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Abstract

Introduction: Bile acids (BAs) are the end products of cholesterol metabolism produced by human

and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological
features of Alzheimer’s disease (AD) including neuroinflammation and amyloid-p deposition.

Method: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging
Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the associ-
ation of BAs with the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebro-
spinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose

metabolism (['*F]FDG PET).

Results: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signa-
tures were associated with CSF AP, 4> (“A”) and three with CSF p-taul81 (“T”) (corrected P <.05).
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Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose
metabolism, and atrophy (“N”), respectively (corrected P <.05).

Discussion: This is the first study to show serum-based BA metabolites are associated with “A/T/N”
AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Pro-
spective clinical observations and validation in model systems are needed to assess causality and spe-

cific mechanisms underlying this association.

© 2018 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Several metabolic perturbations are noted in Alzheimer’s
disease (AD), including failures associated with cholesterol
metabolism [1-3], which has been associated with AD in
multiple lines of research including physiological and
epidemiological studies [3-5]. Bile acids (BAs) are
synthesized from cholesterol and are involved in the
digestion of lipids and absorption of fat-soluble vitamins [6].
Cholesterol is synthesized in the liver and its clearance involves
BA production by gut microbiome and human co-metabolism.
Changes in microbial gut populations can profoundly alter BA
profiles and signaling [7-9]. BA synthesis can also be regulated
by fat-soluble vitamins through repression of the rate-limiting
enzyme cytochrome P450 7A (CYP7AL1) [6]. Activation of the
vitamin D receptor is the mechanism by which vitamin D af-
fects BA homeostasis, whereas the action of vitamin A is medi-
ated through the retinal X receptor/farnesoid X receptor
heterodimer [6]. Vitamin-D-dependent regulation of BA syn-
thesis may be an additional mechanism by which BAs influ-
ence AD pathophysiology as vitamin D is protective against
risk of AD and cognitive impairments [10,11].

BAs appear to play a role in the central nervous system
[12,13]. Recent work suggests that microbial disturbances
linked to BA profiles are implicated in neurodegenerative
disorders [7-9,14—16]. The gut microbiota are involved in
immune, neuroendocrine, and neural pathways [8,9,17—
21], have been shown to regulate microglial maturation
and function, and may contribute to AD [21,22].

Peripheral metabolic changes may influence central
changes through the liver and gut-brain axis that includes
commensal and pathogenic bacteria, through its interac-
tions with the vagus nerve, changes in central nervous
system functioning, the immune system [23,24], and
hippocampal neurogenesis [25]. These signals are crucial
for the regulation of energy, glucose homeostasis, and
inflammation [26]. Gut microbiota are vital to the transfor-
mation of BAs through their deconjugation, dihydroxyla-
tion, and reconjugation [16]. The gut-brain biochemical
axis of communication is just starting to be elucidated.
Circulating BAs seem to provide an important mechanism
for communication between the gut and the brain, and their
alterations reflect gut dysbiosis [8,9,18]. Previous studies

suggest that BAs are altered in mild cognitive impairment
(MCI) and AD [27], and in the preceding article, we showed
that increased levels of secondary cytotoxic BAs and their
ratios to primary BAs were associated with AD and poor
cognition (MahmoudianDehkordi et al., unpublished data,
2018). This supported the hypothesis that circulating BAs
may contribute to AD pathogenesis. Research in AD animal
models suggests a role for the gut microbiome in the
development of amyloid-f3 (AB) pathology [28].

However, little work has been done in humans to link periph-
eral metabolic changes in cholesterol to central biomarkers
related to AD including A and tau accumulation, brain glucose
metabolism, and structural atrophy. Therefore, we analyzed
serum BA metabolites and their ratios from older adults with
early-stage AD or who were at risk for AD from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) cohort.

We hypothesized that serum BA levels and their relevant ra-
tios would associate with biomarkers of AD pathophysiology
including neuroimaging (magnetic resonance imaging [MRI]
and position emission tomography [PET]) and cerebrospinal
fluid (CSF). The AD biomarkers were selected and defined
consistent with the recent NIA—Alzheimer’s Association
Research Framework (“A/T/N”’) for AD biomarkers, which de-
fines three general groups of biomarkers based on the nature of
pathologic process that each measures [29-31]. This approach
has several strengths including the focus on biological
underpinnings of the disease rather than clinical phenotypes,
which may have different pathophysiological substrates and
making no assumptions based on the temporal order of the
biomarkers included or their potential causal relationships.
Biomarkers of AP plaque (“A”) are CSF AP,_4, and cortical
AP accumulation measured by florbetapir PET, biomarkers
of fibrillary tau (“T”) are CSF phosphorylated tau (p-tau),
and biomarkers of neurodegeneration or neuronal injury
(“N”) are atrophy on MRI, glucose metabolism on FDG
PET, and CSF total tau (t-tau).

2. Methods
2.1. Study cohort

Serum samples and data analyzed in the present report
were obtained from ADNI. The initial phase (ADNI-1)
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was launched in 2003 to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological
assessment could be combined to measure the progression
of MCI and early AD. ADNI-1 was extended to subsequent
phases (ADNI-GO, ADNI-2, and ADNI-3) for follow-up for
existing participants and additional new enrollments. Inclu-
sion and exclusion criteria, clinical and neuroimaging proto-
cols, and other information about ADNI can be found at
www.adni-info.org [32,33]. Demographic information, raw
neuroimaging scan data, apolipoprotein E (APOE) status,
neuropsychological test scores, and clinical information
are available and were downloaded from the ADNI data
repository (www.loni.usc.edu/ADNI/). Written informed
consent was obtained at the time of enrollment that
included permission for analysis and data sharing, and
consent forms were approved by each participating sites’
Institutional Review Board.

2.2. Quality control procedures of serum BA profiles

Targeted metabolomics profiling was performed to iden-
tify and quantify concentrations of 20 BAs from serum
samples using Biocrates Bile Acids Kit as described in
detail in the companion article in this volume (Mahmou-
dianDehkordi et al, 2018 [submitted]). In brief, morning
serum samples from the baseline visit were collected and
aliquoted as described in the ADNI standard operating pro-
cedures, with only fasting samples included in this study
[32]. BA quantification was performed by liquid chroma-
tography tandem mass spectrometry. Metabolites with
>40% of measurements below the lower limit of detection
(<LOD) were excluded. To assess the precision of the
measured analytes, a set of blinded analytical replicates
(24 pairs in ADNI-1 and 15 triples in ADNI-GO/2) were
supplied by ADNI. Unblinded metabolite profiles went
through further quality control (QC) checks. Validation of
the kit was completed with acceptable interlaboratory and
intralaboratory reproducibility as part of an international
ring trial on the Bile Acids Kit from Biocrates AG, pub-
lished in 2016 [34]. Interplate variability was monitored us-
ing a series of QC samples, including low, mid, and high
QC that come with the kit, a study pool QC analyzed in
triplicates on each plate, and the NIST SRM-1950 refer-
ence material in duplicate on each plate, and only analytes
with <30% technical reproducibility were included in sub-
sequent analysis. The coefficient of variation (range 6.25,
21.49) and intraclass correlation coefficients (range 0.89,
0.99) are presented in Supplementary Table 1. The prepro-
cessed data set included 15 BAs (5 BAs did not pass QC
criteria) and 8 ratios. These selected ratios reflect enzy-
matic dysfunctions in the liver and changes in gut micro-
biome metabolism (see Fig. 1B and Section 2.3). The
preprocessed BA values obtained from the QC step were
adjusted for the effect of medication use (at baseline) on

BA levels (see Toledo et al. 2017 [35] for adjustment
description details).

2.3. Ratios reflective of conversion of BAs by gut
microbiome

We investigated eight selected ratios that are thought to
be reflective of enzymatic activities in the liver and the gut
microbiome to determine if these enzymatic processes in
BA metabolism are associated with neuroimaging and CSF
biomarkers of AD. These ratios include

1. Cholic acid:chenodeoxycholic acid (CA:CDCA) ratio
was selected to test if a possible shift in BA synthesis
from the primary to the alternative BA pathways oc-
curs in the liver.

2. Ratios of secondary to primary BAs (deoxycholic acid
[DCA]:CA, glycolithocholic acid [GLCA]:CDCA,
and taurolithocholic acid [TLCA]:CDCA) to examine
differences in the gut microbiome enzymatic activity
leading to altered production of secondary BAs.
Because lithocholic acid (LCA) was excluded in QC
steps, the GLCA:CDCA and TLCA:CDCA ratios
were used as proxies for LCA:CDCA ratio.

3. GDCA:DCA and TDCA:DCA ratios were used to test
if the observed secondary BA dysregulation is related
to enzymatic differences related to conjugation.

2.4. Neuroimaging processing

2.4.1. Magnetic resonance imaging

T1-weighted brain MRI scans at baseline were acquired
using a sagittal 3D MP-RAGE sequence following the
ADNI MRI protocol [36,37]. As detailed in previous
studies, FreeSurfer V5.1, a widely employed automated
MRI analysis approach, was used to process MRI scans
and extract whole brain and region-of-interest (ROI)-based
neuroimaging endophenotypes including volumes and
cortical thickness determined by automated segmentation
and parcellation [38-40]. The cortical surface was
reconstructed to measure thickness at each vertex. The
cortical thickness was calculated by taking the Euclidean
distance between the gray/white boundary and the gray/
CSF boundary at each vertex on the surface [41-43].

2.4.2. Positron emission tomography

Preprocessed [ISF] FDG and [18F] florbetapir PET scans
(co-registered, averaged, standardized image and voxel size,
uniform resolution) were downloaded from the ADNI LONI
site (http://adni.loni.usc.edu) as described in previously re-
ported methods for acquisition and processing of PET scans
from the ADNI sample [38,44]. For ['*F] FDG PET, scans
were intensity-normalized using a pons ROI to create ['°F]
FDG standardized uptake value ratio (SUVR) images. For
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Fig. 1. Bile acids and their ratios reflective of gut microbiome and liver enzymatic activities and their correlation with ATN biomarkers for Alzheimer’s disease.
Heat map of g-values of association between bile acid profiles and the “A/T/N” biomarkers for AD (A). P-values estimated from linear regression analyses were
corrected for multiple testing using FDR (g-value). Color code: white indicates g-value > 0.05, reds indicate significant positive associations, and greens indi-
cate significant negative associations. Several ratios were calculated to inform about possible enzymatic activity changes in AD (B). These ratios reflect (1) shift
in bile acid metabolism from primary to alternative pathway, (2) changes in gut microbiome correlated with production of secondary bile acids, and (3) changes
in glycine and taurine conjugation of secondary bile acids. LCA was excluded in prepossessing checks. Abbreviations: BAAT, amino acid N-acetyltransferase;
BACS, bile acid-CoA synthetase; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeox-
ycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; GUDCA, glycoursodeoxycholic acid; LCA, lithocholic acid; TCA, taurocholic
acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid; TMCA, trimethoxycinnamic acid; TUDCA, taurour-
sodeoxycholic acid; UDCA, ursodeoxycholic acid; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; A}, amyloid-f.

['®F] florbetapir PET, scans were intensity-normalized using a
whole-cerebellum reference region to create SUVR images.

2.5. CSFAB;.4, t-tau, and p-tau;s; biomarkers

ADNI generated CSF biomarkers (AB;_4,, t-tau, and p-
tau,g;) in pristine aliquots of 2401 ADNI CSF samples using
the validated and highly automated Roche Elecsys electro-
chemiluminescence immunoassays [45,46] and the same
reagent lot for each of these three biomarkers. The CSF
biomarker data were downloaded from the ADNI LONI
site (http://adni.loni.usc.edu).

2.6. Statistical analyses

2.6.1. CSF biomarkers

We performed a linear regression analysis using age, sex,
study phase (ADNI-1 or ADNI-GO/2), body mass index
(BMI), and APOE €4 status as covariates, followed by false
discovery rate (FDR)-based multiple comparison adjust-
ment with the Benjamini-Hochberg procedure.

2.6.2. ROI-based analysis of structural MRI and PET

Mean hippocampal volume was used as an MRI-related
phenotype. For FDG PET, a mean SUVR value was ex-
tracted from a global cortical ROI representing regions
where patients with AD show decreased glucose meta-
bolism relative to cognitively normal older participants
from the full ADNI-1 cohort, normalized to pons [44].
For ['®F] florbetapir PET, a mean SUVR value was ex-
tracted using MarsBaR from a global cortical region gener-
ated from an independent comparison of ADNI-1 [11C]
Pittsburgh compound B SUVR scans (regions where
AD > cognitively normal). We performed a linear regres-
sion analysis using age, sex, BMI, study phase (ADNI-1 or
ADNI-GO/2), and APOE €4 status as covariates. For hip-
pocampal volume, years of education, intracranial volume,
and magnetic field strength were added as additional cova-
riates. FDR-based multiple comparison adjustment with the
Benjamini-Hochberg procedure was used because the AD
biomarker phenotypes were strongly correlated with each
other [47]. Not accounting for this high collinearity of
dependent variables would lead to an overly stringent
correction for multiple testing.
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2.6.3. Whole-brain imaging analysis

The SurfStat software package (www.math.mcgill.ca/
keith/surfstat/) was used to perform a multivariate analysis
of cortical thickness to examine the effect of BA profiles
on brain structural changes on a vertex-by-vertex basis using
a general linear model (GLM) approach [43]. GLMs were
developed using age, sex, years of education, intracranial
volume, BMI, APOE €4 status, and magnetic field strength
as covariates. The processed FDG PET images were used
to perform a voxel-wise statistical analysis of the effect of
BA levels on brain glucose metabolism across the whole
brain using SPM8 (www.fil.ion.ucl.ac.uk/spm/). We per-
formed a multivariate regression analysis using age, sex,
BMI, APOE €4 status, and study phase (ADNI-1 or ADNI-
GO/2) as covariates. In the whole-brain surface-based
analysis, the adjustment for multiple comparisons was per-
formed using the random field theory correction method
with P < .05 adjusted as the level for significance [48-50].
In the voxel-wise whole-brain analysis, the significant statis-
tical parameters were selected to correspond to a threshold
of P < .05 (FDR-corrected).

3. Results
3.1. Study samples after QC

After QC procedures, 1562 ADNI participants with 23
BAs and their relevant ratio levels (15 BA metabolites and
8 ratios) at baseline (370 cognitively normal older adults,
98 significant memory concern, 284 early MCI, 505 late
MCI, and 305 AD) were available for analysis. Demographic
information for the study population is presented in Table 1.
Mean and standard errors of primary and secondary BAs
stratified by clinical diagnosis are presented in Table 2.

3.2. Biomarkers of amyloid-(3 (“A”)

We used CSF A _4, levels and a global cortical amyloid
deposition of amyloid PET as biomarkers of Ap. First, we
evaluated whether BA profiles were associated with the
CSF A;_4, biomarker by performing an association analysis

for 15 BA metabolites and 8 relevant ratios with APOE €4
status as a covariate. As shown in Fig. 1A, after applying
FDR-based multiple comparison correction, we identified
three BA ratios significantly associated with CSF AP, 4>
levels. Regression coefficients of the three BA ratios of
bacterially produced conjugated secondary BAs to primary
BAs (GDCA:CA, TDCA:CA, and GLCA:CDCA) showed
negative associations indicating higher levels were associ-
ated with lower CSF AP _4, values (CSF AB,_4, positivity).
However, global cortical amyloid deposition of amyloid
PET was not significantly associated with any BA or their ra-
tios after applying FDR-based multiple comparison correc-
tion. GDCA:CA was marginally associated with a global
cortical amyloid load (uncorrected P-value < .05). Higher
GDCA:CA levels were associated with greater amyloid
deposition.

3.3. Biomarkers of fibrillary tau (“T”)

We used CSF phosphorylated tau (p-tau) levels as the
biomarker of fibrillary tau. We investigated the association
of 23 BAs and their relevant ratios with CSF p-tau, with
APOE €4 status included as a covariate. We identified three
significant associations (FDR-corrected P <.05) (Fig. 1A).
For one conjugated primary BA metabolite (glycocheno-
deoxycholic acid [GCDCA]), higher GCDCA levels were
associated with higher CSF p-tau values. For two bacterially
produced conjugated secondary BA metabolites (GLCA and
TLCA), higher levels were correlated with higher CSF p-tau
values.

3.4. Biomarkers of neurodegeneration or neuronal injury
(“N”)
We used atrophy on T1-weighted MRI, hypometabolism

on FDG PET, and CSF total tau (t-tau) levels as biomarkers
of neurodegeneration or neuronal injury.

3.4.1. Structural MRI (atrophy)
We investigated the association of BA metabolites and ra-
tios with mean hippocampal volume with APOE €4 status as

Table 1

Demographics of ADNI participants stratified by baseline diagnosis*

Variable N CN (N = 370) SMC (N = 98) EMCI (N = 284) LMCI (N = 505) AD (N = 305)
Age 1562 74.58 (5.71) 72.18 (5.63) 71.12 (7.51) 73.95 (7.59) 74.70 (7.79)
Sex: female, n (%) 1562 190 (51) 56 (57) 130 (46) 139 (39) 139 (46)
Education, years 1562 16.28 (2.92) 16.71 (2.56) 15.95 (2.66) 15.87 (2.90) 15.16 (3.00)
BMI (kg/m?) 1562 27.05 (4.46) 28.22 (6.24) 28.06 (5.41) 26.54 (4.25) 25.83 (4.69)
APOE ¢4 status, (+) n (%) 1562 104 (28) 32(33) 121 (43) 273 (54) 202 (66)
CSFAB;.4 1112 1342.2 (663.7) 1385.7 (605.0) 1175.1 (569.3) 896.5 (502.7) 683.0 (394.6)
CSF p-tau 1107 22.3(94) 21.7 (9.6) 24.1 (13.8) 30.5 (14.8) 36.5 (15.7)
CSF t-tau 1108 240.9 91.7) 237.9 (92.7) 255.2 (122.5) 309.7 (130.3) 365.9 (141.7)

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; AD, Alzheimer’s disease; BMI, body mass index; CN, cogni-
tively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SMC, subjective memory complaint; CSF: cerebrospinal fluid;

AP, amyloid-.
*Data are reported as mean (SD) unless otherwise indicated.
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Table 2

Levels of primary and secondary bile acids measured in the ADNI cohort stratified by clinical diagnosis*

Bile acid Category N' CN (N = 370) SMC (N = 98) EMCI (N = 284) LMCI (N = 505) AD (N = 305)
CA Primary 1446 0.221 (0.024) 0.245 (0.093) 0.155 (0.021) 0.192 (0.021) 0.135 (0.025)
CDCA Primary 1357 0.285 (0.042) 0.315 (0.128) 0.241 (0.034) 0.288 (0.033) 0.216 (0.033)
GCA Primary conjugated 1463 0.236 (0.019) 0.269 (0.046) 0.234 (0.021) 0.239 (0.014) 0.297 (0.037)
GCDCA Primary conjugated 1464 0.658 (0.035) 0.702 (0.078) 0.724 (0.059) 0.710 (0.037) 0.806 (0.049)
TCA Primary conjugated 1020 0.068 (0.008) 0.090 (0.029) 0.057 (0.006) 0.068 (0.006) 0.066 (0.009)
TCDCA Primary conjugated 1426 0.090 (0.006) 0.114 (0.025) 0.088 (0.007) 0.091 (0.006) 0.097 (0.008)
TMCA Primary conjugated 1146 0.012 (0.001) 0.007 (0.001) 0.011 (0.001) 0.014 (0.002) 0.014 (0.002)
DCA Secondary 1445 0.526 (0.041) 0.520 (0.068) 0.574 (0.043) 0.529 (0.026) 0.627 (0.045)
UDCA Secondary 1111 0.065 (0.007) 0.044 (0.008) 0.072 (0.011) 0.091 (0.010) 0.087 (0.012)
GDCA Secondary conjugated 1439 0.440 (0.034) 0.462 (0.063) 0.488 (0.038) 0.502 (0.031) 0.672 (0.054)
TDCA Secondary conjugated 1430 0.058 (0.006) 0.077 (0.019) 0.059 (0.005) 0.065 (0.005) 0.077 (0.006)
GLCA Secondary conjugated 1037 0.027 (0.002) 0.025 (0.003) 0.034 (0.003) 0.030 (0.002) 0.039 (0.003)
TLCA Secondary conjugated 1008 0.005 (0.0002) 0.004 (0.001) 0.005 (0.0003) 0.005 (0.0003) 0.006 (0.0005)
GUDCA Secondary conjugated 1401 0.115 (0.010) 0.093 (0.015) 0.114 (0.012) 0.129 (0.012) 0.136 (0.015)
TUDCA Secondary conjugated 1369 0.008 (0.001) 0.008 (0.001) 0.008 (0.001) 0.008 (0.001) 0.008 (0.001)

Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SMC,
subjective memory complaint; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeox-
ycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; GUDCA, glycoursodeoxycholic acid; LCA, lithocholic acid; TCA, taurocholic
acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid; TMCA, trimethoxycinnamic acid; TUDCA, taurour-

sodeoxycholic acid; UDCA, ursodeoxycholic acid.
*Values represent uM in mean (standard error of the mean).
"Number of nonmissing measurements.

a covariate. Among 23 BA characteristics, 14 BAs/ratios
were significantly associated with hippocampal volume after
controlling for multiple testing using FDR (Fig 1A; cor-
rected P <.05). For one primary BA metabolite, lower CA
levels were associated with decreased hippocampal volume.
However, for two conjugated primary BA metabolites
[GCDCA and TMCA(a+b)] and five bacterially produced
conjugated secondary BA metabolites (GDCA, GLCA,
GUDCA, TDCA, and TLCA), higher BA levels were associ-
ated with decreased hippocampal volume. In addition,
higher levels of six ratios of bacterially produced secondary
BA metabolite to primary BA metabolite (DCA:CA,
GDCA:CA, TDCA:CA, GDCA:DCA, GLCA:CDCA, and
TLCA:CDCA) were associated with decreased hippocampal
volume.

Among the 14 significant BA signatures, six BA profiles
were significantly associated with CSF A, 4, biomarker
(“A”) or CSF p-tau biomarker (“T”). For the six BA profiles,
we performed a detailed whole-brain surface-based analysis
using multivariate regression models and assessed their ef-
fects on whole-brain cortical thickness in an unbiased way.
We identified significant associations for all six BA profiles
(cluster-wise threshold of random field theory-corrected
P < .05), which showed consistent patterns in the associa-
tions of CSF A;_4, or p-tau levels (Fig. 2). Higher levels
of a conjugated primary BA (GCDCA) were significantly
associated with reduced cortical thickness especially in the
bilateral entorhinal cortices. Increased levels of one bacteri-
ally produced conjugated secondary BA metabolite (GLCA)
and two ratios of bacterially produced secondary BA metab-
olites to primary BA metabolites (GDCA:CA and
GLCA:CDCA) were significantly associated with reduced

cortical thickness in the bilateral frontal, parietal, and tem-
poral lobes including the entorhinal cortex. For one bacteri-
ally produced conjugated secondary BA metabolite (TLCA)
and one ratio of a bacterially produced secondary BA metab-
olite to a primary BA metabolite (TDCA:CA), increased
levels were associated with reduced cortical thickness in a
widespread pattern, especially in the bilateral frontal, parie-
tal, and temporal lobes.

3.4.2. FDG PET (brain glucose metabolism)

We performed an association analysis for 23 BA and ra-
tios with global cortical glucose metabolism measured by
FDG PET scans across 1066 participants with both FDG
PET scans and BA measurements. The association testing
including APOE €4 status as a covariate identified 12 BA
characteristics as significantly associated with brain glucose
metabolism after controlling for multiple testing using FDR
(Fig. 1A; corrected P < .05). For one primary BA metabo-
lite, lower CA levels were associated with reduced glucose
metabolism. In contrast, for one conjugated primary BA
metabolite (GCDCA), four bacterially produced conjugated
secondary BA metabolites (GDCA, GLCA, TDCA, and
TLCA), and six ratios of bacterially produced secondary
BA metabolites to primary BA metabolites (DCA:CA,
GDCA:CA, TDCA:CA, GDCA:DCA, GLCA:CDCA, and
TLCA:CDCA), higher BA ratio levels were associated
with reduced glucose metabolism.

In addition, in an unbiased way, we performed a detailed
whole-brain analysis to determine the effect of BAs on brain
glucose metabolism on a voxel-wise level for six BAs and
ratios (GCDCA, GLCA, TLCA, GDCA:CA, TDCA:CA,
and GLCA:CDCA) that were significantly associated with
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Fig. 2. Whole-brain surface-based imaging analysis. A whole-brain multivariate analysis of cortical thickness across the brain surface was performed to visu-
alize the topography of the association of bile acid profiles with the brain structure in an unbiased manner. For a surface-based analysis of levels of CDCA,
TLCA, GLCA, TDCA:CA, GDCA:CA, and GLCA:CDCA, statistical maps were thresholded using a random field theory for a multiple testing adjustment
to a corrected significance level of 0.05. The P-value for clusters indicates significant corrected P values with the lightest blue color. Higher GCDCA levels
were significantly associated with reduced cortical thickness especially in bilateral entorhinal cortices. Increased GLCA, GDCA:CA, and GLCA:CDCA levels
were significantly associated with reduced cortical thickness in the bilateral frontal, parietal, and temporal lobes including the entorhinal cortex. For TLCA and
TDCA:CA, increased levels were associated with reduced cortical thickness in a widespread pattern, especially in the bilateral frontal, parietal, and temporal
lobes. Abbreviations: CA, cholic acid; CDCA, chenodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, glyco-

lithocholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid.

both CSF AB,_4, and p-tau biomarkers, FDG metabolism,
and hippocampal volume. We identified significant associa-
tions for all six BA profiles (cluster-wise threshold of FDR-
corrected P <.05), which showed consistent patterns in the
associations of CSF AP 4, or p-tau levels and structural at-
rophy (Fig. 3). Higher levels of a conjugated primary bile
acid GCDCA were significantly associated with reduced
glucose metabolism especially in the bilateral hippocampi,
which showed consistent patterns with the associations of
cortical thickness. Increased levels of one bacterially pro-
duced conjugated secondary BA metabolite (GLCA) and
one ratio of a bacterially produced secondary BA metabolite
to a primary BA metabolite (GLCA:CDCA) were signifi-
cantly associated with reduced glucose metabolism in the
bilateral temporal and parietal lobes. Lower TLCA levels,
a bacterially produced conjugated secondary BA metabolite,
were associated with increased glucose metabolism in the
left temporal lobe. For two ratios (GDCA:CA and
TDCA:CA) of bacterially produced secondary BA metabo-
lite to a primary BA metabolite, higher ratio levels were
significantly associated with reduced glucose metabolism
in a widespread pattern, especially in the bilateral frontal,
parietal, and temporal lobes.

3.4.3. CSF total tau (t-tau)

We evaluated whether 23 BAs and ratios were associated
with the CSF t-tau including APOE €4 status as a covariate.
We identified three significant associations after controlling
for multiple testing using FDR (corrected P < .05) (Fig. 1).
Higher levels of GCDCA, a conjugated primary BA metab-
olite, and GLCA and TLCA, bacterially produced secondary
BA metabolites, were associated with higher CSF t-tau
values.

4. Discussion

In this report, we analyzed serum-based BA profiles in the
ADNI cohort to investigate the relationship between periph-
eral metabolic measures and central biomarkers for AD
pathophysiology based on the recently proposed framework
(“A/T/N”) [30]. Our results showed that altered BA profiles
were significantly associated with structural and functional
changes in the brain as noted by larger atrophy and reduced
glucose metabolism (“N”). Furthermore, altered BA profiles
were significantly associated with three CSF biomarkers
including AP1-42, t-tau, and p-tau. Three ratios of primary
BAs to secondary BAs were associated with lower CSF
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Fig. 3. Whole-brain voxel-based imaging analysis. A whole-brain multivariate analysis of glucose metabolism was performed to visualize the topography of the
association of bile acid profiles with glucose metabolism in an unbiased manner. For a voxel-based analysis of FDG-PET scans, we identified significant as-
sociations (cluster-wise threshold of FDR-corrected P <.05). Higher GCDCA levels were significantly associated with reduced glucose metabolism especially
in the bilateral hippocampi. Increased GLCA and GLCA:CDCA levels were significantly associated with reduced glucose metabolism in the bilateral temporal
and parietal lobes. Lower TLCA levels were associated with increased glucose metabolism in the left temporal lobe. For two ratios (GDCA:CA and TDCA:CA),
higher ratio levels were significantly associated with reduced glucose metabolism in a widespread pattern, especially in the bilateral frontal, parietal, and tem-
poral lobes. Abbreviations: CA, cholic acid; CDCA, chenodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA,
glycolithocholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid; PET, positron emission tomography.

AP _4, levels (amyloid-J positivity) (“A”) as well as reduced
cortical glucose metabolism and larger structural atrophy
(GDCA:CA, TDCA:CA, and GLCA:CDCA). One conju-
gated primary BA profile (GCDCA) and two bacterially pro-
duced conjugated secondary BAs (GLCA and TLCA) were
associated with higher CSF p-tau values (“T”) as well as
higher CSF t-tau values, reduced glucose metabolism, and
larger structural atrophy.

Whether the gut microbiome directly influences AD path-
ogenesis remains unknown; however, it does appear to influ-
ence AP, fibrillary tau, and neurodegeneration. To our
knowledge, this is the first study to systematically link
markers of the gut microbiome and liver function to AD-
related structural and functional neuroimaging biomarkers
as well as biomarkers of AP and tau burden.

Three core CSF biomarkers (AP 4, t-tau, and p-tau)
reflect AD pathology and can be used to reliably diagnose
AD and identify MCI, a prodromal stage of AD, with high
diagnostic accuracy [51,52]. Previous studies showed that
patients with AD have a substantial reduction in CSF AP, 4>
and a marked increase in levels of CSF t-tau and p-tau [53—
56]. We observed that higher levels of TDCA:CA,
GDCA:CA, and GLCA:CDCA were associated with
decreased levels of CSF AP,.4», and higher levels of
GCDCA, TLCA, and GLCA were associated with
increased levels of CSF t-tau and p-tau.

MRI is widely used to investigate structural changes in
MCI and AD [57-59]. We observed lower levels of CA
and higher levels of GCDCA, TMCA(a+b), GDCA,
GLCA, GUDCA, TDCA, TLCA, DCA:CA, GDCA:CA,
TDCA:CA, GDCA:DCA, GLCA:CDCA, and
GCDCA:CDCA were associated with greater brain
atrophy. Significant regional effects were observed
particularly in the bilateral inferior parietal gyri cortices,
hippocampi, and temporal lobes including the entorhinal
cortex. The hippocampus and entorhinal cortex are
affected early in AD, and the decrease in hippocampal
volume accelerates as AD progresses. Significant thinning
of the cortical surface reflects atrophy in the temporal,
parietal, and frontal lobes and has been shown in MCI and
AD [57-59]. Reduced cortical thickness in the temporal
cortex as a measure of brain atrophy rate has shown
promise in predicting MCI to AD progression [57].

Lower CA and higher TDCA, GDCA, GCDCA, GLCA,
TLCA, DCA:CA, GDCA:CA, TDCA:CA, GDCA:DCA,
GLCA:CDCA, and TLCA:CDCA levels were associated
with reduced global glucose metabolism in the brain. The
significant regional effect on brain glucose metabolism
was observed particularly in the bilateral hippocampi for
GCDCA, in the temporal and parietal lobes for GLCA,
TLCA, and GLCA/CDCA, and in a widespread pattern
including the bilateral temporal, parietal, and frontal lobes
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for GDCA:CA and TDCA:CA. Patients with AD have
shown significant glucose metabolism reduction in the tem-
poral lobes, parietal lobes, and then the frontal lobes with
increasing severity of AD [60-62].

The observed pattern of the association between changes
in brain structure and glucose metabolism as well as CSF
biomarkers with specific BAs and ratios indicates a potential
mechanistic connection between peripheral and central
biochemical changes. Our results strongly suggest gut-
liver-brain axis involvement in AD, neurodegeneration,
and brain dysfunction. Both liver function and gut micro-
biome activity are impacted in AD, and these changes
seem to occur at the earliest stages of disease. Despite this
strong pattern of associations, the specific mechanism and
causal directionality remains to be determined.

We hypothesized that altered gut microbiota play an
important role. This is supported by several lines of research
connecting the gut microbiota and AD pathology. Alter-
ations in the gut microbiota and an increase in gut perme-
ability may lead to dysfunction in the hippocampus
[63,64] and the development of insulin resistance, which
correlates with AD pathogenesis [65-67]. It has been
hypothesized that increased gut permeability allows
bacteria-derived amyloids from the gastrointestinal tract to
accumulate at the systemic and brain level [68]. This in
turn could lead to the upregulation of proinflammatory
microRNA-34a, and as a consequence, downregulation of
TREM?2 leading to the accumulation of A4, [67,68].

Results from animal studies demonstrate that increased
input of BAs significantly inhibits two of the major phyla
in the human gut microbiome, Bacteroidetes and Actino-
bacteria [69]. Bacterial taxonomic composition of fecal
samples revealed differences in bacterial abundance
including decreased Firmicutes, increased Bacteroidetes,
and decreased Bifidobacterium (phylum Actinobacteria)
in the microbiome of patients with AD relative to age-
and sex-matched controls. Furthermore, these differences
in bacterial abundance correlated with CSF biomarkers
including AP4»/AP4 and p-tau/AB,. Even in the age-
and sex-matched controls (no dementia diagnosis), there
was a similar relationship between the same bacteria that
were either more or less abundant in AD and markers of
tau and amyloid [70]. In another study, an increased abun-
dance of proinflammatory bacteria (Escherichia/Shigella)
and a decreased abundance of anti-inflammatory bacteria
(Eubacterium rectale) were noted in cognitively impaired
older adults with evidence of amyloid deposition on PET
imaging compared to those who were amyloid negative
[71]. These results lend further support to the link between
gut microbiota and brain amyloidosis. Gut microbiota have
been associated with the accumulation of amyloid plaques
in a mouse model of AD. A transgenic AD mouse model
generated under germ-free conditions had dramatic reduc-
tions in cerebral AP pathology compared with control ani-
mals with normal intestinal microbiota, whereas
colonization of germ-free AD mice with microbiota har-

vested from conventionally raised AD mice significantly
increased AP pathology [28].

The association between BA cytotoxicity and the genera-
tion of reactive oxygen species (ROS) is well documented
[72-76]. Others have proposed that mitochondrial ROS
production plays an important role in brain metabolic
signaling [77,78]. Some of the mechanisms by which
mitochondrial dysfunction leads to neuronal degeneration
in AD include ROS generation and activation of
mitochondrial permeability transition [79,80], suggesting a
crucial role for oxidative stress in the pathophysiology of
AD. Hyperphosphorylation of tau proteins has been linked
to oxidation through the microtubule-associated protein ki-
nase pathway [81]. In our analyses, three cytotoxic BAs
(GCDCA, GLCA, and TLCA) correlated with higher
biomarker levels of fibrillary tau and neurodegeneration/
neuronal injury.

Hydrophobic BAs, such as CDCA, are known to damage
biological membranes [82], whereas hydrophilic BAs, such
as UDCA and TUDC, are inhibitors of apoptosis via their
ability to stabilize mitochondrial membranes [83,84].
Impairment of mitochondrial function is likely one of the
vital ways in which BAs cause cellular dysfunctions [85—
88]. Decreased mitochondrial membrane potential has
been associated with increasing concentrations of the
following BAs: LCA, DCA, UDCA, CDCA, GCDC, and
taurochenodeoxycholic (TCDC) acid [85].

4.1. Limitations

The ADNI study is observational by design making it
difficult to control for confounding as well as to determine
directionality of associations and causal pathways. For
example, the population of the gut is affected by a plethora
of factors including geography, lifetime immunological
experience, and environmental factors, which could play
important yet currently unknown roles in the pathogenesis
of AD. Experimental studies are needed to understand the
mechanistic role of BA in the development of AD-related
pathology as well as to disentangle cause and effect. Medi-
cation use was extensively explored as a potential
confounder (Supplementary Fig. 2). Overall, our key find-
ings remained significant after adjustment for medication
use, although effects were attenuated. In addition, further
studies are warranted to validate our findings in independent
cohorts. In this article, we focus on secondary BAs that are
only known to be synthesized by bacterial enzymes. It is
possible that there might be an alternative route to their syn-
thesis that is yet to be discovered. These additional regulato-
ry mechanisms could be responsible for the observed
changes.

Currently, no large-scale clinical studies (such as ADNI)
have collected fecal materials to interrogate changes in the
gut microbiome composition. Future studies we are planning
in coordination with large AD centers will enable collection
of matching blood and fecal materials where the
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composition of the gut microbiome across the trajectory of
disease can be investigated. There is an urgent need to eluci-
date mechanistic links between gut microbial metabolism
and brain function in AD. Existing studies elucidating rela-
tions between gut microbial metabolism and the human me-
tabolome have mainly used statistical analyses to correlate
individual compounds with microbial taxa [89,90].
However, correlation does not necessarily equal causation
as the microbiome may change due to AD-related metabolic
pathology including weight loss. Longitudinal studies that
capture both the metagenome and metabolome along with
fecal samples and dietary information are needed to begin
to clarify the relationship between BA metabolism, gut dys-
biosis, and AD.

5. Conclusions

This is the first study to our knowledge to demonstrate an
association between altered BA profiles and AP, tau, and
neurodegeneration biomarkers of AD pathophysiology.
Although our results provide further evidence implicating
BA signaling in AD, the causal pathway remains to be sys-
tematically investigated by prospective clinical studies and
experimental manipulations in model systems. Future meta-
genomics studies are also needed to define the relationship
between BAs, host factors including genetics, and bacterial
community composition within an individual across time.
Building on present results, these investigations are needed
to achieve a mechanistic understanding of the role of gut
bacteria and BAs in relation to AD pathophysiology. If a
causal role can be demonstrated in future research, BA
signaling pathways may lead to the identification of metab-
olites that are protective against AD and could foster novel
therapeutic strategies.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using PubMed, Google, Web of Science, and
through meeting abstracts and presentations. We
have cited several recent publications implicating
the gut microbiome role in neuropsychiatric diseases.

2. Interpretation: This is the first study to show that
serum bile acids produced in the liver and by gut mi-
crobiome are associated with cerebrospinal fluid bio-
markers and brain imaging changes in Alzheimer’s
disease (AD). Bile acids play key role in cholesterol
clearance and in maintaining energy homeostasis.
Interorgan communication seems important in main-
taining brain glucose metabolism, the dysregulation
of which contributes to neurodegeneration in AD.

3. Future directions: Understanding gut microbiome’s
role in aging and related diseases opens potential
new hypotheses for AD. Prospective clinical obser-
vations and validation in model systems are needed
to assess causality and specific mechanisms underly-
ing bile acid and gut microbiome dysbiosis in AD.
The biochemical gut-liver-brain axis of communi-
cation should be further evaluated in AD.
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