if . if 1| ) (11)
f2,1 2 O'A

The motion model could in principle be made more precise,
for example by adding parameters to describe the observation
that particles tend to move faster in early movie frames.
However, the increased dimensionality would lead to a
significant increase in the computational cost of the parameter
hyper-optimization scheme described in Section 2.2, rendering
the approach less practical.

2.1.3. The observation model. In the following, we will
derive the observation likelihood Pps(0bs|x). Since we assume
a three-dimensional reference map, the viewing angles and the
microscope parameters to be known, we can predict the
appearance of a particle using the reference map (Scheres,
2012). This is performed by integrating the reference map
along the viewing direction, which can be accomplished effi-
ciently by extracting a central slice in Fourier space and then
convolving the resulting image with the known contrast
transfer function (CTF).

To maintain the nomenclature from previous RELION
papers, we denote pixel j € N of frame f of the experimental
image of particle p by X,,(j) and the same pixel in the
prediction by V,.(j). The spectral noise power is measured
from all X in a micrograph, and both X and V are filtered in
order to whiten the image noise (i.e. decorrelate the noise
between the pixels) and to scale it to unit variance. In addition,
we use the exponential damage model (Grant & Grigorieff,
2015) to suppress the high frequencies in the later frames in V.

By assuming that the noise in the pixels is Gaussian and
independent, it follows that

P yps(0bs]s) o [T eXp{ S, () =V, G —Sp,f)]z}

pfiJ

= exp{—% Z.[Xp’f(/’) -V, (- sp!f)]Z } (12)
Pl
Since the prediction V is zero outside the molecule, the image
area over which this sum is evaluated only influences the scale
of P, and not its shape. In practice, we cut out a square from
the micrograph that contains the molecule (including a certain
amount of padding around it to account for its motion) and
evaluate P,y on that square.
In order to evaluate P, (obs|s) efficiently for different
hypothetical particle positions s, we use the following identity:

Z[Xp,f(]) - Vp,f(j - S[/),f)]2 (13)
= 2 X, 0V, =5, + K (14)
- 2cc )+ K, (15)

where CC, ; denotes the cross-correlation between X, and
V,» which is computed for a Cartesian grid of integral s
simultaneously via a convolution in Fourier space. The
constant offset K merely scales the resulting probability P,
so it does not alter the location of the maximum of Pap =
PpriorPobs: We can thus define

P F
nbs(ObS|S) = exXp [Z ; C pf(sp f):| (16)

To determine the values of CC,; at fractional coordinates, we
apply cubic interpolation. This ensures a continuous gradient.

2.1.4. Optimization. To avoid numerical difficulties, we
maximize Pup(sjobs) by instead minimizing its doubled
negative log, Exp = —2log(Pap). The doubling serves to
simplify the terms. All of the products in P5p become sums in
E Ap, yielding

EAP(S|ObS) = Eprior(x) + E:)bs(Obs|s)
Espace(s) + Etime(s) + E;bs(ObSLY)f (17)

where the terms Egyace, Eime and Eqps are defined analogously.
Inserting the terms defined in Sections 2.1.2 and 2.1.3 yields

Esp(c, solobs) = Z Z |sz|

f=1i=1

+ _22 Z)‘i|ci,f ci,f—1|2
O3 =2 i=1
F P
- 21200, Iy el (19)
—1p=

The expression in (18) is differentiated with respect to the
coefficients c;; and initial positions s, for all i and f, and the
combination that minimizes E4p(c, sglobs) is determined using
the L-BFGS algorithm (Liu & Nocedal, 1989). In order to
avoid overfitting, all particles are aligned against a reference
computed from their own independently refined half-set
(Scheres & Chen, 2012).

2.2. Parameter estimation for the statistics of motion

The estimation procedure described in Section 2.1 requires
three parameters (oy, op and o4) for the prior that encap-
sulate the statistics of particle motion. Since the precise
positions of the particles can never be observed directly,
measuring these statistics requires performing a process of
hyper-optimization, ie. optimizing motion parameters that
produce the best motion estimates. This renders the entire
approach an empirical Bayesian one. The simplest solution
would be to perform a complete motion estimation for each
hypothetical triplet of motion parameters. As the motion
estimation usually takes multiple hours on a nontrivial data
set, this would become prohibitive for a three-dimensional
grid of parameters.

Instead, we estimate the optimal parameters using the
following iterative procedure. Firstly, we select a representa-
tive random subset M of micrographs that contain at least a
pre-defined minimal number of particles (25000 in our
experiments). We then perform the following three steps
iteratively.

(i) Choose a hypothetical parameter triplet oy, op and o 4.

(ii) Align all micrographs in M using these parameters.

(iii) Evaluate the parameters.

IUCr) (2019). 6, 5-17
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The iterations are performed using the Nelder-Mead uphill
simplex algorithm (Nelder & Mead, 1965), which does not rely
on the function over which it optimizes being differentiable.

In order to evaluate a parameter triplet, we perform the
alignment only on a limited range of spatial frequencies (the
alignment ~circle, {k € N*,|k|<T}). The remainder of
frequencies, the evaluation ring {|k| > T}, is used to evaluate
this alignment. To avoid overfitting, i.e. to retain a strict
separation of the two half-sets, we perform the alignment
against a reference obtained from the half-set to which the
respective particle belongs. For the evaluation, we use a
reference obtained from the opposite half-set to avoid the
particle ‘finding itself’” (Grant & Grigorieff, 2015) in the
reference. Note that the latter does not incur any risk of
overfitting, since the alignment is already known by the time it
is evaluated, and the small number of parameters (i.e. three
values) leaves no room for overfitting.

The partition of frequency space into an alignment circle
and an evaluation ring is necessary: if the alignment and the
evaluation were to be performed on the same frequencies %,
then a weaker prior would always produce a greater correla-
tion than a stronger one. Note that this would happen in spite
of splitting of the particles into independent half-sets, because
an insufficiently regularized alignment will align the noise in
the images with the signal in the reference, while the two
references share the same signal in the frequency range in
which they are meaningful.

The evaluation itself is performed by measuring what we
propose to call the thick-cylinder correlation [TCC(x) € R]
between the aligned images and the reference,

Z Re [Xﬂl,p.f(k)f/:;z,p,f,s(k)]

W
TCC(s) = 7
Z j\(m,p,f(k)|2 Z ‘A/m,p,ﬂs(k)lz
mp.f.k mp.f.k
|k|>T |k|>T
(19)

where )A(m,p_f(k) and Am’p_f_s(k) € C are the Fourier-space
amplitudes of frequency k of the observed image and the
prediction, respectively. The indices denote frame f of particle
p in micrograph m € M. The prediction IA/m.P,f,S.(IAc) has been
shifted according to the estimated s,,,5 ie. V,, (k) =
exp(—2mi(s, k))V,, , (k). The asterisk indicates complex
conjugation and () indicates a two-dimensional scalar product.

2.3. Damage weighting

Once the frames of a movie have been aligned, we compute
a filtered average over them that aims to maximize the signal-
to-noise ratio in each frequency. In the original particle-
polishing method (Scheres, 2014), the proposed image-
recombination approach was based on relative B factors. We
use the same approach here, but we propose a more practical
and more robust means of estimating the relative B factors.

The original technique required the computation of two full
three-dimensional reconstructions from particle images of
every frame, one for each independently refined half-set. In a

typical data set comprising 40 frames, this would amount to
computing 80 individual reconstructions, which requires days
of CPU time. The two corresponding reconstructions would
then be used to determine the Fourier shell correlation (FSC)
in order to estimate the spectral signal-to-noise ratio (SSNR)
of the three-dimensional reconstruction.

Our new method is more practical in that it avoids the
computation of these three-dimensional reconstructions.
Instead, we directly measure the correlation between the
aligned frames and the reference as soon as the particles in a
movie have been aligned. This is performed by evaluating
what we have termed the Fourier-cylinder correlation
FCC(f, k) for each frame index f and Fourier shell «. This
amounts to correlating the set of Fourier rings of radius «
against the reference for all particles simultaneously, hence
the term Fourier cylinder.

Formally, the FCC is defined as

> Re[X,,, (V. (0)]

mp.k
k—x|<0.5

FCC(f,x) =

172>

Y X, P | X WV, R

mop.k mp.k
k—x]|<0.5 Jk—x]<0.5

(20)

for k and k given in pixels. It can be evaluated by iterating over
the data set only once, updating the three sums in (20) for each
particle in each micrograph.

The FCC allows us to estimate the SSNR of the aligned
images themselves, not of the three-dimensional reconstruc-
tions. The fact that these SSNR values are different is of no
concern, as we are only interested in their relative change as a
function of frame index f. Since the value of each voxel of a
three-dimensional reconstruction is an average over the pixels
from many images, the relative change in the SNR of that
voxel over time is the same as for the corresponding pixels.

Once the FCC has been determined, we proceed to fit the
relative B factors. This is performed by finding a Byand C,e R
for each frame fand a D, € R for each frequency ring « that
minimize

f [FCC(f, ) — D, exp(C; + 4B,*)]". 1)

Here, the coefficients D, are nuisance parameters that
encapsulate the amount of signal in the reference in each
frequency band k. This allows the B, and C; factors to only
express the variation in signal over the frame index f. The D,
are higher for frequencies that are more prominent in the
structure (such as those of a-helices) and they are zero beyond
the resolution of the current reference map. In the previous
particle-polishing formulation, the D, correspond to a Gaus-
sian over k given by the average B factor. The coefficients B,
and C; maintain the same meaning as in the previous formu-
lation, i.e. the change in high-frequency information and
overall contrast over time, respectively. An illustration of the
model is shown in Fig. 2.
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The factors By, Cr and D, are estimated iteratively by first
finding the optimal D, for each « given the current B;and C,
and then the optimal B; and C; given the current D,. The
optimal D, can be determined linearly, while the Byand C,are
found through a recursive one-dimensional search over By; the
optimal C for a given By can also be determined linearly. In
our implementation, the entire procedure is run for five
iterations, and it typically takes less than a second to complete.

The final weight of each Fourier-space pixel is then given by

exp(Cy + 4B«*)
Weer = Y exp(Cp 4 4Bpk?)
- .

(22)

2.4. Implementation

The motion-estimation algorithm has been implemented
using MPI, allowing it to align multiple micrographs in parallel
on different computers. The processes that are run on each of
these computers are further parallelized using OpenMP, which
allows the user to exploit all of the available CPU cores on all
of the available computers at the same time. Although it is also
possible to align multiple micrographs on the same computer
simultaneously by running multiple MPI processes there, we
discourage this since it requires each of those processes to
maintain its own data in memory. If the multiple CPU cores of
the same computer are instead allowed to cooperate in

»
>

0.05

8A7TAG6A SA 4A 3A

f
)

Figure 2

An illustration of FCC-based B-factor fitting using the B-galactosidase
data set as an example (best viewed in colour). (a) The FCC computed
using (20) as a function of spatial frequency « and frame f. (b) A fit of By,
Crand D, according to (21) with plots of Byand D, shown in relation. (c)
The same fit with all D, set to 1 (i.e. the numerator of equation 22). (d)
The normalized weights w,; as given by (22). The asterisk indicates a
multiplication.

aligning the same micrograph, then the memory is only taken
up once.

The memory footprint of the motion-estimation algorithm
consists primarily of the two three-dimensional reference
maps (one for each independently refined half-set) and the
pixels of the micrograph that is currently being processed. In
most cases, this requires approximately 20 GB of memory for
each MPI process.

Owing to its iterative nature, the parameter hyper-
optimization algorithm does not allow MPI parallelization.
Furthermore, in order to avoid loading the subset of micro-
graphs from disk in each iteration, all of the necessary data are
stored in memory. For this reason, the memory footprint of the
parameter hyper-optimization algorithm could exceed 60 GB
for the 25 000 particles used in our experiments. Although a
smaller number of particles does reduce this footprint, it also
renders the estimated optimal parameters less accurate.

Finally, in order to save disk space, the entire motion-
estimation pipeline supports micrographs stored as
compressed TIFF images. Such images contain the integral
numbers of counted electrons for each pixel, which enables
very efficient compression, usually by a factor of about 30.
Owing to the integral pixel values, an external gain reference
has to be provided if such TIFF images are being used.

2.5. Experimental design

We evaluated Bayesian polishing on three publicly available
data sets that cover a range of particle sizes: the Plasmodium
falciparum cytoplasmic ribosome (EMPIAR 10028), Escher-
ichia coli B-galactosidase (EMPIAR 10061) and human
y-secretase (EMPIAR 10194). For all three cases our group
has previously published structures calculated using the
original particle-polishing approach (Wong et al, 2014;
Kimanius et al., 2016; Bai et al, 2015). We used the same
particles and masks for both polishing and the final high-
resolution refinement as were used in those papers. Further
information on these data sets is shown in Table 1.

The experiments were set up as follows. Firstly, the input
movies were aligned and dose-filtered using MotionCor2
(Zheng et al., 2017). From these aligned micrographs, particles
were extracted and an initial reference reconstruction was
computed using the three-dimensional auto-refinement
procedure in RELION (Scheres, 2012). Using this reference
map, the three parameters that describe the statistics of
motion (oy, op and o4) were determined for each data set,
and the Bayesian polishing algorithm was run on the original,
unaligned micrographs. One set of B factors were estimated
for an entire data set, assigning one B-factor value to each
frame index. Using these, a set of motion-corrected and
B-factor-weighted particle images were computed, called
shiny particles in RELION, which were then used for a second
round of three-dimensional auto-refinement to produce a final
map.

Since the official UCSF implementation of MotionCor2
does not output motion that can be easily interpolated at the
positions of the individual particles, we have written our own

IUCr) (2019). 6, 5-17

Jasenko Zivanov et al. - Bayesian particle polishing 11



research papers

Table 1

Properties of the three data sets.

The two entries in the ‘No. of particles’ column refer to the numbers used during motion estimation and
refinement, respectively.

Ribosome
B-Galactosidase
y-Secretase

Mass

3.2 MDa
464 kDa
140 kDa

Franle dose
(e" A7)

1.00
1.18
2.00

16
38
20

Average
defocus (um)

2.0
1.0
1.9

No. of particles

105248/105248
120516/108210
412275/159550

version of MotionCor2. The two imple-
mentations are not completely identical.
Specifically, our version lacks the fall-
back mechanism of considering larger

Pixel size  Box size tiles if the signal in a tile is insufficient,
() (pixels) and it only estimates one set of poly-
1.340 360 nomial coefficients for the entire frame
0.637 384 range, while the UCSF implementation
1.400 180

Table 2
Optimal parameter values used for motion estimation.

The values of oy and 0, are normalized by fractional dose (measured in
e~ A7), so they are given in A/(e” A~?). The values of o, are given in A.

oy op o4
Ribosome 1.17 28650 1.6
B-Galactosidase 0.66 3300 1.5
y-Secretase 0.57 10710 3.0
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Figure 3

Example trajectories using our own version of MotionCor2 (left) and
Bayesian polishing (right) for the ribosome (top), p-galactosidase
(centre) and y-secretase (bottom). Particle motion is scaled by a factor
of 30. The blue dot indicates the start of the trajectory.

always estimates two. In Section 3.4, we
will show direct comparisons of the
FSCs resulting from the two versions to confirm that they give
similar resolutions of the final reconstructions.

The particle trajectories for the Bayesian polishing were
initialized with the motion estimated by our version of
MotionCor2. This initialization does not appear to be strictly
necessary, however, since in most cases the Bayesian polishing
algorithm converged to the same optima if initialized with an
unregularized global trajectory. On the B-galactosidase data
set, for example, 90% of the final particle positions showed a
difference of less than 10~ pixels as a result of initialization.

The resulting maps were compared with those obtained
from both versions of MotionCor2 and with the previously
published results. Since the resolution of the resulting maps is
influenced by many different factors beyond particle motion,
we assume that the estimated relative B factors reflect the
efficacy of motion estimation more reliably than the resolution
alone. For this reason, we have also compared the estimated B
factors with those obtained from our version of MotionCor2
and with the previously published B factors. A B-factor
comparison with the UCSF version of MotionCor2 is not
possible, since the particle trajectories are not readily avail-
able.

3. Results and discussion
3.1. Motion parameters

The motion parameters were estimated as described in
Section 2.2. The results are shown in Table 2. We used 25 000
randomly selected particles to estimate the parameters.
Performing these calculations multiple times showed that the
random subset of micrographs that was used to select the
25000 particles did affect the outcome of the actual values.
Specifically, subsets containing micrographs that exhibited a
large amount of stage drift would produce a simultaneous
increase in the values of oy and op, i.e. stronger and spatially
smoother motion. Nevertheless, the choice among different
such parameter triplets did not have a measurable impact on
the resolution of the resulting reconstructions (results not
shown). We assume that stage drift is also the most important
reason behind the difference in parameter values among the
three data sets, although other reasons might include the size
of the molecule and the thickness of the ice.

3.2. Motion

Using the motion parameters from Table 2, we estimated
the motion trajectories for all particles in the three data sets.
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These calculations took 128 CPU hours for the ribosome and
778 CPU hours for S-galactosidase on 3.0 GHz Intel Xeon
cores, and 1464 CPU hours for y-secretase on 2.9 GHz Intel
Xeon cores. This is comparable to the computational cost of
the existing movie-refinement implementation in RELION.
Examples of trajectories estimated by Bayesian polishing and
our implementation of MotionCor2 are shown in Fig. 3. A
qualitative comparison suggests that they describe the same
motion, although they differ in the details. The difference is
the most pronounced for B-galactosidase, where the motion
statistics correspond to very incoherent motion (i.e. a low op).
In addition, the trajectories from Bayesian polishing are
smoother than the trajectories from MotionCor2. This is owing
to the fact that the global component of the motion is not
regularized in MotionCor2. The latter has probably no real
impact on the resolution of the reconstruction, since the
irregularities are far smaller than one pixel. However, quan-
titative statements about the quality of motion estimation can
only be made once a full reconstruction has been computed.
This will be performed in Section 3.4.

3.3. B factors

From the particle trajectories estimated by both Bayesian
polishing and our implementation of MotionCor2, we
computed the FCCs as defined in equation (20), and from
these the By, Cyand D, factors. Since the three sums in (20) are
updated after the alignment of each micrograph, once all of
them have been aligned, the computation of the B factors only
takes fractions of a second. In the previous particle-polishing
implementation, this step would take up multiple days of
additional CPU time to calculate two half-set reconstructions
for each movie frame. A comparison between the B factors
obtained by the two methods are shown in Fig. 4. A compar-
ison with the previously published B factors is shown on the
left-hand side of Fig. 5.

Generally, a set of relative B factors can be shifted by a
constant offset without altering the resulting pixel weights.
Such a shift corresponds to multiplying the D, factors by a
Gaussian over «, and it cancels out when the division in (22)
is performed. In order to make a meaningful comparison
between the B factors for motion estimated by Bayesian
polishing and MotionCor2, we have estimated both sets of B
factors with the same D, factors. This is equivalent to treating
the movie frames aligned using Bayesian polishing and those
aligned using our implementation of the MotionCor2 algo-
rithm as a movie of twice the length. As can be seen in Fig. 4,
the B factors from Bayesian polishing are better over all
frames for all three cases. The average improvement in B
factor over all frames is 9 A% for the ribosome, 26 A2 for
B-galactosidase and 15 A? for y-secretase. These increases
suggest that more high-resolution signal is present, and hence
that Bayesian polishing models motion more accurately than
the MotionCor2 algorithm. We will confirm this in the
following section.

To confirm that our new technique of estimating B factors
does not yield systematically different B factors from the

original method (Scheres, 2014), we also calculated the B
factors using the original method but with the trajectories
from Bayesian polishing for comparison. These plots are
shown on the left-hand side of Fig. 5 and they indicate that the
new technique produces values that are close to those
obtained through the old technique. The similarity between
the two curves is especially striking for the ribosome data set
(top left in Fig. 5), where the image contrast is the strongest.
The greater smoothness of the curve obtained through the
new technique in the B-galactosidase plot (centre left in Fig. 5)
indicates that the new technique is more robust than the old
technique. This is to be expected, since the linear Guinier fit
applied by the old technique (Scheres, 2014) has to rely on the
frequency range in which the FSC is sufficiently large, and this
range can become very small in later frames.

3.4. Resolution

Finally, the gold-standard FSCs are compared with those
from the two MotionCor2 implementations in Fig. 6 and with

— Bayesian polishing

—100F | - Our MotionCor2 ]
7120 C Il 1 Il 1 Il 1 Il 1 Il 1 Il L Il L T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frame

(@

—-100
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)

D) e 7
_ B .

-100 ) . ]
~120 — Bayesian polishing
—140L] Our MotionCor2 3
-160F ‘ L : -
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c

Figure 4 ©

Relative B factors for the ribosome (top), S-galactosidase (centre) and
y-secretase (bottom). The two sets of B factors share the same D, factors,
making their relative vertical position meaningful. The observation that
the B factors from the Bayesian polishing are higher than those from our
MotionCor2 implementation suggest that Bayesian polishing models the
motion more accurately.
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Figure 5
Comparison to previously published results for the ribosome (top), S-galactosidase (centre) and y-secretase (bottom). Left: relative B factors. Unlike in
Fig. 4, the vertical positions of these curves are arbitrary: only their shapes hold any meaning. The continuous black and dotted grey lines correspond to
the same motion estimate, but they have been determined using the new and the old B-factor estimation techniques, respectively. Their similarity
indicates that the new technique estimates the same B factors as the old technique, albeit in a more robust way. The dashed blue line corresponds to
previously published B factors. Note the stark improvement at the beginning of the sequence. Right: FSC curves comparing the new results with the
previously published results. Note that the old polishing approach estimated the motion as superimposed over that estimated by another, reference-free
method, while Bayesian polishing always works on the raw unaligned micrographs and aims to model the entire motion by itself.
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the previously published results on the right-hand side of
Fig. 5.

The FSCs were measured under the same solvent mask as
had been used in the three previous publications, and the
effects of mask-induced correlation were corrected for
through phase randomization (Chen et al., 2013) using the
post-processing program in RELION. To further improve
their precision, the resolutions indicated in the figures were
measured as the resolutions at which the linearly interpolated
FSCs cross the 0.143 threshold.

As can be seen in the FSC plots, Bayesian polishing leads to
an increase in resolution over both MotionCor2 and the
previously published results in all three cases. The increase
over MotionCor2 is the greatest for the f-galactosidase data
set. We assume that this is because this data set extends to
higher resolution than the other two data sets, and Bayesian
polishing makes more efficient use of the high spatial
frequencies by comparing the noisy movie frames with high-
resolution reference projections. This assumption is further
supported by the fact that S-galactosidase is also the only data
set on which traditional polishing applied after Unblur
produces a better reconstruction than running MotionCor2

0.6

0.4 UCSF MotionCor2 (3.12 A)
G e Our MotionCor2 (3.13 A)
— Bayesian polishing (3.12 A)

0.2+
0.143
0 E 1 I I I
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Figure 6

Gold-standard FSC plots for the ribosome (top), B-galactosidase (centre)
and y-secretase (bottom). The values in parentheses indicate the 0.143
FSC resolution. The continuous orange line results from the official
UCSF implementation of MotionCor2 and the dotted black line from our
own implementation.

alone. Compared with our previously published results, the
increase in resolution is highest for the ribosome data set. We
assume that this is because of the high molecular weight of
these particles, which allows precise modelling of the motion
tracks. The y-secretase data set yields the smallest increases in
resolution in comparison with both MotionCor2 and our
previous results. Possible reasons for this will be discussed in
the following.

We have also analysed the resolution of the resulting
reconstructions as a function of the number of particles, as
proposed by Rosenthal & Henderson (2003). These plots are
shown for both our results and those obtained from the UCSF
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Figure 7

Plot of the inverse-squared resolution as a function of the number of
particles, as proposed by Rosenthal & Henderson (2003), for the
ribosome (top), B-galactosidase (centre) and y-secretase (bottom). The
horizontal distance between the curves describes the fraction of the
number of particles required to obtain the same resolution with Bayesian
polishing as with the UCSF implementation of MotionCor2. The
indicated distances correspond to 66%, 30% and 60% of the particles,
respectively. Note that the horizontal distance shrinks to zero at the right-
hand edge of the y-secretase plot. This implies that the y-secretase data
set is limited by additional effects at high resolutions.
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implementation of MotionCor2 in Fig. 7. They indicate that in
order to reach the same maximum resolution with Bayesian
polishing as with the UCSF implementation of MotionCor2,
only 66% of the particles are needed for the ribosome and
as few as 30% of the particles for p-galactosidase. For
y-secretase, only 60% of the particles are needed to reach the
same intermediate resolutions, although the same numbers of
particles are required to obtain the maximum resolution. This
suggests that at high resolutions, y-secretase is limited by
additional effects beyond the experimental noise and the
uncertainty in particle alignment. Such effects could include
molecular heterogeneity, anisotropic magnification, an insuf-
ficient particle-box size or variations in microscope para-
meters across the data set. The latter is especially likely since
this data set was collected in six different sessions over a time
span of half a year.

4. Conclusions

We have presented Bayesian polishing, a new method for the
estimation of particle motion and of the corresponding per-
frame relative B factors. We have compared our method with
MotionCor2 and with the previously existing particle-
polishing method in RELION on three publicly available data
sets. In all three cases, Bayesian polishing led to an increase in
resolution over both alternatives. Since the FSC-based reso-
lution estimates are influenced by many other factors besides
particle motion, the accuracy of motion estimation was also
measured by comparing the estimated relative B factors. We
have shown that Bayesian polishing produces better B factors
than our implementation of MotionCor2 for all frames of all
data sets, with an average improvement over all three data sets
of 16 Az, while the achieved resolution after refinement shows
that our implementation of MotionCor2 is comparable to the
official UCSF implementation. The comparison of the shapes
of our new B-factor curves with our previously published
curves suggests that Bayesian polishing captures significantly
more of the initial motion than the existing particle-polishing
method in RELION. This allows the use of almost as much
high-resolution data from the first few movie frames as from
the intermediate movie frames, thereby obviating the need for
the practice of discarding the first few movie frames (Li et al.,
2013). Finally, we have shown that the new FCC-based tech-
nique of estimating B factors measures the same B factors as
the existing particle-polishing method, but much faster and
more robustly.

We have also presented a method that enables the user to
determine the optimal parameters governing the statistics of
motion. Since the final resolution of the resulting recon-
structions appears to be relatively insensitive to these para-
meters, and the parameter hyper-optimization algorithm
requires considerable amounts of memory, we do not neces-
sarily recommend estimating new parameters for each data
set. Instead, we expect that use of the default values should
produce similar results, unless the data set has been collected
under unusual conditions. For example, re-estimating the

motion parameters may be necessary for data sets that exhibit
a much smaller fractional electron dose or significantly thinner
or thicker ice, or if special grids are used that are designed to
minimize beam-induced motion.

Bayesian polishing has been implemented as part of the
open-source release of RELION-3.0. The new implementation
no longer requires the storage of aligned micrograph movies
or movie particles, and is capable of performing on-the-fly gain
correction on movies stored in compressed TIFF format.
Thus, the new implementation strongly reduces the storage
requirements of performing particle polishing in RELION.
Because the new method has outperformed the previously
existing particle polishing in all tests performed, the new
approach replaces the old one in the graphical user interface
(GUI) of RELION-3.0.
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