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Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to
food production. Whether crop yield–related ecosystem services can be maintained by a few dominant
species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 loca-
tions), we partition the relative importance of species richness, abundance, and dominance for pollination;
biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy
richness directly supported ecosystem services in addition to and independent of abundance and domi-
nance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to
richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining
the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem
benefits to society.

INTRODUCTION

Natural and modified ecosystems contribute a multitude of functions
and services that support human well-being (1, 2). It has long been re-
cognized that biodiversity plays an important role in the functioning of
ecosystems (3, 4), but the dependence of ecosystem services on bio-
diversity is under debate.An early synthesis revealed inconsistent results
(5), whereas subsequent studies suggest that a few dominant species
may supply the majority of ecosystem services (6, 7). It thus remains
unclear whether a few dominant or many complementary species are
needed to supply ecosystem services.

The interpretation of earlier studies has been controversial because
multiplemechanisms underlying changes in ecosystem service response
to biodiversity can operate in combination (8, 9). On one hand, com-
munities with many species are likely to include species responsible for
large community-wide effects due to statistical selection. On the other
hand, such diverse communities may contain a particular combination

of species that complement each other in service provisioning. While
these mechanisms imply positive effects of species richness on eco-
system service supply, total organism abundance or dominance of cer-
tain species may also drive the number of interactions benefiting
ecosystem service supply. Depending on the relative importance of spe-
cies complementarity, community abundance, and the role of dominant
species, different relationships between species richness and ecosystem
services can be expected (10).

In real-world ecosystems, natural communities consist of a fewhigh-
ly abundant (dominant species) andmany rare ones. The importance of
richness, abundance, and dominance is likely to be influenced by the
extent to which relative abundance changes with species richness (11)
and by differences in the effectiveness and degree of specialization of
service-providing communities. However, these three aspects of diver-
sity have typically been tested in isolation and mainly in small-scale ex-
perimental settings (12, 13), while a synthetic study contrasting their
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relative importance in real-world ecosystems is still lacking. A major
limitation to resolving these relationships is a lack of evidence from
real-world human-driven biodiversity changes (14, 15), particularly
for ecosystem services in agroecosystems. For instance, changes in rich-
ness and total or relative abundance of service-providing organisms in
response to land-clearing for agriculture (16, 17) could alter the flow of
benefits to people in different ways compared to experimental random
loss of biodiversity.

Over the past half-century, the need to feed a growing world popu-
lation has led to markedly expanded and intensified agricultural pro-
duction, transforming many regions into simplified landscapes (18).
This transformation not only has contributed to enhanced agricultural
production but also has led to the degradation of the global
environment. The loss of biodiversity can disrupt key intermediate
services to agriculture, such as crop pollination (19) and biological pest
control (20), which underpin the final provisioning service of crop

production (21). The recent stagnation or even decline of crop yields
with ongoing intensification (22) indicates that alternative pathways
are necessary tomaintain future stable and sustainable crop production
(23–25). An improved understanding of global biodiversity-driven eco-
system services in agroecosystems and their cascading effects on crop
production is urgently needed to forecast future supplies of ecosystem
services and to pursue strategies for sustainable management (15).

We compiled an extensive database comprising 89 studies that
measured richness and abundance of pollinators, pest natural enemies,
and associated ecosystem services at 1475 sampling locations around
theworld (Fig. 1A).We focused on the ecosystem services of pollination
andbiological pest control because these services are essential to croppro-
duction and have been the focus ofmuch research in recent decades (26).
We quantified pollinator and pest natural enemy richness as the number
of unique taxa sampled fromeach location (field), abundance as thenum-
ber of observed individuals, and evenness (or the complementary term,
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dominance) as the Evar index (27) that reflects the relative abundance
of those taxa. We derived a standardized index of pollination services
using measures of pollination success (fruit set or seed set) and plant
reproduction (pollen limitation) and of pest control services using
measures of natural enemy activity (predation or parasitism rates)
and crop damage (pest activity) (see Materials and Methods). We
z-transformed each measure separately to remove the effect of differ-
ences in measurement scale between indices and inverted values for
those measures where low values indicate positive contribution to eco-
system service (i.e., pest activity).We also characterized the 1-km-radius
landscape surrounding each field by measuring the percentage of
cropland from high-resolution land-use maps. This landscape metric
has been used as a relevant proxy for characterizing landscape simpli-
fication (28, 29) and is often correlated with other indicators of land-
scape complexity (30, 31).

Using a Bayesian multilevel modeling approach, we addressed three
fundamental yet unresolved questions in the biodiversity-ecosystem
function framework: (i) Do richness, abundance, and dominance sus-
tain ecosystem services in real-world ecosystems? (ii) Does landscape
simplification indirectly affect ecosystem services mediated by a loss

of local community diversity? (iii) How strong are the cascading effects
of landscape simplification on final crop production?

RESULTS AND DISCUSSION

We found clear evidence that richness of service-providing organisms
positively influenced ecosystem service delivery. This was detected for
both pollination (Fig. 1B and table S2) and pest control (Fig. 1C and
table S2) and in almost all studies (figs. S1 and S2). As differentmethods
were used in different studies to quantify richness and ecosystem
services, we tested the sensitivity of our results tomethodological differ-
ences. The bivariate relationships between richness and ecosystem
services were robust to the taxonomic resolution to which each orga-
nism was identified, the sampling methods used to collect pollinators
and natural enemies, and the pollination and pest control service mea-
sures used (see Materials and Methods).

The positive contribution of richness to service supply was also
confirmed in a series of path analyses where we partitioned the relative
importance of richness, total abundance, and evenness in driving bio-
diversity–ecosystem services relationships (Fig. 2). Although richness

Fig. 1. Distribution of analyzed studies and effects of richness on ecosystem services provisioning. (A) Map showing the size (number of crop fields sampled) and
location of the 89 studies (further details of studies are given in table S1). (B) Global effect of pollinator richness on pollination (n = 821 fields of 52 studies). (C) Global
effect of natural enemy richness on pest control (n = 654 fields of 37 studies). The thick line in each plot represents the median of the posterior distribution of the
model. Light gray lines represent 1000 random draws from the posterior. The lines are included to depict uncertainty of the modeled relationship.
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showed the larger contribution in both models, we also found a direct
effect of total abundance (Fig. 2, A andB) and evenness (Fig. 2, C andD)
on ecosystem service delivery.While both richness and total abundance
showed a positive effect, evenness had a negative effect, suggesting that
dominant species contribute more strongly to service supply. This inte-
grative assessment of different aspects of community structure revealed
a more multilayered relationship between biodiversity and ecosystem
services than has been previously acknowledged. Our results
complement previous findings for pollination (7, 21, 32) and pest con-
trol (33) and indicate that richness and total and relative abundance are
notmutually exclusive but concurrently contribute to support these two
key ecosystem services to agriculture. Hence, we find strong support for
the role of species-rich communities in supporting pollination and pest
control services.

Furthermore, we found that landscape simplification indirectly af-
fected ecosystem services by reducing the richness of service-providing
organisms. Roughly a third of the negative effects of landscape simpli-
fication on pollination were due to a loss in pollinator richness (Fig. 3A
and table S5). This effect was even greater for pest control where natural
enemy richnessmediated about 50%of the total effect of landscape sim-
plification (Fig. 3B and table S5). A similar pattern was also found
considering abundance in addition to richness. In this case, landscape
simplification indirectly affected ecosystem services by reducing both
richness and abundance of service-providing organisms (fig. S4, A
andB, and table S6). A consistent richness-mediated effectwas also con-
firmed when we tested the direct and indirect effects of landscape sim-
plification on ecosystem services via changes in both richness and
evenness (fig. S4, C and D, and table S7). However, contrary to our ex-

Fig. 2. Direct and indirect effects of richness, total abundance, and evenness on ecosystem services. (A) Path model of pollinator richness as a predictor of pollination,
mediated by pollinator abundance. (B) Pathmodel of natural enemy richness as a predictor of pest control, mediated by natural enemy abundance. (C) Path model of pollinator
richness as a predictor of pollination, mediated by pollinator evenness. (D) Path model of natural enemy richness as a predictor of pest control, mediated by natural enemy
evenness. Pollination model, n = 821 fields of 52 studies; pest control model, n = 654 fields of 37 studies. Path coefficients are effect sizes estimated from the median of the
posterior distribution of the model. Black and red arrows represent positive or negative effects, respectively. Arrow widths are proportional to highest density intervals (HDIs).
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pectation, landscape simplification led to higher pollinator evenness. It
is likely that landscape simplification has stronger effects on more
specialized, rare species and shifts assemblages toward more evenly
abundant,mobile, generalist specieswith a higher ability to use scattered
resources in the landscape (34, 35). These findings, combined with the
larger contribution of richness when tested in combination with even-
ness, suggest that not only dominant species but also relatively rare spe-

cies contributed to pollination services (32, 36). The effect of landscape
simplification on ecosystem services was minimized when not consid-
ering the mediated effect of richness, especially for pest control. We did
not find a direct landscape simplification effect on pest control [all high-
est density intervals (HDIs) overlapped zero; Fig. 3B and table S5].
Together, these results demonstrate strong negative indirect effects of
landscape simplification on biodiversity-driven ecosystem services in
agroecosystems and the importance of the richness and abundance of
service-providing organisms in mediating these effects.

Last, for a subset of the data that had crop production information
(674 fields of 42 studies), we found that the cascading effects of land-
scape simplification, mediated through richness and associated eco-
system services, led to lower crop production. This was detected for
both pollination (Fig. 4A and table S8) and pest control (Fig. 4B
and table S8). Specifically, landscape simplification reduced both pol-
linator and natural enemy richness, which had indirect consequences
for pollination and pest control and, in turn, decreased crop produc-
tion. For pest control, a positive link with crop production was detected
in fields where the study area was not sprayed with insecticides during
the course of the experiment (Fig. 4B) but not when considering all
sites combined (with and without insecticide use; fig. S4). In sprayed
areas, we did not find a pest control effect (all HDIs overlapped zero),
probably because effects were masked by insecticide use (37, 38), in-
dicating that insecticide use undermines the full potential of natural
pest control. A positive link with crop production was detected, al-
though measures used to estimate pest control (natural enemy and
pest activity) were not direct components of crop production, as
was the case of pollination measures (fruit or seed set). We also found
an indirect influence of dominance (Fig. 4 and table S8) but not of
abundance (fig. S4 and table S9) on crop production. However, the
indirect dominance pathway was weaker than that via richness. An
abundance effect may not have been detectable because of the lower
sample size in these submodels with crop production. Although only
available from a subset of the data, this result supports the hypothesis
that the effects of landscape simplification can cascade up to reducing
the final provisioning service of crop production.

Our findings suggest that some previously inconsistent responses of
natural enemy abundance and activity to surrounding landscape
composition (39) can be reconciled by considering richness in addition
to abundance. Although richness and abundance are often correlated,
their response to environmental variation can differ. This was evident in
the path analysis showing a strong effect of landscape simplification on
richness but only a marginal effect on abundance (fig. S3B). Moreover,
effect sizes for natural enemy abundances in individual studies (fig. S5)
showed similarly inconsistent responses to the previous synthesis (39).
Likewise, results for natural enemy activity showed inconsistent re-
sponses to surrounding landscape composition in both syntheses
[Fig. 3B and (39)].

Using an integrative model to assess key ecological theory, we dem-
onstrate that the negative effects of landscape simplification on service
supply and final crop production are primarily mediated by loss of spe-
cies. We found strong evidence for positive biodiversity–ecosystem ser-
vice relationships, highlighting that managing landscapes to enhance
the richness of service-providing organisms (40, 41) is a promising
pathway toward a more sustainable food production globally. In an
era of rapid environmental changes, preserving biodiversity-driven
services will consistently confer greater resilience to agroecosystems,
such that we could expect improved crop production under a broader
range of potential future conditions.

Fig. 3. Direct and indirect effects of landscape simplification on richness of

service-providing organisms and associated ecosystem services. (A) Path
model of landscape simplification as a predictor of pollination, mediated by pollina-
tor richness (n = 821 fields of 52 studies). (B) Path model of landscape simplification
as a predictor of pest control, mediated by natural enemy richness (n = 654 fields of
37 studies). Path coefficients are effect sizes estimated from the median of the pos-
terior distribution of the model. Black and red arrows represent positive and negative
effects, respectively. Arrow widths are proportional to HDIs. Gray arrows represent
nonsignificant effects (HDIs overlapped zero).
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MATERIALS AND METHODS

Database compilation
We compiled data from crop studies where measures of richness and
abundance of service-providing organisms (pollinators or natural
enemies) and associated ecosystem services (pollination and biological

pest control) were available for the same sites. If available, we also in-
cluded information on yield. Studies were identified by first searching
the reference lists of recent meta-analyses (7, 21, 39, 42, 43) and then
directly contacting researchers. For pest control, data were mostly
provided from a recent pest control database (39). Of 191 researchers

Fig. 4. Direct and cascading effects of landscape simplification on final crop production via changes in richness, evenness, and ecosystem services. (A) Path model
representing direct and indirect effects of landscape simplification on final crop production through changes in pollinator richness, evenness, and pollination (n = 438 fields of
27 studies). (B) Pathmodel representing direct and indirect effects of landscape simplification on final crop production through changes in natural enemy richness, evenness,
and pest control [only insecticide-free areas were considered in the model (n = 185 fields of 14 studies)]. Path coefficients are effect sizes estimated from the median of the
posterior distribution of the model. Black and red arrows represent positive and negative effects, respectively. Arrow widths are proportional to HDIs. Gray arrows represent
nonsignificant effects (HDIs overlapped zero).
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initially contacted, 86 provided data that met our criteria. As similar
studies were frequently performed in the same area, occasionally in
the same year, and studies with multiple years usually used different
sites each year, we did not nest year within study. Likewise, some studies
collected data in different crops. Thus, we considered each year ofmulti-
year studies (that is, 10 studies) and each crop ofmulticrop studies (that
is, 5 studies) to be an independent dataset and used study-crop-year
combinations as the highest hierarchical unit. Overall, we analyzed data
from 89 studies and 1475 fields in 27 countries around the world (table
S1). Twenty-nine crops were considered, including a wide array of an-
nual and perennial fruit, seed, nut, stimulant, pulse, cereal, and oilseed
crops. Studies represented the spectrum of management practices, in-
cluding conventional, low-input conventional, integrated pest manage-
ment, and organic farming. Few studies compared differentmanagement
practices in similar landscapes, crop types, or sampled year. In 76% of
fields, pest control experiments were performed in insecticide-free areas.
In some fields, this information was not available (7%) or insecticides
were applied (17%).

Pollinator and pest natural enemy richness and abundance
Studies used a broad range of methods, which we categorized as active
or passive (44), to sample pollinators or natural enemies. Active
sampling methods included netting pollinators seen on crop flowers,
hand-collecting individuals on plants, observational counting, sweep-
netting, and vacuum sampling. Passive samplingmethods weremalaise
traps, pan traps, pitfall traps, and sticky cards. Active sampling was per-
formed in 85% of pollinator sampling fields and in 50% of natural en-
emy sampling fields.

Pollinators included representatives from the orders Hymenoptera,
Diptera, Lepidoptera, and Coleoptera. Bees (Hymenoptera: Apoidea)
were the most commonly observed pollinators and included Apis bees
(Apidae:Apis mellifera,Apis cerana,Apis dorsata, andApis florea), sting-
less bees (Apidae: Meliponini), bumblebees (Apidae: Bombus spp.),
carpenter bees (Apidae: Xylocopini), small carpenter bees (Apidae:
Ceratinini), sweat bees (Halictidae), long-horned bees (Apidae: Eucerini),
plasterer bees (Colletidae), mining bees (Andrenidae), and mason bees
(Megachilidae). Non-bee taxa included syrphid flies (Diptera: Syrphidae),
other flies (Diptera: Calliphoridae, Tachinidae, and Muscidae), but-
terflies and moths (Lepidoptera), various beetle families (Coleoptera),
and hymenopterans including ants (Formicidae) and the paraphyletic
group of non-bee aculeate wasps. Natural enemies included ground
beetles (Coleoptera), flies (Diptera), spiders (Aranea), hymenopterans
including ants (Formicidae) and wasps, bugs (Hemiptera), thrips
(Thysanoptera), net-winged insects (Neuroptera), bats, and birds.

We calculated pollinator and natural enemy richness as the number
of unique taxa sampled per study, method, and field. A taxon was
defined as a single biological type (that is, species, morphospecies, ge-
nus, and family) determined at the finest taxonomic resolution towhich
each organism was identified. In almost 70% of cases, taxonomic reso-
lution was to species level (averaged proportion among all studies), but
sometimes, it was based onmorphospecies (15%), genus (8%), or family
levels (7%). Taxon richness per field varied between 1 and 49 for polli-
nators and between 1 and 40 for natural enemies. Abundance reflected
the sum of individuals sampled per study, method, and field. Pollina-
tor richness was calculated either including or excluding honey bees
(A. mellifera). A. mellifera was considered as the only species within
the honey bee group for consistency across all datasets (43). Other
Apis bees (that is,A. cerana,A. dorsata, andA. florea) were not pooled
into the honey bee category as the large majority of observed individ-

ualswere derived from feral populations. Feral andmanagedhoney bees
were analyzed as a single group because they cannot be distinguished
during field observations. Feral honey bees were uncommon in most
studies except for those in Africa and South America (A. mellifera is
native in Africa, while it was introduced to the Americas). In studies
with subsamples within a field (that is, plots within fields or multiple
sampling rounds within fields), we calculated the total number of indi-
viduals and unique taxa across these subsamples.

We also calculated evenness using the Evar index (27). This index is
based on the variance of log abundances (centered on the mean of log
abundances) and then appropriately scaled to cover 0 to 1 (0,maximally
uneven and 1, perfectly even).

Pollination and pest control services
As different methods were used to quantify pollination or pest control
services across studies, standardization was necessary to put all the in-
dices on equivalent terms. Therefore, we transformed each index y in
each field i in each study jusing z scores.We preferred the use of z scores
over other transformations (for example, division by themaximum) be-
cause z scores do not constrain the variability found in the raw data, as
do other indices that are bounded between 0 and 1. We used the pro-
portion of flowers that set fruit (that is, fruit set), the average number of
seeds per fruits (that is, seed set), or the estimatedmeasures of pollinator
contribution to plant reproduction (that is, differences in fruit weight
between plants with and without insect pollination, hereafter D fruit
weight) as measures of pollination services. We then converted these
measures into the pollination index. The pest control index was
calculated using measures of natural enemy activity or pest activity.
Natural enemy activity was measured by sentinel pest experiments
where pests were placed in crop fields and predation or parasitism rates
were monitored or by field exclosure experiments where cages were
used to exclude natural enemies to quantify differences in pest abun-
dance or crop damage between plants with and without natural
enemies. Pest activity was measured as the fraction or amount of each
crop consumed, infested, or damaged.We inverted standardized values
of pest activity bymultiplying by−1, as low values indicate positive con-
tributions to the ecosystem service.

Crop production
Depending on the crop type, marketable crop yield is valued by farmers
not only in terms of area-based yield but also in terms of fruit or seed
weight [for example, in coffee, sunflower, or strawberry fields; (45, 46)]
or seed production per plant [for example, in seed production fields;
(36)]. Moreover, area-based yield and within-plant yield are often
correlated (35, 36). Thus, we used both area-based yield and within-
plant yield as measures of final crop production. Within-plant yield
was measured by the total number (or mass) of seeds or fruits per plant
or by fruit or seed weight. In addition, in this case, we standardized
variables (z scores) to put all the indices on equivalent terms.

Landscape simplification
Landscapes were characterized by calculating the percentage of
cropland (annual and perennial) within a radius of 1 km around the
center of each crop field. This landscape metric has been used as a re-
levant proxy for characterizing landscape simplification (28, 29) and is
often correlated with other indicators of landscape complexity (30, 31).
Moreover, we used this metric because cropland data are readily acces-
sible from publicly available land cover data and aremore accurate than
other land use types such as forests and grasslands (47), especially when
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detailed maps are not available. The 1-km spatial extent was chosen to
reflect the typical flight and foraging distances ofmany insects including
pollinators (48, 49) and natural enemies (50, 51). For studies where this
information was not supplied by the authors, land uses were digitized
using GlobeLand30 (52), a high-resolution map of Earth’s land cover.
The derived land cover maps were verified and, if necessary, corrected
using a visual inspection of satellite images (Google Earth). We then
calculated the percentage of cropland within the radius using Quan-
tum GIS 2.18 (Open Source Geospatial Foundation Project; http://
qgis.osgeo.org). The average percentage of cropland was 67.5% for
pollination studies and 41.5% for natural enemy studies.

Data analysis
Data standardization
Before performing the analyses, we standardized the predictors
(abundance, richness, and landscape simplification) using z scores
within each study. This standardization was necessary to allow
comparisons between studies with differences in methodology
and landscape ranges (53). Moreover, this allows the separation
of within-study effects from between-study effects. This separation
is important because it prevents the risk of misinterpreting the
results based on studies differing in methodology and landscape
gradients, by erroneously extrapolating from between-study effects
to within-study effects or vice versa (54, 55).
Relationship between richness and ecosystem services
The relationship between richness of service-providing organisms and
related ecosystemservices (Fig. 1, B andC)was estimated fromaBayesian
multilevel (partial pooling)model that allowed the intercept and the slope
to vary among studies (also commonly referred to as random intercepts
and slopes), following the equation

ESi eNðaj½i� þ bj½i�RICi; sjÞ

aj eNðma; saÞ

bj eNðmb; sbÞ

where ESi is the ecosystem service index (pollination or pest control de-
pending on the model), RICi is richness of service-providing organisms
(pollinator or natural enemy richness depending on the model), and j[i]
represents observation i of study j. This partial-poolingmodel estimated
both study-level responses [yielding an estimate for each study (bj)] and
the distribution from which the study-level estimates were drawn,
yielding a higher-level estimate of the overall response across crop
systems (mb). In addition, it accounted for variation in variance and
sample size across observations (for example, studies). The intercepts
aj and slopes bj varied between studies according to a normal
distribution with mean m and SD s. Independent within-study errors
also followed a normal distribution ei ~ N(0,s). We used weakly in-
formative priors: normal (0, 10) for the population-level parameters
(a, b) and half–Student t (3, 0, 5) for the group-level SD and residual SD.
Direct and indirect effects of richness, abundance,
and evenness on service provisioning
As natural communities vary not only in number of species but also in
relative abundance of each species (evenness) and the total number of
individuals (abundance), it is important to incorporate these attributes
when assessing or modeling biodiversity effects (12, 56). In a Bayesian
multivariate response model, a form of path analysis, we partitioned

the relative importance of richness and total and relative abundance in
driving biodiversity-ecosystem relationships. We hypothesized that
richness drives both abundance and evenness according to a revised ver-
sion of the “more individuals hypothesis” (57) that proposes that more
species can exploit more diverse resources and may therefore maintain
more individuals than species-poor communities. Specifically, we tested
(i) whether richness per se directly influences ecosystem services or is in-
stead mediated by abundance (Eq. 1, 3; Fig. 2, A and B) and (ii) whether
richness per se directly influences ecosystem services or is instead
mediated by evenness (Eq. 2, 4; Fig. 2, C andD). Before analysis, we also
checked for data collinearity among abundance, evenness, and richness
by calculating the variance inflation factor (VIF). No signal of collinear-
ity was detected in eithermodel (VIFs were below 1.8). In a preliminary
analysis, we also tested a possible interaction between richness and
evenness. No significant interaction was found in both pollination
and pest control models. To illustrate, we first show the univariate mul-
tilevel (partial pooling) models following these equations

RICi eNðaj½i� þ bj½i�ABUi; sjÞ ð1Þ

RICi eNðaj½i� þ bj½i�EVEi; sjÞ ð2Þ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�ABUi; sjÞ ð3Þ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�EVEi; sjÞ ð4Þ

where RICi is richness of service-providing organisms, ABUi is abun-
dance, EVEi is evenness, ESi is the ecosystem service index, and the
index j[i] represents observation i of study j.We then specified bothmul-
tivariate multilevel models in a matrix-vector notion (53), as follows

Yi eNðXiBr½i�;SjÞ

Br eNðMB;SBÞ

where Yi is the matrix of response variables with observations i as rows
and variables r as columns,Xi is thematrix of all predictors for response
r, Br are the regression parameters (a and b) for response r,MB repre-
sents themeanof the distribution of the regression parameters, and∑B is
the covariance matrix representing the variation of the regression pa-
rameters in the population groups. We used weakly informative priors:
normal (0, 10) for the population-level parameters (a, b) and half–Student
t (3, 0, 5) for the group-level SD and residual SD. In building themodel,
we ensured that no residual correlation betweenESi andRICi, betweenESi
and EVEi, or between ESi and ABUi was estimated [see the “set_rescor”
function in the package brms; (58)].
Direct and indirect effects of landscape simplification on
ecosystem services
To estimate the direct and indirect effects of landscape simplification on
richness and associated ecosystem services, we used two models. In a
Bayesian multivariate response model with causal mediation effects
(hereafter, mediation model), we tested whether landscape simplifica-
tion directly influences ecosystem services or is mediated by richness.
Mediation analysis is a statistical procedure to test whether the effect
of an independent variable X on a dependent variable Y (X → Y)
is at least partly explained via the inclusion of a third hypothetical
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variable, themediator variableM (X→M→ Y) (59). The three causal
paths a, b, and c′ correspond toX’s effect onM,M’s effect onY, andX’s
effect on Y accounting forM, respectively. The three causal paths cor-
respond to parameters from two regressionmodels, one in whichM is
the outcome and X is the predictor and one in which Y is the outcome
and X and M are the simultaneous predictors (fig. S6). From these
parameters, we can compute themediation effect (the product ab, also
known as the indirect effect) and the total effect of X on Y

c ¼ c′þ ab

Thus, the total causal effect ofX, which is captured by the parameter
c, can be decomposed precisely into two components, a direct effect c′
and an indirect (mediation) effect ab (the product of paths a and b). The
model included the ecosystem service index as response, landscape sim-
plification as predictor, and richness as mediator (Fig. 3). The separate
regression models that made up the Bayesian multivariate multilevel
model followed these equations

RICi eNðaj½i� þ bj½i�LANDi; sjÞ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�LANDi; sjÞ

We then compiled a multilevel path analysis testing the direct and
indirect effects of landscape simplification on ecosystem services via
changes in both richness and abundance (Eq. 5, 6, 8; fig. S4, A and B)
or richness and evenness (Eq. 5, 7, 9; fig. S4, C and D). The separate
regression models that made up the model followed these equations

RICi eNðaj½i� þ bj½i�LANDi; sjÞ ð5Þ

ABUi eNðaj½i� þ bj½i�LANDi; sjÞ ð6Þ

EVEi eNðaj½i� þ bj½i�LANDi; sjÞ ð7Þ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�ABUi þ bj½i�LANDi; sjÞ ð8Þ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�EVEi þ bj½i�LANDi; sjÞ ð9Þ

where RICi is richness of service-providing organisms, LANDi is land-
scape simplification measured as the percentage of arable land
surrounding each study site, ABUi is abundance, EVEi is evenness,
ESi is the ecosystem service index, and the index j[i] represents observa-
tion i of study j. We then specified multivariate multilevel models in a
matrix-vector notion, as explained above. The mediation analysis was
implemented using the R package sjstats [v. 0.15.0; (60)].
Cascading effects of landscape simplification on final
crop production
For 42 studies and 675 fields (pollination model, n = 438 fields of
27 studies; pest control model, n = 236 fields of 15 studies; table
S1), the data allowed us to use a multilevel path analysis to examine
cascading effects of landscape simplification on final crop produc-

tion via changes in richness, abundance, evenness, and ecosystem
services. We expected that (i) landscape simplification would have
a direct effect on richness, abundance, and dominance of service-
providing organisms and (ii) richness and abundance dominance
would relate positively to intermediate services, which, in turn,
(iii) would increase final crop production (Fig. 4 and fig. S4). The in-
direct effects of richness and abundance (Eq. 10, 11, 13, 15; Fig. 4) or
richness and evenness (Eq. 10, 12, 14, 15; fig. S4) were tested separately

RICi eNðaj½i� þ bj½i�LANDi; sjÞ ð10Þ

ABUi eNðaj½i� þ bj½i�LANDi; sjÞ ð11Þ

EVEi eNðaj½i� þ bj½i�LANDi; sjÞ ð12Þ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�ABUi; sjÞ ð13Þ

ESi eNðaj½i� þ bj½i�RICi þ bj½i�EVEi; sjÞ ð14Þ

PRODi eNðaj½i� þ bj½i�ESi; sjÞ ð15Þ

where RICi is richness of service-providing organisms, LANDi is land-
scape simplification measured as the percentage of arable land
surrounding each study site, ABUi is abundance, EVEi is evenness,
ESi is the ecosystem service index, PRODi is crop production, and the
index j[i] represents observation i of study j. We specified a multivariate
multilevel model in a matrix-vector notion, as explained above.
Parameter estimation
All analyses were conducted in the programming language Stan through
R (v. 3.4.3) using the package brms [v. 2.2.0; (58)]. Stan implements
Hamiltonian Monte Carlo and its extension, the No-U-Turn Sampler.
These algorithms convergemuchmore quickly than otherMarkov chain
Monte Carlo algorithms especially for high-dimensional models (61).
Eachmodel was runwith four independentMarkov chains of 5000 itera-
tions, discarding the first 2500 iterations per chain as warm-up and re-
sulting in 10,000 posterior samples overall. Convergence of the four
chains and sufficient sampling of posterior distributions were confirmed
by (i) the visual inspection of parameter traces, (ii) ensuring a scale reduc-
tion factorð~RÞ below 1.01, and (iii) an effective size (neff) of at least 10%of
the number of iterations. For each model, posterior samples were sum-
marized on the basis of theBayesian point estimate (median), SE (median
absolute deviation), and posterior uncertainty intervals byHDIs, a type of
credible interval that contains the requiredmass such that all points with-
in the interval have a higher probability density than points outside the
interval (62). The advantage of the Bayesian approach is the possibility to
estimate not only expected values for each parameter but also the uncer-
tainty associatedwith these estimates (63). Thus,we calculated 80, 90, and
95% HDIs for parameter estimates.
Sensitivity analyses
Given that different methods were used in different studies to quantify
richness, ecosystem services, and final crop production, we measured
the sensitivity of our results to methodological differences.

(1)We verified whether treating each annual dataset frommultiyear
studies separately could incorrectly account for the dependence of the
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data. We refitted the model testing the relationship between richness
and ecosystem services including year nestedwithin study (that is, study
defined as study-crop combination). Then, we comparedmodels (year-
independent model versus year-nested model) using leave-one-out
(LOO) cross-validation, a fully Bayesian model selection procedure
for estimating pointwise out-of-sample prediction accuracy (64).We
calculated the expected log pointwise predictive density ðelpd looÞ^ ,
using the log-likelihood evaluated at the posterior simulations of
the parameter values. Model comparison was implemented using
R package loo [v. 2.0.0; (65)]. We found that the year-nested model
had a lower average predictive accuracy than the year-independent
model for both pollination^ðDelpd loo ¼ �1:79Þ and pest control
^ðDelpd loo ¼ �1:09Þ and therefore retained the year-independent
model in our analysis.

(2) We verified whether taxonomic resolution influenced the inter-
pretation of results. We recalculated richness considering only orga-
nisms classified at the fine taxonomy level (species or morphospecies
levels) and refitted the model testing the effect of richness on ecosystem
services. We found no evidence that taxonomic resolution influenced
our results. With a fine taxonomic resolution, the effects of richness
on ecosystem services (bpollinators = 0.1535, 90% HDIs = 0.0967 to
0.2141; benemies = 0.2264, 90% HDIs = 0.1475 to 0.3065; table S2) were
nearly identical to the estimates presented in the main text (bpollinators =
0.1532, 90% HDIs = 0.0892 to 0.2058; benemies = 0.2093, 90% HDIs =
0.1451 to 0.2779; table S2).

(3) We verified whether the sampling methods used to collect polli-
nators (active versus passive sampling techniques) influenced the rela-
tionship between pollinator richness and pollination using Bayesian
hypothesis testing (58). Passive methods do not directly capture flower
visitors and may introduce some bias (for example, they may
underestimate flower visitors). However, our estimate was not influ-
enced by samplingmethod (the one-sided 90% credibility interval over-
lapped zero; table S11). In accordance with this finding, the evidence
ratio showed that the hypothesis tested (that is, estimates of studies with
active sampling > estimates of studies with passive sampling) was only
0.78 times more likely than the alternative hypothesis.

(4) We verified whether methodological differences in measuring
pollination and pest control services influenced the relationship be-
tween richness and ecosystem services. Using Bayesian hypothesis
testing, we tested whether the estimates differed among methods.
The two-sided 95% credibility interval overlapped zero in all compar-
isons (estimates did not differ significantly; table S12), indicating
that our estimate was not influenced by methodological differences
in measuring ecosystem services. Furthermore, we tested effects in-
cluding only inverted pest activity as a reflection of pest control.
We found positive effects of natural enemy richness on inverted
pest activity (b = 0.1307, 90% HDIs = 0.0102 to 0.2456), indicating
that results were robust to the type of pest control measure considered.

(5) As honey bees are the most important and abundant flower visi-
tors in some locations, we verified the potential influence of honey bees
on our results by refitting the path models testing direct and indirect
effects of richness, abundance, and evenness onpollination serviceswith
honey bees. A positive direct contribution of richness to pollination was
confirmed even after including honey bees (fig. S7). In these models,
both abundance and evenness showed a larger effect compared to
models without honey bees (Fig. 2).

(6) Insecticide application during the course of the experiment could
mask the effect of pest control on crop production (37, 38). We verified
the potential influence of insecticide application on our results by refit-

ting the model considering only fields where the study area was not
sprayed with insecticide during the course of the experiment (n = 85
fields of 14 studies).We found a pest control effect that wasmaskedwhen
considering all sites combined (with and without insecticide; fig. S4). We
therefore show the insecticide-free model in the main text (Fig. 4).

(7)We verified the consistency of our results considering only studies
that measured area-based yield (submodel). Only the cascading effects of
landscape simplification on final crop production via changes in richness
were tested in a simplified model. We found no evident differences be-
tween the submodel (fig. S8) and the fullmodel presented in themain text
(Fig. 4).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaax0121/DC1
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Fig. S1. Forest plot of the effect of pollinator richness on pollination for individual studies.
Fig. S2. Forest plot of the effect of natural enemy richness on pest control for individual studies.
Fig. S3. Direct and indirect landscape simplification effects on ecosystem services via changes
in richness and abundance or richness and evenness.
Fig. S4. Direct and cascading landscape simplification effects on final crop production via
changes in natural enemy richness, abundance evenness, and pest control (all sites together,
with and without insecticide application).
Fig. S5. Forest plot of the effect of landscape simplification on natural enemy abundance for
individual studies.
Fig. S6. Mediation model.
Fig. S7. Direct and indirect effects of pollinator richness, abundance, and evenness (with honey
bees) on pollination.
Fig. S8. Direct and cascading landscape simplification effects on area-based yield via changes
in richness, and ecosystem services.
Table S1. List of 89 studies considered in our analyses.
Table S2. Model output for richness–ecosystem service relationships.
Table S3. Model output for path models testing direct and indirect effects (mediated by
changes in abundance) of richness on ecosystem services.
Table S4. Model output for path models testing direct and indirect effects (mediated by
changes in evenness) of richness on ecosystem services.
Table S5. Model output for path models testing direct and indirect effects (mediated by
changes in richness) of landscape simplification on ecosystem services.
Table S6. Model output for path models testing the direct and cascading landscape
simplification effects on ecosystem services via changes in richness and abundance.
Table S7. Model output for path models testing the direct and cascading landscape
simplification effects on ecosystem services via changes in richness and evenness.
Table S8. Model output for path models testing the direct and cascading landscape
simplification effects on final crop production via changes in richness, evenness, and
ecosystem services.
Table S9. Model output for path models testing the direct and cascading landscape
simplification effects on final crop production via changes in richness, abundance, and
ecosystem services.
Table S10. Model output for path models testing direct and indirect effects of pollinator
richness, abundance, and evenness (with honey bees) on pollination.
Table S11. Results of pairwise comparison of richness–ecosystem service relationships
according to the methods used to sample pollinators and natural enemies.
Table S12. Results of pairwise comparison of richness–ecosystem service relationships
according to the methods used to quantify pollination and pest control services.
Database S1. Data on pollinator and natural enemy diversity and associated ecosystem
services compiled from 89 studies and 1475 locations around the world.
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