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A B S T R A C T

With the proliferation of multi-site neuroimaging studies, there is a greater need for handling non-biological

variance introduced by differences in MRI scanners and acquisition protocols. Such unwanted sources of varia-

tion, which we refer to as “scanner effects”, can hinder the detection of imaging features associated with clinical

covariates of interest and cause spurious findings. In this paper, we investigate scanner effects in two large multi-

site studies on cortical thickness measurements across a total of 11 scanners. We propose a set of tools for

visualizing and identifying scanner effects that are generalizable to other modalities. We then propose to use

ComBat, a technique adopted from the genomics literature and recently applied to diffusion tensor imaging data,

to combine and harmonize cortical thickness values across scanners. We show that ComBat removes unwanted

sources of scan variability while simultaneously increasing the power and reproducibility of subsequent statistical

analyses. We also show that ComBat is useful for combining imaging data with the goal of studying life-span

trajectories in the brain.

Introduction

Large-scale efforts aimed at collecting diverse neuroimaging datasets

for dissemination and sharing are rapidly growing in number and scale

(Di Martino et al., 2014; Keator et al., 2013; Mennes et al., 2013). Having

multiple scanning sites is necessary in large-scale studies due to logistical

issues and geographic variability in subject populations (Van Horn and

Toga, 2009). However, a major drawback of combining neuroimaging

studies across sites is the introduction of non-biological sources of vari-

ability to the data, typically related to image acquisition protocol

and hardware.

Properties of MRI scanners such as field strength, manufacturer,

gradient nonlinearity, subject positioning, and longitudinal drift have

been long understood to increase bias and variance in the measurement

of brain volume changes (Takao et al., 2011), regional cortical thickness

(Han et al., 2006), voxel-based morphometry (Takao et al., 2014), and

structural, functional, and diffusion images in general (Jovicich et al.,

2006; Takao et al., 2011). Such unwanted sources of bias and variability

are typically included as confound variables in the analysis of neuro-

imaging data. Recent work has suggested that standard methods for
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including confound variables for the prediction of an outcome using

neuroimaging data perform no better than baseline models which ignore

confounding (Rao et al., 2017). Furthermore, non-biological confounders

typically have a priori unpredictable effects, thus compromising consis-

tency and reproducibility of the downstream analyses across studies. This

suggests that non-biological sources of variability should be handled

differently. Similar to batch effects in genomics (see Leek et al., (2010) for

a review of batch effects), we use the term scanner effects in neuroimaging

to refer to unwanted variation that is (1) non-biological in nature and (2)

associated with differential scanning equipment or parameter configu-

rations. Because different imaging sites use different physical scanners,

site effects are one example of scanner effects.

Recently, ComBat (Johnson et al., 2007), a batch-effect correction

tool commonly used in genomics, has been adapted for the modeling and

removal of site effects in multi-site DTI studies (Fortin et al., 2017).

ComBat was found to be an effective harmonization technique that both

removes unwanted variation associated with site and preserves biolog-

ical associations in the data.

In this paper, we propose to use ComBat for harmonizing cortical

thickness measurements obtained frommultiple sites. We investigate this

in region-level cortical thickness measurements in two large multi-site

datasets: the Establishing Moderators and Biosignatures of Antidepres-

sant Response in Clinical care study (EMBARC) (Trivedi et al., 2016), a

multi-center study with 4 sites, and the Vascular Depression: Longitudi-

nal Changes (VDLC) study, which was conducted at Washington Uni-

versity in St. Louis and Duke University and used a total of 7 scanners. We

first propose a set of tools for the visualization and identification of site

effects that are generalizable to other modalities. We then harmonize the

data using ComBat, and compare to two other harmonization methods:

residuals and phenotype-adjusted residuals. We show that Combat is

successful at removing scanner and site effects, while preserving the

variability associated with biology. We also show that ComBat can be

used to combine datasets across multiple sites for the study of life-span

trajectories.

Methods

Data and preprocessing

EMBARC dataset

The EMBARC study aims to identify moderators and mediators of

antidepressant response in adult patients with Major Depressive Disorder

(Trivedi et al., 2016; Webb et al., 2016). The dataset used for our analysis

includes structural images, demographic variables and clinical variables.

Participants were 200 unmedicated depressed individuals with Major

depressive disorder and 40 healthy individuals recruited for EMBARC

(see Table 1). Subjects were 18–65 years old, had to report age of

depression onset before age 30 and had to be fluent in English. Clinical

variables included the Hamilton Depression Rating Scale (HAMD)

(Hamilton, 1960), the Mood and Anxiety Symptom Questionnaire

(MASQ) (Watson and Clark, 1991), the Snaith-Hamilton Pleasure Scale

(Snaith et al., 1995), the Spielberger State-Trait Anxiety Inventory (STAI)

(Spielberger, 1983) and the Quick Inventory for Depression Symptom-

atology (QIDS) depression score (Rush et al., 2003).

The scans were acquired at four different imaging sites, with acqui-

sition protocols described in Greenberg et al., (2015). The four sites were

Columbia University (CU), University of Texas Southwestern (TX),

Massachusetts General Hospital (MG) and the University of Michigan

(UM). All of the sites used 3T scanners, however the manufacturer

differed from site to site: UM used a Philips Ingenia 3T scanner, TX used a

Philips Achieva 3T scanner, MG used a Siemens TIM Trio 3T scanner and

CU used a GE SIGNA HDx 3T scanner. Imaging parameters for each

scanner are described in Greenberg et al., (2015). Participants with

excessive motion (> 4 mm), low slice signal-to-noise ratio (<80), and

severe slice artifacts were excluded from the study, leaving us with a final

baseline dataset of 187 subjects.

VDLC dataset

The Vascular Depression: Longitudinal Changes (VDLC) study aims to

study the longitudinal effect of vascular disease in the pathogenesis of

late-life depression (LLD) (Barch et al., 2012; Mettenburg et al., 2012).

Participants were 177 individuals affected by LLD and 59 healthy con-

trols, for a total of 236 participants. Participants were 58–95 years old

(see Table 1). For the purpose of investigating site effects, we only

considered one time point for each participant; we retained the scan from

the last visit. Scans were acquired at two sites: Duke University and

Washington University in St. Louis, across 7 different scanners described

in Table 2.

Extraction of cortical thickness measurements

For the extraction of the cortical thickness measurements, we ran the

ANTs cortical thickness (CT) pipeline which has been shown to provide

accurate and robust cortical thickness measurements (Tustison et al.,

2014) on each dataset separately. We analyzed VDLC dataset in early

2016 and the EMBARC in late 2014, each using contemporaneous in-

stallations of ANTs compiled from source. The ANTs CT pipeline that we

describe below, requires a population template for registration and prior

knowledge of the different tissues. We used an average labeled template

previously constructed from a subset of 35 participants from the Open

Access Series of Imaging Studies (OASIS) (Marcus et al., 2007). The

participants’ age ranges from 19 to 90 years old. All subjects were

healthy, except one who was diagnosed with mild dementia. For each

image, a manual brain segmentation was performed by Neuro-

morphometrics, Inc (http://Neuromorphometrics.com/). using the

brainCOLOR labeling protocol. Multi-Atlas Label Fusion (MALF (Wang

et al., 2013)) was used to create the consensus labels for the average

template, for a total of 134 labelled regions, fromwhich 98 are part of the

cortex. We provide the list of the 98 cortical regions in Supplementary

Table 1. We note that the population template is publicly available on

Figshare (https://figshare.com/articles/ANTs_ANTsR_Brain_

Templates/915436).

The ANTs CT extraction pipeline starts by performing a N4 bias field

correction (Tustison et al., 2010) to minimize field inhomogeneity ef-

fects, and then performs brain extraction using a hybrid regis-

tration/segmentation method described in Tustison et al., (2014). For

each participant, a tissue segmentation is performed using Atropos

(Avants et al., 2011) to create six tissue masks: cerebrospinal fluid (CSF),

grey matter (GM), white matter (WM), deep gray matter, brain stem, and

cerebellum. Atropos allows prior knowledge to guide the segmentation

algorithm, and we used the labels from the OASIS population template as

priors. Cortical thickness measurements are then estimated using the

DiReCT algorithm (Das et al., 2009). Briefly, the DiReCT method esti-

mates the GM/WM interface and the GM/CSF interface and computes a

diffeomorphic mapping between the two interfaces, from which thick-

ness is derived. We note that this is performed in native space and no

Table 1

Description of the EMBARC and VDLC study samples.

Scanner N subjects N females (%) Age range N Depressed (%)

EMBARC study 187 116 (62) [18,65] 187 (100)

CU 46 29 (63) [18,61] 46 (100)

MG 26 21 (81) [18,60] 26 (100)

TX 72 42 (58) [19,65] 72 (100)

UM 43 24 (56) [18,59] 43 (100)

VDLC study 236 139 (59) [58,95] 177 (75)

W_Sonata_A 23 15 (65) [58,83] 23 (100)

W_Sonata_B 78 61 (78) [59,92] 62 (81)

W_TIMTrio_A 16 8 (50) [62,85] 2 (13)

W_TIMTrio_B 40 23 (58) [59,80] 37 (93)

D_TIMTrio_A 24 7 (29) [60,95] 24 (100)

D_TIMTrio_B 38 19 (50) [59,84] 25 (66)

D_SIGNA 17 6 (35) [60,83] 3 (18)
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correction for total brain volume was applied.

In the EMBARC data, we built a study-specific population template

and performed pseudo-geodesic joint label fusion by combining pre-

computed warps from the OASIS atlases to the EMBARC template with

warps from the average template to each subject. The atlases and labels

were warped to subject space and input to joint label fusion (Wang et al.,

2013). The fused labels were masked with the subject's gray-matter

segmentation image, which is the domain over which thickness is

computed in the ANTs pipeline. For the VLDC data, given the heteroge-

neity of the acquisition parameters we used the OASIS population tem-

plate and directly propagated the consensus labels from the OASIS

template to each image with nearest neighbor interpolation. For both

datasets, mean thickness was computed for each of the 98 cortical regions

in the subject space, these were in turn averaged to produce whole-brain

mean cortical thickness.

After the processing steps described above, we performed manual

quality control of the images by visual inspection. We specifically looked

at the quality of the skull stripping, registration and mesh reconstruction.

We flagged a few images distributed across the sites that appeared to be

abnormal, but we did not see differences in the cortical thickness mea-

surements as compared to other images. We note that the ANTs pipeline

has been shown to perform exceptionally well for registration (Klein

et al., 2009) as well as cortical thickness measurement in terms of min-

imal failure rate, higher repeatability, and improved predictive perfor-

mance in thousands of images even compared to the state-of-the-art

FreeSurfer (Tustison et al., 2014).

Harmonization procedures

For the removal of site effects, we compare three different harmoni-

zation procedures: (1) Removal of site effects using linear regression

without adjusting for biological covariates. We refer to the method as

Residuals; (2) Removal of site effects using linear regression, adjusting for

known covariates. We refer to the method as Adjusted Residuals; (3)

Removal of site effects using ComBat (Johnson et al., 2007). We also

compare the three methods to the absence of harmonization, that we

refer to as Raw. We describe below the different harmonization

techniques.

To describe each of these different methods, we use the following

notation: let yijv be the n� 1 vector of cortical thickness measurement for

imaging site i, for participant j and feature v, for a total of ðkþ 1Þ sites, n

participants and V features. Depending on the cortical thickness modal-

ity, the features can either be ROIs, vertices or voxels. Furthermore, let X

be the p� n matrix of biological covariates of interests, and let Z be the

k� n matrix of site indicators (deviations from a baseline site).

Residuals harmonization

The residuals harmonization method adjusts the images for site ef-

fects using linear regression. It does not take into account the potential

confounding between the site variables and the biological covariates of

interest in the study. The regression model can be written as

yijv ¼ αv þ ZT
ijθv þ εijv (1)

where αv is the average cortical thickness for the reference site for feature

v and where θv is the k� 1 vector of the coefficients associated with Z for

feature v. We assume that the residual terms εijv have mean 0. For each

feature separately, we obtain an estimate bθv of the parameter vector θv
using regular ordinary least squares (OLS). The removal of site effects is

done by subtracting the estimated site effects, that is we set the residuals-

harmonized cortical thickness values to be

yRes
ijv

¼ yijv � ZT
ij
bθv

Adjusted residuals harmonization

The adjusted residuals harmonization method supervises the removal

of site effects by adjusting for biological covariates, using the following

linear regression model:

yijv ¼ αv þ XT
ijβv þ ZT

ijθv þ εijv (2)

where αv is the average cortical thickness for the reference site for feature

v, where θv is the k� 1 vector of the coefficients associated with Z for

feature v and where βv is the p� 1 vector of coefficients associated with X

for feature v. We assume that the residual terms εijv havemean 0. For each

feature separately, we obtain estimates ~θv and ~βv using regular ordinary

least squares (OLS) on the full model described in Equation (2). The

removal of site effects is done by subtracting the estimated site effects

only, that is we set the adjusted-residuals-harmonized cortical thickness

values to be

y
Adj
ijv ¼ yijv � ZT

ij
~θv

ComBat harmonization

The Combat harmonization model (Johnson et al., 2007) extends the

adjusted residuals harmonization model presented in Equation (2) in two

ways: (1) it models site-specific scaling factors and (2) it uses empirical

Bayes to improve the estimation of the site parameters for small sample

sizes. It posits a unique linear model of location and scale at each feature,

making the assumption that scanners (or sites) have both an additive and

multiplicative effects on the data. The model assumes that the expected

values of the imaging feature measurements can be modeled as a linear

combination of the biological variables and the site effects, whose error

term is modulated by additional site-specific scaling factors. The algo-

rithm uses empirical Bayes to improve the estimation of the model pa-

rameters in small sample size studies. The ComBat model, originally

developed for gene expression microarray data, was reformulated in

Table 2

Description of the scanning parameters CU: Columbia University; MG: Massachusetts General Hospital; TX: University of Texas Southwestern; UM: University of Michigan; Duke: Duke

University; WashU: Washington University in St. Louis.

Location Manufacturer Platform Field (T) TR (ms) TE (ms) Angle (�) ST (mm)

EMBARC study

CU CU GE SIGNA HDx 3 6 2.4 9 1

MG MG Siemens TIM Trio 3 2300 2.54 9 1

TX TX Philips Achieva 3 2100 3.7 12 1

UM UM Philips Ingenia 3 8.2 3.7 12 1

VDLC study

W_Sonata_A WashU Siemens Sonata 1.5 f500,1900g f3.93,17g f8,90g f1; 2;3; 5g

W_Sonata_B WashU Siemens Sonata 1.5 f500,1900g f3.93,17g f8,90g f1; 2;3; 5g

W_TIMTrio_A WashU Siemens TIM Trio 3 2400 f3.13,3.16g 8 1

W_TIMTrio_B WashU Siemens TIM Trio 3 2400 3.13 8 1

D_TIMTrio_A Duke Siemens TIM Trio 3 f2300,2400g f3.19,3.43g f8,12g 1

D_TIMTrio_B Duke Siemens TIM Trio 3 2300 f2.98,3.43g 12 1

D_SIGNA Duke GE SIGNA Excite 1.5 8.3 3.3 20 1.2
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Fortin et al., (2017) for the harmonization of DTI data scalar maps. Using

the previous notation, the model can be written as

yijv ¼ αv þ XT
ij
βv þ ZT

ij
θv þ δivεijv; (3)

where αv is the average cortical thickness for the reference site for feature

v, where θv is the k� 1 vector of the coefficients associated with the site

indicators Z for feature v and where βv is the p� 1 vector of coefficients

associated with X for feature v. We assume that the residual terms εijv

have mean 0. The parameters δiv describe the multiplicative site effect of

the j-th site on voxel v. Consistent with the ComBat model notation used

in Fortin et al., (2017), we rewrite ZT
ij θv as γiv:

yijv ¼ αv þ XT
ijβv þ γiv þ δivεijv; (4)

The procedure for the estimation of the site parameters γiv and δiv uses

Empirical Bayes, and is described in Johnson et al. (2007) and Fortin

et al. (2017). The final ComBat-harmonized cortical thickness measure-

ments are defined as

yComBat
ijv ¼

yijv � bαv � Xij
bβv � γ�iv

δ�
iv

þ bαv þ Xij
bβv

Methods evaluation framework

To investigate and correct site effects using ComBat, we performed a

set of analysis tasks of increasing complexity on the cortical thickness

data. We first performed an exploratory analysis to confirm the existence

of site effects in the data. Next, we performed various univariate tests of

Fig. 1. Visualization of sites effects in the EMBARC study. Plots are colored by imaging site: Columbia University (CU), University of Texas Southwestern (TX), Massachusetts General

Hospital (MG) and University of Michigan (UM). (a) Boxplots of the cortical thickness sorted by site. Each boxplot represents the distribution of the 98 cortical regions for one subject. (b)

Boxplots of the median cortical thickness, grouped by site. The MG site has lower median cortical thickness on average, while the TX and UM sites have higher variability. (c) Same as (a),

but sorted by age. Age intervals are included in brackets to help interpretation. (d) Relationship between median cortical thickness and age, colored by site. (e) Plots of the first 3 principal

components (PCs) from principal component analysis (PCA), colored by site. The second PC is highly associated with site.
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significance to understand the relationships between individual features

in the data and individual target variables. Finally, we applied various

multivariate predictive models to understand how cortical thickness re-

lates to target variables. Our analyses were aimed at both identifying and

correcting site effects at multiple levels of complexity, along with un-

derstanding the specific effects of ComBat on downstream analysis.

Results

We present several visualization tools for investigating scanner effects

in multi-site studies, as well as several metrics to quantify such scanner

effects. We use the cortical thickness measurements from both the

EMBARC and VDLC studies to illustrate the different methodologies. We

next evaluate different harmonization procedures for the correction of

site effects. Last, we combine and harmonize the EMBARC and VDLC

studies, which have different age range, and show that it is possible to

improve multi-site cross-sectional analyses of life-span trajectories by

using ComBat harmonization.

Visualization and quantification of site effects

EMBARC study

In Fig. 1, we present diagnostic plots for the EMBARC study. For each

subject, we summarize the cortical thickness measurements into a box-

plot (Fig. 1a). We observe a global downwards shift in the cortical

thickness measurements from the MG site, as well as increased variability

in the measurements from the TX and UM sites relative to the two other

sites. The four boxplots presented in Fig. 1b summarize the distribution

of the median cortical thicknesses at each site, and facilitate the visual-

ization of the site-specific additive and scaling effects. Using ANOVA, the

median cortical thickness was significantly different across the four sites

(p ¼ 1:1� 10�10). More specifically, we found the median cortical

thickness for the MG site was significantly different from those of the

three remaining sites, adjusting for multiple comparisons using the

Dunnett-Tukey-Kramer (DTK) test (Dunnett, 1980). The latter is an

extension of Tukey's method (Tukey, 1949) that takes into consideration

unequal variances as well as unequal sample sizes. To assess the

normality assumption of the t-tests, we first performed the Shapiro-Wilk

test for each of the scanners, and the p-values were not significant for any

of the groups in the EMBARC study (CU: p ¼ 0:17; MG: p ¼ 0:74; TX:

p ¼ 0:18; UM: p ¼ 0:23). A p-value is significant when the data do not

appear to be normally distributed.

Next, because the scale of the measurements can also be affected by

scanner, we also compared the variances of the median cortical thickness

measurement across sites. To do so, we performed the Bartlett's sphe-

ricity test (Bartlett, 1937), which assesses whether or not the variances

are homogeneous across sites. To avoid confounding of site with age and

gender, we first regressed out the variation explained by age and gender;

the test was significant (p ¼ 1:8� 10�7). We subsequently compared the

pairwise site variances using the usual F-tests for variances ratio, and four

of the pairs were significant after adjusting for multiple comparisons

using Bonferroni correction: TX vs. CU, TX vs. MG, UM vs. CU, and UM

vs. MG differed in variance of median cortical thickness.

We also tested each ROI individually for site effects by calculating an

ANOVA F-test. We obtained 53 ROIs significantly associated with site,

using Bonferroni correction to adjust for multiple comparisons (adjusted

p< 0:05). Because Bonferroni correction is a conservative approach to

control for the family-wise error rate (FWER), we alternatively corrected

for multiple comparisons using the permutation-based one-step maxT

procedure (Westfall and Young, 1993; Dudoit et al., 2003), and obtained

60 ROIs significantly associated with site (adjusted p<0:05, B ¼ 10;000

permutations). We present in Figure A.1a the observed R2 from ANOVA

and the distribution of the maximum R2 obtained from each permutation.

To test for scanner-specific scaling effects, we also tested each feature

individually for homogeneity of variances across sites using Bartlett's

test. We obtained 41 ROIs with variances significantly associated with

site (adjusted p<0:05, B ¼ 10;000 permutations). The significant re-

gions are reported in Supplementary Table 2.

In Fig. 1, we observe a global decrease of the cortical thickness

measurements with age, and note that combining measurements from

multiple sites adds variability to the trend (blue boxplots are shifted

downwards). We also observe that the imaging sites are not distributed

equally across the age span, with more younger subjects from theMG and

CU sites (more blue and grey boxplots to the left) and older subjects

coming from the TX site (more light red boxplots to the right). This in-

dicates some confounding between imaging site and age. In Fig. 1d, we

present the median cortical thickness measurements as a function of age

to visually inspect the global image-age relationship. In Fig. 1e, we pre-

sent bivariate scatter plots of the first 3 principal components (PCs) from

a principal component analysis (PCA) performed on the cortical thickness

values. We note that the second PC is highly associated with site, con-

firming that a large proportion of the variation in the data is explained

by site.

Finally, we present in Fig. 2 the distribution of age, gender, HAMD

score and QIDS score across imaging sites. This allows a visual inspection

of potential confounding level between the different covariates and

Fig. 2. Distribution of covariates in the EMBARC study. Distributions of age, gender, HAMD score and QIDS scores across sites for the EMBARC study. The width of the boxplots is

proportional to the number of subjects scanned at each site. The full and shaded bars in the gender barplots represent males and females respectively. HAMD: Hamilton Depression Rating

Scale; QIDS: Quick Inventory for Depression Symptomatology. p-values indicate the significant differences in means between the centers. Gender ratios were not significantly different

between sites.
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imaging site. The width of the boxplots represents the sample size at each

site. We note that age is highly imbalanced across sites, with older sub-

jects at the TX site. We also note that gender is imbalanced within each

site with a greater number of females. The QIDS score appears to be also

imbalanced with respect to imaging site and anti-correlated with age.

VDLC study

In Fig. 3b, we present diagnostic plots for the VDLC study. We note in

Fig. 3. Visualization of sites effects in the VDLC study. Plots are colored by scanner. The green shades represent the 1.5T scanners, while the brown shades represent the 3T scanners.

(a) Boxplots of the cortical thickness sorted by site. Each boxplot represents the distribution of the 98 cortical regions for one subject. (b) Boxplots of the median cortical thickness, grouped

by scanner. The measurements derived from 1.5T scanners are substantially lower than measurements from 3T scanners. (c) Same as (a), but sorted by age. Age intervals are included in

brackets to help interpretation. (d) Relationship between median cortical thickness and age, colored by scanner. (e) Plots of the first 3 principal components (PCs) from principal

component analysis (PCA), colored by scanner. The second PC is highly associated with scanner.
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the VDLC study that there is a clear positive shift in the cortical thickness

measurements for images acquired on 3T scanners in comparison to

images acquired on 1.5T scanners (Fig. 3a). Using ANOVA, the median

cortical thickness was significantly different across the seven scanners

(p ¼ 2:2� 10�16). Not surprisingly, the median cortical thicknesses from

each of the 3T scanners were significantly different from those of each of

the 1.5T scanner, adjusting for multiple comparisons using the DLK test.

To assess the normality assumption of the t-tests, we first performed the

Shapiro-Wilk test for each of the scanners, and the p-values were not

significant for most groups in the VDLC study (W_TIMTrio_A: p ¼ 0:07;

W_TIMTrio_B: p ¼ 0:42; D_TIMTrio_A: p ¼ 0:004; W_Sonata_A: p ¼ 0:90;

W_Sonata_B: p ¼ 0:63; D_TIMTrio_B: p ¼ 0:39; D_SIGNA: p ¼ 0:88). A p-

value is significant when the data do not appear to be normal. Only the

D_TIMTrio_A scanner appeared to have a non-normal distribution.

We also compared the variances of the median cortical thickness

measurement across scanners. To do so, we performed the Bartlett's

sphericity test, which estimates whether or not the variances are ho-

mogeneous across scanners. To avoid confounding of scanner with age

and gender, we first regressed out the variation explained by age and

gender; the test was significant (p ¼ 0.0013).

We also tested each ROI individually for site effects by calculating an

ANOVA F-test. We obtained 86 ROIs significantly associated with site,

using Bonferroni correction to adjust for multiple comparisons (adjusted

p<0:05), and 87 ROIs using the permutation-based one step maxT pro-

cedure (adjusted p<0:05, B ¼ 10;000 permutations). We present in

Figure A.1b the observed R2 from ANOVA and the distribution of the

maximum R2 obtained from each permutation. To test for scanner-

specific scaling effects, we also tested each feature individually for ho-

mogeneity of variances across sites using Bartlett's test. We obtained 4

ROIs with variances significantly associated with site (adjusted p<0:05,

B ¼ 10;000 permutations). The significant regions are reported in Sup-

plementary Table 2.

Finally, we present in Fig. 4 the distribution of age, gender, and dis-

ease group across scanners. This allows a visual inspection of potential

confounding level between the different covariates and imaging site. The

width of the boxplots represents the sample size at each site. We note that

the average age is significantly different for the D_SIGNA scanner. We

also note that the gender ratio is significantly different for the W_Sona-

ta_B scanner, with a significantly larger number of females imaged using

this scanner. In the third panel, one can observe that proportions of

depressed versus healthy subjects vary greatly across scanners.

Removal of site effects with harmonization

To remove site effects in both the EMBARC and VDLC datasets, we

applied three different harmonization techniques: (1) Residuals: removal

of site effects estimated from linear regression; (2) Adjusted Residuals:

removal of site effects estimated from linear regression, adjusting for

biological covariates; and (3) ComBat. We now present the results for

both studies separately.

EMBARC study

In Fig. 5, we show the empirical distributions of the site effects for the

EMBARC study, for both the location and scale parameters (dotted lines),

together with the prior distributions estimated by ComBat (solid lines).

We remind the reader that both the location and scale site effects are

deviations from the grand mean. Consistent with the description of the

site effects in the previous section, we note that the additive site effects

(γ) are greater in magnitude for the MG site (Fig. 5a), and the multipli-

cative site effects (δ) are greater than 1 on average for the TX and UM

sites and lower than 1 for the two remaining sites (Fig. 5b). We note that

the prior distributions fit the empirical distributions well for both the

location and scale parameters; the ComBat procedure therefore appears

appropriate for capturing these effects.

To visualize whether or not most of the variation in the data was still

associated with imaging site after harmonization, we first performed an

unsupervised dimension reduction of the harmonized cortical thickness

measurement using PCA. The data projected into the first two PCs are

presented in the first column of Fig. 6. We note that for all three

harmonization methods, the data points appear to be distributed equally

across sites. We also performed a linear discriminant analysis (LDA), a

popular supervised dimension reduction that maximizes the projection

coordinates to predict the data classes. Here, we use the imaging sites as

the data classes to be predicted. We present the projected data in the

second column of Fig. 6. One can see that for the raw data, the data points

cluster almost perfectly by imaging site. This is not surprising; all features

are highly associatedwith site effects when not harmonized. We also note

that despite harmonization of the acquisition sequences (for more details

on study design, see Trivedi et al., (2016)), the EMBARC study still ex-

hibits inter-site effects before harmonization. Furthermore, note that

images acquired on scanners from the same manufacturer tend to cluster

together in the LDA plots. After harmonization, site clusters are sub-

stantially attenuated.

Fig. 4. Distribution of covariates in the VDLC study. Distributions of age, gender, and disease group for the VDLC study. The width of the boxplots is proportional to the number of

subjects scanned at each site. For the age boxplots, the p-values indicate the significant differences in means between sites. The full and shaded bars in the gender barplots represent males

and females respectively; the gender ratio was significantly different for the W_Sonata_B scanner. The full and shaded bars in the disease group barplots represent control and depressed

subjects respectively. The proportions of subjects with depression were significantly across the 4 scanners.
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To formally test whether or not site effects remain after harmoniza-

tion, we again used the different tests described in Section 3.1. Using

ANOVA F-tests, all methods corrected for mean site differences in the

median cortical thickness: p ¼ 0:997 for Residuals, p ¼ 0:0498 for

Adjusted Residuals and p ¼ 0:0473 for ComBat. We also tested for site-

specific scaling effect in the measurements using Bartlett's sphericity

test. We found that only ComBat was able to remove the scaling effects

associated with site (p ¼ 0:42). The site-specific variances remained

largely uncorrected for both the Residuals (p ¼ 2:53� 10�8) and

Adjusted Residuals (p ¼ 3:08� 10�8) methods. This is not surprising;

only the ComBat harmonization method is able to model scaling factors

associated with site. We also tested each ROI individually for remaining

site effects. For all harmonization methods, none of the ROIs was

significantly associated with site, using either the Bonferroni or themaxT

adjustment.

Finally, to further investigate if site effects were entirely removed for

each of the harmonization method, we attempted to predict imaging site

from the harmonized cortical thickness features. More specifically, we

used the support vector machine (SVM) (Cortes and Vapnik, 1995)

classification algorithm, with radial basis kernel, to predict site from the

imaging features. The SVM is largely used in the imaging community in

the context of multivariate pattern analysis (MPVA) for understanding

and discovering patterns associated with a disease outcome, for instance.

A harmonization method that is successful in removing site effects will

result in a lower SVM accuracy when attempting to predict site. Using

B ¼ 10;000 repetitions of a 10-fold cross-validation, we estimated an

average accuracy for each method. For the raw values, the SVM predic-

tion achieved an average of 76.6% classification accuracy. For the re-

siduals and adjusted residuals methods, the average accuracies were

40.5% and 38.7% respectively. The ComBat method resulted in the lower

average accuracy (36.3%). Using a permutation-based approach to

generate a null distribution (B ¼ 10; 000), a SVM classification by chance

attained on average 36.9% accuracy. This indicates the Adjusted Re-

siduals and ComBat were best for the removal of site effects in the cortical

thickness measurements. In comparison to the adjusted residuals, we

note that the ComBat method additionally removes site-specific scaling

effects. This could explain the better performance in the SVM, in which

the covariance structure is implicitly used for predicting the class labels.

VDLC study

In Fig. 7, we show the empirical distributions of the site effects for the

VDLC study, for both the location and scale parameters (dotted lines),

together with the prior distributions estimated by ComBat (solid lines).

Consistent with the description of the site effects in the previous section,

we note that the additive scanner effects (γ) are greater in magnitude for

the 3T scanners. The multiplicative scanner effects (δ) are shown in

Fig. 7b. We note that the prior distributions fit the empirical distributions

well for both the location and scale parameters; the ComBat procedure

therefore appears appropriate for capturing these effects.

To visualize whether or not most of the variation in the data was still

Fig. 5. Prior distributions of the site effect parameters estimated by ComBat in the EMBARC study. Location and scale site-specific parameters estimated by ComBat, for the EMBARC

study. (a) The ComBat-estimated prior distributions for the site-specific location parameters γ are shown in solid lines, and the empirical distributions of the site-specific location pa-

rameters are shown in dashed lines. (b) The ComBat-estimated prior distributions for the site-specific scale parameters δ are shown in solid lines, and the empirical distributions of the site-

specific scale parameters are shown in dashed lines. The prior distributions fit well the empirical distributions for both the location and scale parameters.
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associated with scanner after harmonization, we first performed an un-

supervised dimension reduction of the harmonized cortical thickness

measurement using PCA. The data projected into the first two PCs are

presented in the first column of Fig. 8. We note that for all three

harmonization methods, the data points appear to be distributed equally

across scanners. We also performed LDA using scanners as the data

classes. We present the projected data in the second column of Fig. 8. One

can see that for the raw data, there is a clear separation between the

different types of scanners. Interestingly, the data from the D_SIGNA

scanner appear to cluster separately; we note that this is the only GE

scanner in the VDLC study. After harmonization, clusters associated with

scanner are substantially attenuated.

Using ANOVA F-tests, all methods corrected for mean scanner

differences in the median cortical thickness: p ¼ 0:99 for Residuals, p ¼

0:94 for Adjusted Residuals and p ¼ 0:94 for ComBat. We also tested for

scanner-specific scaling effects in the measurements using Bartlett's

sphericity test. We found that only ComBat was able to remove the

scaling effects associated with scanner (p ¼ 0:46). Scanner-specific var-

iances remained present in both the Residuals (p ¼ 0:03) and Adjusted

Residuals (p ¼ 0:01) methods. Finally, we tested each ROI individually

for remaining scanner effects. For all harmonization methods, none of the

ROIs was significantly associated with scanner, using either the Bonfer-

roni or the maxT adjustment.

As conducted in the EMBARC study, we used the SVM with radial

basis kernel to assess prediction of scanner from the imaging features.

Again, a harmonization method that is successful in removing scanner

Fig. 6. Supervised and unsupervised dimension reductions before and after harmonization for the EMBARC dataset. For each harmonization method, we first used principal

component analysis (PCA) to reduce the dimension of the cortical thickness measurements in an unsupervised manner (agnostic of imaging sites). We present in the first column the

projection of the data into the first two principal components (PCs) that explain most of the variation in the data. We also performed a supervised dimension reduction technique using

linear discriminant analysis (LDA) using imaging site as a target variable. We present in the second column the projection of the data into the first two LDA coordinates. In both PCA and

LCA, the first two coordinates are highly associated with site, while all harmonization methods removed most variation associated with site.
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effects will result in a lower SVM accuracy when attempting to predict

scanner. Using B ¼ 10;000 repetitions of a 10-fold cross-validation, we

estimated an average accuracy for each method. For the raw values, the

SVM prediction achieved an average of 67.7% classification accuracy.

For the residuals and adjusted residuals methods, the average accuracies

were 43.4% and 44.4% respectively. The ComBat method resulted in the

lowest average accuracy (41.0%).

Associations with age

While it is important to show that a harmonization method success-

fully removes site effects, it is equally important to show that the method

preserves the biological variability in the data; a method that removes

both site effects and biological effects has no scientific use. To investigate

whether or not the different harmonizations presented in this paper

perform well at preserving biological variability, we use age as a variable

of interest.

We assessed the proportion of variation explained by age before and

after harmonization. Without harmonization, the percentage of variation

in the average cortical thickness explained by age was 23%. This was

calculated using the usual coefficient of variation R2 from linear

regression with median cortical thickness as the outcome. For the un-

adjusted Residuals method, this percentage was increased to 26%, and

for both the Adjusted Residuals and ComBat, the percentage was

increased to 33%. The fact that the Unadjusted Residuals did not

substantially increase the association with age is not surprising; we

observed that age was confounded with imaging site, and therefore

removing site effects without adjusting for age will also remove variation

in the imaging features associated with age. On the other hand, both the

Adjusted Residuals and ComBat strengthened the expected inverse rela-

tionship between age and cortical thickness by removing site effects, but

also by preserving biological variability in the data.

We also evaluated the effects of harmonization on the prediction of

age using the harmonized cortical thickness measurements. For predic-

tion, we used two different algorithms: linear regression, and the popular

support vector regression (SVR) algorithm, also commonly called ε-SVM

regression, using two different kernels: a linear kernel and a radial basis

function. The ε-SVM regression paradigm is similar to the regular clas-

sification SVM, but for a continuous outcome. For each algorithm, we

used the cortical thickness measurements of the 98 cortical regions as

imaging features inputs to predict age (98 values per participant). For

each harmonization method, we randomly partitioned the subjects into k

folds, and trained the prediction algorithm on k� 1 folds. We then pre-

dicted the age of the remaining subjects (testing dataset) and calculated

the root-mean-square error (RMSE). We repeated the random sampling

B ¼ 1000 times, for k 2 f3; 5;10g, to obtain a distribution of the RMSE

for each method at each k. For each random sampling, we selected the

hyperparameters that led to the best cross-validated performance by

performing a grid search with the following grid values: C 2

f0:001;0:1;1;10;100;1000g and ε 2 f0:01;0:1;0:5; 1g.

Fig. 7. Prior distributions of the site effect parameters estimated by ComBat in the VDLC study. Location and scale site-specific parameters estimated by ComBat, for the VDLC study.

(a) The ComBat-estimated prior distributions for the site-specific location parameters γ are shown in solid lines, and the empirical distributions of the site-specific location parameters are

shown in dashed lines. (b) The ComBat-estimated prior distributions for the site-specific scale parameters δ are shown in solid lines, and the empirical distributions of the site-specific scale

parameters are shown in dashed lines. The prior distributions fit well the empirical distributions for both the location and scale parameters.
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In Fig. 9, we present the results from linear regression. For the three

values of k, we observe that the data harmonized with the unadjusted

Residuals do not perform well (substantial increase of RMSE). On the

other hand, both the Adjusted Residuals and ComBat significantly

improve the average prediction accuracy compared with the raw data

(p<0:05 for all k). In Fig. 10, we present the results from ε-SVM

regression using a linear kernel. For the three values of k, the Adjusted

residuals improve the age prediction compared to the raw data; Combat

performs either equally (k ¼ 3;10), or improves the performance (k ¼ 5).

As it is the case for Fig. 9, the unadjusted Residuals worsens the age

prediction. In Fig. 11, we present the results from ε-SVM regression using

a radial basis function kernel. While the Adjusted Residuals and ComBat

perform similarly to the raw data for the three values of k (no significant

difference in the RMSE), the unadjusted Residuals substantially increases

the RMSE.

Overall, the removal of unwanted site effects with both ComBat and

the Adjusted Residuals did not decrease our ability to predict age, either

using linear regression or SVMs. This confirms that both methods pre-

served biological variability associated with age, a crucial requirement

for adequatemulti-site harmonization. On the other hand, the unadjusted

Residuals substantially decreased the predictive performance. This shows

that failing to account for age when removing site effects in an unbal-

anced sample leads to removal of age-related signal, as described in Rao

et al., (2017).

Life-span study by harmonizing the EMBARC and VDLC datasets

While the two studies present in this paper have a different age range

Fig. 8. Supervised and unsupervised dimension reductions before and after harmonization for the VDLC dataset. For each harmonization method, we first used principal

component analysis (PCA) to reduce the dimension of the cortical thickness measurements in an unsupervised manner (agnostic of imaging sites). We present in the first column the

projection of the data into the first two principal components (PCs) that explain most of the variation in the data. We also performed a supervised dimension reduction technique using

linear discriminant analysis (LDA) using imaging site as a target variable. We present in the second column the projection of the data into the first two LDA coordinates. In both PCA and

LCA, the first two coordinates are highly associated with site, while all harmonization methods removed most variation associated with site.
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([18,65] y.o. for the EMBARC study; [58,95] y.o. for the VDLC study),

there is some overlap between the two age ranges (see Fig. 12, first

panel). For the study of life-span trajectories, it is sometimes necessary to

combine data from multiple studies, with each individual study often

targeting participants from a specific age range. We show here that even

though different scanners and slightly different cortical thickness ROI

extraction methods were used across the studies, it is possible to combine

and harmonize the data, to remove the scanner effects, and thereby

improve the correlation between the imaging outcome and biological

factors of interest, namely age.

We present the relationship between median cortical thickness and

age, before and after harmonization in Fig. 12 with data points colored by

study (red for EMBARC and green for VDLC). One can observe an overlap

in the age span between the two studies, and that inter-subject variation

seems to be higher in the EMBARC subjects in the raw data. This can be

explained by the large variation between the four scanners in the

Fig. 9. Root-mean-square error (RMSE) for age prediction using linear regression Using k-fold validation for k 2 f3;5;10g for B ¼ 1000 random samplings, we calculated the RMSE

on a testing dataset for the predicted age using linear regression. For the different harmonization methods, we used the harmonized cortical thickness measurements as input image features

to train the algorithm. The p-values represent significant reductions of RMSE with respect to the raw data.

Fig. 10. Root-mean-square error (RMSE) for age prediction using ε-SVM (linear kernel). Using k-fold validation for k 2 f3;5; 10g for B ¼ 1000 random samplings, we calculated the

RMSE on a testing dataset for the predicted age using ε-SVM with a linear kernel. For the different harmonization methods, we used the harmonized cortical thickness measurements as

input image features to train the algorithm.
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EMBARC, as discussed previously in the Results section. For each

method, we calculated the correlation between the median cortical

thickness and age. For the unharmonized data, we obtained a correlation

of �0:70. For the unadjusted Residuals, we obtained a correlation of

�0:26. Such a weaker correlation is not surprising; both studies have a

vastly different age range, and therefore blindly harmonizing the data for

site without adjusting by age will diminish the age effect across the life

span. For the Adjusted Residuals, we obtained a correlation of�0:77, and

we obtained a correlation of �0:79 for ComBat. Both adjusted residual-

ization and ComBat were effective at decreasing the inter-subject vari-

ability by removing scanner effects, while preserving the trend associated

with age across the life-span.

Associations with gender

We also investigated the impact of harmonizing the EMBARC and

VDLC studies together on the associations between cortical thickness

measurements and gender. Before harmonization (raw data), 30 cortical

regions were significantly associated with gender, after adjusting for

multiple comparisons using the Benjamini-Hochberg procedure

(p<0:05). Interestingly, after harmonizing the data using either the

unadjusted Residuals, the Adjusted Residuals, or the ComBat approach,

we found that none of the features were associated with gender.

To investigate whether or not the results from the raw data consisted

of false positives as a consequence of gender ratios that are imbalanced

across sites (see Fig. 4), we devised the following subsampling strategy:

to obtain unconfounded assessments of the associations of gender with

cortical thickness measurements, we sampled an equal number of fe-

males and males from each scanner at random, resulting in a total of n ¼

306 subjects; we repeated the random subsampling B ¼ 1000 times.

While the resulting total sample size of the matched datasets is smaller,

the gender associations in the matched datasets should not be

confounded by unwanted scanner variation, and therefore lead to results

that are more reflective of the truth. For each of the B ¼ 1000 matched

datasets, we calculated the number of features associated with gender,

again adjusting for multiple comparisons using the Benjamini-Hochberg

procedure. We obtained that more than 98% of the time (981 datasets),

there were 0 features associated with gender, confirming that the 30

features associated with gender in the original raw data are most likely

false positives.

In light of these results, it appears that the three harmonization

techniques are effective at reducing the number of false positives. Such

false positives are most likely features that are artificially associated with

a biological covariate of interest, as a result of the biological covariate

being unbalanced across scanners or sites.

Discussion

With the increasing complexity of study design in multi-site neuro-

imaging studies, the neuroscience community needs robust, validated,

and computationally feasible methods for addressing the critical impact

of non-biological sources of data variation. We use the term “harmoni-

zation” to refer to the process of combining data from multiple sites and

removing the unwanted variability associated with scanner.

In this paper, we proposed to use the ComBat algorithm, previously

developed to deal with batch effects in the study of gene expression data,

as a reliable harmonization method for combining cortical thickness

measurements across sites. This was motivated by its previously docu-

mented excellent performance for harmonizing voxel-wise fractional

anisotropy (FA) and mean diffusivity (MD) measurements (Fortin et al.,

2017), two common DTI scalar maps. Using two large multi-site studies,

EMBARC and VDLC, we presented a general approach for identifying

unwanted sources of variance in neuroimaging data. We then showed

that ComBat is effective at removing nuisance variability associated with

scanners, while preserving the age effects in the cortical thickness across

participants. We also showed that ComBat can be used to combine those

two large studies, with a vastly different age range, to study cortical

thickness across the life span. Indeed, while the extraction of thickness in

the ROIs was slightly different for the two studies, we nonetheless found

ComBat to effectively mitigate scanner effects. We expect future studies

of ComBat for addressing minor differences in image processing across

studies to evaluate the feasibility of distributed analyses in which only

post-processed data are available.

While our analyses of harmonized data did not yield any differences

between males and females in cortical thickness measures, there is a

significant literature documenting these differences (Luders et al., 2006;

Fig. 11. Root-mean-square error (RMSE) for age prediction using ε-SVM (radial basis function kernel). Using k-fold validation for k 2 f3;5;10g for B ¼ 1000 random samplings, we

calculated the RMSE on a testing dataset for the predicted age using ε-SVM with a radial basis function kernel. For the different harmonization methods, we used the harmonized cortical

thickness measurements as input image features to train the algorithm.
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Sowell et al., 2006; Gennatas et al., 2017). These studies used different

analytic pipelines to calculate cortical thickness, although we would

expect our ANTsCT pipeline to provide similar results. However, previ-

ously reported results were based were conducted in healthy individuals,

and several were specifically designed to study sex differences, in

contrast to the VLDC and EMBARC studies which included large numbers

of depressed subjects and were heterogeneous in their demographics

across sexes. We expect that future analyses of sex effects from multi-

center studies of normal subjects using ComBat to replicate the well-

established differences in thickness measures.

We note that ComBat performs well for removing systematic biases

associated with scanner in studies independently of whether acquisition

protocols were carefully harmonized. In the EMBARC study, for example,

inter-site effects were present despite such harmonization; similar dif-

ferences have recently been reported in volumetric measurements from

another multi-center study which used a traveling subject design (Shi-

nohara et al., 2017; https://www.ncbi.nlm.nih.gov/pubmed/29106329,

https://www.ncbi.nlm.nih.gov/pubmed/28617996 ). As we found that

Fig. 12. Median age trajectory before and after harmonization. The EMBARC and VDLC studies were combined using different harmonizations. The red dots represent the median

cortical thickness for the EMBARC study participants, and the greens dots represent the median cortical thickness for the VDLC study participants. The curves represent the lowess fitted

values for each study separately.
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ComBat was effective in removing effects associated with differences in

acquisition protocol and scanner as in the VDLC study, as well as residual

site effects from images acquired using the harmonized protocol in

the EMBARC.

We compared the ComBat harmonization algorithm to two

commonly-used scanner effect correction methods: residualization and

adjusted residualization. The latter method adjusts for covariates of in-

terest (for instance age) in the removal of site effects. ComBat is similar to

the adjusted method, except that it additionally models scanner-specific

scaling effects. ComBat also uses a Bayesian framework to improve the

stability of the estimated parameters in small sample sizes. ComBat is

easy to apply and has minimal computational overhead. Equally impor-

tantly, we have developed open-source, easy-to-use code for applying

this algorithm in R, Matlab, and Python. This ensures that the ComBat

algorithm can be seamlessly integrated into any existing process-

ing pipelines.

Another advantage of ComBat is its ability to scale up for large neu-

roimaging studies. Indeed, the ComBat algorithm scales linearly with the

number of imaging features, which makes the procedure suitable to

image analyses performed at the voxel level, where the number of voxels

can often be in the millions. We note that for brainwide analyses per-

formed at the voxel level, the assumptions of the ComBat methodology

that scanner effects are shared across all voxels might not be valid. In

previous work, our group and others have found that scanner effects on

image intensities can be dependent on tissue class, and thus adjustments

for site effects may necessitate tissue class-specific modeling. One

possible solution is to apply ComBat on each tissue separately. An

alternative would be to extend the ComBat model to allow for a mixture

of empirical distributions for the scanner effects.

We note that several other harmonization techniques have been

previously proposed in the context of other imaging modalities. For

instance, for conventional MRI studies, intensity normalization tech-

niques have been developed to make the image intensities comparable

across studies, including histogram matching (Nyúl et al., 2000),

WhiteStripe (Shinohara et al., 2014) and RAVEL (Fortin et al., 2016).

Another method, called source-based morphometry, uses independent

component analysis (ICA) to remove variability associated with certain

scanner parameters in structural MRI (Chen et al., 2014). For diffusion

tensor imaging (DTI) studies, it has been proposed to use spherical har-

monics to harmonize data across studies, using a reference site to create

pairwise site transformations (Mirzaalian et al., 2016). It has also been

proposed to use functional normalization, originally developed in (Fortin

et al., 2014), for harmonizing DTI scalar maps.

The aforementioned harmonization techniques cannot be readily

applied to cortical thickness. For instance, for WhiteStripe and RAVEL,

control features in the WM and in the CSF are required, which do not

make sense in the context of cortical thickness measurements in the GM.

Furthermore, the histogram matching method attempts to estimate the

histogram peaks for each of the GM, WM and CSF tissues, and then aligns

these peaks across images to make the intensities comparable. Again, this

technique is not applicable to cortical thickness measurements in the GM.

On the other hand, ComBat does not make such specific assumptions on

the nature of the imaging measurements, making it a potential and ver-

satile tool for the harmonization of multi-site imaging studies for other

modalities.

In the future, we plan to develop a time-dependent ComBat algorithm

for understanding scenarios where subjects were scanned over multiple

time points, and for which scans were acquired on different scanners, or

on the same scanners but with different scanning parameters. We are also

planning on improving the performance of ComBat in the presence of

confounding by implementing an inverse probability weighting (IPW)

scheme into the algorithm. IPW has been shown to improve prediction

when the outcome of interest is confounded with another covariate (Linn

et al., 2016). This has the potential to improve the performance of

ComBat for age prediction using the SVM regression framework, as well

as for other prediction methods.

Software

All postprocessing analysis was performed in the R statistical software

(version 3.2.0). For ComBat, the reference implementations from the sva

package was used. All figures were generated in R with customized and

reproducible scripts. We have adapted and implemented the ComBat

methodology to imaging data, and the software is available in R and

Matlab (https://github.com/Jfortin1/ComBatHarmonization) and in

Python (https://github.com/ncullen93/neuroCombat).
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vector regression; VDLC: Vascular disease: Longitudinal changes; WM:

White Matter.
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Appendix A

Fig. A.1. Variance explained by imaging site (R2). For each feature, we calculated the coefficient of determination R2 between cortical thickness and imaging site. We present the

densities of R2 (red lines) for the (a) EMBARC study and the (b) VDLC study. To obtain a measure of significance and to correct for multiple comparisons, we performed a one-step max R2

procedure. Briefly, we permuted the site labels B ¼ 10;000 times, recalculated the R2 values and retained the maximum R2 value at each permeation. The grey densities represent the

distribution of the maximum R2
’s. The vertical dashed line indicates the 95% quantile of the maximum R2 distribution. The features above that threshold are significant at the α ¼ 0:05

level (shaded red area). Most features remained significant after adjustment.
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