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The human proteome is a major source of therapeutic targets. Recent genetic association
analyses of the plasma proteome enable systematic evaluation of the causal
consequences of variation in plasma protein levels. Here we estimated the effects of 1,002
proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and
colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not
supported by results of colocalization analyses, suggesting that genetic confounding due
to linkage disequilibrium (LD) is widespread in naive phenome-wide association studies of
proteins. Combining MR and colocalization evidence in cis-only analyses, we identified
111 putatively causal effects between 65 proteins and 52 disease-related phenotypes
(www.epigraphdb.org/pqtl/). Evaluation of data from historic drug development
programs showed that target-indication pairs with MR and colocalization support were
more likely to be approved, evidencing the value of this approach in identifying and
prioritizing potential therapeutic targets.
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Despite increasing investment in research and development (R&D) in the pharmaceutical
industry’, the rate of success for novel drugs continues to fall®. Lower success rates make
new therapeutics more expensive, reducing availability of effective medicines and
increasing healthcare costs. Indeed, only one in ten targets taken into clinical trials reaches
approval®, with many showing lack of efficacy (~50%) or adverse safety profiles (~25%) in
late stage clinical trials after many years of development®“. For some diseases, such as
Alzheimer’s disease, the failure rates are even highers.

Thus, early approaches to prioritize target-indication pairs that are more likely to be
successful are much needed. It has previously been shown that target-indication pairs for
which genetic associations link the target gene to related phenotypes are more likely to
reach approval®. Consequently, systematically evaluating the genetic evidence in support of
potential target-indication pairs is a potential strategy to prioritize development programs.
While systematic genetic studies have evaluated the putative causal role of both methylome
and transcriptome on diseases’?, studies of the direct relevance of the proteome are in
their infancy™*°.

Plasma proteins play key roles in a range of biological processes and represent a
major source of druggable targetsll’lz. Recently published genome-wide association studies
(GWAS) of plasma proteins have identified 3,606 conditionally independent single
nucleotide polymorphisms (SNPs) associated with 2,656 proteins (‘protein quantitative trait
loci’, pQTL)>****!>18 These genetic associations offer the opportunity to systematically test
the causal effects of a large number of potential drug targets on the human disease
phenome through Mendelian randomization (MR). In essence, MR exploits the random
allocation of genetic variants at conception and their associations with disease risk factors
to uncover causal relationships between human phenotypes, and has been described in
detail previously'®®.

For MR analyses of proteome, unlike more complex exposures, an intuitive way to
categorize protein-associated variants is into cis-acting pQTLs located in the vicinity of the
encoding gene (defined as < 500 kb from the leading pQTL of the test protein in this study)
and trans-acting pQTLs located outside this window. The cis-acting pQTLs are considered to
have a higher biological prior and have been widely employed in relation to some phenome-
wide scans of drug targets such as CETP? and IL6R**. Trans-acting pQTLs may operate via
indirect mechanisms and are therefore more likely to be pleiotropic?, although they may
support causal inference where they are likely to be non-pleiotropic.

Here we pool and cross-validate pQTLs from five recently published GWAS and use
them as instruments to systematically evaluate the causal role of 968 plasma proteins on
the human phenome, including 153 diseases and 72 risk factors available in the MR-Base
database?. Results of all analyses are available in an open online database
(www.epigraphdb.org/pgtl/), with a graphical interface to enable rapid and systematic
queries.
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Results

Characterizing genetic instruments for proteins

Figure 1 summarizes the genetic instrument selection and validation process. Briefly, we
curated 3,606 pQTLs associated with 2,656 proteins from five GWAS 13141516 Aftar
removing proteins and SNPs using criteria such as LD-pruning listed in Online Methods
(Instrument selection), we retained 2,113 pQTLs for 1,699 proteins as instruments for the
MR analysis (Supplementary Table 1). Among these instruments, we conducted further
validation by categorizing them into three tiers based on their likely utility for MR analysis
(Online Methods, Instrument validation): 1,064 instruments of 955 proteins with the
highest relative level of reliability (tier 1); 62 instruments that exhibited SNP effect
heterogeneity across studies (Supplementary Figs. 1 and 2), indicating uncertainty in the
reliability of one or all instruments for a given protein (tier 2; Supplementary Tables 2 and
3); and 987 non-specific instruments that were associated with more than five proteins (tier
3). For the 263 tier 1 instruments associated with between two and five proteins, 68 of
them influenced multiple proteins in the sample biological pathway and thus are likely to
reflect vertical pleiotropy and remain valid instruments (Supplementary Note,
Distinguishing vertical and horizontal pleiotropic instruments using biological pathway
data)*.

Among the 1,126 tier 1 and 2 instruments, 783 (69.5%) were cis-acting (within 500
kb of the leading pQTL) and 343 were trans-acting. Of 1,002 proteins with a valid instrument,
765 had only a single cis or trans instrument, 66 were influenced by both cis and trans SNPs
(Supplementary Table 4), and 153 had multiple conditionally distinct cis instruments (381
cis instruments shown in Supplementary Table 5).

Estimated effects of plasma proteins on human phenotypes

We undertook two-sample MR to systematically evaluate evidence for the causal effects of
1,002 plasma proteins (with tier 1 and tier 2 instruments) on 153 diseases and 72 disease-
related risk factors (Supplementary Table 6 and Online Methods, Phenotype selection).
Overall, we observed 413 protein-trait associations with MR evidence (P<3.5x 107 ata
Bonferroni-corrected threshold) using either cis or trans instruments (or both for proteins
with multiple instruments).

Genetically filtering out predicted associations between proteins and phenotypes
may indicate four explanations: causality, reverse causality, confounding by LD between the
leading SNPs for proteins and phenotypes, or horizontal pleiotropy (Supplementary Fig. 3).
Given these alternative explanations, we conducted a set of sensitivity analyses to establish
whether the MR association reflects a causal effect of protein on phenotype: tests of
reverse causality using bi-directional MR** and MR Steiger filtering?®; heterogeneity
analyses for proteins with multiple instruments®’, and colocalization analyses® to
investigate whether the genetic associations with both protein and phenotype shared the
same causal variant (Fig. 1). To avoid unreliable inference from colocalization analysis due to
the potential presence of multiple neighboring association signals, we also developed and
performed pairwise conditional and colocalization analysis (PWCoCo) of all conditionally
independent instruments against all conditionally independent association signals for the
outcome phenotypes (Online Methods, Pairwise conditional and colocalization analysis; Fig.
2). For this study, MR and colocalization were the two methods filtering reliable associations.
After the colocalization analysis, 283 of the 413 protein-phenotype associations had profiles
supportive of causality.
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Estimating protein effects on human phenotypes using cis pQTLs

In the MR analyses using cis-pQTLs, we identified 111 putatively causal effects of 65 proteins
on 52 phenotypes, with strong evidence of MR (P < 3.5 x 10”') and colocalization (posterior
probability > 80%; after applying PWCoCo) between the protein- and phenotype-associated
signals (Fig. 3 and Supplementary Table 7). A further 69 potential associations had evidence
from MR but did not have strong evidence of colocalization (posterior probability < 80%;
Supplementary Table 8), highlighting the potential for confounding by LD and the
importance of colocalization analyses in MR of proteins. Evidence of potentially causal
effects supported by colocalization was identified across a range of disease categories,
including anthropometric phenotypes and cardiovascular and autoimmune diseases
(Supplementary Note, Disease areas of protein-trait associations), and our findings
replicated some previous reported associations (Supplementary Note, MR results replicated
previous findings).

Of 437 proteins with tier 1 or tier 2 cis instruments from Sun et al.’ and Folkersen et
al.**, 153 (35%) had multiple conditionally independent SNPs in the cis region identified by
GCTA-C0OJO? (Supplementary Table 5). We applied an MR model that takes into account
the LD structure between conditionally independent SNPs in these cis regions®’. In this
analysis, we identified 10 additional associations that had not reached our Bonferroni
corrected P-value threshold in the single-variant cis analysis. Generally, the MR estimates
from the multi-cis MR analyses were consistent with the single-cis instrumented analyses
(Supplementary Table 9).

In regions with multiple cis instruments, 16 of the 111 top cis MR associations only
showed evidence of colocalization after conducting PWCoCo analysis for both the proteins
and the human phenotypes, where none was observed between marginal results
(Supplementary Table 7). For example, interleukin 23 receptor (IL23R) had two
conditionally independent cis instruments: rs11581607 and rs3762318°. Conventional MR
analysis combining both instruments showed a strong association of IL23R with Crohn’s
disease (OR =3.22,95% Cl =2.93 t0 3.53, P=6.93 x 1013 Supplementary Table 9b). There
were four conditionally independent signals (conditional P < 1 x 10”) predicted for Crohn’s
disease in the same region (data from de Lange et al.*"). In the marginal colocalization
analyses, we observed no evidence of colocalization (Fig. 4 and Supplementary Fig. 4,
colocalization probability = 0). After performing PWCoCo with each distinct signal in an
iterative fashion, we observed compelling evidence of colocalization between IL23R and one
of the Crohn’s disease signals for the top /L23R signal (rs11581607) (colocalization
probability = 99.3%), but limited evidence for the second conditionally independent /IL23R
hit (rs7528804) (colocalization probability = 62.9%). Additionally, for haptoglobin, which
showed MR evidence for LDL-cholesterol (LDL-C), there were two independent cis
instruments. There was little evidence of colocalization between the two using marginal
associations (colocalization probability = 0.0%). However, upon performing PWCoCo, we
observed strong evidence of colocalization for both instruments (colocalization probabilities
= 99%; Supplementary Table 10 and Supplementary Fig. 5). Both examples demonstrate
the complexity of the associations in regions with multiple independent signals and the
importance of applying appropriate colocalization methods in these regions. Of the 413
associations with MR evidence (using cis and trans instruments), 283 (68.5%) also showed
strong evidence of colocalization using either a traditional colocalization approach (260
associations) or after applying PWCoCo (23 associations), suggesting that one third of the
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MR findings could be driven by genetic confounding by LD between pQTLs and other causal
SNPs.

Due to potential epitope-binding artefacts driven by protein-altering variants>?, we
also flag putatively causal links where the lead instrument is a protein-altering variant or is
in high LD (r* > 0.8) with one (Supplementary Tables 7 and 8 filtered by column
“VEP_pQTL_Ldproxy” including missense, stop-lost/gained, start-lost/gained and splice-
altering variants).

Using trans-pQTLs as additional instrument sources

Trans pQTLs are more likely to influence targets though pleiotropic pathways. Among the
1,316 trans instruments we identified from five studies, 73.5% were associated with more
than five proteins, compared with 1.8 % of cis instruments (Supplementary Table 1).
However, in the context of MR, including non-pleiotropic trans-pQTLs may increase the
reliability of the protein-phenotype associations since (i) they will increase variance
explained of the tested protein and increase power of the MR analysis; (ii) the causal
estimate will not be reliant on a single locus, where multiple instruments exist; and (iii)
further sensitivity analyses, such as heterogeneity test of MR estimates across multiple
instruments, can be conducted. Therefore, we extended our MR analyses to include 343
non-pleiotropic trans instruments (Supplementary Fig. 6).

To utilize trans instruments, we first combined cis and trans instruments for 66
proteins that had both cis and trans instruments (noted as cis + trans analysis). However,
none reached our pre-defined Bonferroni-corrected threshold, and only two protein-
phenotype associations showed even suggestive evidence (P < 1 x 10”°) (Supplementary
Table 11). Further, after including trans instruments, 17 of the cis-only signals were
attenuated. Secondly, we performed trans-only MR analyses of 293 proteins and identified
158 associations with 44 phenotypes that also had strong evidence (posterior probability >
0.8) of colocalization (Supplementary Table 12). A further 54 trans-only MR associations did
not have strong evidence of colocalization (Supplementary Table 13).

Some of the trans analyses with MR and colocalization evidence suggest causal
pathways that are confirmed by evidence from rare pathogenic variants or existing
therapies. For example, although we had no cis instrument for Protein C (Inactivator Of
Coagulation Factors Va And Vllla) (PROC) (Supplementary Fig. 7a), we found evidence for a
causal association between PROC levels and deep venous thrombosis (P = 1.27 x 1070
colocalization probability > 0.9) using a trans pQTL, rs867186 (Supplementary Fig. 7b),
which is a missense variant in PROCR®, the gene encoding the endothelial protein C
receptor (EPCR). Individuals with mutations in PROC have protein C deficiency, a condition
characterized by recurrent venous thrombosis for which replacement protein Cis an
effective therapy.

From 47 proteins with multiple trans instruments, we identified four additional MR
associations, but none showed strong evidence of colocalization (Supplementary Table 13)
and little evidence of heterogeneity (Supplementary Table 14).

Estimating protein effects on human phenotypes using pQTLs with heterogeneous effects
across studies

Among the 2,113 selected instruments, we checked whether the 1,062 instruments with
association information in at least two studies showed consistent effect size across studies
(Supplementary Table 15). For these SNPs, we found that 62 showed evidence of difference
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234 in effect size across studies (tier 2 instruments), for which we performed MR analyses using
235  the most significant SNP across studies and report the findings with caution. Some proteins
236  that are targets of approved drugs were found to have potential causal effects in this

237  analysis, such as interleukin-6 receptor (IL6R) on rheumatoid arthritis (RA)**, and coronary
238  heart disease (CHD)** (Supplementary Table 16). Tocilizumab, a monoclonal antibody

239  against IL6R, is used to treat RA, while canakinumab, a monoclonal antibody against

240  interleukin-1 beta (an upstream inducer of interleukin-6), has been shown to reduce

241  cardiovascular events specifically among patients who showed reductions in interleukin-6*°.
242 As another test of heterogeneity across studies, where the same protein was

243 measured in two or more studies, we performed colocalization analysis of each pQTL (in one
244 study) against the same pQTL (in another study) for the two studies in which we had access
245 to full summary results (Sun et al.’ and Folkersen et al.**). Of the 41 proteins measured in
246  both studies, 76 pQTLs could be tested using conventional colocalization and PWCoCo

247  (Supplementary Table 15). We found weak evidence of colocalization for 51 pQTLs

248  (posterior probability < 0.8), which suggested either two different signals were present

249  within the test region or the protein has a pQTL in one study but not in the other. In either
250 case, as one of the two distinct signals may be genuine, we performed MR analysis of these
251 25 pQTLs using instruments from each study separately. Eight associations had MR evidence,
252 but only one showed colocalization evidence (IL27 levels on human height; Supplementary
253  Table 17).

254

255  Sensitivity analyses to evaluate reverse causality

256  For potential associations between proteins and phenotypes identified in the previous

257  analyses, we undertook two sensitivity analyses to highlight results due to reverse causation:
258  bi-directional MR** and Steiger filtering? (Online Methods, Distinguishing causal effects
259  from reverse causality). In general, we found little evidence of reverse causality for genetic
260  predisposition to diseases on protein level changes (more details in Supplementary Note,
261  Bi-directional MR and Steiger filtering results; Supplementary Data 1).

262

263  Drug target prioritization and repositioning using phenome-wide MR

264  Given that human proteins represent the major source of therapeutic targets, we sought to
265  mine our results for targets of molecules already approved as treatments or in ongoing

266  clinical development. We first compared MR findings for 1,002 proteins against 225

267  phenotypes with historic data on progression of target-indication pairs in Citeline’s

268  PharmaProjects (downloaded on gth May 2018). Of 783 target-indication pairs with an

269  instrument for the protein and association results for a phenotype similar to the indication
270  for which the drug had been trialled, 9.2% (73 pairs) had successful (approved) drugs, 69.1%
271  had failed drugs (including 195 failed drugs in the clinical stage and 354 drugs that failed in
272  the preclinical stage) and 20.3% were for drugs still in development (161 pairs). The 268
273 pairs for successful (73) or failed (195) drugs were included in further analyses

274  (Supplementary Table 18). We observed eight target-indication pairs of successful drugs
275  with MR and colocalization evidence of a potentially causal relationship between protein
276  and disease (Supplementary Table 19). After removing duplicate genetic evidence for

277  related indications for the same therapy (Online Methods, Drug target validation and

278  repositioning), six successful drugs remained from 214 pairs (Supplementary Table 20). In
279  addition to the PROC and IL6R examples discussed earlier, we found Proprotein convertase
280  subtilisin/kexin type 9 (PCSK9) (target for evolocumab) for hypercholesterolemia and

9
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hyperlipidaemia, Angiotensinogen (AGT) for hypertension, IL12B for psoriatic arthritis and
psoriasis, and TNF Receptor Superfamily Member 11a (TNFRSF11A) for osteoporosis. For
each of these examples, the direction of effect between circulating protein and disease risk
was consistent with the therapeutic mechanism, except IL6R and PROC at first sight.
However, for IL6R and PROC, the alleles associated with higher soluble protein levels have
been shown to also lead to lower intracellular pathway activation®®*’, indicating consistency
of direction with the therapeutic approach. These examples highlight the importance of
careful examination of the biological mechanisms underlying plasma pQTLs to enable
translation. Further removing associations potentially driven by protein-altering variants, as
well as drugs that were in large part motivated by genetic evidence (e.g. PCSK9 fits both
exclusion criteria), comparisons of the remaining 191 pairs indicated that protein-phenotype
associations with MR and colocalization evidence remained more likely to become
successful target-indication pairs (Table 1). Although we acknowledge the limited sample
size of the test set, this raises enthusiasm for the utility of pQTL MR analyses with
colocalization as a method for target prioritization.

Previous efforts have highlighted the opportunities and challenges of using genetics
for drug repositioning®. We identified three approved drugs for which we found pQTL MR
and colocalization evidence for five phenotypes other than the primary indication and 23
drug targets under development for 33 alternative phenotypes (Supplementary Table 21).
An example of urokinase-type plasminogen activator (PLAU) levels associated with lower
inflammatory bowel disease (IBD) risk is presented in the Supplementary Note (Case study
for drug repurposing) and Supplementary Figure 8.

We also evaluated drugs in current clinical trials and identified eight additional
protein-phenotype associations with MR and colocalization evidence (Supplementary Table
22), for which we observe MR evidence implicating an increased likelihood of success.

Finally, we compared the 1,002 instrumentable proteins (i.e. those that passed our
instrument selection procedure) against the druggable genome®?, and found that 682 of the
1,002 (68.1%) instrumentable proteins overlapped with the druggable genome
(Supplementary Table 23 and Online Methods, Enrichment of proteome-wide MR with the
druggable genome). We conducted a further enrichment analysis to assess the overlap
between putative causal protein-phenotype associations and the druggable genome
(Supplementary Table 24). Of the 295 top findings (120 proteins on 70 phenotypes) with
both MR and colocalization evidence, 250 of them (87.7%) overlapped with the druggable
genome (Fig. 5). This enrichment analysis will become more valuable with the continuous
evolution of the druggable genome®.
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Discussion

MR analysis of molecular phenotypes against disease phenotypes provides a promising
opportunity to validate and prioritize novel or existing drug targets through prediction of
efficacy and potential on-target beneficial or adverse effects®. Our phenome-wide MR
study of the plasma proteome employed five pQTL studies to robustly identify and validate
genetic instruments for thousands of proteins. We used these instruments to evaluate the
potential effects of modifying protein levels on hundreds of complex phenotypes available
in MR-Base? in a hypothesis-free approach®’. We confirmed that protein-phenotype
associations with both MR and colocalization evidence predicted a higher likelihood of a
particular target-indication pair being successful and highlight 283 potentially causal
associations. Collectively, we underline the important role of pQTL MR analyses as an
evidence source to support drug discovery and development and highlight a number of key
analytical approaches to support such inference.

In particular, we note the distinct opportunities and methodological requirements
for MR of molecular phenotypes, such as transcriptomics and proteomics, compared to
other complex exposures. For example, the number of instruments is often limited for
proteins, restricting the opportunity to apply recently developed pleiotropy robust
approaches®”**. New methods such as MR-robust adjusted profile scoring (MR-RAPS)*
allow inclusion of many weak instruments in the MR analysis and have been applied to a
recent proteome-wide MR study'®. However, we note some examples where inclusion of
multiple weaker instruments can reduce power and yield different results to those based on
cis instruments alone®®*3, and we note very limited additional gain from inclusion of trans
instruments. A major advantage of proximal molecular exposures is the ability to include cis
instruments (or interpretable trans instruments) with high biological plausibility, limiting the
likelihood of horizontal pleiotropy®***. Further, we note the limited gain from inclusion of
trans instruments in our analysis. However, undue focus on single SNP MR approaches
brings susceptibility to other pitfalls, such as the inability to examine heterogeneity of effect
and to evaluate and remove potential epitope artefacts.

To provide robust MR estimates for proteins, we note the important role of a
number of sensitivity analyses following the initial MR in order to distinguish causal effects
of proteins from those driven by horizontal pleiotropy, genetic confounding through LD**
and/or reverse causation® Of note, only two-thirds of our putative causal associations had
strong evidence of colocalization, suggesting that a substantial proportion of the initial
findings were likely to be driven by genetic confounding through LD between pQTLs and
other disease-causal SNPs. To avoid misleading results, we suggest that for regions with
multiple molecular trait QTLs, it is important to consider methods such as PWCoCo, which
can avoid the assumptions of traditional colocalization approaches of just a single
association signal per region. In the current study, application of PWCoCo identified
evidence of colocalization for 23 additional protein-phenotype associations hidden to
marginal colocalization*®. We note that recent recommendations support the use of
colocalization as a follow up analysis to reduce false positives®’.

An important limitation of this work is that protein levels are known to differ
between cell types™. In this study, we have estimated the role of protein measured in
plasma on a range of complex human phenotypes but are unable to assess the relevance of
protein levels in other tissues. While eQTL studies highlight a large proportion of eQTLs
being shared across tissues®’, there are many which show cell type and state specificity®,
highlighting the potential value of applying the current approach to data from proteomics
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analyses in other cell types and tissues. We also hypothesize that, in instances with multiple
conditionally distinct pQTLs but where we observe colocalization of only certain
conditionally distinct pQTL-phenotype pairs, this may reflect underlying cell- and state-
specific heterogeneity in bulk plasma pQTLs, among which only certain cell-types or states
are causal®. Although pQTL studies have not yet been performed as systematically across
tissues or states as eQTL studies, it remains encouraging that our analyses using plasma
proteins identify associations across a range of disease categories, including for psychiatric
diseases for which we may expect key proteins to function primarily in the brain.

Evaluating the potential of MR to inform drug target prioritization, we demonstrated
that the presence of pQTL MR and colocalization evidence for a target-indication pair
predicts a higher likelihood of approval. One of the limitations of our approach is the lack of
comprehensive coverage of genetic data for all phenotypes for which drugs are in
development, as well as our inability to instrument the entire proteome through pQTLs. As
such, ongoing expansions in the scale, diversity and availability of GWAS will be important in
providing more precise estimates of the value of MR and colocalization in drug target
prioritization and in enabling its broader application.

Another potential limitation of our work is the presence of epitope-binding artefacts
driven by coding variants that may yield artefactual cis-pQTLs*. In particular, such instances
may lead to false negative conclusions where, in the presence of a silent missense variant
causing an artefactual pQTL but with no actual effect on protein function or levels, we do
not correctly instrument the target protein. In instances where the missense variant appears
to be driving the association with the phenotype, we suggest that causal inference may
remain valid but inference on direction of association is challenged. Finally, the limited
coverage of the proteome afforded by current technologies leaves the possibility of
undetected pleiotropy of instruments. While cis-pQTLs are less likely to be prone to
horizontal pleiotropy than trans-pQTLs, it is well known from studies of gene expression that
cis variants can influence levels of multiple neighboring genes and hence the same is likely
to be true for proteins. Future larger GWAS of the plasma proteome are likely to uncover
many more variant-protein associations, increasing the apparent pleiotropy of many pQTLs.

In conclusion, this study identified 283 putatively causal effects between the plasma
proteome and the human phenome using the principles of MR and colocalization. These
observations support, but do not prove, causality, as potential horizontal pleiotropy remains
an alternative explanation. Our study provides both an analytical framework and an open
resource to prioritize potential new targets and a valuable resource for evaluation of both
efficacy and repurposing opportunities by phenome-wide evaluation of on-target
associations.
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Figure Legend

Figure 1 | Study design of this phenome-wide MR study of the plasma proteome. The
study included instrument selection and validation, outcome selection, four types of MR
analyses, colocalization, sensitivity analyses, and drug target validation.

Figure 2 | A demonstration of pairwise conditional and colocalization (PWCoCo) analysis.
Assume there are two conditional independent association pQTL signals (SNP 1 and SNP 2)
and two conditional independent outcome signals (SNP 1 and SNP 3) in the tested region. A
naive colocalization analysis using marginal association statistics will return weak evidence
of colocalization (showed in regional plots A and D). By conducting the analyses conditioning
on SNP 2 (plot B) and 1 (plot C) for the pQTLs and conditioning on SNP 1 (plot E) and 3 (plot
F) for the outcome phenotype, each of the nine pairwise combinations of pQTL and
outcome association statistics (represented as lines with different colors in the middle of
this figure) will be tested using colocalization. In this case, the combination of plot B and
plot E shows evidence of colocalization but the remaining eight do not.

Figure 3 | Miami plot for the cis-only analysis, with circles representing the MR results for
proteins on human phenotypes. The labels refer to top MR findings with colocalization
evidence, with each protein represented by one label. The color refers to top MR findings
with P < 3.09 x 107, where red refers to immune-mediated phenotypes, blue refers to
cardiovascular phenotypes, green refers to lung-related phenotypes, purple refers to bone
phenotypes, orange refers to cancers, yellow refers to glycemic phenotypes, brown refers to
psychiatric phenotypes, pink refers to other phenotypes and grey refers to phenotypes that
showed less evidence of colocalization. The x-axis is the chromosome and position of each
MR finding in the cis region. The y-axis is the -logy P value of the MR findings, MR findings
with positive effects (increased level of proteins associated with increasing the phenotype
level) are represented by filled circles on the top of the Miami plot, while MR findings with
negative effects (decreased level of proteins associated with increasing the phenotype level)
are on the bottom of the Miami plot.

Figure 4 | Regional association plots of IL23R plasma protein level and Crohn’s disease in
the IL23R region. a,b, Regional plots of IL23R protein level and Crohn’s disease without
conditional analysis. Plot in b lists the sets of conditionally independent signals for Crohn’s
disease in this region: rs7517847, rs7528924, rs183020189, rs7528804 (a proxy for the
second IL23R hit rs3762318, r* = 0.42 in the 1000 Genome Europeans) and rs11209026 (a
proxy for the top /L23R hit rs11581607, r* = 1 in the 1000 Genome Europeans), conditional P
value < 1x 10”. ¢, Regional plot of IL23R with the joint SNP effects conditioned on the
second hit (rs3762318) for IL23R. d, Regional plot of Crohn’s disease with the joint SNP
effects adjusted for other independent signals except the top IL23R signal rs11581607. e,
Regional plot of IL23R with the joint SNP effects conditioned on the top hit (rs11581607) for
IL23R. f, Regional plot of Crohn’s disease with the joint SNP effects adjusted for other
independent signals except the second /L23R signal rs3762318. The heatmap of the
colocalization evidence for IL23R association on Crohn’s disease (CD) in the /IL23R region is
presented in Supplementary Figure 4.
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Figure 5 | Enrichment of phenome-wide MR of the plasma proteome with the druggable
genome. In this figure, we only show proteins with convincing MR and colocalization
evidence with at least one of the 70 phenotypes. The x-axis shows the categories of 70
human phenotypes, where the phenotypes have been grouped into 8 categories: 8
autoimmune diseases (red), 3 bone phenotypes (purple), 8 cancers (orange), 12
cardiovascular phenotypes (blue), 4 glycemic phenotypes (yellow), 2 lung phenotypes
(green), 4 psychiatric phenotypes (brown), and 29 other phenotypes (pink). The y-axis
presents the tiers of the druggable genome (as defined by Finan et al.>®) of 120 proteins
under analysis, where the proteins have been classified into 4 groups based on their
druggability: tier 1 contains 23 proteins that are efficacy targets of approved small
molecules and biotherapeutic drugs, tier 2 contains 11 proteins closely related to approved
drug targets or with associated drug-like compounds, tier 3 contains 58 secreted or
extracellular proteins or proteins distantly related to approved drug targets, and 28 proteins
have unknown druggable status (Unclassified). The cells with colors are protein-phenotype
associations with strong MR and colocalization evidence. Cells in green are associations
overlapping with the tier 1 druggable genome, while cells in yellow, red or purple were
associations with tier 2, tier 3 or unclassified. More detailed information is shown in
Supplementary Table 24.
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Table 1 | Enrichment analysis comparing target-indication pairs with or without MR and colocalization evidence

Mendelian randomization and colocalization evidence

o . YES NO

Target—mdlcat!o'n palr'approved VES 4 20
after clinical trials

NO 0 147

The protein-phenotype association pairs were grouped into four categories: (i) pairs with both MR/colocalization indications of causality and
drug trial success; (ii) pairs with MR and colocalization evidence but no drug trial evidence; (iii) pairs with no strong MR or colocalization
evidence but with drug trial evidence; and (iv) pairs with no strong MR, colocalization or drug trial evidence. The cut-off for MR evidence was P
< 3.5 x 107; the cut off for colocalization evidence was posterior probability > 80%. The drug trial evidence was obtained from PharmaProjects
database. The MR and colocalization analysis results involved in this analysis including both tier 1 and tier 2 instruments in both cis and trans
region. More results comparing MR and trial evidence for cis-only and tier 1 instruments can be found in Supplementary Table 20.
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Methods

Instrument selection

pQTLs from five GWAS****® were used for the instrument selection (Fig. 1). We first
mapped SNPs to genome build GRCh37.p13 coordinates and then used the following criteria
to select instruments:

e We selected SNPs that were associated with any protein (using a P-value threshold <
5 x 10°®) in at least one of the five studies, including both cis and trans pQTLs.

e Due to the complex LD structure of SNPs within the human Major Histocompatibility
Complex (MHC) region, we removed SNPs and proteins coded for by genes within
the MHC region (chr6: from 26 Mb to 34 Mb).

e We then conducted linkage disequilibrium (LD) clumping for the instruments with
the TwoSampleMR R package? to identify independent pQTLs for each protein. We
used r* < 0.001 as the threshold to exclude dependent pQTLs in the cis (or trans)
gene region.

After instrument selection, 2,113 instruments were kept for further instrument validation
(Supplementary Table 1). The instrument selection process, and the number of instruments
for proteins at each step in the process, is illustrated in Figure 1.

We incorporated conditionally distinct signals from protein association data through
systematic conditional analysis. Of the five studies, Sun et al.’ reported conditionally distinct
results for both cis and trans pQTLs, which have been used in our study. Folkersen et al.**
have shared summary statistics, with which we performed approximate conditional analyses
ourselves using GCTA-COJO*, with genotype data from mothers in the Avon Longitudinal
Study of Parents and Children (ALSPAC) as the LD reference panel®***(a description of the
ALSPAC cohort can be found in Supplementary Note, Description of ALSPAC study).
Conditionally independent signals in the cis region for Sun et al. and Folkersen et al. are
reported in Supplementary Table 5.

Instrument validation

For the 2,113 instruments, we further classified them into three groups (noted as tier 1, tier
2 and tier 3 instruments) using two major instrument-filtering steps: a specificity test and a
consistency test. More details of instrument validation, including harmonization of proteins
and instruments and statistical tests for consistency can be found in the Supplementary
Note (The protocol of the instrument validation).

Test estimating instrument specificity

Absence of horizontal pleiotropy is one of the core assumptions for MR. This assumes that
the genetic variant should only be related to the outcome of interest through the
instrumented exposure. We noted that some SNPs were associated with more than one
protein. For example, APOE SNP rs7412 is associated with a set of proteins such as ADAM11,
APBB2, and APOB. We plotted a histogram of the number of proteins each instrument was
associated with (Supplementary Fig. 6) and considered instruments associated with more
than 5 proteins as highly pleiotropic and assigned them as tier 3 instruments (which were
excluded from all analyses). For instruments associated with fewer than (or equal to) five
proteins, we reported the number of proteins each of them (and their proxies with LD r*>
0.5) was associated with to indicate the level of potential pleiotropy.
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754 To further distinguish vertical and horizontal pleiotropy for these instruments, we
755  used biological pathway information from Reactome (https://reactome.org/) and protein-
756 protein interaction information from STRING DB (https://string-db.org/) implemented in
757  EpiGraphDB (www.epigraphdb.org; Supplementary Note, Distinguishing vertical and

758  horizontal pleiotropic instruments using biological pathway data). After this analysis, 68
759  instruments associated with multiple proteins were mapped to the same pathway (or same
760  PPI) and were considered as valid instruments. Given there are other pathways and PPls
761  that may be not included in Reactome and STRING, we kept tier 1 and 2 instruments

762  associated with 1 to 5 proteins for the main MR analysis, but we recorded the number of
763  proteins and number of pathways these instruments are associated with as an indication of
764  potential pleiotropy.

765

766  Consistency test estimating instrument heterogeneity across studies

767  Among the 2,113 pQTLs selected as instruments, we looked up available protein GWAS

768  results (Sun et al.®, Suhre et al.*®* and Folkersen et al.** with full GWAS summary statistics;
769  Yao et al.”®> and Emilsson et al.'® with pQTLs only) and found 1,062 pQTLs (or proxies with r* >
770  0.8) with association information in at least two studies (Supplementary Table 15). We then
771  tested the beta-beta correlation using the Pearson correlation function in R. The results of
772  the beta-beta correlations of SNP effects for each pair of studies and the number of SNPs
773  included in each correlation analysis can be found in Supplementary Table 2.

774 We further performed two consistency tests on the instruments that were present
775  across studies: (i) pairwise Z test; (ii) colocalization analysis of proteins across studies

776  (details of the analyses in Supplementary Note, The protocol of the instrument validation).
777  Instruments showing evidence of high heterogeneity across studies using either the pair-
778  wise Z test (pairwise Z > 5) or colocalization analysis (PP < 80%), were flagged as tier 2

779  instruments. Recognizing that lack of replication and effect heterogeneity does not preclude
780  atleast one of these effects being genuine, we used these instruments separately for the
781  follow-up genetic analyses (Supplementary Table 3) and reported the findings with caution.
782 We designated instruments passing both pleiotropy and consistency tests as tier 1
783  instruments and used them as primary instruments for the MR analysis.

784

785  Identifying cis and trans instruments

786  We further split tier 1 instruments into two groups: (i) cis-acting pQTLs within a 500-kb

787  window from each side of the leading pQTL of the protein were used for the initial MR

788  analysis (defined as the cis-only analysis)**; (ii) trans-acting pQTLs outside the 500-kb

789  window of the leading pQTL were designated as trans instruments. While trans instruments
790  may be more prone to pleiotropy, their inclusion could increase statistical power as well as
791  the scope of downstream sensitivity analyses (e.g. tests for heterogeneity between

792  instruments). Therefore, for the proteins with cis instruments, we also looked for additional
793  trans instruments, and if these were available, we conducted further MR analyses using
794  both sets of instruments (defined as the "cis + trans" analysis).

795 For cis instruments, we looked up their predicted consequence via Variant Effect
796  Predictor> hosted by Ensembl. We identified coding variants (including missense, stop-
797  lost/gained, start-lost/gained and splice-altering variants) since epitope-binding artefacts
798  driven by coding variants may yield artefactual cis pQTLs*’. We then conducted a sensitivity
799 MR analysis that excluded cis instruments that are in the coding region to further avoid the
800  potential issue of epitope-binding artefacts driven by coding variants.
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Phenotype selection

We obtained effect estimates for the association of the pQTLs with complex human
phenotypes using GWAS summary statistics that were included in the MR-Base database
(http://www.mrbase.org). We selected GWAS with the greatest excepted statistical power
when multiple GWAS records for the same phenotype were available in MR-Base. Diseases
were defined as primary outcomes. Risk factors were defined as secondary outcomes. After
selection, 153 diseases and 72 risk factors (such as lipids and glucose phenotypes) were
included as outcomes for the MR analyses (Supplementary Table 6).

Causal inference and sensitivity analyses

The following sections describe the two-sample MR analyses using single or small numbers
of instruments on 153 diseases and 72 risk factors. To identify possible violations of
assumptions of MR and to distinguish between the aforementioned scenarios in
Supplementary Figure 3, we therefore conducted the following sensitivity analyses:
colocalization analysis®®, tests for heterogeneity between instrumental SNPs*’, bi-directional
MR?* and Steiger filtering”*® (Fig. 1).

Estimating the causal effects of proteins on human phenotypes using MR

In the initial MR analysis, proteins were treated as the exposures and 225 complex human
phenotypes as the outcomes (Fig. 1, Estimate putative causal relationship). Due to high
correlation among some of the tested phenotypes (e.g. coronary heart disease (CHD) and
myocardial infarction), we used the PhenoSpD method*>® to provide a more appropriate
estimate of the number of independent tests. We selected a P-value threshold of 0.05,
corrected for the number of independent tests, as our threshold for prioritizing MR results
for follow up analyses (number of tests = 142,857; P < 3.5 x 10'7).

MR analysis using single locus instruments

First, the strongest cis pQTL variants for each protein were used as the instrumental variable
(described as ‘single cis’ analysis). The Wald ratio®® method was used to obtain MR effect
estimates. In this analysis, the MR effect estimates were sensitive to the particular choice of
pQTLs, since only the most strongly associated SNPs within each genomic region were used
as instruments. Burgess et al. recently suggested that more precise causal estimates can be
obtained using multiple genetic variants from a single gene region, even if the variants are
correlated®”*’. We used multiple conditional independent cis SNPs (Supplementary Table 5)
against all 225 phenotypes to further evaluate the MR findings from our initial MR analysis
(described as ‘multiple cis’ analysis). A generalized inverse variance weighted (IVW) model
considering the LD pattern between the multiple cis SNPs was used to estimate the MR
effects, where the pairwise LD (r’) were obtained from the 1000 Genomes European
ancestry reference samples.

MR analysis using multi-locus instruments

Among the measured proteins reported in Sun et al.’, 34% had both cis and trans pQTLs and
30% had only trans pQTLs. We also conducted MR on proteins with both cis and trans pQTLs
(noted as the cis + trans MR analysis) and proteins with only trans pQTLs (noted as trans-
only analysis). In the cis + trans MR analysis, we tested the protein-phenotype associations
of 66 proteins with both cis and trans instruments. The IVW method was used to obtain MR
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effect estimates. In the trans-only MR analysis, we used 351 trans instruments for 298
proteins. The IVW method was used when two or more trans instruments were included in
the analysis, whereas the Wald ratio method was used when only one trans instrument was
included in the analysis.

MR analysis software

The majority of MR analyses (including Wald ratio, IVW, bi-directional MR, MR Steiger
filtering and heterogeneity test across multiple instruments) were conducted using the MR-
Base TwoSampleMR R package (github.com/MRCIEU/TwoSampleMR)?. The IVW analysis
considering LD pattern was conducted using the MendelianRandomization R package®®. The
MR results were plotted as forest plots and Miami plots using code derived from the ggplot2
package in R.

Distinguishing causal effects from genomic confounding due to linkage disequilibrium

Results that survived the multiple testing threshold in the MR analysis were evaluated using
a stringent Bayesian model (colocalization analysis) to estimate the posterior probability (PP)
of each genomic locus containing a single variant affecting both the protein and the
phenotype?. For protein and phenotype GWAS lacking sufficient SNP coverage or missing
key information (e.g. allele frequency or effect size), we conducted the “LD check” analysis
(more details of the two methods in Supplementary Note, Linkage disequilibrium check).

Pairwise conditional and colocalization analysis
The presence of multiple conditionally distinct association signals within the same genomic
region will influence the performance of colocalization analysis. We therefore developed an
analysis pipeline to integrate conditional and colocalization approaches for regions with
multiple conditionally independent pQTLs. Where there was convincing MR evidence below
the P-value threshold of 3.5 x 10”7, but no good evidence of colocalization using the marginal
SNP effects of the exposures and outcomes (in total 148 MR associations in both cis and
trans regions), we performed pairwise colocalization analyses of all conditionally distinct
pQTLs against all identified conditionally distinct association signals in the outcome data
(noted as pair-wise conditional and colocalization analysis: PWCoCo). The conditional
analysis for proteins and human phenotypes was conducted using the GCTA-COJO package®,
with genotype data from mothers in the Avon Longitudinal Study of Parents and Children
(ALSPAC) as the LD reference panel’>? (a description of the ALSPAC cohort can be found in
Supplementary Note, Description of ALSPAC study). Figure 2 demonstrates the nine possible
pair-wise combinations of various conditional signals for proteins and phenotypes at which
there are two independent signals in the region (Supplementary Table 27).

For protein-phenotype associations that only showed colocalization evidence after
we applied PWCoCo, we recorded the PWCoCo model that showed colocalization evidence
in a new column “PWCoCo_model”, in Supplementary Tables 7, 8, 11, 12, 13, 16 and 17.

Heterogeneity test and directionality test of MR findings

For MR analyses using two or more instruments, we conducted heterogeneity tests to
estimate the variability in the causal estimates obtained for each SNP (i.e. how consistent is
the causal estimate across all SNPs used as separate instruments) (Fig. 1, Consistency of the
causal estimate across all SNPs). Cochran’s Q test statistic was calculated for the IVW
analyses, which is expected to be chi-squared distributed with number of SNPs minus one
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degrees of freedom?’. Lower heterogeneity suggests a lower chance of violations of
assumptions in MR estimates, such as the presence of confounding through horizontal
pleiotropy™.

In order to mitigate the potential impact of reverse causality (i.e. the hypothesised
outcome actually has a causal effect on the hypothesised exposure and not vice versa), we
used two approaches to identify directions of causality: bi-directional MR and Steiger
filtering (more details in Supplementary Note, Directionality test).

Drug target validation and repositioning

Approved drug targets have previously been shown to be enriched for gene-phenotype
associations®. We therefore wished to assess whether approved drug targets were enriched
for protein-phenotype associations, as obtained in the present study using MR. We assessed
the support for approved drug targets among our MR findings using Fisher’s exact test.
Target-indication pairs for successful and failed drugs were identified using a manually
annotated version of PharmaProjects database from Citeline
(https://pharmaintelligence.informa.com/). The phenotypes used in the MR analyses and
the indications listed in Citeline’s PharmaProjects (downloaded on 9th May 2018) were then
manually mapped to MeSH headings as a common ontology. This allowed us to match the
protein-phenotype associations with corresponding target-indication pairs. To improve this
matching, we implemented a similarity matrix, derived from all MeSH headings in the
manual mapping, and retained matches with a relative similarity greater than 0.7 for our
analyses (the similarity matrix has been previously described in Nelson et al.®). We then
compared whether the target-indication pair represented a successful or failed drug against
whether there was a signal or not for the corresponding protein-phenotype pair among our
MR findings. For the purposes of this test, a signal was defined as an MR result with P < 3.5 x
10”7 (which is the Bonferroni P-value threshold of the MR analysis) with supporting evidence
from colocalization analysis. We further conducted a set of sensitivity analyses based on the
following criteria to increase the reliability of the enrichment analysis:

1. We checked the direction of effect of MR findings and drug trial results for the eight
approved drugs using therapeutic direction information from PharmaProjects.

2. For target-indication pairs linked to similar phenotypes (for example, the same
target associated with angina and myocardial infarction), we removed one of them
to avoid double counting the same association.

3. To avoid the influence of epitope-binding artefacts, we removed MR results
estimated using missense variants as an instrument.

4. We checked whether approved drugs had been motivated by genetics from Drug
Bank (https://www.drugbank.ca/), which may have inflated the OR estimate.

In total, we removed 75 target-indication pairs based on criteria 2 (45 pairs), 3 (23 pairs) and
4 (2 pairs; some pairs appeared in multiple situations) and conducted the comparison
between protein-phenotype associations using MR and target-indication pairs from
PharmaProjects, both on each criterion separately and on all criteria together
(Supplementary Table 20).

Phenome-wide MR has demonstrated the potential to validate, repurpose and
predict on-target side effects of drug targets. Of the protein-phenotype associations that
showed evidence of colocalization identified in the cis-only, cis+trans, trans-only or MR
analyses using pQTLs with heterogeneous effects across studies (noted as tier 2
instruments), we first looked up how many proteins with MR evidence were established
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drug targets in the Informa PharmaProjects database. We then looked up how many of the
associations were established target-indication pairs in the PharmaProjects database. More
importantly, we predicted the potential adverse effects and repositioning opportunities of
all marketed drugs and drugs under development using phenome-wide MR.

Enrichment of proteome-wide MR with the druggable genome

Previously, Finan et al.** systematically identified 4479 genes as the newest druggable
genome compendium. This study stratified the druggable genome set into three tiers. Tier 1
(1,427 genes) included efficacy targets of approved small molecules and biotherapeutic
drugs, as well as targets modulated by clinical-phase drug candidates; tier 2 was composed
of 682 genes encoding proteins closely related to drug targets, or with associated drug-like
compounds; and tier 3 contained 2,370 genes encoding secreted or extracellular proteins,
distantly related proteins to approved drug targets, and members of key druggable gene
families not already included in tier 1 or tier 2. We assessed whether the 1,002 proteins we
selected for the MR analyses overlapped with the 4,479 genes from the druggable genome
(Supplementary Table 23). The proteins were mapped based on the HGNC name of the
encoding genes. We further assessed the overlap based on whether the protein had cis or
trans instruments and based on the druggable genome tiers.

In addition to the above comparison between instrumentable and druggable
genome, we also assessed the enrichment of top pQTL MR findings with the druggable
genome. 295 protein-phenotype associations (120 proteins on 70 phenotypes) with both
MR and colocalization evidence were selected for this analysis. We stratified the 120
proteins into 4 groups based on their druggability: tier 1 contained 23 proteins, tier 2
contained 11 proteins, tier 3 contained 58 proteins, and 28 proteins remained unclassified.
The 70 phenotypes were stratified into 8 groups: 8 autoimmune diseases, 3 bone
phenotypes, 8 cancer phenotypes, 12 cardiovascular phenotypes, 4 glycemic phenotypes, 2
lung phenotypes, 4 psychiatric phenotypes and 29 other phenotypes. The protein-
phenotype associations with MR and colocalization evidence were colored separately based
on their druggability tiers. More details of this enrichment analysis are shown in Figure 5
and Supplementary Table 24.

Data availability

The data (GWAS summary statistics) used in the analyses described here are freely
accessible in the MR-Base platform (www.mrbase.org). All our analysis results for 989
proteins against 225 human phenotypes are freely available to browse, query and download
in EpiGraphDB (http://www.epigraphdb.org/pgtl/). An application programming interface
(API1) and R package documented on the website enable users to programmatically access
data from the database.

Code availability

The code used in the Mendelian randomization and colocalization analyses described here
are freely accessible via our GitHub repo (https://github.com/MRCIEU/epigraphdb-pqtl).
The MR analysis was conducted using TwoSampleMR R package
(https://github.com/MRCIEU/TwoSampleMR). We implemented the colocalization analysis
using the coloc R package (created by Chris Wallace et al.), which can be downloaded here
(https://cran.r-project.org/web/packages/coloc/index.html).
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