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Evolutionary dynamics of CRISPR gene drives

ABSTRACT

The alteration of wild populations has been discussed as a solution to a number of humanity’s
most pressing ecological and public health problems. Enabled by the recent revolution in genome
editing, CRISPR gene drive systems—selfish genetic elements that can be engineered to spread
through populations even if they confer no advantage to their host organism—are rapidly emerg-
ing as a promising approach. However, before real-world applications are considered, it is imperative
to develop a clear understanding of the potential outcomes of drive release in nature. Toward this
aim, in this dissertation, I mathematically study the evolutionary dynamics of CRISPR gene drive
systems. In the first chapter, I demonstrate that the emergence of drive-resistant alleles could present
a major challenge to existing proof-of-principle constructs, and I show that an alternative design that
selects against resistant alleles could potentially improve evolutionary stability. In the second chap-
ter, I address the question of how likely it might be for a small accidental or unauthorized release of
existing CRISPR gene drive organisms to result in significant spread through a wild population—
despite the problem of resistance. The mathematical results in this chapter suggest that significant
spread is highly likely following even small releases, and this has important implications for labo-
ratory containment protocols and future design of field trials. Finally, in the third chapter, I study

the dynamics of a new CRISPR-based gene drive system called “daisy-chain gene drive,” which aims
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to address the issue of accidental spread discussed in the previous chapter. The results suggest that
daisy-chain gene drive constructs could act as “self-limiting” drive systems, with the potential to
spread to high frequency in a local population with a comparatively low risk of spreading indefi-

nitely through many linked populations.
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Introduction

THE CENTRAL QUESTION of this dissertation is how one might spread a genetic trait through a wild
population. This question has been studied for several decades, but I was fortunate to enter the field
just as it underwent a technological revolution: CRISPR, a recently developed genome engineering

technology, dramatically increased the possibilities of the field and introduced a multitude of inter-



esting scientific questions. This dissertation addresses a few of these questions using mathematical
modeling.

In addition to these scientific questions, the topic gives rise to many critical—and incredibly
difficult—ethical and policy questions about whether one ought to alter a particular wild popula-
tion at all. Although I do not directly address these questions here, the potential impact of the tech-
nology and the likelihood of its eventual use appear sufficiently great to at least warrant its careful
study, with objectivity and a clear understanding that mathematical results are more a reflection of
our thinking about reality than of reality itself, and with careful consideration of the consequences
that could result from our efforts. Thus, to begin, I will discuss what motivates the field broadly and
the reasons for its rapid expansion in recent years.

In short, there are a variety of wide-reaching problems that might be addressed by genetically
engineering wild populations which are difficult or impossible to solve using traditional methods.
These can be categorized broadly into two groups: mitigation of vector-borne diseases, and control
of destructive invasive species or agricultural pests. While still in their early stages, significant experi-
mental and theoretical progress has been made on both fronts.

Among vector-borne diseases, the most prominent potential targets are those transmitted by
mosquitoes, including malaria, dengue, and Zika. All three diseases present significant burdens,
and malaria alone was responsible for 438,000 deaths across 95 countries in 2015". Moreover, under
even the most optimistic scenarios comprising existing interventions, the WHO Global Technical
Strategy for Malaria® estimates that, although the incidence of malaria and corresponding death

rate could be decreased by 90% by 2030, including complete elimination from 35 countries, the



disease would continue to persist in 58 countries, presenting an indefinite burden. There appears
to be broad consensus that additional interventions will be required for eradication of malaria to be
achieved *.

Genetically engineering wild populations could help mitigate a vector-borne disease via two basic
approaches. In the first approach, a genetic construct could be spread that reduces the capacity of
a vector to transmit the disease (population alteration). In the second approach, a construct could
be spread that brings about a reduction in the size of the vector population outright (population
suppression).

Genetic constructs that could bring about useful alteration or suppression of mosquitoes—if
they were somehow spread through a population—have already been the subject of significant ex-
perimental investigation. In an alteration approach, so-called “cargo genes” have been identified
that would reduce transmission of malaria®™ and dengue*>”. Although they have not yet been
developed, cargo genes could potentially be constructed to reduce Zika transmission via an RNA
interference approach or via an endonuclease targeting the Zika virus genome, which consists of
single-stranded RNA ™. Population suppression approaches have also been devised and tested in
laboratory populations of mosquitoes, including a genetic construct that reduces female fertility in
Anopheles gambiae, the most prominent malaria vector®, as well as sex-ratio-distorting constructs,
which are predicted to induce a population crash by reducing the relative number of females over
successive generations if they were spread in the wild™*.

Another example of the potential for population genetic engineering to combat vector-borne

disease is the “Mice Against Ticks” project®, which recently began with the goal of eventually erad-



icating Lyme disease—the most common vector-borne disease in the United States'®—from the is-
lands of Nantucket and Martha’s Vineyard. Briefly, white-footed mice (Peromyscus leucopus) serve as
a natural reservoir for Lyme disease, which is transmitted between mice via ticks, which, in turn, bite
humans to transmit the disease from its natural reservoir. To combat the disease, the Mice Against
Ticks project would release mice carrying genes encoding anti-Lyme antibodies, which would immu-
nize them against Lyme and could, correspondingly, reduce the burden of Lyme among humans.

Aside from control of disease vectors, another prominent potential application of population
genetic engineering technology is control of destructive invasive species and agricultural pests. There
are two categories of applications that are often discussed: modification or suppression of invasive
species that (i) cause ecological harm, or (ii) cause economic harm, typically via destruction of agri-
cultural crops. As a striking example of the first category, New Zealand announced in 2016 a goal
of eliminating all of its rats, possums and stoats by 2050"7 because they are invasive to New Zealand
and cause a tremendous amount of damage to the country’s native ecosystems™. An example of the
second category could include suppression or modification of the citrus psyllid, which, as a vector
of Candidatus Liberibacter species, transmits citrus greening disease'". Another example of the
second category—which has already been proposed and tested in the laboratory **—could include
suppression or modification of Drosophila suzukii, a major pest of soft-skinned fruits (e.g., strawber-
ries, raspberries, cherries, etc.), which is estimated to cause a total of $s11 million in annual revenue
losses across California, Oregon and Washington ™.

Given the tremendous potential upside if these applications could be realized, a great deal of re-

search has been conducted to develop strategies for actually spreading genetic constructs through



wild populations, dating back at least to the 1960s***. The strategies vary widely in mechanism but
are unified by a common idea: genomes of individuals are engineered to encode both a desired trait
and also some mechanism—broadly referred to as a gene drive mechanism—that induces evolution
to favor the engineered construct (often called a drive element) as the individuals in the population
reproduce over time, even if the construct is deleterious. In principle, only a comparatively small
number of individuals would need to be engineered and released in order to alter an entire popula-
tion.

A variety of mechanisms have been utilized to create these gene drive systems, including un-
derdominance, maternal effect dominant embryonic arrest (Medea), and endonuclease-based ap-
proaches.

Underdominance-based mechanisms utilize bistability brought about by heterozygotes exhibit-
ing lower fitness than homozygotes: when a population is mostly wild-type, the drive element goes
to extinction, but when the drive element is released at high frequency, it goes to fixation. This
creates a “threshold effect,” whereby a large release of engineered organisms (above the thresh-
old frequency, typically about 0.5) leads to spread of the drive element, whereas a smaller release
leads to extinction of the drive element. Two drive systems of this type have been engineered in
Drosophila®**, each using a toxin-antidote mechanism. In Ref. 24, two maternally expressed, un-
linked, zygotic toxins are each linked with a zygotic antidote that rescues the lethality of the opposite
toxin. Hence, individuals must inherit either both or neither to be viable. In Ref. 25, a single-locus
construct is engineered, which includes both a gene that targets RNAi to a haploinsufficient gene,

and an RNAi-insensitive rescue gene. The idea is that both wild-type and engineered homozygotes



have two functional copies of the haploinsufficient gene, resulting in near-wild-type fitness, whereas
heterozygotes have only one functional copy, resulting in lower fitness. The threshold effect has
both an upside and a downside: it could help contain drive systems in populations with limited mi-
gration elsewhere, but it could also preclude use in large populations due to logistical difficulties.
Moreover, underdominance-based approaches can only be utilized for population alteration, not
suppression.

Medea systems also use a toxin-antidote approach but are predicted to exhibit much lower re-
lease thresholds. However, they can also only be utilized for population alteration. An engineered
Medea element consists of two components: first, it encodes a toxin (typically a microRNA) that
is expressed during oogenesis in females and disrupts an embryonic essential gene in every embryo,
regardless of whether it inherits the AMedea element or not. Second, it encodes a tightly linked anti-
dote that is expressed only in zygotes that inherit the Medea element. The result of this mechanism
is that wild-type/Medea heterozygotes preferentially pass on the Medea construct to offspring since
only Medea-carrying zygotes are rescued from the effects of the maternally-expressed toxin. Model-
ing suggests that the threshold frequency for Medea spread approaches zero as the fitness cost of the
construct (independent from the maternal-effect lethality) approaches zero*7.

To date, three proof-of-concept Medea elements have been engineered in Drosophila 20,26,27 - A
downside of Medea-based systems is that they are difficult to construct in diverse, non-model organ-
isms', although this difficulty might be overcome by novel designs that utilize alternative silencing
approaches.

Endonuclease-based systems, in contrast to the other two approaches, exhibit no threshold



behavior—and can, therefore, see application even in large populations—and can be used for both
alteration and suppression across a diverse range of species. These systems, first proposed by Austin
Burt in a seminal 2003 paper?, use endonucleases to increase their chance of inheritance from het-
erozygous parents. This inheritance bias can be achieved in one of two ways: the endonuclease can
copy itself onto a homologous chromosome, guaranteeing inheritance (because one of the two chro-
mosomes must be inherited), or it can cleave the opposite allele in such a way that it is lethal if in-
herited (i.e., half of the offspring are nonviable, but all viable offspring inherit the endonuclease
system).

Mechanistically, the first approach (often called homing) proceeds via a two-step process: (i) the
endonuclease cuts the opposite chromosome at a sequence that is homologous to the region where
the endonuclease is encoded, and (ii) template-based DNA repair via homologous recombination
copies the engineered construct—including the endonuclease and any adjacent cargo genes—into
the cut site, repairing the break by inserting the engineered construct. This approach could be used
for alteration or suppression applications. In contrast, the second approach (shredding), which is al-
most exclusively considered for suppression applications, proceeds by cutting the opposite chromo-
some in many locations near the centromere, ensuring that an incomplete copy of the chromosome
is passed on during meiosis, resulting in a nonviable offspring. This approach is typically discussed
in the context of sex-ratio distorting systems, wherein the construct is encoded on the Y chromo-
some, and the X chromosome is “shredded,” guaranteeing that all viable offspring inherit the Y
chromosome and are, therefore, male. This effect is predicted to serve as an extremely effective pop-

ulation suppression strategy, eventually causing a population crash due to the increasingly biased sex



ratio.

The construction of endonuclease-based gene drive systems was long hindered by a lack of eas-
ily programmable sequence-specific endonucleases. Proof-of-concept systems were originally con-
structed using homing endonuclease genes (HEGs)**7* that targeted artificial recognition sites, but
as the recognition sites of HEGs are prescribed by protein structure, producing a drive element to
target an arbitrary endogenous sequence in a new organism would present a difficult challenge in
protein engineering.

The recent advent of CRISPR/Casg genome editing technology*~* has revolutionized gene
drive engineering by allowing for the simple design and construction of endonuclease drive sys-
tems with arbitrary target sequences. Briefly, Casg is an endonuclease whose target is prescribed
by a 20-base sequence in an independently-expressed guide RNA (gRNA). Thus, to engineer an
endonuclease-based gene drive system, all that is now required is to genomically insert a DNA se-
quence encoding Caso, as well as a DNA sequence encoding a gRNA with the target sequence of
interest. To date, proof-of-concept CRISPR-based gene drive systems have been constructed in

yeast?, fruit flies ****#

, and mosquitoes*?, representing both population alteration and population
suppression applications.

Although CRISPR gene drive systems are now being constructed at a rapid pace across a diverse
range of species, there are still significant gaps in our theoretical understanding of their evolutionary
dynamics. Essentially, what would happen if these constructs were released into the wild? Would

they spread? If so, how far? What challenges would they face—i.e., what are the most likely failure

modes? In this dissertation, I study a few of these questions for alteration-type CRISPR gene drive



systems using mathematical modeling.

In Chapter 1, I study the evolution of alleles that are resistant to CRISPR gene drives and analyze
a strategy that might help mitigate the effect of resistance. In this context, a resistant allele is any al-
lele at the same locus as the CRISPR gene drive construct that is immune to its effects. These are
typically variants of the wild-type allele with mutations at the target sequence of the CRISPR nucle-
ase, and they can arise spontaneously or due to misrepair following CRISPR-mediated cutting—in
addition, they are expected to exist in most populations simply due to standing genetic variation.
There are, of course, many possible known and unknown mechanisms that could result in resistance
to CRISPR gene drives in the wild, but in this chapter, I present a design that could potentially mit-
igate the effects of at least this particular form of resistance. This chapter was published in Science
Advances (Ref. 39), and I was fortunate to be able to carry out the project with fantastic collabora-
tors, including Jason Olejarz, with whom I worked closely on all of the mathematical models and
calculations, as well as Kevin Esvelt, George Church and Martin Nowak, who provided excellent
advising on all aspects of the project.

In Chapter 2, I address the question of how likely it would be for an existing, proof-of-principle
CRISPR gene drive system to spread in a wild population following a very small release, account-
ing for resistance. The basic question I seek to address in this chapter is how invasive CRISPR gene
drives might be—that is, how difficult it might be to contain an intervention to a population of
interest or to protect nearby wild populations from laboratory escapes. The results in this chapter
suggest that many existing CRISPR gene drive elements (even without optimization to mitigate re-

sistance, as discussed in Chapter 1) could potentially spread to high frequencies in wild populations



following very small releases. To provide empirical grounding for this work, I include as Appendix
A areview of all CRISPR gene drive experiments reported in the literature to date, including a table
of reported drive efficiencies (i.e., how often the cut/copy drive mechanism succeeds, a measure of
how efficiently the construct biases its inheritance). This chapter was published in eLife (Ref. 40).
For this work, I enjoyed a very fruitful collaboration with Ben Adlam on the mathematical models,
as well as extremely insightful advising from George Church, Kevin Esvelt, and Martin Nowak.
Finally, in Chapter 3, I turn to the question of how a CRISPR gene drive system might be de-
signed so that it is easier to contain in a particular population. While some prominent CRISPR gene
drive applications have ambitions of altering or suppressing species across entire continents—e.g.,
malaria, dengue, Zika, schistosomiasis—many potential applications are much more localized in
nature, either because of ecological or policy considerations. Appendix B contains supplementary
figures related to this work. This chapter is currently in review, and I have greatly enjoyed working
together with a variety of experimental and mathematical modeling collaborators in a highly col-
laborative and interdisciplinary project. I worked closely with Jason Olejarz on the mathematical
models; John Min, Joanna Buchthal and Alejandro Chavez designed and performed experiments
to assemble a collection of CRISPR guide RNAs that were required for the proposed approach to
be feasible in reality; Erika DeBenedictis wrote a helpful web-based user interface for visualizing the
results of the model; Andrea Smidler helped build a preliminary discrete generation precursor to our
model; Kevin Esvelt conceived the project, and he, George Church, and Martin Nowak continued

providing extremely helpful advice and unwavering support.
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Evolutionary dynamics of drive resistance

1. FOREWORD

In this chapter, I explore the evolutionary dynamics of CRISPR gene drive systems in the face of a
particular form of resistance—that which is genetically encoded at the target site of the drive con-
struct and blocks recognition by CRISPR guide RNA(s). I study two different designs: one that is

typical of existing proof-of-principle gene drive constructs, and a second that was previously pro-

II



posed as a means of combating resistance and enhancing the long-term stability of the drive in a
population.

I performed this work together with Jason Olejarz, who contributed great help with developing
and analyzing the mathematical models presented here. We benefited greatly from insight, advising
and support from Kevin Esvelt, George Church and Martin Nowak.

This chapter was first published in Ref. 39:

Charleston Noble*, Jason Olejarz*, Kevin M. Esvelt, George M. Church and Martin A. Nowak.
Evolutionary dynamics of CRISPR gene drives. Science Advances 3, e1601964 (2017). (*equal contri-

bution)

1.2 INTRODUCTION

GENE DRIVE SYSTEMS are selfish genetic elements which bias their own inheritance and spread
through populations in a super-Mendelian fashion (Fig. 1.1A). Such elements have been discussed as

a means of contributing to the eradication of insect-borne diseases, such as malaria, reversing herbi-

cide and pesticide resistance in agriculture, and controlling destructive invasive species®™>42$29:37:3%41-45,
Various examples of gene drive can be found in nature, including transposons *°, Medea elements***7,
and segregation distorters 4851 byt for ecological engineering purposes, endonuclease gene drive sys-
tems received the most significant attention in the literature 5:13,28-30,37,38,41-44,52,53 [y general, these

elements function by converting drive heterozygotes into drive homozygotes through a two-step

I2



process: (i) the drive construct, encoding a sequence-specific endonuclease, induces a double-strand
break (DSB) at its own position on a homologous chromosome, and (ii) subsequent DSB repair by
homologous recombination (HR) copies the drive into the break site. Any sequence adjacent to the
endonuclease will be copied as well; if a gene is present, we refer to it as “cargo”, as it is “driven” by
the endonuclease through the population.

Although originally proposed over a decade ago**, the chief technical difficulty of this approach—
inducing easily programmable cutting at arbitrary target sites—has only recently been overcome
by the discovery and development of the CRISPR/Cas9 genome editing system*7%54_ Briefly,

Casg is an endonuclease whose target site is prescribed by an independently expressed guide RNA

(gRNA) via a 20-nucleotide protospacer sequence. Because virtually any position in a genome can
be uniquely targeted by Caso, so-called RNA-guided gene drive elements can be constructed by in-
serting a suitable sequence encoding both Casg and gRNA(s).

Recent studies have demonstrated highly functional CRISPR gene drive elements in mosquitoes®®,
yeast”, and fruitflies®. In each case, the basic construct consists of a copy of Casg with a single corre-
sponding gRNA and cargo sequence (Fig. 1.1B). Despite drive inheritance of about 95%), on average,
in the published studies (compared to 50% expected by Mendelian inheritance), the evolutionary
stability of these constructs in large populations has been debated due to the potential emergence of

drive resistance within a population 28,41

3. A resistant allele is anticipated to arise whenever the cell
repairs the drive-induced DSB using non-homologous end joining (NHE]) instead of HR, a process

that typically introduces a small insertion or deletion mutation at the target sequence. Because the

reported constructs cut only at a single site, a substantial fraction of NHE] events will create drive-
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Figure 1.1: CRISPR gene drive inheritance and spread in wild populations. (A) Inheritance and spread of a gene drive
construct, D, in a population of individuals homozygous for the wild-type, W. In the late germline, the drive construct
induces a DSB at its own position on the homologous chromosome which is repaired either by HR, converting the in-
dividual to a DD homozygote, or by NHEJ, producing a small insertion/deletion/substitution mutation at the cut site
which results in a drive-resistant allele. There is also the possibility of no modification, in which case the W allele re-
mains unchanged. This mechanism can lead to rapid spread of the gene drive in a population or the spread of resistant
alleles, depending on their relative fitness effects. (B) To achieve this mechanism, previously demonstrated drive con-
structs are inserted at some target sequence (blue) and carry a CRISPR nuclease (for example, Cas9) with a gRNA, as
well as a “cargo gene” which can be chosen arbitrarily for the desired application. Disruption of the target sequence
must be nearly neutral for the drive to spread. (C) The construct we model here, which was proposed by Esvelt et al. **,
reconstitutes the target gene after cutting—so an essential gene can be chosen as the target to select against resistant
alleles—and employs multiple (1) gRNAs.
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resistant alleles that could prevent the construct from spreading to the entire population (Fig. 1.1B).

Drive resistance was first mathematically studied in the context of single-cutting homing endonuclease-
based drive elements®. There, it was concluded that drive is most effective when the fitness cost of
the drive is low and the fitness cost of resistance is high (see Section 1.6.1 for a description of that
work). Unfortunately, in the drive constructs reported thus far, these two requirements are funda-
mentally at odds: the fitness cost of resistance arises from disruption of the target sequence, but the
drive copies itself precisely by disrupting the target sequence.

Here we study the evolutionary dynamics of an alternative drive architecture that decouples these
effects by rescuing function of the target gene, but only if the drive cassette is successfully copied.
This design was first proposed conceptually by Esvelt ez /. #* but has not yet been modeled or con-
structed in the laboratory; hence, we refer to it here as the “proposed” construct. It involves target-
ing multiple sites within the 3” end of a gene for cutting by the drive and including a completely
genetically recoded =7 copy of this 3’ target sequence in the drive construct (Fig. 1.1C). The 3’ un-
translated region of the gene is also replaced with an equivalent sequence in order to remove all
homology between the cut sites and the drive components, which ensures that the drive cassette is
copied as a single unit. If repair occurs by HR, then the target gene is restored to functionality as
the drive is copied. However, if repair occurs by NHE], then the target gene is mutated, potentially
resulting in a knockout and a corresponding loss of fitness. Using this design, drive resistance can be
selected against by choosing an essential or even haploinsufficient gene as the drive target.

Because the success of this design is contingent on the ability to genetically recode the 3° end of

an essential gene without imposing a large fitness cost, we now briefly discuss the plausibility of this
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strategy. In a study of CRISPR-based gene drive in yeast, DiCarlo ez al.7 showed that a drive con-
struct targeting the essential .4BDr gene and encoding a recoded copy of .4BDr functioned with
high efficiency without exhibiting “any obvious fitness defects as compared to wild-type strains”. In
the most comprehensive study of essential gene recoding to date, Ostrov et al."7 showed that com-
putationally minimizing disruption of existing RNA-binding motifs and secondary structures while
preserving overall codon usage allowed the elimination of seven codons from 91% of essential genes
in Escherichia coli with an overall fitness cost of less than 10%. Moreover, many attempted recod-
ings were costless on the first try without requiring optimization. Wang ez 4.%® obtained similar
results. Finally, work in Drosophila on underdominance-based drive systems*+?7 has shown that
partial recoding of haploinsufficient genes in metazoans is possible, although in both studies this
involved RNA interference.

In addition to 3’ target recoding, the construct uses multiple gRNAs. The use of multiple gRNAs
offers two important benefits with respect to resistance: (i) all gRNA target sites must be mutated
or lost before a single allele becomes drive-resistant, and (ii) if cutting occurs at two or more gRNA
target sites simultaneously, then the intervening DNA sequence is lost, resulting in a large deletion
and a knockout of the target gene. This is in contrast to single-cutting constructs, where a knockout

can be avoided by an in-frame indel or substitution mutation.
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1.3 RESULTS

To study this construct, we formulate a deterministic model (Sections 1.5, 1.6.2 and 1.6.3) that con-
siders the evolution of a large population of diploid organisms and focuses on a specific locus with
2n + 2 alleles (Fig. 1.2A). First, there are the wild-type (W) allele and the gene drive allele with n gR-
NAs (D). There are then n distinct “cost-free” resistant alleles that are resistant to drive-induced cut-
tingat1,2,...,n target sites but are otherwise identical to the wild-type (denoted S1, S, . . ., Sp).
These could arise via, for example, mutations that block cutting by disrupting the gRNA target se-
quences but do not cause a shift in the reading frame. Finally, there are n distinct “costly” resistant
alleles, which have fitness effects that are distinct from those of the wild-type (denoted R, Ra, ..., Ry).
Only the alleles S,, and R, are fully resistant to cutting by the drive. We also refer to the wild-type al-
lele as Sq for notational convenience. Last, we say that individuals having genotype AB, where A and
B are any of the alleles above, have fitness f4p (alternatively, genotype AB is associated with a cost
1 — fap)and produce gametes having haplotype C with probability p 4 g,c. Note that these prob-
abilities p o g ¢ abstract all individual-level drive dynamics and are agnostic to the mechanism that
produces drive. We allow these parameters to be arbitrary for our analytical calculations and derive
corresponding results that hold for any underlying drive mechanism—including both the previous
drive constructs and the new ones considered here.

For numerical simulations, we further consider a mechanistic model that explicitly describes the
mechanism of drive in individuals (Fig. 1.2B, Section 1.6.4). We assume that, in the germ line of an

individual that is heterozygous for a drive construct and a susceptible allele (DS; where 0 < 7 < n
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Figure 1.2: Modeling framework and representative simulations. (A) We consider 2n + 2 alleles, where n is the
number of drive target sites (prescribed by CRISPR gRNAs): the drive construct (D), the wild-type (W), 1 “neutral”
resistant alleles (S;), and n “costly” resistant alleles (R;). Previous drives (left) used one target site, whereas our pro-
posed drives use multiple target sites (right). (B) Conversion dynamics within DW germline cells during early gameto-
genesis. Cutting occurs at each susceptible target independently with probability g. Then, repair occurs by HR with
probability PP or by NHEJ with probability 1 — P. In the case of a single cut (light gray), if there is NHEJ repair, then
repair produces a functional target gene with probability Y or a non-functional target with probability 1 — ~y. Two
or more cuts (light red) certainly produce non-functional targets after NHEJ repair. (C) Representative simulations
are shown using high cutting and HR probabilities (¢ = P = 0.95), for an initial drive release of 1% in a wild-type
population,withy = 1/3.Fitness parametersare (left) fss = fsr = 1, fsp = 95%, frr = 99%,
fop = for = (99% x 95%) = 94.1%, where Srefers to neutral alleles (either S or W), and (right)

fss = fsr =1,fsp = fpp = fpor = 95%; frr = 1%, where Sand Rrefer to allelesW, S1, . . ., S5 and
R1, ..., Rs,respectively. See Section 1.6.4.2 for details regarding our assignments of the inheritance probabilities.
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or DR; where1 < i < n), each susceptible target site undergoes cutting independently with
probability g. If there is at least one cut, then HR occurs with probability P, whereas NHE] occurs
with probability 1 — P. If HR occurs, then the cell is converted to a drive homozygote. However, if
mutagenic NHE] occurs, then there are a few possibilities, depending on the number of cuts.

If there is exactly one cut, then one gRNA target is lost on the susceptible allele. If the susceptible
allele was initially functional (S;), then with probability it retains function and converts to S; 4 1;
otherwise, it loses function and converts to R; 1. We assume that the parameter 1y is the probability
that the reading frame is unaffected, so v = 1/3. If the susceptible allele is initially nonfunctional
(R;) then we assume that it cannot regain function, so it converts to R; 1.

If there are two or more cuts, then all j susceptible gRNA targets between and including the out-
ermost damaged targets in the locus are lost (2 < j < n — 7). The resulting allele is certainly non-
functional and thus converts to R;4 j. The probability distribution for the number of lost targets is
described in Section 1.6.4.2. It follows directly from our assumptions that cutting at each target site
is independent and that sequential cutting and repair events do not occur.

Regarding initial conditions, our simulations and analytical invasion analysis assume that drive-
homozygotes (genotype DD) are released into a population consisting initially of fully suscepti-
ble wild-type homozygotes (genotype SoSp). However, depending on the sequence targeted by the
drive, standing genetic variation in real populations could result in preexisting resistance at one or
more gRNA targets. For example, in a genome-wide analysis of 192 inbred strains of Drosophila
melanogaster derived from a single natural population, MacKay et al.* found the genome-wide aver-

aged polymorphism value®® to be m = 0.0056. If we assume that polymorphism at each base pair is
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independent, then the number of mismatches at a gRNA target sequence in a particular individual
is binomial with 20 trials and success probability . And if each gRNA can tolerate, on average, one
mismatch in its target, then single guide-resistant alleles should exist at frequencies roughly on the
order of 1073, Further assuming that resistance at each gRNA is independent, two guide-resistant
alleles should exist at frequencies roughly on the order of 1075, and so on. In this example and with
these assumptions, using five guide RN As would reduce the frequency of preexisting fully-resistant
alleles to 1012, Of course, complications could arise, such as nonindependence of polymorphism
within or between guides, so we anticipate this to serve as a low estimate of the frequency of preex-
isting resistance in a natural population. Therefore, before any application is considered, standing
variation in the target population should be carefully measured, and the target gene as well as the
number of guides should be adjusted accordingly.

Now, we address two fundamental questions: whether a CRISPR gene drive will invade a resi-
dent wild-type population and, if so, whether it will be evolutionarily stable®’. We begin with the

former. We find that a CRISPR gene drive will invade a wild population if

2pwp,pfwp > fww (11)

A derivation of this result can be found in Sections 1.6.2.2 and 1.6.3.2. For the drive to spread
when initially rare, the advantage from inheritance biasing (pyw p, p)—typically about 95% in pub-
lished studies—must overcome the lower fitness of the drive/wild-type heterozygote ( fyyp) com-

pared with the wild-type ( fiw). Note that this condition holds in the context of drive resistance, is
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agnostic to individual-level drive dynamics, and thus applies both to previous drive architectures and
our proposed architecture. Equation (1.1) explains the apparent success of CRISPR drive constructs
reported in the literature®¥#, which easily invade wild-type laboratory populations, or would be
predicted to do so after optimization of drive expression: Over short time scales, drive resistance is
rare and thus does not affect the dynamics.

However, over longer time scales, NHE]J-mediated resistance will markedly affect the dynamics.

We find that a resident drive population is stable against invasion by resistant alleles if and only if

max (2 < L2
ax (2ppa,afpa) < fop (12)
Here, the maximization is over all nondrive alleles Sp, . .., S;, and Ry, . .., Ry,. Intuitively, the

drive is stable if and only if no other allele can invade, and each of these has an invasion condition
identical in form to Eq. (r.1). (A derivation of this result can be found in Sections 1.6.2.3 and 1.6.3.3).
Disconcertingly, Eq. (1.2) suggests that drive constructs are necessarily unstable in sufficiently
large populations. An individual who is heterozygous for the drive and the fully resistant cost-free
allele S, has probability pps,, 5, = 1/2 of producing an S, gamete, and this individual has fit-
ness equivalent to (or potentially greater than) the drive/wild-type heterozygote. Thus, if the drive
construct has lower fitness than the wild-type, and if the fully resistant cost-free allele has a nonzero
rate of production in the population, then the latter will certainly invade a resident drive population.
This is especially problematic for highly deleterious population suppression drives, as in the study by

Hammond ez al.®, which have low fitness relative to the wild-type and less costly resistant alleles.
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However, population alteration drives (sometimes referred to as replacement drives) might not re-
quire long-term persistence in a population to produce their desired effect. Some applications might
still be successful as long as the drive construct attains and persists at a sufficiently high frequency in
the population over some length of time.

To quantify the relative effectiveness of the previous and proposed drive architectures, we con-
sider three quantities: (i) the maximum frequency achieved by a drive construct released in a wild
population, (ii) the time required for a drive construct to attain 90% of its maximum frequency,
and (iii) the frequency of the drive construct after 200 generations, roughly the longest relevant
timescale for a typical application. We compute these quantities numerically for drives featuring
cutting and HR probabilities consistent with average drive inheritance rates observed in previous
fruitfly*® and mosquito®” experiments (¢ = P = 0.95, modeling a reported drive inheritance rate
of roughly 95% from DW individuals).

Our results suggest that, as anticipated from Eq. (r.1), both the previous and proposed drive con-
structs should spread similarly in the short term, immediately following release (Fig. 1.3, A, B, and
D). However, over longer time scales, the two constructs undergo markedly different dynamics. The
proposed drive constructs, released at an initial frequency of 1% in a wild population, using five gR-
NAs and targeting an essential gene, can attain > 99% frequency in a population (Fig. 1.3, B and
C) in 10 to 20 generations (Fig. 1.3, B and D) and remain above 99% for at least 200 generations
(Fig. 1.3, B and E). Furthermore, this is seen over a large range of drive fitness costs, up to approxi-
mately 30% (Fig. 1.3, C to E). In contrast, the previously demonstrated constructs attain maximum

frequencies between 90% and 95% over a narrower range of fitness values (Fig. 1.3, A and C) and
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demonstrate significantly reduced stability (Fig. 1.3E). In particular, previous constructs exceeding

8% fitness cost invariably fall below their initial release frequency in fewer than 200 generations.

1.4 DiscussioN

In summary, we constructed and analyzed a mathematical model of CRISPR gene drive that in-
cludes multiplex cutting via multiple guide RNAs and allows for multiple costly and cost-free re-
sistant alleles. Our results suggest that previously demonstrated CRISPR gene drives constructed

as proofs of principle should effectively invade wild populations—consistent with experimental
observations—but could have limited utility due to their inherent instability, brought about by
their production of resistant alleles and vulnerability to preexisting ones. We studied an alternative
drive architecture, first proposed by Esvelt ez 4l #, which contains (i) multiple CRISPR guide RNAs
which target the 3” end of a gene, and (ii) a recoded copy of the target gene which is functional but
resistant to cutting. We discussed the plausibility of building such a construct in light of recent ex-
perimental reports, and we concluded that this architecture could substantially improve the stability
of CRISPR gene drives by minimizing the effects of NHE]-mediated resistance.

Another alternative strategy which we have not modeled here would involve multiple indepen-
dent single-guide drive constructs targeting the same locus. This is conceptually symmetric to the
strategy considered here: Rather than a single drive with multiple (n) gRNAs (“multiple guides”),
one might consider multiple (1) drives with one gRNA each (“multiple drives”). In this strategy,

each independent drive would behave similarly to the previously demonstrated constructs. The
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Figure 1.3: Quantitative comparison of previously demonstrated and recently proposed drive constructs. (A and B)
Drive frequency over time for three particular scenarios: a low-cost alteration drive carrying a cargo gene and target-
ing a neutral site (previous drives) or an essential gene (proposed drives) (red), a low-cost drive whose aim is to disrupt
an important target gene (orange), and a high-cost drive (tan). (C) The maximum drive allele frequency (heat) observed
in simulations across 200 generations, following an initial release of drive-homozygous organisms comprising 1% of
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of the maximum frequency. (E) Frequency of the drive constructs after 200 generations, a measure of stability in the
population. Parameters used are as follows: (throughout) g = P = 0.95,7 = 1/3; (previousdrives)n = 1,
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fss = fsr =1,fsp = fop = for =1 — ¢ frr = 1 — s,whereSand Rrefertoanyalleles S, . .., S,
andR1, ..., Ry, respectively. Inheritance probabilities are assigned as illustrated in Fig. 1.2B and described in Section
1.6.4.2.
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multiple-drive strategy would likely outperform the previous strategy, but we anticipate that it
would not outperform the multiple-guide strategy. This is because, in the multiple-drive strategy,
each gRNA target can independently undergo NHE]J-mediated mutation, providing stepping-
stones to fully resistant alleles. Furthermore, the multiple-drive strategy lacks the benefit of large
NHE] knockouts from multiple simultaneous cuts, which help combat cost-free resistance (Fig. 1.2B,
red box), although it would be capable of editing regions unimportant to fitness. And, regardless,
each single-guide drive construct could itself be built in the way we have described here, by using
multiple gRNAs.

An important caveat of our work is that we specifically studied resistance that is genetically en-
coded at the drive locus and is generated by the action of the drive. Many other mechanisms of re-
sistance are certainly possible. For example, standing genetic variation and de novo mutation might
be important considerations, particularly if the target locus is not highly conserved. However, in re-
cent work 62, Unckless ez al. showed that NHE]J-mediated resistance should be more impactful for
realistic NHE] rates (specifically, greater than the inverse of the population size). Aside from these
mechanisms of within-locus resistance, resistance could also arise in trans, for example as heightened
ribonuclease activity or as the evolution of small RNAs which would lead to knockdowns via RNA
interference. In addition, even beyond direct molecular effects, resistance could arise via higher-level
effects, for example as selection for inbreeding behavior in hermaphrodites in response to extremely
costly population suppression drives, as recently studied by Bull %, The large variety of potential
resistance mechanisms underscores the need for further theoretical and experimental work on this
topic.
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Although our work has focused on how to maximize the invasibility and stability of gene drive
systems, “global” CRISPR gene drives, such as those considered here, should only be actively de-
veloped for severe problems that (i) cause a great deal of suffering, and (ii) have few other poten-
tially viable solutions. Examples include malaria and schistosomiasis. Other applications—such as
precision alterations to local populations—will require robust methods to ensure limited spatial
and/or temporal spread. Toward this aim, there are several existing approaches, including non-drive
strategies such as multi-locus assortment® and threshold-dependent drives ()like toxin-based under-
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dominance systems) . Moreover, we, among others, recently proposed an alternative theoretical

approach termed “daisy drive”%.
n conclusion, our results suggest three concrete design principles for future ene drive
I 1 Its suggest th te design principles for future CRISPR gene d
systems. Constructs will minimize the impact of misrepair and thus maximize evolutionary stability

if (i) multiple gRNAs with minimal off-target effects are used, (ii) disruption of the target locus is

highly deleterious, and (iii) any cargo genes are as close to neutral as possible.

1S BRIEF MODEL DESCRIPTION

Here, we briefly state the model used for the numerical simulations presented above. The remainder
of this Chaper is largely used to develop and explain this model (beginning in Section 1.6.2 and later
extended to include neutral resistance in Section 1.6.3).

Throughout this work, we study a genetics-based evolutionary dynamics model. We consider the

evolution of diploid individuals, z7; where I, J = W,D,Ry,Ra,...,Ry,S1,S2,...,S,. Here
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D corresponds to the drive with n gRNAs; Ry, R, ..., Ry, correspond to alleles that are resistant
to cuttingat 1,2, ..., m target sites, respectively, and Sy, . . . , S;, are resistant alleles with no fitness
cost, and W corresponds to the wild-type (which we also denote by Sg for notational convenience).
In Section 1.6.2 (extended to neutral resistance in Section 1.6.3), we present a continuous-time model
for the evolutionary dynamics of this population, as well as derivations for the invasion and stabil-
ity conditions discussed above. Here, we briefly describe this model. First, it makes the following
assumptions: (i) an infinitely large population; (ii) random mating; (iii) standard segregation of
allele pairs at meiosis, unless an individual has genotype DA (where A is one of S, . .., S, —1 or
Ri,...,Rp,_1),in which case gametes receive a D allele with probability pp 4, p or an A allele with
probability pp 4, 4; and (iv) viability selection where each genotype IJ has fitness f7.5.

Using these rules, we can formally express the rates at which each of the 2n + 2 types of gametes
is produced in terms of the frequencies of individuals in the population. We denote by Fip(t) the
rate (at time t) at which drive gametes (D) are produced by individuals in the population. We denote
by Fg, () the rate (at time ) at which wild-type gametes (i = 0) or gametes with varying levels of
cost-free resistance (1 < ¢ < n) are produced by individuals in the population. Last, we denote by
FR, (t) the rate (at time ¢) at which gametes with varying levels of costly resistance (1 < i < n) are

produced by individuals in the population. We have
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n n
Fp(t) = fopxpp(t) + Y pr.p.ofRpTR.D(E) + Y Ps,D.0 S5, DTS D(t)
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where 0 is the Kronecker . 27,7 () denotes the frequency of individuals (at time ¢) with genotype
I1J,wherel,J = D,S0,S1,...,8:,R1,...,Ry. Similarly, f7 is the fitness of 1.J individuals,
and pr i denotes the probability of an individual with genotype IJ producing a K gamete. From

conservation of probability, we have the following identities:

n
PR,D,D + ZkaD,Ri =1
i=k

n n
PS.D,D + ZpSkD,SZ‘ + Z PS.D.R;, = 1
i=k i=k+1

Notice that type R,,D and type S,,D individuals are fully resistant to being manipulated by the drive
construct; such a fully resistant individual shows standard Mendelian segregation in its production

of gametes. Thus, we have pr,p r, = Ps.D.5, = 1/2.
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The selection dynamics are modeled by the following system of equations

pp(t) = Fp(t) — v*(t)xpp ()

ir,n(t) = 2FR,(t)Fp(t) — ¥*(t)xr,n(t)

@5,p(t) = 2Fs, (t)Fp(t) — ¥*(t)s,p(t)

@ R,s, (1) = 2FR, () Fs, (t) — ¥* () R,s, (t)
ir,ry(t) = (2= 03)FR, (1) Fr, (t) = ¥*(t)2p,m, (1)

is,5,(t) = (2 — 0ij) Fs,(t)Fs, (t) — ¥* (t)zs,s, (1).

The quantity 1)%(t) represents a density-dependent death rate for the individuals in the population.

Atany given time, t, we require that the total number of individuals sums to one

zpp(t +Z$RD +Z$SD +ZZxRS D4 D w1+ D wss, (1) =

i=1 j=0 i=1 j=1 i=0 j=0

To enforce this density constraint, we set

W(t) = Fp(t) + Y Fr,(t) + Y Fsi(t)
=1

1=0

For further details of the model, as well as derivations of our invasion and stability conditions, please

see Sections 1.6.2 and 1.6.3.
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1.6 SUPPLEMENTARY MODEL DETAILS AND DERIVATIONS

In the remainder of this Chapter, we briefly review a closely-related previous study, develop the
mathematical model described in Section 1.5 and present derivations of Equations (1.1) and (1.2). We
begin with our discussion of a previous study of homing endonuclease-based gene drive systems in
Section 1.6.1. In Section 1.6.2, we propose a simple model of population genetics of CRISPR-based
gene drive systems with multiple guide RNAs, and we analyze the selection pressure acting on an
engineered drive construct. In Section 1.6.2.2, we derive a condition for an engineered drive allele

to invade a natural population. In Section 1.6.2.3, we derive a condition for a population in which
the drive has fixed to resist invasion by either wild-type or drive-resistant alleles. In Section 1.6.2.4,
we derive equations for interior equilibria permitted by our system. In Section 1.6.2.5, we present
numerical examples of the system’s dynamics. Lastly, in Section 1.6.3, we extend the model from Sec-
tion 1.6.2 to include the effects of “neutral resistance”, leading to the model presented in Section 1.5

and used in numerical simulations throughout Section 1.3.

1.6.1 PREVIOUS WORK ON HOMING ENDONUCLEASE GENE DRIVES

At the time this Chapter was written, the most closely-related existing theoretical study of nuclease-
based gene drive with resistance was presented by Deredec ez 4l.. In this Section, we briefly review
that study in order to highlight the parallels and points of difference between our theoretical ap-
proaches and, more importantly, the underlying biological systems.

In the study by Deredec e al., the authors mathematically investigate gene drive systems that uti-
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lize homing endonuclease genes (HEGs). Essentially, HEGs encode proteins that have both nuclease
and DNA-targeting activity. Thus, an HEG-based gene drive can be thought of conceptually as an
example of the “previous” constructs described in Fig. 1.1, if the CRISPR nuclease and gRNA were
fused into one contiguous unit. This leads to an important difference between HEG and CRISPR-
based gene drive systems: There is no analogue to “multiple guides” for HEG-based systems—each
drive system has exactly one target site.

The authors begin their analysis of HEG-based gene drive systems with a two-allele model pre-
cluding resistance, consisting of a wild-type allele and a gene drive allele (pp. 2014—2016 of Dere-
dec ez al.®). As described previously, the model can be thought of as implicitly considering a single
guide RNA because it was motivated by HEGs. In their notation, p is the frequency of the wild-
type allele, and ¢ is the frequency of the drive allele. The authors assume Hardy-Weinberg propor-
tions at all times, and they write a recurrence for g:

,_ (1=5)¢*+ (1 —sh)pg(1+e)
7= 1 — sq? — 2shpq

Here, s is the fitness cost associated with a drive homozygote, sh is the fitness cost associated with a
drive/wild-type heterozygote, and e is the probability that the HEG copies itself onto the homolo-

gous chromosome (“homes”).

31



The authors identify that there are three possible fixed points:

. e—(1+e)hs
 s(1—2h)

The authors obtain the following invasion condition for the drive allele:

(&

S<7h(1—|—e)

Intuitively, the fitness cost, sh, of a drive/wild-type heterozygote must be less than a monotonically
increasing function of the homing rate, e, for the homing endonuclease gene to spread when rare.
Low fitness costs of the drive and high homing rates facilitate the invasion of the drive. More specif-
ically, the authors show that, if the drive/wild-type heterozygote has fitness close to the wild-type
(i.e., h close to zero), then the drive invades and fixes (if s is small relative to €), coexists with the
wild-type allele (if s is comparable in magnitude to €), or does not invade and is unstable (if s is large
relative to €). The authors also show that, if the drive/wild-type heterozygote has fitness close to the
drive homozygote (i.c., i close to one), then the drive invades and fixes (if s is small relative to e), is
bistable with the wild-type allele (if s is comparable in magnitude to €), or does not invade and is
unstable (if s is large relative to e). These are important insights into the evolutionary dynamics of
HEG-based gene drive systems.

Deredec et al. then extend their model to consider also a single resistant allele (pp. 2018—2019 of
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Deredec et al. ). In their notation, p is the frequency of the wild-type allele, g is the frequency of
the drive allele, and gy is the frequency of the misrepaired (resistant) allele. The authors assume

Hardy-Weinberg proportions at all times, and they write recurrences for gz and gaz:

;o q(M—sg)+paa(L+e(l — 7)1 — hgsy) + ququ(l — sg)
qy 533
w
air(1 = sar) + pav (1 — hoagsar) +pau (1 — hsu)ey + quau (1 — sp)

w

i

Here, W is the mean fitness of the population, and 7 is the probability of misrepair.

The authors then consider a variety of special cases and make observations about each. A general
theme is that low misrepair rates, high fitness of the drive, and low fitness of resistance alleles all act
to improve drive spread. These are crucial points for understanding the evolutionary dynamics of
HEG-based gene drive systems.

For a classic homing endonuclease gene drive, the latter two properties—high fitness of the drive
and low fitness of resistance alleles—are naturally difficult to reconcile with each other, as we de-
scribe in Section 1.3. Since cost-free resistance to a drive construct can certainly arise, alternative drive
designs are necessary for effective population modification. The CRISPR-based gene drive systems
studied in this Chapter facilitate targeting arbitrary (and many) locations in a genome, which greatly
expands the creative potential for manipulating wild populations. However, while CRISPR-based
constructs offer enhanced opportunities for constructing gene drive systems, they also inevitably

exhibit more complex dynamics that must be firmly understood.
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1.6.2 MODEL WITH ONLY COSTLY RESISTANCE

In this Section, we present and analyze our model for a CRISPR-based gene drive system featuring
n gRNAs and n costly resistant alleles (Ry, . . . , Ry, as described in Fig. 1.2). We later extend this
model to also include the neutral resistant alleles Sy, . . ., S, (Section 1.6.3), but for simplicity we

begin with only the former class of resistant alleles.

1.6.2.1 MODEL DESCRIPTION

To describe the evolutionary dynamics of such a system, we consider a population of diploid organ-
isms featuring a drive allele, D, a wild-type allele, 0, and n resistance alleles, 7 (with 1 < ¢ < n). (In
Section 1.3, we use the notation “WW” for a wild-type allele rather than “0”. The notation “0” is more
natural for doing calculations.) There are (n + 2)(n + 3)/2 possible genotypes in the population:
17 (with0 < i < mnand0 < j < n),tD (with0 < ¢ < n),and DD. The drive mechanism works
as follows.

Consider a type 0D individual; one allele is wild-type, and the other allele is the drive. There are
n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive can cut any number
of targets between 0 and n. If the drive cuts no targets, then the individual remains with genotype
0D. If the drive cuts k targets (with 1 < k < n), then one of several things can happen: One
possibility is that homologous recombination copies the drive allele onto the damaged chromosome,
so that the individual’s genotype becomes D D. This is how the drive construct effects its spread

through a population. Another possibility is that non-homologous end joining repairs the damaged
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chromosome without restoring the lost targets, so that the individual’s genotype becomes 7D (with
1 < i < n). This is how resistance to the drive construct emerges. Yet another possibility is that
non-homologous end joining perfectly repairs the damaged chromosome, so that the individual’s
genotype remains 0.D.

The drive allele can effect its spread as long as there is at least one remaining target. In an individ-
ual with genotype 7D, either the drive cuts at no targets, with the individual’s genotype remaining
D, or the drive cuts at some number, £, of the n — ¢ remaining targets (so that1 < k£ < n — 7).
After cutting, the individual can become homozygous in the drive allele (D D), the individual can
lose additional targets by acquiring genotype jD (with ¢ +1 < j < n), or the individual can remain
with genotype i D.

Using these rules, we can formally express the rates at which each of the 1.4-2 types of gametes are
produced in terms of the frequencies of individuals in the population. We denote by Fp(t) the rate
(at time t) at which drive gametes (D) are produced by individuals in the population. We denote
by F;(t) the rate (at time ) at which wild-type gametes (i = 0) or gametes with varying levels of

resistance (1 < ¢ < n) are produced by individuals in the population. We have

Fp(t) = fopxpp(t) + Zka,kaDa?kD(t)
k=0

Fi(t)=> prpsifepten(t) + 3 kakﬂ?m(t)-
k=0 k=0

Here, ; is the Kronecker delta. We use the following notation: xy;(t) denotes the frequency of

individuals (at time ¢) with only wild-type or resistance alleles, zjp (t) denotes the frequency of in-
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dividuals (at time ¢) with one wild-type or resistance allele and one drive allele, and 2 pp (¢) denotes
the frequency of individuals (at time ) that are homozygous in the drive allele. (We define z;(t) for
k # iand x;p(t) such that the ordering of the indices does not matter, i.e., zy; (t) = i (t) is the
frequency of individuals with one copy of the k allele and one copy of the i allele, and z;p(t) =
xpi(t) is the frequency of individuals with one copy of the k allele and one copy of the drive allele.)
fri denotes the fitness of individuals with only wild-type or resistance alleles, fi,p denotes the fit-
ness of individuals with one wild-type or resistance allele and one drive allele, and fpp denotes the
fitness of individuals that are homozygous in the drive allele. pjp p denotes the probability that an
individual of genotype kD produces a D gamete. pi.p ; denotes the probability that an individual
of genotype kD produces an 7 gamete. From conservation of probability, we have the following
identity:

n
PkD,D t+ Zka,i =1
i—k

Notice that a type n.D individual is fully resistant to being manipulated by the drive construct;
such a fully resistant individual shows standard Mendelian segregation in its production of gametes.

Thus, we have

PnDn = 5

We understand Equations (1.3) as follows: Type DD individuals only produce type D gametes,
hence the term fppxpp(t) in the equation for Fp(t). Type kD individuals produce type D ga-
metes with probability pxp p, hence the terms pr.p p frp2xp(t) in the equation for Fp(t). Type

kD individuals produce type i gametes with probability pyp ;, hence the terms pip ; fxp2rp (t) in
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the equation for Fj(t). Type ki individuals produce type i gametes with probability 1 if & = i or
with probability 1/2if k # i, hence the terms [(1 + 0g;) /2] frizki(t) in the equation for F;(t).

The selection dynamics are modeled by the following system of equations:

@5 (t) = (2 = 8j) Fy(8)Fj(t) — 0 (t)as;(t)
&ip(t) = 2F;(t)Fp(t) — 2 (t)xip(t) (1.4)

ipp(t) = Fp(t) — *(H)zpp(t).

Here, an overdot denotes the time derivative, d/dt. In formulating the population dynamics, we
assume random mating; i.e., two random gametes meet to form a new individual. Notice that the
products (2 — 8;;) Fi(t)F}(t), 2F;(t) Fp(t), and F3 (t) in Equations (1.4) represent the pairings
of the different types of gametes to make new offspring. The quantity 12 (t) represents a density-
dependent death rate for the individuals in the population.

At any given time, ¢, we require that the total number of individuals sums to one:

xDD(t)+Z$iD(t)+ZZ$ij(t) = 1. (1)
=0

i=0 j=0

To enforce this density constraint, we set

Y(t) = Fp(t) + > Fi(t). (r.6)
Throughout this Chapter, we choose to work in the framework of continuous time (Equations
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(1.4)), since we feel that this approach simplifies the mathematical analysis. In much of the remain-
der of this Chapter, we omit explicitly writing the time dependence on dynamical quantities for

notational convenience.

1.6.2.2 INVASION OF THE DRIVE CONSTRUCT

Consider a wild-type population in which all individuals have genotype 00. We perturb the wild-
type population by introducing a small amount of the drive allele, D. What happens? Does the
drive allele catalyze its own spread in the population, or is it eliminated?

For a perturbation to a wild-type population, we write the frequencies of the genotypes as

zoo =1 —6(5(%) - 625(()%) —0(é)

+66(()B + 626(()2[)) +0(e?)

Top =
xToi = +6(5[()21-) + 62(5((]?) +0(e%)
(17)
acij = + 62(53) +O(63)
vip = +268) 40
DD — + 62(5(5)D +O(63)

In Equations (1.7), it is implied that 1 <4 < mand 1 < j < n. The expansions (1.7) are understood
as follows. The frequency of the wild-type allele is approximately one, since we only introduce a

small amount of the drive allele. The frequency of the drive allele is of order e < 1. The small
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number of 0D individuals in the population also produce resistance alleles, and the frequency of
these resistance alleles shortly after the perturbation is also small (i.e., of order € < 1). Notice that:

* New type 00 individuals are produced by pairing two wild-type gametes (each at a frequency

O(1)), so new type 00 individuals are generated at a rate O(1).

* New type 0D individuals are produced by pairing a wild-type gamete (at a frequency O(1))
and a drive gamete (at a frequency O(€)), so new type 0D individuals are generated at a rate

O(e).

* New type 07 individuals (for 1 < i < n) are produced by pairing a wild-type gamete (at a
frequency O(1)) and a resistant gamete (at a frequency O(€)), so new type 07 individuals are

generated at a rate O(€).

* New type 77 individuals (for1 < 7 < mand1 < j < n)are produced by pairing two
resistant gametes (each at a frequency O(¢)), so new type 45 individuals are generated at a

rate O(€2).

* New type 7D individuals (for 1 < % < n) are produced by pairing a resistant gamete (at a
frequency O(€)) and a drive gamete (at a frequency O(€)), so new type ¢.D individuals are

generated at a rate O(€?).

* New type DD individuals are produced by pairing two drive gametes (each at a frequency
O(€)), so new type DD individuals are generated at a rate O(€?).

Also, notice that a nonzero amount of the drive allele and the resistance alleles are produced at
order €2 by type ij, ¢D, and DD individuals, so there also exist terms of order €2 in the expansions
for zop and x¢;. Hence, we arrive at the expansions (1.7).

Note that (1.7) and (1.5) impose a constraint on the O(€) terms in the genotype frequencies:

0 = 3o+ D 0 (13)
=1
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Also, note that (1.7) and (1.5) impose a constraint on the O(€?) terms in the genotype frequencies:

2 2 2 - 2 - 2 = ! 2
65 =05+ 8pn + > 68+ 3 6 SN 6,
=1 =1

i=1 j=1

Substituting (1.6), (1.3), (1.7), and (1.8) into the equation for Zop in (1.4), we obtain

5(()3 = foo (2pop,p foo — foo) 5[()3

The drive allele invades a wild-type population if 583 > 0, i.e.,if

2pop,p fop > foo- (.9)

1.6.2.3 STABILITY OF THE DRIVE CONSTRUCT

Consider a population in which the drive construct has fixed, so that all individuals have genotype
DD. We perturb the DD population by introducing a small amount of the wild-type allele, 0.
What happens? Is the D D population stable to perturbations, or does the wild-type allele or one
of the resistance alleles invade the population?

For a perturbation to a population in which the drive construct has fixed, we write the frequen-
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cies of the genotypes as

xpp =1 —65%33 = 625g)D —0(é%)

Tip = +€(52%) + 6251%) +0(e%) (r10)
Tij = + 6251'(]2) +O(€3)

In Equations (1.10), it is implied that 0 < ¢ < nand0 < j < n. The expansions (1.10) are un-
derstood as follows. The frequency of the drive allele is approximately one, since we only introduce
a small amount of the wild-type allele. The frequency of the wild-type allele is of order € < 1. The
small number of 0D individuals in the population also produce resistance alleles, and the frequency
of these resistance alleles shortly after the perturbation is also small (i.e., of order € < 1). Notice

that:

* New type DD individuals are produced by pairing two drive gametes (each at a frequency
O(1)), so new type DD individuals are generated at a rate O(1).

* New type 7D individuals (for 0 < 7 < n) are produced by pairing a non-drive gamete (at
afrequency O(¢)) and a drive gamete (at a frequency O(1)), so new type ¢.D individuals are

generated at a rate O(e).

* New type 77 individuals (for0 < ¢ < nand0 < j < n)are produced by pairing two
non-drive gametes (each at a frequency O(e€)), so new type ¢j individuals are generated at a

rate O(€2).

Also, notice that a nonzero amount of the non-drive alleles are produced at order €2 by type ij
individuals, so there also exist terms of order €2 in the expansions for x; p. Hence, we arrive at the

expansions (1.10).
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Note that (1.10) and (1.5) impose a constraint on the O(€) terms in the genotype frequencies:

(5%}) = Z (51%) (L)

5(DQ)D = Z 51%) + Z 52-]2). (r12)

Substituting (1.6), (1.3), (r.10), and (1.11) into the equations for &;p in (1.4), we obtain

1—1
51%) = BﬂSEll)) + Z Ak,i5;(€3~ (L.13)
k=0

Here, we use the shorthand notation

Ak = 2pkpifepfpD

B; = Aii — fhp.

To solve (1.13), we take its Laplace transform. Using the notation Ang) (s) = E{(Sl%) t)}(s) =

I 678’551%) (t)dt, we have

i—1
1 1
Ang)(S) I B,(s@%)(o) + s_ B E Ak,z’A;(C%(S) (r.14)
‘ " k=0

Here, we use 51(113) (0) to denote (52%) (t) evaluated at time ¢ = 0. Equation (1.14) specifies A,ElD) (s)in
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terms of each ASD) (s) for which 0 < k < 4. Simplifying, we have

A(l)(s) _ 52(11)) (0) + zzi 51(ch)(0) |: Ak,i
iD -

s — B; k:os_Bk s— B;
+ Zz_é Ak,uAu,z
et (5 — Bu)(s — By)
i—1
Ak uAu vAv K
+
3 e

-3
Ak uAu UA’U wAw )
* Z Z Z (s = By)(s — By)(s — Bw)(s — By)

u=k+1v=u+1w=v+1

+ .. ]
(115)

We are interested in the time dependence of 6 Z%) (t). From Equation (1.15), notice that when the
Laplace transform is inverted, the time dependence of each term in the resulting equation for 5%) (t)
has the form t“ exp(B;t), where o« > 0.

To demonstrate this, consider a set of real numbers {3} and a set of positive integers {r; }, and

define F(s) for k > 0:
Lo
Fi(s) = ]1_10 = 3%
If the inverse Laplace transform of Fy(s), denoted by L71{ F.(s) }(t), is equal to a sum of factors
of the form £L71{1/(s — B;)¢}(t), where & is a positive integer, then each term in the solution for

5511)) (t) has the form t* exp(B;t), where o« > 0.

To prove that L1 { F¢(s)}(¢) is equal to a sum of factors of the form L71{1/(s — 3;)¢}(t), we
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use induction. Define

Gy (t) = L7H{Frpa(s)} (1) = L7 {fk(S)l} (t) (1.16)

(8 = Brg1)Ve+t

The inverse Laplace transform in (1.16) is calculated as follows:

G = [ ar (e A0 [ ot be-n]

(5 — Brt1

First, for the base case, consider Equation (1.16) for £ = 0. We have

Gi(t)=L"1 { ! L } (t) (1.18)
From (1.17), this becomes

O T | I C

Substituting the expressions for L71{1/(s — )"0 }(7) and L71{1/(s — B1)"1 }(t — T), the

equation for G (t) becomes

Gi(t) = /0 “ar {T( :Oo‘ief;:] [(t—T(Zl:H;; (t—a]
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Performing the integration over 7, we have

_ (~1)o A VA2
gl(t)_(uo—l)(m—l 50—511/0]2:%( J ) (Bo — A1)
X [(Vl —j—nict {(5_/311)1/1—J} (t)

Jjt+vo—1

-2 - . e RN P Boﬂw_w}(t)]

Manipulating the indices and simplifying, we obtain

(=1)
(vo — D1 — D(Bo — pr)rot™

[Zﬁ { S—ﬁl)j}(t)<Z1:j>(VO+V1_]_1) (G —DI(Bo — Br)
—1

_Zﬁl{(s—ﬁo } Z <V1Vi;ik:> (l/o+1/1—j+k§<:—1)!(j—1)!(/80_/81)j
=0

Gi(t) =

vo+r1—1 -1
S k(v =D o+ k=DIG -1
B j%j—f—l y {(5 — Bo)? } () kz_o(l) ’ < k > G+k—w) (Bo ﬁ1)ﬂ}

(1.19)

We see that G (t) is equal to a sum of factors of the form £L=1{1/(s — 3;)¢}(t).

Next, consider Equation (1.16) for £ > 0. From (1.17), we have

Guna(t) = [ ar [ A ) [ { g e

(5 — Brt2
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This is equal to

Guralt) = | "dr (Gen (7)) e ) (120)

5 — Blto) k+2

For the inductive step, suppose that Gy 1 (¢) reduces to a sum of factors of the form £={1/(s —
Bi)H():
1
g t) = £t { —_— } t .21
k+1( ) ZJ:ZZ: (8—/8])& ( ) ( )

Substituting (1.21) into (1.20), we have

ot =23 [0 [ (o= o] [ o )

J 2

This is equal to

Grt2(t) = Z ZE 1 { (5 = Bj)% (5 = Bryo)e+2 } ©

Then from Equations (1.18) and (1.19), we see that G 12() also necessarily reduces to a sum of fac-
tors of the form £L71{1/(s — ;)¢ }(t), thus completing the proof.

Since 6.7 is equal to a sum of factors of the form ¢ exp(B;t), where & > 0, we see that if
all B; < 0, then all 617) approach zero in the long-time limit, and, from (1.11), we have that 61,)

approaches zero in the long-time limit. Therefore, if B; < 0 forall valuesof 0 < j < n, then the

drive construct is evolutionarily stable.
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If, instead, B; > 0 for at least one value of j, then § Z(B has a term whose magnitude grows ex-

ponentially in time. The leading-order (in €) terms in the expansions for ; p in (1.10) are necessarily
positive. Therefore, if the condition B; > 0 is satisfied for at least one value of j, then 51%) is posi-
tive and grows exponentially in time; i.e., the D D population is unstable to perturbations.

The resulting condition is that the D D population is stable to perturbations with a wild-type

allele if

2max (pxpkfep) < fDD- (122)

COMPLETELY RECESSIVE FITNESS COST FOR A RESISTANCE MUTATION  Now, we consider a
special case in which the fitness cost associated with having resistance to the drive is completely re-
cessive. If the fitness of each heterozygote with a resistance allele, fi.p, exactly equals fpp forall £,
then is the DD population stable to perturbations? We expect that prp , < 1/2forall 0 < k < n.
Therefore, if fpp = fpp for all £, then the inequality (1.22) is satisfied for all k' < 1 and becomes
an equality for k = n.

All resistance alleles with at least one target (0 < £ < n) are removed from the population
by selective forces. We must focus on the fully resistant allele, 7. To probe the stability of the DD
population, we substitute (1.6), (1.3), (1.10), (1.11), and (1.12) into (1.4), and we keep terms that are

O(e?). We have

. 1 2
- 6(D21)i) = fpp (/oD — 2fnn) 57(12,2 + Z,}%D [5S)D} . (1.23)
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We also have

. 1 2
57(1271) = _f%Dégn) + EJ%D [581)3} . (1.24)

We can integrate (1.24). We get

52 = 5 [5h] " 11— exp (~70)] (129)

We are interested in the regime 1 < ¢t < e~ 1. We must consider the sign of 5%%) at large times

t > 1 but before the terms in (1.10) become similar in magnitude. Our condition for stability of the
DD population is therefore
lim §2) < 0.

et—0
t—o00

Shortly after the perturbation, the exponential in the solution for (5&272 will approach zero. Substi-
tuting (1.25) into (1.23) and simplifying, we see that the DD population is stable to perturbations

if

fnn < fDD- (1.26)

1.6.2.4 INTERIOR EQUILIBRIA

A drive construct increases in frequency when rare if Equation (1.9) is satisfied. A drive construct
that has already fixed is stable to perturbations if Equation (1.22) is satisfied (or if Equation (1.26) is
satisfied for the case of a completely recessive fitness cost for resistance). But if a small amount of the

drive construct is introduced into a wild-type population, then does the drive spread completely to
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fixation?
To answer this question, it is helpful to know if the model for the drive dynamics, Equations

(1.4), admits an interior equilibrium. Notice that, if all time derivatives are zero, then Equations (1.4)

simplify to
_ (2—-6ij) FiF}
JSZ'J' ¢2
2F;Fp
XiD
¢2
F2
DD — 1/}7?

Next, we define x; to equal the frequency of allele ¢ in the population. Thus, x is the frequency of
the wild-type allele, and z; for 1 < 4 < mis the frequency of a resistance allele with 7 damaged
targets. Also, x p is the frequency of the drive allele. These allele frequencies can be calculated from

the frequencies of individuals of the various genotypes:

1 1 i
Ti = 5TiD + Z Ty T
7=0
1 n
Tp =Tpp + B ZIBZ‘D-

=0

Similar to Equation (1.5), the sum of all allele frequencies equals one at all times:

n
rp + sz =1.
i=0
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We directly compute the following results:

2 2
1 " 146 F? - F?
2
Ty = §xiD+Z L 21714 FD+ZFJ' wagzwn‘
7=0 7=0
2 . 2
1 _ FZ F?
2 D
2 ]z; E ]Z; b? (127)
2F;Fp
2rixp = 7 = ZiD
(2 —0;;) FiFj
(2 = bij) wiw; = # = i
In summary, we obtain
xij = (2 — 51]) xiscj
T;p = 2x;xp (1.28)
Tpp = $2D.
From (1.277), we have that
Y = F;
(r.29)
Yxp = Fp.

By substituting Equation (1.6) for ¢ and Equations (1.3) for F; and F'p into (1.29), and substituting

(1.28), we obtain

n
foprh +2) frprkap +
k=0

Jj=

n

; ,
> (2= 6w finwsan | @i —QZkaszDivkﬂﬂD-i-kaﬂ?sz
0 k=0 k=0 k=0

(1:30)
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We also obtain

n

n i n
foprh +2Y  frpzkep + > (2= 0ik) fixwizk | p = fopah+2 Y prp.p frpTkap.
k=0 =0 k=0 k=0

(1.31)
Equations (1.30) and (1.31) must be simultaneously satisfied for 0 < xp < 1and0 < z; < 1for

each 7 at each interior fixed point. If Equations (1.30) and (1.31) cannot be simultaneously solved for a

given set of parameter values, then no interior fixed point exists.

1.6.2.5 NUMERICAL EXAMPLES

Numerical simulations of Equations (1.4) are helpful for understanding the evolutionary dynamics
of a drive construct. For simplicity, we consider a single guide (n = 1), and we choose the following

parameter values:

Joo = fio=1
foo=rfip=fpp=1—-c
(132)
fm=1-s
pop,o = 0.

We make the following assumptions: The fitness cost of the drive, ¢, is dominant. The fitness cost
of the resistant allele, s, is recessive. Also, the drive construct in a 0.D heterozygote always cuts at
the target, and either the drive allele is copied by homologous recombination or resistance emerges.
Thus, we have pop,g = 0.

In Fig. 1.4 (a and b), numerical simulations demonstrate evolutionary invasion of the drive con-
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struct. For these simulations, the initial conditionisz44 = 1 — 107 *andzpp = 10~%. The

relevant condition for determining evolutionary invasion is Equation (1.9).

* In Fig. 1.4 (a), weset pop,p = 0.75and s = 0.4. From Equation (1.9), the critical value of
cforinvasion is 1/3. If ¢ = 0.34 (green curve), then the drive construct does not invade. If

¢ = 0.33 (blue curve), then the drive construct invades.

* InFig. 1.4 (b), we set pop,p = 0.65 and s = 0.3. From Equation (1.9), the critical value of ¢
for invasion is approximately 0.23. If ¢ = 0.235 (green curve), then the drive construct does

not invade. If ¢ = 0.225 (blue curve), then the drive construct invades.

In Fig. 1.4 (c and d), numerical simulations demonstrate evolutionary stability of the drive con-
struct. For these simulations, the initial conditioniszpp = 1 — 102 and z44 = 10~2. From
(1.32), notice that the condition (1.22) becomes an equality. Therefore, the relevant condition for

determining evolutionary stability is Equation (1.26).

* InFig. 1.4 (c), weset pop,p = 0.75and ¢ = 0.32. From Equation (1.26), the critical value
of s for stability is 0.32. If s = 0.315 (green curve), then the drive construct is unstable. If

s = 0.325 (blue curve), then the drive construct is stable.

* InFig. 1.4 (d), weset pop,p = 0.65and ¢ = 0.2. From Equation (1.26), the critical value
of s for stability is 0.2. If s = 0.195 (green curve), then the drive construct is unstable. If

s = 0.205 (blue curve), then the drive construct is stable.

In Fig. 1.4 (e and f), numerical simulations demonstrate the behavior of the drive construct at

intermediate frequencies. For these simulations, the initial conditionisz44 = 1 — 10~%and

zpp = 1074 If Equations (1.30) and (1.31) cannot simultaneously be solved numerically, then there

is no interior equilibrium.

* InFig. 1.4 (e), weset pop.p = 0.75and ¢ = 0.32. From numerical analysis of Equations

(1.30) and (1.31), values of s that are slightly below approximately 0.815 permit an interior
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equilibrium, while values of s that are slightly above approximately 0.815 do not. If s =
0.81 (green curve), then the drive construct reaches an equilibrium frequency that is strictly

between 0 and 1. If s = 0.82 (blue curve), then the drive construct spreads to fixation.

* InFig. 1.4 (f), weset pop,p = 0.65and ¢ = 0.2. From numerical analysis of Equations
(1.30) and (1.31), values of s that are slightly below approximately 0.285 permit an interior
equilibrium, while values of s that are slightly above approximately 0.285 do not. If s =
0.28 (green curve), then the drive construct reaches an equilibrium frequency that is strictly

between 0 and 1. If s = 0.29 (blue curve), then the drive construct spreads to fixation.
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Figure 1.4: Numerical simulations of the evolutionary dynamics.
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1.6.3 MODEL WITH NEUTRAL RESISTANCE

In this Section, we present an extension of the model that accounts for the phenomenon of “neutral
resistance”, concluding with the model presented in Section 1.5. Neutral resistance can occur if non-
homologous end joining results in repair at a cut site that disrupts the recognition sequence of a
guide RNA while nonetheless leaving the function of the target gene intact. This can occur, for
example, via an in-frame insertion or deletion or a synonymous mutation. The resulting allele is
similar (with respect to the drive mechanism) to the resistant alleles discussed in previous sections:
the repaired target is immune to cutting by its corresponding guide RNA. However, the mutation

conferring this resistance is not deleterious.

1.6.31 MODEL DESCRIPTION

We represent this scenario of neutral resistance by an extension of our original model developed in
Section 1.6.2. We consider a drive allele, D, n “costly” resistant alleles, R; (with1 < i < n),n
“neutral” resistant alleles, S; (with 1 < 7 < n), and the wild-type allele, So. The drive mechanism
works as follows (see Fig.1.2 for an illustration).

Consider a type So.D individual; one allele is wild-type, and the other allele is the drive. There are
n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive can cut any number
of targets between 0 and n. If the drive cuts no targets, then the individual remains with genotype
SoD. If the drive cuts k targets (with 1 < k < n), then one of several things can happen: One

possibility is that homologous recombination copies the drive allele onto the damaged chromosome,
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so that the individual’s genotype becomes D D. Another possibility is that non-homologous end
joining repairs the damaged chromosome without restoring the lost targets, and the resulting resis-
tant allele is either costly, in which case the individual’s genotype becomes R; D (with1 < ¢ < n),
or cost-free, in which case the individual’s genotype becomes S; D (with 1 < i < n). Yet another
possibility is that non-homologous end joining perfectly repairs the damaged chromosome, so that
the individual’s genotype remains So D.

The drive allele can effect its spread as long as there is at least one remaining target. In an individ-
ual with genotype R; D or S; D, either the drive cuts at no targets, with the individual’s genotype
remaining I2; D or S; D, or the drive cuts at some number, £, of the n — % remaining targets (so that
1 <k <n — ). After cutting, the individual can become homozygous in the drive allele (D D), the
individual can lose additional targets by acquiring genotype R;D or S; D (withi +1 < j < n),
or the individual can remain with genotype R; D or S; D. We assume that costly resistant alleles I?;
cannot convert to cost-free resistant alleles .S, but cost-free resistant alleles S; can convert to costly
resistant alleles 1.

Using these rules, we can formally express the rates at which each of the 2n + 2 types of gametes
are produced in terms of the frequencies of individuals in the population. We denote by Fp(t) the
rate (at time t) at which drive gametes (D) are produced by individuals in the population. We de-
note by Fg, () the rate (at time ) at which wild-type gametes (i = 0) or gametes with varying levels
of cost-free resistance (1 < 4 < n) are produced by individuals in the population. And we denote

by Fg, () the rate (at time ) at which gametes with varying levels of costly resistance (1 < i < n)
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are produced by individuals in the population. We have

n n
Fp(t) = foprpp(t) + Y pr.0,0fr,pTRDE) + > ps.D.0fs,0Ts,D(t)
k=1 k=0
»
Fs,(t) = Z 5 ! fsps;s,s(t) + B ; fRes; TR, s (1) + kZOPSkD,Sz‘fSkaSkD(t)

n

1+ O RS
Fp, (t) = Z 2 & kaRikaRi (t) + 9 Z fRiSkIRiSk (t)
k=1 k=0

i—1

(2
+ > prop.R SR DERD(E) + D PSR 5 DTS,D(1).
k=1 k=0

Here, 0y; is the Kronecker delta. 277(t) denotes the frequency of individuals (at time t) with geno-
type IJ, where I, J = D, Sp, S1,...,Sn, Ri,..., Ry. Similarly, f7 is the fitness of 1.J individ-
uals, and py j x denotes the probability of an individual with genotype I.J producing a K gamete.

From conservation of probability, we have the following identities:

n
PR.D,D + ZkaD,Ri =1
i=k

n n
PS.D,D + ZpSkD,SZ‘ + Z PS.D.R; = 1
i=k i=k+1

Notice that type R,, D and type Sy, D individuals are fully resistant to being manipulated by
the drive construct; such a fully resistant individual shows standard Mendelian segregation in its

production of gametes. Thus, we have

1
PR,.D,R, = PSp,D,Sn = 5
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The selection dynamics are modeled by the following system of equations:

pp(t) = Fp(t) — v*(t)xpp ()

ir,n(t) = 2FR,(t)Fp(t) — ¥*(t)xr,n(t)

@5,p(t) = 2Fs, (t)Fp(t) — ¥*(t)s,p(t)

@ R,s, (1) = 2FR, () Fs, (t) — ¥* () R,s, (t)
ir,ry(t) = (2= 03)FR, (1) Fr, (t) = ¥*(t)2p,m, (1)

is,5,(t) = (2 — 0ij) Fs,(t)Fs, (t) — ¥* (t)zs,s, (1).

The quantity 1)%(t) represents a density-dependent death rate for the individuals in the population.

Atany given time, ¢, we require that the total number of individuals sums to one:

zpp(t +Z$RD +Z$SD +ZZxRS D4 D w0+ D wss, (1) =

i=1 j=0 i=1 j=1 i=0 j=0

To enforce this density constraint, we set

W(t) = Fp(t) + ) Fr,(t) + Y Fs, ().
=1

=0
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1.6.3.2, INVASION OF THE DRIVE CONSTRUCT

The steps for determining if the drive construct invades when there is neutral resistance are the same

as in Section 1.6.2.2. The drive allele invades a wild-type population if

2pS()D,DfSoD > fSoSo .

1.6.3.3 STABILITY OF THE DRIVE CONSTRUCT

The steps for determining if the drive construct is stable when there is neutral resistance are the same

as in Section 1.6.2.3. The D D population is stable to perturbations with a wild-type allele if

2 max < .
jmax. (pap,afap) < fop

1.6.4 EXPLICIT CELLULAR MODELS OF CRISPR GENE DRIVE

We now specify values of the inheritance probabilities, p4 B ¢, and fitness values, fp, which explic-
itly describe possible scenarios by which a CRISPR gene drive acts within individuals. First, we spec-
ify a parameter set that corresponds with the behavior of CRISPR gene drives as described in prior
literature. Then, we specify a parameter set that corresponds with our newly proposed CRISPR
gene drive construct. These specified parameter sets for the previous and newly proposed drive con-
structs are used for the simulations of the previous and newly proposed drive constructs, respec-

tively, in the numerical simulations presented earlier in Section 1.3.
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1.6.4.1 PREVIOUS DRIVES

For CRISPR gene drives as described in prior literature, n = 1. Reasonable choices for the fitness
values and inheritance probabilities are as follows.

The wild-type has the maximum fitness of fs,5, = 1, and the cost-free resistant allele, S1, is
identical to the wild-type allele, Sp, with respect to fitness. Disruption of the target gene produces
a recessive fitness cost, s, and the gene drive construct produces a dominant fitness cost, c. How-
ever, since the previously demonstrated drive constructs copied themselves by inserting at (and
thus disrupting) the target sequence, the drive allele contains a disrupted copy of the target gene.
Thus, DD and RD individuals incur both the cost of the drive construct, ¢, and the cost of re-
sistance, s. These two costs can be assumed to be independent so that the corresponding fitness
effects are multiplicative, i.e., (1 — ¢)(1 — s). Therefore, we have the following fitness values:
fop=frp=(1—-¢c)(1-5),fsp=1—c frr=1-s,and frs = fss = 1.

We then compute the drive-heterozygote gamete production probabilities as follows:

* Ry D individuals produce 1 gametes and D gametes equiprobably because the single target

site is resistant to cutting, so we have

1

PRiD,Ry = PR1D,D = 5'

* 51D individuals produce S7 gametes and D gametes equiprobably because the single target

site is resistant to cutting, so we have
pS1D,S1 = ple,D - 5

* SoD individuals produce Sy gametes precisely when no cutting occurs. Since cutting occurs
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with probability ¢, we have

l—gq
pSoD,S() - T

* SoD individuals produce D gametes by inheriting the existing D allele, or by cutting at the
single target site with probability g and undergoing HR repair with probability P. We have

1 +qP
pSOD,D_2 2

* SoD individuals produce S7 gametes by cutting at the single target site with probability
¢, undergoing NHE] repair with probability 1 — P, and repairing the cut perfectly with

probability . We have
q(1 = P)y

PSyD,S1 = 2

* SoD individuals produce 1 gametes by cutting at the single target site with probability g,
undergoing NHE] repair with probability 1 — P, and repairing the cut imperfectly with
probability 1 — 7. We have

q(1 - P)(1 —~)
5 :

PSoD,R; =

1.6.4.2 NEWLY PROPOSED DRIVES

For our newly proposed CRISPR gene drive construct, any n > 1 is valid. Reasonable choices for
the fitness values and inheritance probabilities are as follows.

The wild-type has the maximum fitness of fs,5, = 1, and cost-free resistant alleles, S;, are
identical to the wild-type allele, Sp, with respect to fitness. The cost, ¢, conferred by the drive is dom-
inant, while the cost, s, conferred by costly resistant alleles—which are disrupted copies of the target

gene—is recessive. Furthermore, we assume that the drive allele contains a functional copy of the
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target gene, so DD and RD individuals do not incur the recessive fitness cost for target disruption.
Thus, we have fpp = frp = fsp =1 —¢, frRr =1 — s,and frs = fss = 1.

We then assign values to the drive-heterozygote gamete production probabilities according to the
biological description outlined in the main text and illustrated in Fig. 1.2B. We first define a proba-
bility density, P (k | n, 1, q), which describes the probability that & target sites undergo cutting,
given that there are n total targets, of which 7 are currently resistant to cutting, and where each of
the n — 7 susceptible targets are cut independently with probability g. This distribution is binomial,

specifically:

. n—1 n—i—
PK(/fln,z,q)—( f >qk(1—q) k.

This distribution is defined for 0 < k& < n — 3.

In the case that two or more cuts occur, we assume that all target sites between the two outermost
cuts are lost due to loss of the intervening DNA sequence. To account for this effect, we further de-
fine a probability density, P, (I | k,n, ), which describes the probability that [ targets are lost given

k cuts, n total target sites, and 7 currently resistant sites. This distribution can be straightforwardly

PL(l|k,n,z’):(n—i—l+1)<]i:22)/<n];i>.

This distribution is defined for2 < k < < n — 3.

computed:

We then compute the drive-heterozygote gamete production probabilities as follows:

* R;D individuals produce D gametes by inheriting the existing D allele, or by cutting at one
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or more sites on the R; chromosome (each with probability ¢) and undergoing HR repair
(with probability P). We have

v

1 .
==+ =(1—(1-q" .
pripp =5+ 5 (1= (1-q)")
* R;D individuals produce R; gametes precisely when no cutting occurs. Each of the n — ¢

sites is susceptible to cutting, and cutting occurs independently at each with probability g, so

we have

1 By
PR,D,R; = 5(1 —q)" "

* R;D individuals produce R; ;1 gametes (with i < n) by cutting at exactly one target site
(where each is cut independently with probability ¢) and undergoing NHE] repair (with
probability 1 — P). Since we assume that costly resistant alleles cannot convert back to cost-

free alleles, we do not consider the efficacy of repair by NHEJ. In this case, we have

1-P

PR;D,Riy1 = (n—i)g(l—q)" " "

* R;D individuals produce Ry, gametes (with¢ + 2 < k < n)bylosing k& — 4 target sites
and undergoing NHE] repair (with probability 1 — P). Since we assume that costly resistant
alleles cannot convert back to cost-free alleles, we do not consider the efficacy of repair by
NHE]J. In this case, we have

1P k—1i
PR,D,R, = T ZPL(k -1 ‘ ja ’I’L,Z)PK(] ‘ n,i,q).
7j=2
The sum is over the number of simultaneous cuts, j, which could possibly give rise to a loss

of k — i targets.

* S;D individuals produce D gametes by inheriting the existing D allele, or by cutting at one
or more sites on the .S; chromosome (each with probability ¢) and undergoing HR repair
(with probability ). We have

~

1 .
==+ =(1—(1—=¢q)" .
PS;D,D 2+2( ( Q)"

* 5;D individuals produce S; gametes precisely when no cutting occurs. Each of the n — 7 sites
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is susceptible to cutting, and cutting occurs independently at each with probability g, so we

have

1 .
Ps;D,s; = 5(1 - Q)n .

* S; D individuals produce S;41 gametes (with ¢ < n) by cutting at exactly one target site
(where each is cut independently with probability ¢), undergoing NHE] repair (with proba-
bility 1 — P), and repairing the cut perfectly (with probability 7). We have

1-P

——(n—i)q(l ¢

n—i—1
2 )

PS;D,S;41 = -
* S;D individuals do not produce S}, gametes when k& > 4 + 2. This is because cutting at two
or more target sites would lead to a large deletion in the intervening DNA sequence, resulting

in loss of target gene function. Thus
pSiD,Si+2 == pSiD,Sn =0.

* S; D individuals produce ;1 gametes (with ¢ < n) by cutting at exactly one target site
(where each is cut independently with probability ¢), undergoing NHE] repair (with proba-
bility 1 — P), and repairing the cut imperfectly (with probability 1 — 7). We have

1-P

5 (n—i)a(l—g)" "1 7).

PS;D,Ri11 =
* S;D individuals produce R}, gametes (with i + 2 < k < n) by losing k — 4 target sites and
undergoing NHE] repair (with probability 1 — P). This is because cutting at two or more
target sites would lead to a large deletion in the intervening DNA sequence, resulting in loss

of target gene function. Thus we have

1_Pk—z’

bs;D,R, — TZPL(k —1 | ],nal)PK(] | naiaQ)~
7j=2

The sum is over the number of simultaneous cuts, j, which could possibly give rise to a loss

of k — i targets.

For the numerical simulations of both the previous and newly proposed drive constructs shown

in the main text, weset ¢ = P = 0.95and v = 1/3.
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Invasiveness of current CRISPR gene drives

2.1 FOREWORD

The results in Chapter 1 paint a general picture of CRISPR gene drive dynamics in infinite wild
populations: drive elements spread when initially rare, persist in the population over some typical
timescale and then go extinct in the long run. This chapter asks how these dynamics play out in

finite populations with small initial introductions of drive-carrying organisms. The motivating sce-
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nario is a hypothetical field trial in which a drive element is released to alter only one population
among several that are connected by low rates of migration. Our analysis asks how likely the drive is
to be contained to the target population under various circumstances.

I performed this work together with Ben Adlam, who contributed great help with developing
and analyzing the mathematical models presented here. We benefited immensely from insight, advis-
ing and support from George Church, Kevin Esvelt and Martin Nowak.

This chapter was first published in Ref. 40:

Charleston Noble*, Ben Adlam™, George M. Church, Kevin M. Esvelt and Martin A. Nowak. Cur-
rent CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7, e33423

(2018). (*equal contribution)

2.2 INTRODUCTION

Following reports of successful CRISPR gene drive systems in yeast?” and fruit flies®, scientists em-
phasized the need to employ strategies beyond traditional barrier containment as a laboratory safe-
guard #»%°. These precautions were judged necessary to prevent unintended ecological effects, but
also because any unauthorized release affecting a wild population could severely damage trust in
scientists and governance, significantly delaying or even precluding applications of gene drive and
other biotechnologies.

Drive resistance can result from, among other mechanisms, mutations that block cutting by the

CRISPR nuclease, which can arise via de novo mutation, standing genetic variation or—as analyzed
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in detail in the previous chapter—because the drive itself is not perfectly efficient. Moreover, recent
experimental and theoretical studies of resistance have predicted that this phenomenon will prevent
drive fixation in large wild populations unless additional mitigating strategies are employed, such as
multiplex targeting of essential genes using multiple gRNAs*%39:4:5%6267-69 (Section 1.3).

On the other hand, recent articles highlighting the problem of resistance have suggested that it
might prevent drive invasion in wild populations—with some even implying that resistance could
serve as a safeguard’>7". While we agree that resistance should prevent drive fixation in large popula-
tions, an allele can nonetheless spread to significant frequency without fixing. To clarify this point,
we sought here to quantify the likelihood and magnitude of spread in the most likely unauthorized
release scenario—a small number of engineered individuals released into a wild population.

As discussed in the previous chapter, CRISPR-based gene drive systems function by convert-
ing drive-heterozygotes into homozygotes in the late germline or early embryo*' (Fig. 2.1A). First,

a CRISPR nuclease encoded in the drive construct cuts at the corresponding wild-type allele—its
target prescribed by one or more independently expressed guide RNAs (gRNAs)—producing a
double-strand break®. This break is then repaired either through homology-directed repair, produc-
ing a second copy of the gene drive construct, or through a nonhomologous repair pathway (non-
homologous end joining, NHE], or microhomology-mediated end joining, MME]), which typically
introduces a mutation at the target site**. Because the drive target is determined through sequence
homology, such a mutation generally results in resistance to future cutting by the gene drive. Thus,
the allele converts from a wild-type to resistant allele if it undergoes repair by a pathway other than

homology-directed repair. Moreover, drive-resistant alleles are expected to exist in wild populations
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simply due to standing genetic variation *»%.

Deterministic models, which assume an infinite, well-mixed population, predict whether an allele
is favored to increase in frequency when initially rare in a wild population. Whether gene drives are
predicted to invade by deterministic models depends on two key parameters: the homing efficiency
(P), or the probability of undergoing homology-directed repair instead of nonhomologous repair,
and fitness ( f), or the relative fecundity or death rate the drive and its cargo confer on their organism
compared to the wild-type. Mathematically, drives are initially favored by selection if f(1 + P) > 1
(which arises from Eq. (L.1) withpwp p = (1 + P)/2, fww = Ll,and fwp = f),ie,if
the inheritance bias of the drive exceeds its fitness penalty 72, Given that the homing efficiencies
of reported drive systems typically range from 0.37 to 0.99 (Table A.1), current drive systems can
clearly invade in deterministic models. Although the fitness parameter, f, is typically not measured
in proof-of-concept studies, a substantial fitness cost is tolerable by all reported CRISPR drive con-
structs 737 (Fig. 2.1B).

However, in finite populations, the fate of initially rare alleles is determined not only by selec-
tion but also by stochastic fluctuations”>”7*. Therefore, stochastic models are required to predict
the probability that a drive will invade a population upon the introduction of a very small number
of individuals, even when deterministic models predict that they are to invade. A previous, and ar-
guably prescient, stochastic model of endonuclease drive containment found that homing-based
drives, such as those subsequently developed using CRISPR, were among the likeliest to invade of
the various drive alternatives’®. To determine whether self-propagating homing drives are still able

to invade in the presence of resistance, we formulated a finite population, stochastic, Moran-based
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model that allows us to study small releases in finite and structured populations (Section 2.5).
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2.3 REsuLrTs

Our model considers three distinct allelic classes: wild-type (W), gene drive (D), and resistant (R).
Consistent with experiments, we assume that the drive invariably cuts the wild-type allele in the
germline of a heterozygous WD individual, converting to a drive allele with probability P, or a re-
sistant allele with probability 1 — P. Each genotype, AB, has a relative reproductive rate, f4p, cor-
responding to its fitness in deterministic models, normalized such that the wild-type homozygote
has fitness one ( fyyyw = 1), the drive confers a dominant cost (fpw = fpp = fpr < 1),and
resistance is neutral (fyyg = frr = 1). This ordering of the parameters conservatively represents
the worst-case scenario for drive spread (Section 2.5.9).

At the population level, our basic model considers IV diploid individuals mating randomly. The
process unfolds in discrete steps, during which parents are chosen for reproduction, an offspring
is chosen according to the mechanism above, and another individual is replaced by the offspring
(Fig. 2.1C and Section 2.5.1). These steps are repeated until one allele fixes. A generation is [N time-
steps, which corresponds to the mean lifespan of an individual.

Code to perform numerical simulations of this model and all model extensions described below
(C++, Matlab), as well as data files, documentation, and code to reproduce all of the figures shown
in this Chapter (Matlab) can be found at GitHub77.

Figure 2.1D shows typical simulations for drive efficiencies of 0.15, 0.5, and 0.9, which corre-
spond respectively to a constitutively active drive system targeting a common insertion site, and con-

servative and high efficiency systems (based on previous experimental studies, Table A.1, Fig. 2.1B,
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Figure 2.1 (following page): Existing alteration-type CRISPR gene drive systems should invade well-mixed wild pop-
ulations. (A) Typical construction and function of alteration-type CRISPR gene drive systems. A drive construct (D),
including a CRISPR nuclease, guide RNA (gRNA), and “cargo” sequence, induces cutting at a wild-type allele (W) with
homology to sequences flanking the drive construct. Repair by homologous recombination (HR) results in conversion
of the wild-type to a drive allele, or repair by nonhomologous end-joining (NHEJ) produces a drive-resistant allele (R).
(B) Drives are predicted to invade by deterministic models when the fitness of DW heterozygotes, f and the homing
efficiency, P, are in the shaded region. Vertical lines indicate empirical efficiencies from Table A.1. (C) Diagram of a
single step of the gene-drive Moran process. (D) Finite-population simulations of 15 drive individuals released into a
wild population of size 500, assuming conservative (P = 0.5) or high (P = 0.9) homing efficiencies, as well as a low-
efficiency, constitutively active system (P = 0.15). Individual sample simulations (solid lines), and 50% confidence
intervals (shaded), calculated from 103 simulations. Drive-allele frequencies red and resistant-allele frequencies blue.
Peak drive, or maximum frequency reached, is illustrated by dashed lines and arrows. (E) Peak drive distributions and
medians with varying numbers of individual organisms released (P=0.5). (F) Medians of peak drive distributions for
varying homing efficiencies (P = (.15, bottom; P = 0.5, middle; P = 0.9, top). Throughout, we assume neutral
resistance (fiyg = frr = 1) and a 10% dominant drive fitness cost (fiwyp = fpp = fpr = 0.9).
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Figure 2.1: (continued)
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Appendix A). These simulations assume a dominant drive fitness cost of 10%, a population of size
500, and a release of 15 drive-homozygous individuals. (Note that the dynamics are similar for larger
population sizes; see Section 2.5.4 and Fig. 2.3.) In all three cases, the drive, on average, irreversibly
alters a majority of the population, either via invasion of the drive itself or via spread of drive-created
resistant alleles. We call the maximum frequency of drive alleles reached during a simulation the
peak drive, and we say a drive has invaded if it establishes in the population, ensuring behavior qual-
itatively similar to deterministic models (Section 2..5.9). Notably, for sufficiently large populations,
arbitrarily low frequencies meet this standard, as it depends on the absolute number of drive alleles
rather than their frequency (Section 2.5.10). Note also that each of these examples is chosen from
the parameter regime in which invasion is predicted by deterministic models, since invasion is very
unlikely outside of this regime.

We next calculated the distribution of peak drive while varying the number of organisms released
(Figs. 2.1E and 2.1F). We find that these distributions are bimodal, with one mode centered around
the initial frequency (corresponding to drift leading rapidly to extinction) and one centered roughly
around the maximum values observed in the large-release scenarios in Fig. 2.1D. The former mode
shrinks rapidly as more organisms are released, and for the parameters studied, a release of 10 indi-

viduals nearly guarantees invasion with substantial peak drive (Section 2.5.9, Fig. 2.10).
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To understand the extent to which isolation might prevent invasion of other populations con-
nected by gene flow, we introduced population structure. Our model consists of five subpopula-
tions (or islands) that are equally connected by migration (Figs. 2.2A and Section 2.5.2). Typical
dynamics are illustrated in Fig. 2.2C. Figures 2.2B and 2.2D show the escape probability, or the prob-
ability of the drive invading (arbitrarily defined as attaining a frequency of o.1) at least one subpop-
ulation other than its originating one, and Figure 2.2E shows the probability of invading a varying
number of subpopulations.

Our results in Fig. 2.2 suggest that if the migration rate is extremely low, then the drive is ef-
fectively contained in the initial subpopulation. If the migration rate is high, the drive is almost
guaranteed to invade all subpopulations linked to the originating one. For intermediate migration
rates—characterized roughly by migration rates on the order of the inverse of the drive extinction
time—both outcomes occur. In the scenario studied in Fig. 2.2, a migration rate of 1073, which
corresponds to a single migration event every 2 generations on average (Section 2..5.2), virtually guar-
antees escape for moderate drive efficiencies. For further details and analytical formulae allowing
rapid estimation of escape probabilities, see Section 2.5.10.

Finally, we sought to understand the effects of additional mitigating factors that could potentially
affect peak drive or invasion. We considered the most prominent factors that have arisen in previ-
ous papers, and we studied each by varying parameters in our basic model and developing model
extensions. Our results are explored in detail in Section 2.s.

First, we considered preexisting drive resistance resulting from standing genetic variation 62,68

(Section 2.5.5). We find that increasing the proportion of the population that is initially resistant lin-
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Figure 2.2 (following page): Existing CRISPR gene drive systems should invade linked subpopulations connected by
gene flow. (A) Diagram of well-mixed subpopulations (circles) linked by gene flow (edges). Individuals represented

by chromosomes with wild-type (gray), drive (red), or resistant (blue) haplotypes. (B) Few drive homozygotes are
released in one subpopulation. The drive escapes if it invades another subpopulation before going extinct. Otherwise
it is contained. (C) Typical simulations for varying migration rates (m = 1071, top, torm = 104, bottom), following
introduction into a single subpopulation. Lines represent drive frequencies in each subpopulation. Circles correspond
to the time the drive invades a subpopulation. Population color is by invasion order, not predetermined. (D) Escape
probability as a function of homing efficiency, P, and migration rate, m. Arrows indicate migration rates from B. Each
pixel is calculated from 103 simulations. (E) Probability of invading 1, 2, 3, or 4 additional populations (aside from

the originating population, which is typically invaded), assuming a homing efficiency of P = (.5. Each data point

is calculated from 10% simulations. Throughout, we consider 5 subpopulations connected in a complete graph, each
consisting of 100 individuals. Initially, 15 drive homozygotes are introduced into one subpopulation. Resistance is
neutral (fywr = frr = 1) and the drive confers adominant 10% cost (fiwp = fpp = fpr = 0.9).
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Figure 2.2: (continued)
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early decreases the mean peak drive (R? = 0.996). Using the parameters in Fig. 2.1E and considering
a release of 15 individuals, more than 50% preexisting resistance is required to contain average peak
drive below 10% (Fig. 2.4).

Second, we studied the effect of varying family size, which may be relevant to species such as
mosquitoes with large egg batch sizes”®. We extended the model so that & (adult) offspring are
produced from a reproduction event, rather than one. We find that this effect scales the release and
population sizes” by a factor of 4/(2k + 6). For illustration, we estimated & for Anopheles gambiae
to be roughly 10 (Section 2.5.6), so that a release of 7 individuals roughly corresponds to a release of
1 individual in our basic model. While this effect somewhat reduces the chance of drive invasion for
small release sizes, it does not preclude it.

Third, we varied drive fitness, resistant-individual fitness and homing efficiency across their en-
tire parameter regimes and recorded peak drive (Section 2.5.7, Fig. 2.7, Fig. 2.8). While varying drive
fitness, we find that peak drive is on average greater than 30% across the majority of the regime and
almost always greater than 10% (Fig. 2.7, left)—and, as a technical aside, we find that this is the case
whether the fitness cost of the drive manifests itself via a reduction in birth rate or via increase in
death rate (Fig. 2.7, right). Moreover, in line with previous deterministic results, we find that peak
drive can be substantially increased by associating a fitness cost with resistance (Fig. 2.8), which
could be expected for drive constructs intended for large-scale application, utilizing methods such
as multiplex targeting of essential genes+>%9.

Fourth, we studied the effect of inbreeding, which has been shown in several recent theoretical

63,68

studies *°° to impede drive spread (Section 2.5.8). We extended the model to include a probability
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s of an individual selfing rather than mating with a second individual ®*. The model assumes no in-
breeding depression and thus considers the worst-case scenario for drive . We find that even in this
scenario, high selfing probabilities are required to reduce peak drive and the probability of invasion
for moderate drive costs.

There are a variety of other phenomena that could affect invasiveness, e.g., density dependence”,
environment®°, costly resistance 8 Jocal ecology, and even mating incompatibilities between some
laboratory strains and wild individuals. Such effects should be carefully studied in subsequent pa-
pers. Most importantly, the drive architecture itself should affect invasiveness; we consider here only
alteration-type drive systems, while others, e.g., sex-ratio distorters and genetic load drives, would be
expected to yield different dynamics. In particular, population suppression drive systems may locally
self-extinguish before invading new populations. However, for alteration drives, our key qualitative
finding—that peak drive is difficult to reliably contain below a socially tolerable threshold following
a very small release of organisms—appears robust to a variety of mitigating factors. Fundamentally,
we exercise caution by omitting application-specific phenomena that might aid containment in par-

ticular instances but not in general.

2.4 DiscussioN

Our results suggest that current first-generation CRISPR-based gene drive systems for population
alteration are capable of far-reaching—perhaps, for species distributed worldwide, global—spread,

even for very small releases. A simple, constitutively expressed CRISPR nuclease and guide RNA

78



cassette targeting the neutral site of insertion—an arrangement that could occur accidentally—may
be capable of altering many populations of the target species depending on the homing efficiency of
the organism in question. More generally, resistance can be problematic for intentional applications
of gene drives, but we find that it is not a major impediment to invasion of unintended populations.

These findings raise two important questions: (1) How likely are unauthorized releases of self-
propagating gene drive systems in the first place? (2) How likely are serious negative consequences
given the apparently high likelihood of spread to most populations of the target species? Rigor-
ously addressing these questions is an important direction for future work, and we can ofter only
opinions here. The answer to the first question likely depends on a large number of factors, such as
species, application, containment strategies, economic motivations, drive development stages, ge-
ography, and the caution of the investigators, so we omit speculation here. However, we consider
the answer to the second question to be clearer: although most laboratory gene drive systems are un-
likely to cause ecological changes—they are typically predicted to be transient and are not designed
to alter traits of the host organism, least of all interactions with other species—the history of genetic
engineering offers many examples suggesting that substantial social backlash could be triggered by
unauthorized spread of a self-propagating gene drive®»®. Any such event could significantly reduce
public support for interventions against diseases such as malaria that could possibly save millions of
lives. We believe it would be profoundly unwise to proceed with anything less than an abundance of
caution.

On a more technical note, our findings are specific to population alteration drive and cannot be

directly generalized to self-propagating suppression drive, which could potentially self-extinguish

79



before invading other populations. However, our results suggest a method for rough comparison
between these scenarios: we find that the primary factor in determining drive spread between ad-
jacent populations is the average number of migrants per generation (Section 2..5.10), which can,

in principle, be compared between models. For example, an earlier model of suppression drive sys-
tems’” predicted a total number of drive-carrying organisms over time which is remarkably similar
to our example of an inefficient alteration drive system that is rapidly outcompeted by resistant al-
leles (Fig. 2.1D, middle). Thus, assuming comparable migration rates, it might not be surprising to
see qualitatively similar levels of invasiveness. Accordingly, we urge researchers to exercise caution in
developing or advocating for self-propagating suppression drives for applications other than malaria
prevention—or similar projects intended to affect an entire species—until explicit models of inva-
siveness are available.

Additionally, our findings emphasize the importance of the containment strategy known as “eco-
logical confinement”, which was proposed previously #>#>. Given the risk that organisms may escape
through accidents or outside intervention, laboratories in regions with endemic wild populations
may wish to refrain from constructing self-propagating systems capable of invading those popula-
tions and undergoing unwanted spread. Laboratories in regions with endemic wild populations can
reliably prevent accidental invasion by employing intrinsic molecular confinement mechanisms such
as synthetic site targeting or split drive as recommended by the National Academies’ report on gene
drives °.

Perhaps most importantly, any development efforts looking ahead toward field trials, a com-

ponent of the staged testing strategy outlined by the National Academies report, should be aware
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that there could be a high likelihood of unwanted spread across international borders, even from
ostensibly isolated islands. The development of ‘local’, intrinsically self-exhausting gene drive sys-

tems 26:27:0584

%, sensitive methods of monitoring population genetics, and strategies for countering
self-propagating drive systems and removing all engineered genes from wild populations should be

correspondingly high priorities.

2.5 SUPPLEMENTARY MODEL DETAILS AND EXTENSIONS

2.5.1 WELL-MIXED FINITE POPULATION MODEL

To model gene drives in finite populations, we introduce a Moran-type model with sexual reproduc-
tion (illustrated in Fig. 2.1C). We consider a population of IV individuals, each of which is diploid.
We focus on a locus with three allelic classes: wild-type (W), CRISPR gene drive element (D) and
drive-resistant (R). There are six possible genotypes: WW, WD, WR, DD, DR, and RR. We assign
to each genotype « a reproductive rate f,.

The process proceeds in discrete time-steps, during each of which three events occur in succes-
sion (Fig. 2.1C). First, two individuals are chosen without replacement for mating with probabilities

proportional to their reproductive rates, so that genotype « is selected with probability

JaNa

725 7N . (2.1)

Here N, is the number of individuals having genotype v, and the sum in the denominator is over
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all six genotypes. Second, after selecting the two parents, the offspring genotype is chosen randomly
based on the genotypes of the two parents. To proceed, we introduce notation &« = AB to mean
that genotype « consists of alleles A and B, and we index these alleles viaary = Aandas = B.
Note that we track only one genotype for each heterozygote, implicitly combining counts for geno-
types AB and BA. Using this notation, the probability that an offspring of genotype y is chosen

given a mating between parents of genotypes a and 3 is given by the quantity ql & which is equal to

qgl QEQ + q’CY!2 qgl

(2.2)
L+ 571 72

Here g2 is a gamete production probability—the probability that a parent with genotype a pro-
duces a gamete with haplotype A—and d 4 is the Kronecker delta, defined by 64p = 1if A = B
(i.e., if the offspring under consideration is a homozygote), and 4 = 0 otherwise. The gamete
production probabilities, ¢, are determined by accounting for the gene drive process described
above. They are given by: gl = ¢85, = ¢ip = Lalyp = (14 P)/2,4l%, = (1 — P)/2,
q“fVV R= q{}/ R= q5 R= ¢~ r = 1/2. The remaining values not listed, e.g., q{,?/w, are zero. Third,
an individual is chosen uniformly at random for death. Thus, the population size remains constant.
The resulting counts become the starting abundances for the next iteration of the process. The pro-
cess is initialized with a small number, %, of drive homozygotes (DD) and the remaining population,
N — i, wild-type homozygotes (WW). The process continues as described above either until a spec-
ified number of time steps have elapsed or until one of the three alleles has fixed. Any of the alleles

can fix, but typically either the wild-type or resistant alleles fix, due to the emergence of resistance.
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2.5.2 FINITE POPULATION MODEL WITH POPULATION STRUCTURE

To study the effects of population structure on drive containment, we extended the well-mixed
model from the previous section. We now consider [ well-mixed subpopulations, each consisting
initially of N/I individuals. The process proceeds in discrete time steps, as before. In each time

step, we either migrate an individual from one population to another, or we choose a particular
subpopulation and proceed through one mating and replacement iteration, as outlined above. More
specifically, one step of the process proceeds as follows (illustrated in Fig. 2.11). With probability m,
we initiate a migration event. In this case, we perform three steps. First, we choose a source popu-
lation with probability proportional to its size. Second, we choose an individual uniformly at ran-
dom from the source population for migration. Finally, we move the chosen individual to a linked
subpopulation uniformly at random. Or, with probability 1 — m, we initiate a mating event as
described in the well-mixed section. To carry this out, we first choose the population in which the
event will occur. We choose this population with probability proportional to the square of its total
fitness, since this counts the rate of reproduction for every possible mating pair in the population

(as matings occur with rates proportional to the fitness of each parent). We then step through one
iteration of the well-mixed mating process within this subpopulation. Note that in this model the
migration rate has a simple interpretation. The time between migrations is geometrically distributed
with parameter m, so the mean time between migrations is 1 /m time steps. Recall that a “genera-

tion” is equal to the mean lifespan of an individual, thatis, N reproduction events or N/(1 — m)
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time steps. Then the typical time between migrations can be expressed with the units as generations:

E[T] = ——. (23)

2.5.3 DETERMINISTIC MODEL

To compare our stochastic simulations with deterministic results, we use the model from Chapter 1,
described in Section 1.5 and published in Ref. 39. In particular, we use the “previous drive” model,
as it was designed to agree with the existing proof-of-concept CRISPR drive constructs that we con-
sider here. Specifically, we consider the case of 1 guide RNA (n = 1 in that model’s notation), and

zero production of costly resistant alleles (y = 1).

2.5.4 POPULATION SIZE

Above, we present results from simulations which assume populations of size N = 500. We claim
that N = 500 is a reasonable approximation for the dynamics in the large-population limit, which
is the relevant regime for widespread invasion or for species with very large population sizes, e.g.,
mosquitoes. Here we briefly evaluate this claim.

Figure 2.3 recreates Figure 2.1E with additional population sizes overlaid: N = 1000, 2500,
5000, and 10000. The distributions narrow for larger /N until plateauing at roughly N = 5000.

However, the central tendencies show little change with increasing V.
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Figure 2.3: Peak drive distributions for variable release and population sizes. Parameters are chosen to corre-
spondtoFig.2.1E: P = 0.5, f = 0.9 and neutral resistance. Population sizes are, from light todark, N =
500, 1000, 2500, 5000, 10000. Note that N = 500 corresponds exactly to Fig. 2.1E. Each distribution corre-
sponds to 102 simulations.

2.5.5 STANDING GENETIC VARIATION

Several recent studies have explored the effect of pre-existing drive resistant alleles in a population
brought about by standing genetic variation (SGV) at the target locus ®*®*. These studies developed
deterministic models and showed that pre-existing resistant alleles—presumably neutral—should
rapidly outcompete costly drives due to selection, resulting in rapid drive extinction. The study by
Drury et al.®® used sequencing to quantify this standing variation in diverse populations of flour

beetles and found resistance-conferring mutations to exist at a wide range of frequencies, from 0 to
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0.375, with an average of roughly 0.1.

However, these studies were primarily concerned with long-term outcomes following drive
release, in which case resistance certainly outcompetes the drive. For our purposes, however, we
are concerned with the intermediate time regime in which the dynamics of resistance are less clear.
Moreover, these studies employed deterministic models, whereas our model is stochastic. Here, we
seek to understand the effect of SGV in our model.

To incorporate SGV, we simply alter the initial conditions: rather than introducing 7 drive ho-
mozygotes into a population of N' — 4 wild-type homozygotes, we introduce ¢ drive homozygotes
into a population consisting of j resistant homozygotes (we choose resistant homozygotes for sim-
plicity, since they rapidly go to Hardy-Weinberg equilibrium following release) and N — i — j
wild-type homozygotes. Figure 2.4 shows the effect of SGV on peak drive for pre-existing resistance
frequencies up to 0.5.

We find that the effect of SGV is to linearly decrease the mean peak drive (R? = 0.996). Our
intuition for this result is as follows. Because the population is well-mixed, the effect of resistance is
simply to decrease the size of the population that is susceptible to the effects of the drive. This can
be roughly viewed as linearly scaling the drive-frequency axis. For example, if the population has a
0.1 frequency of resistant alleles immediately prior to release, then the population that is susceptible
to drive is roughly 90% of the census population size, and the drive undergoes its usual dynamics
within this subpopulation. There are of course complications to this simplistic explanation, e.g., se-
lection increasing the size of the resistant population and diploidy mixing resistant and drive alleles.

Furthermore, the linear relationship only holds for sufficiently low levels of SGV. In our example
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here, the relationship holds to roughly o.s initial resistance frequency. However, this is still higher
than would be anticipated for drives engineered to spread in the wild.

Overall, our results suggest that a high level of SGV would be required to protect against drive
invasion. In our conservative example (Fig. 2.4) assuming 0.5 homing efficiency, 0.9 drive fitness,
and neutral resistance, pre-existing resistance of greater than 0.5 frequency is required to contain

peak drive to below 10% of the population, compared to 35% in the absence of SGV.
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Figure 2.4: Pre-existing drive-resistant allele frequency linearly decreases peak drive. Distributions (violin plots),

means (orange, circles) and linear regression of the mean values (red, squares). Parameters are chosen to correspond
toFig.2.1E: P = 0.5, f = 0.9, neutral resistance, N = 500. Each distribution corresponds to 5000 simulations.
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2.5.6 OFFSPRING NUMBER DISTRIBUTION

In the model presented above, we assume that each mating produces one oftspring. However, a va-
riety of application-relevant species are known to produce many offspring per mating. For example,
temale Anopheles gambiae mosquitoes can lay hundreds of eggs per lifetime ®. It is not clear, a pri-
ori, how varying the offspring number distribution in our model would affect the results presented
above. Thus we here analyze a simple extension of the model which allows us to vary the number of
offspring following a given mating event.

To begin, recall our model. We consider a population of constant size N with the following pro-
cess: At each time-step, two individuals are chosen for mating; an offspring is sampled according
to the parental genotypes; a third individual is chosen for removal from the population, and the
parents’ offspring takes its place. (We implicitly assume that these offspring are only the offspring
which successfully reach adulthood, i.e., reproductive age.) We now add a new parameter, k, which
determines number of (adult) offspring produced by a mating pair. The process proceeds as before,
except now k offspring are independently sampled from the parental genotypes, and k individuals
are chosen uniformly (without replacement) for removal from the population. Clearly the model
presented in the main text is the special case & = 1.

Note that this parameter £ is not equivalent to brood size, clutch size, egg batch size, etc.—values
often considered in the ecological literature—in that £ describes the number of oftspring produced
per mating which successfully attain reproductive age. This number can of course be much lower

than these other parameters due to death during juvenile life stages. We provide an example calcula-
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tion for this parameter in An. gambiae at the end of this section.

We now argue that increasing the number of offspring per mating, k, corresponds to decreasing
the effective size of the population, /N.. We omit rigorous proof here, but we provide a formula for
the effective population size in our model and present numerical simulations as support. To begin,

Hill showed in 1972 that the variance effective population size in the standard Moran model is7?

AN

e:2+a§<'

(2.4)

Here N is the census population size, and 0% is the variance in the distribution of the total number
of offspring produced by an individual over the course of its lifetime (Ze., its lifetime reproductive
success). It was proven that this formula holds both for the Wright-Fisher model with discrete gen-
erations and for the Moran model with overlapping generations, provided that 0%( is the same and
that the total number of individuals entering the population in each generation is equal7?. Our
model meets both of these requirements—indeed, the only difference is that two parents are cho-
sen to sample offspring types, rather than one, and this has no bearing on the number of offspring
produced—so we conjecture that Eq. (2.4) holds for our case as well.

To proceed, we calculate O'g( for our extended model and employ the variance effective popu-
lation size given by Eq. (2.4). Consider one particular individual in the population, and lett =
1,2,... count time-steps. As described, in each step, k individuals are uniformly sampled (without
replacement) for removal. Thus, an individual has probability k /N of dying in each step. Its lifes-

pan, T, is thus geometrically distributed, 7" ~ Geometric(k/N).

89



Next, let X be a random variable describing the number of offspring an individual produces in
its lifetime, so that X'|7 is the number of such events given that the individual survives T' time-steps.
Because each mating event is independent, (X|T) ~ k - Bin(7',2/N). The success probability de-
rives from the fact that two individuals are chosen for mating in each time-step and that the process

is neutral. Thus,

EX =EE [X | T] = Ek(2/N)T = k(2/N)N/k = 2

and

Var(X) = EVar(X | T) + Var(E(X | T))
= EK*T(2/N)(1 — 2/N) + Var(k(2/N)T)
= kN(2/N)(1 —2/N) + (2k/N)®N(N — k)/k*
=4+ 2k(N —4)/N.
Returning to the variance effective population size expression in Eq. (2.4), we obtain for our

model:

AN
N, = . .
T 2%k +6 (25)

Note that in the case & = 1 we recover N = N/2, which is the variance effective population size
for the standard Moran model.
In Fig. 2.5, we present peak drive distributions (as in Figs. 2.1E and 2..3) for varying values of £

with the effective population size, N, and effective release size, i, both determined by Eq. (2.5),
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held constant. In this case we used N = 250 and . = 8, which correspond to N = 500 and
an initial release of ¢ = 16 in our standard model with k& = 1. The peak drive distributions for

all values of k studied are approximately identical. This suggests that the dynamics for larger k£ can
indeed be inferred from the standard model with & = 1 and population/release sizes appropriately
scaled via Eq. (2.5). An immediate consequence of this result is that releases of organisms which
have many offspring (e.g., mosquitoes) are effectively smaller than would be expected from simply
counting. For example, an organism which typically has 100 offspring that survive to adulthood
would need a release size of roughly 258 to surpass the 10-individual initial release threshold we have
observed. Note that the 10-individual threshold discussed throughout the text is the census release
size; the effective release size is i, = 5.

In Fig. 2.6, we recalculate the distributions in Fig. 2.5 holding the actual population and release
sizes constant, rather than their effective values. Two effects are apparent. First, the decrease in ef-
fective population size, N, leads to greater variation in peak drive among simulations that invade,
i.e., the distribution centered around ~ 0.4 widens. Second, the decrease in effective release size, i,
leads to a greater probability of simulations immediately going extinct, i.e., the relative mass of the
mode centered around = 0 increases. In sufficiently large populations the first effect would be less
pronounced—see Fig. 2.3—while the second effect should apply for any small release.

Finally, as an example, we provide an estimate of our model’s k£ parameter for a particularly rel-
evant species, An. gambiae. To do this, we find the typical size, n, of egg batches laid by females
following a particular mating event; then we estimate the total number of these which survive to

adulthood using parameters from the literature.
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Figure 2.5: Peak drive distributions for varying numbers of offspring per mating with effective population and release
sizes held constant. (top) Population and release sizes used in the simulations below. For the case kK = 1, we use our
usual population size of N = 500 with an initial release of ¢ = 16 drive homozygotes. According to Eq. (2.5), the
effective total population and release sizes in this case are N, = 250andi., = &. For other values of k, we use

values of N and ¢ which maintain constant effective population and release sizes: N = N, (2k + 6)/4andi =
ie(2k + 6)/4‘ These values are plotted: IV (light blue) and % (dark blue). (bottom) Peak drive distributions assuming
values of IV and 7 as in the above plot. Allemploy P = 0.5, f = 0.9, and neutral resistance. Each distribution

includes 5000 simulations.

The first number, 1, varies according to a variety of environmental and ecological factors 578 so
we assume a large but reasonable value in order to avoid underestimating our parameter k. For this,
we assume that n ~ 186, which is roughly the highest value observed by Hammond ez 4l. in the
CRISPR drive study™ and is in line with previous field work7®.

To estimate the survival probability for each egg to adulthood, we employ the method and pa-
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Figure 2.6: Peak drive distributions for varying numbers of offspring per mating with census population and actual
release sizes held constant. (top) Population and release sizes used in the simulations below. Actual population size,
N (light blue, circles) and actual release size, 7 (light blue, triangles). Note that N = 500and? = 15 are constant.
Effective values calculated via Eq. (2.5): population size, N, (dark blue, circles) and release size, i, (dark blue, trian-
gles). (bottom) Peak drive distributions for simulations using indicated values of k& and population and release sizes as
depicted above. Compare with Fig. 2.5 which holds the effective population and release sizes constant, whereas here
we hold the census population and release sizes constant. All simulations employ P = 0.5, f = 0.9, and neutral
resistance. Each distribution includes 5000 simulations.

rameters presented by Deredec ez al.’* Each egg goes through three juvenile stages before reaching
adulthood—the egg stage, the larva stage, and the pupae stage. We denote the probabilities of surviv-
ing each of these stages by 6, 01, and 6 p, respectively. The probability of a particular egg reaching
adulthood is then p = 6p01,0p. These parameters were estimated to be 8y = 0.831, 01, = 0.076,

and fp = 0.831. Thus we have p = 0.0525.
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Given this formulation, the number of eggs laid per mating event which reach adulthood is dis-

tributed according to Bin(n, p). We take the mean of this distribution to obtain:

k ~ np = 9.76.

Therefore, while An. gambiae temales exhibit large egg batch sizes, the value of k for our model is
much lower—indeed, low enough that the central tendency of the peak drive distribution remains

roughly unchanged in Fig. 2.6.

2.5.7 EFFECT OF VARYING FITNESS AND HOMING EFFICIENCY

Above, we study various values of the homing efficiency, P, but we perform less exploration of the
parameters governing drive fitness, f, and resistance cost, s. This is motivated primarily by the abun-
dance of data for the former—see Table A.1—and the lack of data for the latter parameters.

In addition, we have assumed throughout that death rates are identical for the various genotypes,
while reproductive events occur with probabilities proportional to fitness. On the other hand, some
drive constructs might behave the opposite way: reducing fitness by increasing an organism’s death
rate, while leaving its birth rate unchanged.

In this section we explore these three effects: (i) varying drive fitness across its entire range, (ii)
varying the fitness cost of resistance across its entire range, and (iii) modifying the model so that
death rates are affected by fitness, rather than birth rates.

To begin, we consider our standard model for fitness and study drive spread across the entire
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range of values for drive fitness, f, and homing efficiency, P. In particular, we consider 51 values of
each parameter: P € [0, 1] and f € [0.5, 1], both evenly spaced, for a total of 2,601 parameter pairs.
For each pair, the average peak drive is calculated over 100 simulations, and the results are shown in
Fig. 2.7, left.

We find that maximum drive frequencies of greater than 0.3 are common across a wide range of
drive fitness values. In particular, for our lower-bound estimate of empirical drive efficiency (P =
0.5), drives can confer fitness costs as high as 20% before the peak drive drops below 0.3. For more
typical empirical efficiencies (P > 0.8), the peak drive is typically greater than 0.5 even for costly
drives (f = 0.7), and low-cost drives (f > 0.9) have peak drive of greater than 0.9.

We next modified our standard well-mixed model in the following way. Recall that the model
involves choosing two parents to mate, then choosing an individual to die and be replaced by the
parents’ offspring. In our standard model, the two parents are chosen to reproduce with probabil-
ities proportional to their fitnesses, and an individual is chosen to die uniformly. In our modified
model, we choose the two parents uniformly and then choose the individual to die with probabil-
ity proportional to the inverse of its fitness. Results from the modified model are shown in Fig. 2.7,
right and are nearly identical to the results from the standard model.

In both cases, it is important to note that the peak drive and likelihood of invasion deemed so-
cially acceptable for accidental release would likely be lower than those discussed above. With this
in mind, our simulations suggest that if a drive is predicted to invade by deterministic models (z.e.,
if it lies above the boundary in Fig. 2.7), then it will almost certainly reach a maximum frequency

greater than 0.1. While acceptable levels of peak drive are as-yet unknown and will likely vary be-
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tween species, applications, jurisdictions and so on, spread to this extent will likely surpass it.
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Figure 2.7: Mean peak drive for varying homing efficiency, P, and drive-individual fitness values, f (i.e., individuals
with genotypes WD, DD, and DR), assuming that fitness affects birth rate (left) or death rate (right). The left panel
corresponds to our standard model, shown in Fig. 2.1C, while the right panel represents a modification: parents are
chosen uniformly, and individuals die with probability proportional to the inverse of their fitness. The solid white

line shows the boundary from Fig. 2.1B indicating whether the drive is predicted to invade by deterministic models.
The drive is only expected to invade based on deterministic models if the fitness/homing efficiency pair lie above the
boundary. The dashed white lines indicate the empirically measured homing efficiencies from Table A.1 and Fig. 2.1B.
Each pointinthe grid (51 X 51) depicts an average of 100 simulations. Parameters used include a population size
of 500, with an initial release of 15 drive homozygotes to ensure that trajectories establish. Neutral resistance is as-
sumed throughout with no standing genetic variation.

Finally, we sought to understand the effect of varying the fitness cost associated with drive-resistance.
Throughout the text above we have assumed that resistance is neutral, as this presumably represents
the best case for containment. However, drive constructs developed for applications are likely to
employ resistance-mitigating strategies, such as multiplex targeting of essential genes*>*', which es-
sentially increase the fitness cost associated with drive-resistance. Thus, we ran simulations varying
drive-individual fitness, f, in the range f € [0.5, 1], and resistant-individual (RR) fitness in the

range [0, 1], assuming conservative drive efficiency, P = 0.5. In both dimensions we considered s

parameter values, evenly spaced, for a total of 2,601 parameter pairs. For each pair, the average peak
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drive is calculated over 100 simulations, and the results are shown in Fig. 2.8.

We find qualitatively that there are two regimes, determined by the fitness cost of resistance, s
(i.e., individuals with genotype RR have fitness 1 — s), and the deterministic invasion condition,
f(1+ P) > 1.In the figure, we assume that P = 1/2, so the deterministic invasion condition is
simply f > 2/3. When the fitness cost of resistance, s, is sufficiently low (s < 1/3), then the dy-
namics are determined by the relationship between the fitness of drive individuals and the fitness of
resistant individuals: if the fitness of drive individuals is greater than the fitness of resistant individ-
uals, then the spread of the drive is dramatically improved—typically reaching fixation—compared
to the baseline neutral-resistance case. However, if the fitness cost of resistance is sufficiently high
(s > 1/3), then the improvement in drive spread brought about by increasing the cost of resistance
saturates, since the drive can now be less costly than resistance (f > 1 — s) but also too costly to
invade (f < 2/3). Thatis, for resistance costs higher than 1/3, the mean peak drive as a function
of drive fitness, f, remains essentially unchanged with increasing s, since the deterministic invasion
condition can no longer be satisfied when the drive has fitness f < 2/3, no matter the cost of resis-

tance.

2.5.8 INBREEDING

Since the drive functions only in heterozygotes, inbreeding in a population—which in effect reduces
the frequency of heterozygotes—would be expected to impact drive invasiveness. Indeed, this has
been shown in recent theoretical studies by Bull® and Drury et al.°® Thus we here extend our well-

mixed model to include inbreeding and study its effect.

97



0.9
<
Q
x.
. :
4 0.8 3
g 2
&= <
® 2
£ 0.7 )
o e
@
>
5)
<
0.6
0.5

0 0.2 0.4 0.6 0.8 1
Resistance fitness, 1-s

Figure 2.8: Mean peak drive for varying drive-individual fitness values, f, and resistant-individual (RR) fitness values,
1 — s,where sis the cost associated with resistance. Each point in the grid (51 X 51) depicts an average of 100
simulations. Parameters used include homing efficiency P = 0.5, population size of 500, with an initial release of 15
drive homozygotes to ensure that trajectories establish. Throughout we assume no standing genetic variation (i.e., the
initial frequency of the resistant allele is 0).

For simplicity, we consider a partial selfing model. In each update step of our process (see Fig. 2.1C),
we typically choose two parents for mating with probabilities proportional to their fitnesses. To in-
clude selfing, we instead choose the first parent as usual, with probability proportional to its fitness.
We then choose the first parent as the second parent as well with probability s; or, with probability
1 — s, we choose a second parent from the remaining population, with probability proportional
to its fitness. Note that the fitness of each offspring is determined entirely by its genotype and does
not account for inbreeding depression. Implicitly, we thus consider the case of zero inbreeding de-
pression. As this effect helps protect against drive invasion, we essentially consider the worst-case

scenario for drive containment®.
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Using our extended model, we then computed peak drive distributions for values of s between
0 and 1 and for the three values of P explored above: P = 0.15, 0.5, 0.9. The results are shown
in Fig. 2.9. We find that a fairly high degree of selfing is required to impact the peak drive distribu-
tion in a meaningful way. For highly effective drive, P = 0.9, the mass of the upper mode in the
frequency distribution is larger than the lower mode until roughly s ~ 0.75. For conservative
drive, P = 0.5, this occurs at roughly s ~ 0.6, and for ineffective drive there is little change, as
the maximum frequency begins very near zero. To compare with previous results, we can consider
the inbreeding coefficient rather than the selfing probability. In our model, the inbreeding coeffi-
cient, F', is given by s/(2 — s). Thus highly effective drive can tolerate inbreeding of ' ~ 0.6 and

conservative drive can tolerate F' ~ 0.43.

2.5.9 COMPARISON WITH DETERMINISTIC MODEL

To show that the deterministic ODE solutions provide reasonable approximations to the typical be-
havior of our stochastic mode, we overlay numerical solutions to the ODE:s for the systems studied
in Fig. 2.1D of the main text. The results are shown in Fig. 2.10.

Throughout we have assumed that resistance is neutral with respect to the wild-type. This as-
sumption is biologically realizable as resistance is conferred by changing sequence homology to the
drive’s gRNA—something that could be achieved with synonymous codon substitutions, for ex-
ample. In practice, some resistance mutations could be costly and those that are neutral could be
rare. However, assuming resistance is always neutral represents the worst-case scenario for drive in-

vasiveness, as resistance can increase in frequency without being selected against with respect to the
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Figure 2.9: Peak drive distributions and means for varying selfing rates in our partial selfing model. (top) Effective
drive, P = 0.9. (middle) conservative drive, P = (.5, and (bottom) constitutive drive, P = (.15. Each distribu-
tion comprises 1000 simulations. Parameters used include a population size of 500 with an initial release of 15 drive
homozygotes. Neutral resistance is assumed throughout with no standing genetic variation, and the offspring number
per matingisk = 1.

wild-type.

When resistance is no longer assumed to be neutral, other interesting dynamics can occur®. In
particular, when resistance is costly with respect to the wild-type, but not so costly as the drive and
its cargo, the dynamics resemble the Rock-Paper-Scissors game. This allows the drive to avoid extinc-

tion indefinitely.

100



Constitutive drive (P =0.15) Conservative drive (P =0.5) Efficient drive (P =0.9)

11 14 e ]
oy 081 °% /_ Deterministic 087 \
% D Stochastic mean
§_ 0.6 0.6 / 50% confidence 0.67
= — Deterministic |
% 0.4 0.41 / R Stochastic mean 0.47 /
= / / 50% confidence
< 0.2 0.2+ ,/\ 0.24 ] //

7 B / } /
0+F—— T V7T 0+———T 10— o+ T T 7T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Time (generations) Time (generations) Time (generations)

Figure 2.10: Finite-population simulations of 15 drive individuals released into a wild population of size 500, assuming
low (P = 0.5)or high (P = 0.9) homing efficiencies, as well as a low-efficiency, constitutively active system (P =
0.15). Deterministic results (dark lines) and means of 102 simulations (medium lines), individual sample simulations
(light lines), and 50% confidence intervals (shaded). Drive frequencies red and resistant-allele frequencies blue.

2.5.I0 ANALYTIC FORMULAE FOR THE ESCAPE PROBABILITY IN STRUCTURED POPULATIONS

Pick subpop. Pick source Pick individual
WW (DR
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One
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Figure 2.11: Diagram of simulation scheme. In each time step, a migration occurs with probability 72, or a mating
happens with probability 1 — m. If a migration occurs, a source population is chosen randomly proportional to its size;
an individual is chosen uniformly at random, then a destination is chosen uniformly at random, and the individual is
moved. If a mating occurs, the dynamics proceed as in the well-mixed case for a particular subpopulation (Fig. 2.1C).

We consider a deme structured population, where each subpopulation has size N and there are n
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demes. We define a Moran-type process, where in each time step either a reproduction or migration
event takes place (illustrated in Fig. 2.11). A reproduction event occurs with probability 1 — m and
a migration event occurs otherwise. If a reproduction occurs, then a subpopulation is selected pro-
portional to the square of its total fitness. Next, two individuals in the subpopulation are selected
proportional to their fitnesses and they produce an offspring according to the mechanism above.
Finally, another individual from the subpopulation is chosen uniformly at random for death. If a
migration event occurs, then an individual is selected uniformly at random and migrates to a new
subpopulation uniformly at random. We denote the proportion of genotype « at time ¢ in the ini-
tial subpopulation by P.

The process begins with ¢ drive homozygotes and N — i wild-type homozygotes in a single sub-
population. The remaining subpopulations consist only of wild-type homozygotes. Let £ be the
event that the frequency of drive alleles reaches 10% in a subpopulation other than where the drive
was released, given that ¢ drive homozygotes were released in the initial subpopulation. We assume
that ¢ is small with respect to V.

As an aside, note that the choice of 10% is arbitrary—any other percentage (less than the peak
drive in the deterministic model, ¢) would be equivalent if NV is large enough. This is clear from
Fig. 2.1E, where either the drive does not invade and so peak drive is roughly equal to the initial fre-
quency or the drive does invade and the peak drive is close to ¢. This claim is equivalent to stating
that the probability that the drive starting at frequency ¢ attains frequency ¢; (such thatcy < ¢1 <
c) before going extinct tends to 1. This behavior is typical of Moran-type models, since the extinc-

tion probability of 7 drive homozygotes rapidly approaches o, even in an infinite population, as ¢
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increases’°. Specifically, if we have i = ¢y N, then the extinction probability approaches o as N be-
comes large, and moreover, if the drive does not go extinct, then it behaves almost deterministically
and will reach frequency c and thus also c;.

Returning to approximating the probability of £, note that for & to take place a drive allele has
to migrate from the initial subpopulation and this allele has to survive stochastic fluctuations and
avoid extinction in its new subpopulation. The drive alleles do not last indefinitely in the initial pop-
ulation. We denote the random time at which the drive alleles go extinct by T". As long as the initial
drives do not go extinct due to stochastic fluctuations, the frequency of the drive increases rapidly, as
it outcompetes the wild-type. Concurrently, resistant alleles are produced that eventually push the
drive to extinction. This means that the drive has a finite time to migrate to other subpopulations.
Although this process is stochastic it shows fairly deterministic behavior once there are a sufficient
number of drive alleles (see Fig. 2.10)—that is, if the drive avoids immediate extinction. Let e; j, be
the probability that the drive survives stochastic fluctuations and avoids immediate extinction when
starting with ¢ drive homozygotes and j heterozygotes. Implicitly, here we are assume that e; ; does
not depend on whether the heterozygotes are wild-type or resistant heterozygotes. Note that when
ior jare O(N), ; j is approximately 1, so when 4, j < N, we assume that the probability that the
drive migrates is approximately o. Moreover, since the drive will almost certainly go extinct, there is
some time where the frequency of drive alleles is again much less than O(V). We also assume here
that the probability that the drive migrates is approximately o.

At each time step, there is a small probability that the drive migrates from the initial population

and invades another subpopulation. To calculate, we first condition on the non-extinction of the
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initial ¢ drive homozygotes. Second, we note that if the drive does not migrate and avoid extinction
in another subpopulation, then it does not do so at any particular time ¢. Third, we assume that
these events for each ¢ are approximately independent. Finally, we numerically solve a deterministic
ODE system representing the dynamics® to approximate the probability that the drive does not

migrate at time ¢. Thus,

P{E} = P{& | drive avoids extinction }e; o + P{E | drive does not avoid extinction} (1 — €; )
~ P{E | drive avoids extinction }¢; o

T
R e (1 — H [P{drive does not migrate and invade at time t})
t=1
T
=e€i0 < H 1 — P{drive invades | drive migrates at time ¢ }IP{drive migrates at time t}))
t=1
T
= e ( — ] (1 — me1 oEPPP — meo 1 (EP/P + ]EPtDR))) ,
t=1

since if the drive avoids extinction it will invade. Now we substitute the ODE solution pfﬂ for

EPtaB in the above expression to find that

T/a=x DD WD DR
P{€} ~eio|1—exp N/o dt log (1 - )\6170])(1_)\)15 — Aeo1 (p(l—A)t —|—p(1_>\)t))
R e (1 — exp ( / dtlog(1 — et opP? — Neo1(pf"P + pP )))) )

Here, we approximated the product with an integral and used a change of variables.

Note thatif m = O(1/T') and heuristically we replace EP{ in the above expressions with its
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time average, denoted ¢, then

T
€i,0 [1 — H (1 — m€170EPtDD — meo,l(EPtWD -+ EPtDR))
t=1
T
~ e [1 - <1 _e09”P +eoa (6P + ¢DR)>
~ €0 T

R e [1 — exp (—6170¢DD + 60,1(¢WD + ¢DR))] .

Thus, when the migration rate is on the order of the inverse of the drive extinction time, the inva-

sion probability is order 1.
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Daisy-chain gene drives for local alteration

3.1 FOREWORD

Taken together, the previous chapters suggest that standard CRISPR-based gene drive systems could
be difficult to contain within particular populations. While this is a benefit in some situations—for
example, malaria eradication, where the goal would be to alter as many populations as possible—it

could be a drawback in others. In this chapter, we analyze the dynamics of a new CRISPR-based
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gene drive design, called “daisy-chain gene drive”, which we hypothesized would offer a balance
between spread and containment.

This work was truly an interdisciplinary, team effort. I built and analyzed the mathematical mod-
els presented here with Jason Olejarz; John Min, Kevin Esvelt and Andrea Smidler ran preliminary
simulations; John Min and Kevin Esvelt designed the library of gRNAs; Joanna Buchthal and Ale-
jandro Chavez performed experiments to analyze the activity of the gRNAs; Erika DeBenedictis
created a publicly available web applet for visualizing the model; and we all benefited greatly from
insight, advising and support from George Church, Martin Nowak, and Kevin Esvel.

This chapter first appeared as a preprint on bioRxiv (Ref. 65) and is currently under review:
Charleston Noble*, John Min*, Jason Olejarz, Joanna Buchthal, Alejandro Chavez, Andrea L. Smi-
dler, Erika A. DeBenedictis, George M. Church, Martin A. Nowak, Kevin M. Esvelt. Daisy-chain

gene drives for the alteration of local populations. bioRxiv (2016). (*equal contribution)

3.2 INTRODUCTION

RNA-GUIDED GENE DRIVE SYSTEMS based on CRISPR nucleases could be used to spread many
types of genetic alterations through sexually reproducing species*'. These systems function by
“homing”, or the conversion of heterozygotes to homozygotes in the germline, which renders off-
spring more likely to inherit the gene drive element and the accompanying alteration than via nor-

mal Mendelian inheritance*® (Fig. 3.1A). To date, gene drive systems based on Casg have been demon-
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strated in yeast?, fruit flies®“7, and two species of mosquito®™”. Suggested applications include
eliminating vector-borne and parasitic diseases, promoting sustainable agriculture, and enabling
ecological conservation by curtailing or removing invasive species *'.

The self-propagating nature of standard RNA-guided gene drive systems renders the technology
uniquely suited to addressing large-scale ecological problems, but the high likelihood of spread to
most populations of the target species *>7° tremendously complicates discussions of whether and
how to proceed with any given intervention®. Technologies capable of unilaterally altering the
shared environment require broad public support. Because people will not be able to opt-out of
technologies intended to alter the shared environment, ethical gene drive research and development
should be openly guided by the communities and nations that depend on the potentially affected
ecosystems. Unfortunately, attaining this level of engagement becomes progressively more chal-
lenging as the size of the affected region increases. Candidate applications that will affect multiple
nations could be delayed indefinitely due to a lack of agreement, particularly given the possibility
that it may not be possible to conduct safely contained field trials*>7°.

A method of preventing gene drive systems from spreading indefinitely would greatly simplify
community-directed development and deployment while also enabling safe field testing. Existing
theoretical self-exhausting strategies ®* can locally spread cargo genes nearly to fixation if suffi-
ciently many organisms (>30% of the local population) are released, while “threshold-dependent”
drive systems such as those employing underdominance®” will spread to fixation in small and geo-
graphically isolated subpopulations if organisms are released in an amount exceeding the threshold

for population takeover (typically ~ 50%). Toxin-based underdominance approaches are promising
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and have been demonstrated in fruit flies***, though they cannot directly suppress populations. All
of these approaches involve releasing comparatively large numbers of organisms, which may not be
politically, economically, or environmentally feasible for some applications.

A way to construct highly efficient yet locally confined RNA-guided drive systems could enable
many potential applications for which neither self-propagating invasive drive systems nor existing
local drives are suitable. Here we describe “daisy drive”, a powerful yet self-exhausting form of lo-
cal drive based on CRISPR-mediated homing in which the drive components are separated into
an interdependent daisy-chain. We additionally report newly characterized guide RNA sequences

required for evolutionary stability and safe use.

3.3 DESIGN AND MODELING

A daisy drive system consists of a linear series of genetic elements arranged such that each element
drives the next in the chain (Fig. 3.1B). The final element in the chain, which carries the “cargo”,
is driven to higher and higher frequencies in the population by the earlier elements in the chain.
No element can drive itself (Fig. 3.1C). The bottom element is lost from the population over time,
causing the next element to cease driving and be lost in turn. This process continues along the chain
until, eventually, the population returns to its wild-type state (Fig. 3.1B).

The simplest form of daisy drive—a two-element chain—is obtained by separating CRISPR
gene drive components such that the cargo-carrying element, designated ‘A’, exhibits drive only

in the presence of an unlinked, non-driving element, ‘B’ (Fig. B.1). These “split drives” have been
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Figure 3.1: Comparison of self-propagating and daisy-chain gene drive. (A) Self-propagating CRISPR gene drives
distort inheritance in a self-propagating manner by converting wild-type (W) alleles to drive alleles in heterozygous
germline cells. (B) A “daisy drive” system consists of a linear chain of serially dependent, unlinked drive elements; in
this example, A, B, and C are on separate chromosomes. Elements at the base of the chain cannot drive and are succes-
sively lost over time via natural selection, limiting overall spread. (C) Family tree resulting from the release of a single
daisy drive organism in a resident wild-type population in the absence of selection. On the right is a graphical depiction
of the total number of alleles per generation. Throughout, chromosome illustrations represent genotypes in germline

cells.
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described*', demonstrated ¥, and recommended #* as a stringent laboratory confinement strategy.
Because any accidental release would involve only a small number of organisms carrying the B ele-
ment, the driving effect experienced by the A element—and thus its spread—would be negligible in
alarge population?. Aslong as the cargo confers a fitness cost to the host organism, both elements
will eventually disappear due to natural selection.

We hypothesized that the spread of the cargo-carrying element, A, could be enhanced to useful
levels by adding more elements to the base of the daisy chain. To explore this idea, we formulated a
deterministic model that considers the evolution of a large population of diploid organisms affected
by a daisy drive system with elements spread across n loci (Sections 3.9.1 and 3.9.2). At each locus
there are three alleles, the wild-type (W), the corresponding daisy drive element (D) and an allele
that is resistant to the effects of the upstream daisy element (R). Such resistant alleles could exist
before release in the form of standing genetic variation, or they could be created through misrepair
following drive-mediated cleavage or by de novo mutation %7,

To model the effects of daisy drive in individuals, we make a few assumptions: (i) Daisy drive
alleles cut their targeted wild-type alleles with probability 1:%7%; (ii) Drive and resistant alleles are
immune to drive-mediated cutting; (iii) Cutting is followed by homologous repair (HR) with prob-
ability H, leading to duplication of whatever allele is present at the homologous chromosome, or
by nonhomologous end-joining (NHE]) with probability 1 — H, resulting in production of a new
resistant allele. While we model the rates of outcomes following cutting, we do not vary the cutting
efficiency. If the cutting rate were diminished, we expect our results to remain qualitatively similar

but with lengthened timescales and perhaps decreased maximum spread.
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Figure 3.2: Dynamics of CBA daisy-chain gene drive systems. (A) After being cut by an upstream daisy allele, a wild-
type allele is repaired either by homologous recombination (HR), creating a second copy of the other allele at the locus,
or by nonhomologous repair (e.g., NHEJ), leading to generation of a resistant allele. This process occurs in the germ
line and is independent at each locus. We assume that resistance at the cargo locus, A, is dominant lethal if inherited.
(B) A highly efficient daisy drive (95% homing efficiency) with an 8% fitness cost for the cargo element seeded at 2%,
spreads the cargo nearly to fixation (left). A low-efficiency drive (60%) with the same initial release size no longer
allows drive spread (middle). Increasing the release size of the inefficient drive to 15% again allows cargo spread to
near fixation (right). (C) The maximum frequency achieved by cargo alleles as a function of the homing efficiency and
the cargo fitness cost, for release sizes of 1% (left), 5% (middle), and 10% (right). Throughout, we assume a 0.01%
fitness cost for C and B elements and neutral resistant alleles at the C and B loci.

The effect of a daisy drive element at a particular locus (e.g. B) depends on the genotype at the
next locus in the daisy-chain (Fig. 3.2A). If that genotype is DD, DR, or RR, then no cutting occurs
and the genotype remains unchanged. If the genotype is WW then both wild-type alleles are cut un-
til the locus is converted to RR. Similarly, WR is converted to RR. However, if the genotype is WD,
then the W allele is converted to D with probability /1, or to R with probability 1 — H. We assume
that standard Mendelian segregation occurs after conversion, so that, for example, individuals ini-
tially WD at a locus produce D gametes with probability (1 + H)/2 or R gametes with probability

(1 — H)/2, assuming a daisy allele exists at the previous locus to facilitate the conversion. Finally,
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we assume that all loci undergo inheritance independently (i.e., all elements are unlinked, ideally
on different chromosomes), so that the total probability of an individual producing a gamete of a
particular haplotype is the product of its individual-locus inheritance probabilities. Details can be
found in Section 3.9.2.2, with gamete-production probabilities explicitly written in Eq. (3.7).

To model selection dynamics, we assume that each daisy drive element confers a dominant fitness
cost, ¢;, on its host organism. Furthermore, we assume that resistance at every upstream (non-cargo)
locus is neutral, while resistance at the cargo locus is dominant lethal. The latter requirement can
be attained by targeting a haploinsufhicient essential gene with the cargo element while including a
genetically recoded copy in the drive construct®”#'. All costs are assumed to be independent. (See
Section 3.9.2.2 for further details. Fitness calculations are performed via Eq. (3.6).)

While the requirement of dominant lethality for resistance at the cargo locus might seem pro-
hibitively difficult to achieve, it is worth noting that recent experimental studies support the feasi-
bility of this approach. In a study of CRISPR-Casg gene drive in yeast, DiCarlo e al. constructed a
drive targeting an essential gene, ABD1, while including a recoded copy in the drive construct, and
no obvious impact on fitness was observed compared to wild-type strains¥. Furthermore, Ostrov er
al. employed genetic recoding to successfully eliminate seven codons from 91% of essential genes in
E. coli, leading to an overall fitness cost of less than 10%*7. Models predict that cutting multiple sites
within genes important for fitness is required for a drive system to affect an entire populati0n39’69,
and recent experiments featuring a two-gRNA drive element in fruit flies appear to provide evidence
for simultaneous and reliable cutting by more than one gRNA®.

Gene drive dynamics are sensitive to homing efficiency () and fitness cost. In the four species ex-
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amined, homing efficiency has ranged from 37% to 99%, with almost all the range stemming from
variation across experiments in fruit flies. The rate was over 99% for each of the many drive systems
tested in yeast”, 99.8% for the drive system in An. stephensi®, 87.3% t0 99.7% for the three drive
systems in An. gambiae®, and 37% to 95% for the three drive systems in the fruit fly, which varied
with genetic background*%7. Fitness costs have not been rigorously measured, but costs associated
with non-cargo daisy drive elements are expected to be much lower than typical cargoes**° because
they will only encode guide RNAs. Potentially costly oft-target cutting is minimal when using high-
fidelity Casg variants®>9?. If the target gene is haploinsufhicient for proliferative gametogenesis, the
cost may approach zero and the homing rate 100% in some species (Fig. B.2).

We studied a three-element daisy drive system (CBA) via numerical simulation (Fig. 3.2). As ex-
pected, arbitrarily high frequencies of the cargo element, A, can be achieved by varying the release
frequency. However, the system displays high sensitivity to the homing rate and cargo cost. In par-
ticular, moderate release sizes (>10% of the resident population) are required to drive costly cargoes
if homing efficiency is on the lower end of observed drive systems (~60%).

We next explored the effects of adding additional elements to the daisy drive system as a potential
means of increasing potency. We observe that longer chains lead to much stronger drive (Fig. 3.3A).
At a homing efficiency of 95% per daisy drive element, six- and seven-element systems driving a
cargo with a 10% cost could be released at frequencies as low as 1% and still exceed 99% frequency
in fewer than 20 generations. On a per-organism basis, these are 10 to 1000-fold more efficient than
simply releasing organisms with the cargo, depending on the homing efficiency (Fig. B.3).

Adjusting the model to include repeated releases in every subsequent generation, we observed
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that daisy drives can readily alter local populations if repeatedly released in very small numbers, al-

though the benefit of repeated release is lost when the repeated release size becomes large (>5%)

(Fig. 3.3B). This may be useful for applications that must affect large geographic regions over ex-

tended periods of time, as well as for local eradication campaigns®*. (More accurately, we simulated

a continuous release of engineered individuals into a wild population for convenience in doing the

simulations; see Section 3.9.2..3 for details on this implementation.)
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Figure 3.3: Quantitative evaluation of cargo spread in a single population, for single and repeated releases. (A) Results
assuming a single release of daisy drive organisms in a wild population. (left) Representative simulations assuming a
1% release. (right) Time to achieve 99% frequency for varying release frequency. (B) Results assuming a constant

rate of release of daisy drive organisms. (left) Representative simulations, assuming an initial 1% release with a subse-
quent release rate of 1% per generation (see Section 3.9.2.3 for details). (right) Time to 99% frequency with varying
release rate, which we set as both the initial release frequency as well as the subsequent continuous release frequency,
indicated by the horizontal axis. (See Section 3.9.2.3 for details on continuous release.) All simulations assume a 10%
cargo cost, 0.01% cost per upstream element, and 60% (top), 0% (middle), or 95% (bottom) homing efficiencies.

Given that the cargo element could achieve arbitrarily high frequencies in a population, we
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next asked how long the cargo might persist after attaining a high frequency. Thorough quantita-
tive analysis of this point will be an important direction for future work, but as a first step we here
sought to understand qualitatively how each of our model parameters impacts this persistence time.
To accomplish this, we returned to our basic 3-element (CBA) model and performed the following
procedure: (i) We chose a particular set of parameter values such that the drive could attain at least
50% frequency across a range of nearby values for each parameter. (ii) We then varied each parame-
ter individually while measuring the number of generations that the cargo element remained above
50% frequency, thus isolating the effect of each parameter.

The results of this analysis are shown in Fig. B.4. Overall, we find that the persistence time (i.e.,
the number of generations above 50% frequency) varies significantly across plausible ranges for the
parameters in our model. The most dramatic effect is observed by varying the fitness cost of resis-
tance at the cargo element, s. We find that, roughly, if s is less than ¢, the fitness cost of the cargo
element, then the cargo is unlikely to achieve near-fixation, while if s > ¢, then resistance is more
deleterious than the cargo itself, and the cargo can remain in the population indefinitely barring
mutations that inactivate its function. Regarding the other parameters, we find that the persistence
time is inversely proportional to ¢ and more robust to small perturbations in the homing efficiency,
H, release frequency, and fitness cost, d, associated with upstream elements (C, B).

Finally, we considered the potential for daisy drive systems to affect local populations of invasive
species on islands or other regions with limited gene flow. To study the extent of spread between
populations, we formulated a metapopulation model consisting of N populations connected by

pairwise gene flow rates in a directed-graph-based structure (Sections 3.9.3 and 3.9.4). Within each
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population, we assume random mating with selection and germline dynamics identical to those
described in the single-population model above.

To begin our analysis of this model, we studied a particular case consisting of 5 equally-sized pop-
ulations connected in a chain, with each population exchanging individuals with its neighboring
populations immediately before and/or after it in the chain (Section 3.9.5). We further assumed gene
flow rates of 102 between each pair of neighboring populations.

Given this population structure, we compared three scenarios, each beginning with a release of
engineered individuals in the population at the beginning of the chain (Fig. 3.4): (1) A three-element
(CBA) daisy-chain drive; (2) A standard self-propagating drive element designed with multiple gR-
NA:s to mitigate resistance (adapting the model from Chapter 1and Ref. 39; see Section 3.9.5.2 for
details); (3) An inundative release of engineered alleles that do not drive at all. (This scenario was
simulated using the same model as in scenario 2, as described in Section 3.9.5.2, except we set the
cutting rate, g, to zero so that standard Mendelian inheritance occurs.)

To ensure that the three scenarios were comparable, we employed identical parameters where ap-
plicable. In the two drive scenarios (1 and 2) we assumed a moderate 80% homing efficiency, 15%
release size and 10% fitness cost for the cargo element (as well as perfect cutting efficiency, as de-
scribed above). Additionally, for daisy drive, we continued assuming a low fitness cost for the C and
B elements (0.01%). For the inundative release scenario, we assumed an identical 10% dominant
fitness cost for the engineered element, but we set the release size to 99.9%.

Results for these three initial scenarios can be found in Fig. 3.4. For daisy-chain drive, we find that

the cargo element can be driven to near-fixation in its initial-release population while attaining sig-
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nificant frequency (~0.8) in the second population, low frequency in the third population (=0.2)
and only negligible frequencies in the subsequent populations. Moreover, transience of the cargo
element is ensured in the initial population by influx of wild-type individuals. This constitutes a
mechanism for transience that cannot be captured by our single-population model; therefore, we
would expect our persistence time results discussed above and presented in Fig. B.4 to be substan-
tially different in this more realistic multiple-population context. In contrast, the self-propagating
drive rapidly spreads to near-fixation in all populations.

We then further analyzed inter-population spread in this model via numerical simulation, and
additional results can be found in Fig. B.s. Specifically, we varied the migration rate between 1074
and 10! for each of the three scenarios described above and measured the maximum frequency
achieved by each allele across soo-generation simulations. We find that, for migration rates below
1072 (the value assumed in Fig. 3.4), maximum daisy-chain cargo frequency in the second popula-
tion decreases roughly linearly with the migration rate, whereas self-propagating drive approaches
fixation in all populations even for very low migration rates. Notably, the resistant allele at the B
locus can exhibit high frequencies in multiple populations due to its assumed low fitness cost; how-
ever, this effect could potentially be mitigated by engineering that element to select against resistance

in the same way as the A element.
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Figure 3.4: Modeling daisy drive containment in a system of populations connected by gene flow. (left) lllustration of
the population structure: five populations with equal sizes are connected in a chain, and each neighboring pair has
bidirectional gene flow with rate 1072 in each direction. The three figure panel columns then correspond to the three
scenarios described in the text: (left) CBA daisy-chain drive, (middle) self-propagating (“standard”) drive with multiple
gRNAs targeting an essential gene, as in Chapter 1 and Ref. 39, (right) non-drive inundative release. Frequencies

over time are indicated for each allele in each of the populations. Drive-based simulations (daisy-chain and standard)
assume 80% homing efficiency, 10% dominant cargo element fitness cost and 15% release frequency. Daisy-chain
drive simulations further assume 0.01% upstream element (C, B) fitness cost. Inundative release simulations assume
10% dominant fitness cost and 99.9% release. See Section 3.9.5 for details.
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3.4 EVOLUTIONARY STABILITY AND CRISPR MULTIPLEXING

Despite these promising theoretical results, current technological limitations preclude the safe use of
daisy drive systems. Specifically, a recombination event that moves one or more guide RNAs within
an upstream element of the chain into any downstream element could convert a linear daisy drive
chain into a self-propagating ‘necklace’ anticipated to spread to populations worldwide (Fig. 3.5A).

One way to reliably prevent such events is to eliminate regions of homology between the ele-
ments. Promoter homology can be removed by using different U6, Hi, or tRNA promoters to ex-
press the required guide RNAs%479; if there are insufficient promoters then each can drive expres-
sion of multiple guide RNAs using tRNA 7% or miRNA processing **~"*". However, each element
must still encode multiple guide RNAs >80 base pairs in length in order to prevent the creation of
drive-resistant alleles, precluding safe and stable daisy drive designs.

One alternative is to use a distinct orthogonal CRISPR system for every daisy element'* (Fig. B.6).
Unfortunately, it is more difficult to find multiple promoters suitable for nuclease expression than
for gRNA expression, and the fitness cost is likely higher than an equivalent gRNA element. We ac-
cordingly sought to identify highly active guide RNA sequences for S. pyogenes Casg with minimal
homology to one another that could enable safe daisy drive using only a single CRISPR nuclease.

We compared known tracrRNA, ctRNA, and alternative sgRNA sequences for CRISPR sys-

tems related to that of S. pyogenes to identify bases tolerant of variation'*>

o4 within the sequence
of the most commonly used sgRNA (Figs. 3.5B-C, B.7). We then created dozens of sgRNA variants

designed to be as divergent from one another as possible. Assaying these using a sensitive td Tomato-
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based transcriptional activation reporter in human cell culture identified 15 different sgRNAs with
activities comparable to the self-propagating version (Fig. 3.5D). Activity increased with the length
of the first stem in agreement with other reports'® (Figs. B.8 and B.9). This set of minimally ho-
mologous sgRNAs can be used to construct stable daisy drive systems of up to 5 elements with 4
sgRNAs per driving element, and will also facilitate multiplexed Casg targeting in the laboratory by
permitting the commercial synthesis of DNA fragments encoding many sequence-divergent guide
RNAs. Future studies will need to examine the stability of the resulting daisy drive systems in large
populations of animal models.

Importantly, our divergent guide RNAs will also enable self-propagating CRISPR gene drive
elements to overcome the problem of instability caused by including multiple repetitive guide RNA
sequences in the drive cassette™®, which is needed to overcome drive-resistant alleles**. Using non-
repetitive guides may consequently allow stable and efficient self-propagating drive systems to affect

every organism in the target population.

3.3 CONSTRUCTION AND DEPLOYMENT

On a practical level, researchers need only construct one ‘generic’ daisy drive strain per species that
could subsequently be loaded with any desired cargo. This generic daisy drive system, which would
typically harbor the nuclease gene in the A position, could be used in three different ways.

First, one or more “effector” elements carrying cargo genes and guide RNAs sufhicient to drive

themselves in the presence of nuclease could be added directly to the generic daisy drive strain. In
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Figure 3.5: Preventing the formation of “daisy necklaces”. (A) Any recombination event that moves a guide RNA from
one element to another, where it will be reliably copied, could create a “daisy necklace” capable of self-propagating
drive. (B) Because promoters can be changed, repetition of the conserved guide RNA sequence is a key problem. (C)
Using existing data, we generated a template identifying candidate positions presumed tolerant of sequence changes.
(D) Relative activities of candidate guide RNAs generated from the template were assayed using a Cas9 transcriptional
activator screen using a tdTomato reporter in human cells.

this configuration, the nuclease-encoding element would become the B element with the effec-
tor(s) in the A position. These daisy-drive organisms would then be mass-produced and released
in a single-strain, single-stage approach.

Second, the generic daisy drive strain could be released in the target region alongside organisms
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carrying effector elements already present from releases in adjacent areas. Matings in the wild would
then combine the daisy-chain and effector elements, allowing more precise control in spreading the
effector cargo into new areas.

Third, the generic daisy drive strain could be released without an effector, and the spread of the
nuclease gene could be monitored. This would allow for precise prediction and tuning of the region
affected before a later release of strains carrying effector elements to initiate the desired effect. If
necessary, the extent of nuclease spread could be adjusted by releasing wild-type or more daisy-drive
organisms to fine-tune the areas affected, allowing a level of control not afforded by classic gene drive
architectures, albeit one that is imperfect due to stochastic migration. Superior control might be
obtained by coupling daisy drive to underdominance to limit dispersion of the alteration to areas in

which it is already in the majority™”.

3.6 FIELD TRIALS AND SAFEGUARDS

Ecological problems such as malaria are so widely distributed geographically that addressing them
may require self-propagating CRISPR-based gene drive systems. However, alteration drive systems
of this type arguably cannot be tested in field trials without a substantial risk of eventual interna-
tional spread **7°, and future models may demonstrate that the same is true of self-propagating
suppression drive. Daisy drive systems, which are capable of mimicking the molecular effects of any
self-propagating drive on a local level, may ofter a potential solution.

Notably, daisy drive systems might be used to directly suppress target populations by imposing
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a genetic load or by sex-biasing the local population, exactly as would equivalent self-propagating
CRISPR-based drive systems. For example, a daisy drive that disrupts female fertility genes, such as
those recently identified in malarial mosquitoes®, might encode the basal element of the daisy chain
on the Y chromosome or an equivalent male-specific locus, thereby ensuring that most male off-
spring preferentially inherit the complete daisy suppression drive system and enabling outcrossing to

198 such males

wild females during production (Fig. B.10). As with a Y-linked suppression element
should suffer no direct fitness costs from the genetic load relative to competing wild-type males.
Finally, scientists currently have few attractive options for controlling unauthorized or accidentally-
released CRISPR-based gene drive systems. While it is possible to overwrite genome-level alterations
and undo phenotypic changes using immunizing reversal drives*, these countermeasures must nec-
essarily spread to the entire population in order to immunize them against the unwanted drive sys-
tem; strategies based on pure reversal drives? or variations such as gene drive ‘brakes’*** should only
slow it down. In contrast, daisy drive systems may be powerful enough to eliminate all copies of an
unwanted self-propagating drive system via local immunizing reversal, population suppression, or

both (conceptually illustrated in Fig. B.1x). Feasibility, especially in species with high dispersal rates,

should be investigated by modeling and metapopulation experiments.

3.7 DiscussioN

RNA-guided gene drives based on CRISPR have generated considerable excitement as a potential

means of addressing otherwise intractable ecological problems. While experiments have raced ahead
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at a rapid pace, the high likelihood of international spread once released into a wild population may
prove a formidable barrier given the need for public support and international regulatory approval,
which may not be achievable if the proposed system cannot be safely tested in the field. These eth-
ical and diplomatic complications are most acute for drive systems aiming to solve the most urgent
humanitarian problems, including malaria, schistosomiasis, dengue, and other vector-borne and
parasitic diseases, as the lack of international agreement could significantly delay releases.

Similarly, the potential for RNA-guided drive systems to be released accidentally or unilaterally
has led to many calls for caution and expressions of alarm, not least from scientists in the vanguard
of the field#~#. Any such event could have potentially devastating consequences for public trust
and support for future interventions.

In contrast, our results suggest that daisy drive systems might be safely developed in the labora-
tory, assessed in the field, and deployed to accomplish transient alterations that should minimally
impact other nations or jurisdictions. They might be used to locally duplicate the effects of a self-
propagating drive system for safe field studies, to efficiently alter entire local populations with lim-
ited gene flow such as those on islands, or to accomplish transient changes to pockets of mainland
populations.

However, it is essential to note that daisy drive alone cannot prevent the spread of engineered

110

genes into adjacent populations ™. Addressing this problem further could require, for example,

triggering a threshold-dependent drive system after the daisy drive has been exhausted to actively
107

eliminate engineered alleles from adjacent populations where they are in the minority

By using molecular constraints to limit generational and geographic spread, daisy drive approaches
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could expand the scope of ecological engineering by enabling local communities to make decisions

concerning their own local environments.

3.8 EXPERIMENTAL METHODS

The biological experiments performed for this study were designed and carried out by John Min,
Joanna Buchthal and Alejandro Chavez, with advising from Kevin Esvelt and George Church. For
completeness (as this work has been submitted for publication together in its entirety), I present
the results of these experiments in Section 3.4, as well as in Figs. 3.5, B.8, and B.9, and the related

methods follow in this Section (Sec. 3.8).

3.8.1 GUIDE RNA DESIGN

We examined existing data on crRNA and tracrRNA sequences from closely related Casg systems

1213 “as well as the

(from Fig. Sz of Ref. 103 and Fig. 4 of Ref. 111) by multiple sequence alignment
crystal structure of S. pyogenes Casg in complex with sgRNA, to construct a template specifying
bases most likely to tolerate mutations. The template is shown in Fig. 3.5C, and the tracrRNA mul-
tiple sequence alignment is shown in Fig. B.7. We used this template to design a set of 20 sgRNA
sequences sharing no more than 17bp of homology with one another. Activity assays (see below)
with two replicates identified sequence changes harmful to activity. These experiments suggested
that the large insertion found in sgRNAs from closely related bacteria was well-tolerated in only one

case. Additional sgRNAs lacking this feature were designed to preserve the 17bp homology limit

across the set. All candidates were then assayed to identify those with sufficiently high activity. Fu-
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ture experiments requiring additional highly divergent sgRNAs, such as daisy suppression drives
in which the A element encodes many guide RNAs that disrupt multiple recessive fertility genes at

multiple sites, will require a more comprehensive library-based approach to activity profiling.

3.8.2 MEASURING GUIDE RNA AcCTIVITY

HEK293T cells were grown in Dulbecco’s Modified Eagle Medium (Life Technologies) fortified with
10% FBS (Life Technologies) and Penicillin/Streptomycin (Life Technologies). Cells were incubated
ata constant temperature of 37°C with 5% COz. In preparation for transfection, cells were split
into 24-well plates, divided into approximately 50,000 cells per well. Cells were transfected using 2ul
of Lipofectamine 2000 (Life Technologies) with 20ong of dCas9 activator plasmid, 25ng of guide
RNA plasmid, 6ong of reporter plasmid and 25ng of EBFP2 expressing plasmid.

Fluorescent transcriptional activation reporter assays were performed using a modified version of
addgene plasmid #47320, a reporter expressing a td Tomato fluorescent protein adapted to contain
an additional gRNA binding site toobp upstream of the original site. gRNAs were co-transfected
with reporter, dCas9-VPR, a tripartite transcriptional activator fused to the C-terminus of nuclease-
null Streptococcus pyogenes Casg, and an EBFP2 expressing control plasmid into HEK293T cells.
48 hours post-transfection, cells were analyzed by flow cytometry. In order to exclusively analyze
transfected cells, cells with less than 10° arbitrary units of EBFP2 fluorescence were ignored. The
preliminary screen of the initial 20 designs was performed with only two replicates to identify critical
bases. Experiments evaluating the final set of sgRNA sequences were performed with six biological

replicates.
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3.9 SUPPLEMENTARY MODEL DETAILS

In this Section, we develop the mathematical models used for numerical simulations throughout
this chapter. We begin with a very simple model of daisy-chain gene drive and then successively ex-
tend it until concluding with the versions used for simulations. We begin in Section 3.9.1 by present-
ing a simple model for daisy-chain gene drive without resistant alleles. This description begins with
a simple 2-element model (Section 3.9.1.1), which is extended to include n elements in Section 3.9.1.2.
Then, in Section 3.9.2, we extend the 2-element and n-element models from Section 3.9.1 to include
resistant alleles, resulting in the model used for all single-population simulations throughout this
chapter. In Section 3.9.3, we then extend the model with resistance (Sec. 3.9.2) to include two dis-
tinct populations connected by gene flow, and this model is then extended to N populations in Sec-
tion 3.9.4. Lastly, in Section 3.9.5 we explicitly write the equations for the special case of the model
from Section 3.9.4 wherein 5 islands are connected in a chain, results from which are presented in

Figs. 3.4, B.5 and related discussion.

3.9.1 EVOLUTIONARY DYNAMICS OF A DAISY DRIVE CONSTRUCT

To begin, we describe a model for a daisy drive system consisting of only two elements (i.e., B and A),
with only wild-type and drive alleles at each locus (i.e., no resistance). This simple case demonstrates
the principles behind daisy drive engineering and illustrates the modeling approaches we employ

in the more complex scenarios. We then describe a daisy drive system with an arbitrary number of

elements in Section 3.9.1.2.
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3.9.1.1 MODEL FOR A 2-ELEMENT DAISY DRIVE

We consider a wild population of diploid organisms and focus on two loci, “1” and “2”. The wild-
type alleles at the two loci are 1y and 2y, and we denote by 17121711 the genotype of an individ-
ual that is homozygous for both.

Using CRISPR genome editing technology, one can engineer what we refer to as “daisy” alleles
atboth loci (1p and 2p). They function as follows. The 1 allele effects cutting of the 2y allele in
an individual’s germline. We assume that the two loci are independent and that a single copy of 1
always induces cutting of the 2y allele.

In addition, we assume for now (relaxed in Section 3.9.2) that the W allele at the second locus is a
haploinsufficient essential gene that is targeted with multiple gRNAs (as described in Chapter 1) and
that the 2p allele contains a genetically recoded copy of of the wild-type allele. Therefore, 2y,
2pw and 2pp genotypes are all viable, but a loss-of-function variant of the 2y allele—which
can result from drive-mediated cutting without successful homing, due to the multiple gRNA
assumption—is dominant lethal.

Due to this multiple gRNA/haploinsufhient assumption, if an individual has genotype 1y p 2w
or 1 pp2ww, then the drive allele at the first locus cuts and disrupts both wild-type alleles at the sec-
ond locus, resulting in nonviable gametes. If an individual has genotype 1y p2w p or 1pp2wp,
then the drive allele at the first locus cuts the wild-type allele at the second locus, and one of two
things can happen. If a homing event occurs, then the drive allele at the second locus is successfully

copied into the position of the shredded wild-type allele, resulting in gametes that necessarily have
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Genotype 1W2W 1W2D 1D2W 1D2D
1WW2WW 1 0 0 0
lww2pp 0 F 0 0
1WD2DD 0 %F 0 %F
1pp2ww 0 0 0 0
1pp2wn 0 0 0 HF
1pp2pp 0 0 0 F

Table 3.1: Gamete production table showing the relative rates at which individuals of each genotype (rows) produce
gametes of each haplotype (columns).

the drive allele at the second locus. If a homing event does not occur, then the resulting gametes are
nonviable. This results in super-Mendelian inheritance of the 2 allele in a 1 p-mediated fashion.
Importantly, the 1p allele undergoes standard inheritance and does not facilitate its own spread
similarly.

(Notice that in this simplified treatment, we do not explicitly study evolution with a resistant
allele, as described in the main text. This simplified model illustrates the principle behind daisy
drive engineering without concern for complications arising from emergence of resistance. In Sec-
tion 3.9.2, we introduce resistance into the model.)

To see how the daisy drive works, consider Table 3.1, which is understood as follows:

Gametes of haplotype 1y 2y are produced in the following ways:

* lww2ww individuals produce only 1112y gametes. We set the rate of production of
1w 2w gametes by 1y 2y individuals to be 1.

* lww 2w p individuals produce gametes with a wild-type allele at the second locus with prob-
ability 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second
locus. So 1y w 2w p individuals produce 1y21y gametes at relative rate F'/2.
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Gametes of haplotype 1y2p are produced in the following ways:

* lww 2w p individuals produce gametes with a drive allele at the second locus with probabil-
ity 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second locus.
So 1yww 2w p individuals produce 1y2p gametes at relative rate F'/2.

* lww2pp individuals produce only 1y172 p gametes. There is a fitness effect, F', due to the
payload of the drive allele at the second locus. So 1y12pp individuals produce 112 p

gametes at relative rate .

* 1w p2w p individuals produce gametes with a wild-type allele at the first locus with proba-
bility 1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the
second locus, and homing occurs with probability /. There is a fitness effect, F', due to the
payload of the drive allele at the second locus. So 1y p2w p individuals produce 112 p ga-

metes at relative rate H F'/2.

* 1w p2pp individuals produce gametes with a wild-type allele at the first locus with probabil-
ity 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second locus.

So 1w p2pp individuals produce 1y2p gametes at relative rate F'/2.

Gametes of haplotype 12 p are produced in the following ways:

* lwp2wp individuals produce gametes with a drive allele at the first locus with probability
1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the second
locus, and homing occurs with probability H. There is a fitness effect, I, due to the payload
of the drive allele at the second locus. So 1y p2w p individuals produce 1 p2p gametes at
relative rate H F'/2.

* lwp2pp individuals produce gametes with a drive allele at the first locus with probability
1/2. There is a fitness effect, F', due to the payload of the drive allele at the second locus. So

1w p2pp individuals produce 1 p2p gametes at relative rate /2.

* 1pp2w p individuals have only the drive allele at the first locus. The action of the drive allele
at the first locus is to cut the wild-type allele at the second locus, and homing occurs with
probability H. There is a fitness effect, I, due to the payload of the drive allele at the second

locus. So 1 pp2yw p individuals produce 1 p2p gametes at relative rate H F'.

131



* 1pp2pp individuals produce only 1 p2p gametes. There is a fitness effect, F, due to the
payload of the drive allele at the second locus. So 1 pp2pp individuals produce 1p2p ga-

metes at relative rate F'.

(Notice that if H is interpreted as the homing probability and F is interpreted as the fitness ef-
fect due to the drive payload, then Table 3.1 is naturally interpreted as describing drive that occurs
in the embryo. That is, individuals with at least one copy of the drive allele at the first locus and a
single copy of the drive allele at the second locus shred the wild-type allele at the second locus during
embryonic development. And if homing does not occur, then the resulting, mature individuals are
nonviable since the W' (or D) allele is haploinsufficient. But Table 3.1 also effectively describes the
production of gametes in the case of meiotic drive. The subtle distinction in that case would be that,
if cutting occurs and homing does not follow, then 1y p2y p and 1 pp 2y p individuals produce
a nonzero amount of gametes with a mutilated wild-type allele at the second locus. But when those
gametes pair with any other gamete, the resulting individuals are necessarily nonviable, and so, effec-
tively, 1yw p2w p and 1 pp 2y p individuals only produce gametes with a drive allele at the second
locus.)

Using these rules, we can formally express the rates at which the four types of gametes are pro-

duced in the population. We denote by g(2) the rate (with implicit time-dependence) at which
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gametes with haplotype 2 are produced by individuals in the population.

1
9(w2w) = e(lww2ww) + S Fe(lww2wp)
1 1 1
g<1W2D) = iF.’B(lwwzw/D) =+ Fx(lww2DD> + §HF$(1WD2WD) + iF‘T(ll/VDzDD)
g(1p2w) =0

1 1
9(1p2p) = §HF33(1WD2WD) + §F33(1WD2DD) + HFz(1pp2wp) + Fx(1pp2pp)

Here, 2(2) is the frequency of individuals with genotype 2.

The selection dynamics are then modeled by the following system of equations:

T(lww2ww) = g(lw2w)? — L2z (lyww2ww)
i(lww2wp) = 29(1w2w)g(lw2p) — ¥z (1lww2wp)
#(lww2pp) = 9(lw2p)® — ¥*z(lww2pp)
t(lwp2ww) = 29(1w2w)g(1p2w) — ¥z (1wp2ww)

i(lwp2wp) = 29(1w2p)9(1p2w) + 29(1w2w)9(1p2p) — v*=(lwp2wp)

&(lwp2pp) = 29(1w2p)g(1p2p) — ¢*z(lwp2pp)
i(lpp2ww) = 9(1p2w)* = Y*x(1pp2ww)
&(1pp2wp) = 29(1p2w)g(1p2p) — ¢*z(1pp2wp)
#(1pp2pp) = 9(1p2p)* — ¥*2(1pp2pD)

Here, an overdot denotes the time derivative, d/dt. Throughout this Chapter, we omit explicitly
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writing the time dependence of our dynamical quantities. Note that this formulation assumes ran-
dom mating, i.e., that two random gametes come together to form an individual. Also note that
products g(y)g(2) represent the pairings of different gametes. At any given time, we require that

the total number of individuals sums to one:

To enforce this density constraint, we set

Y =g(lw2w) + 9(lw2p) + 9(1p2w) + g(1p2p)

3.9.1.2 MODEL FOR AN N-ELEMENT DAISY DRIVE

We can apply the same engineering to a daisy drive chain of arbitrary length, n, where the drive allele
at one locus induces cutting of the wild-type allele at the next locus in the sequence. To describe this
mathematically, it is helpful to generalize our notation.

Consider a daisy drive construct with only two loci, as in Section 3.9.1.1. We use a “1” bit to denote
a wild-type allele, and we use a “o” bit to denote a daisy drive allele. To represent genotypes, we
introduce vectors a = (a1, a2) andb = (b1, b2), where each ay, ag, by, be € {0, 1}. We construct

these vectors such that a; and by represent the two alleles at the first locus, while a2 and by represent

the two alleles at the second locus. A full genotype is then a list of the two vectors, [a, b]. We write
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the nine possible genotypes for a two-element drive system as:

lww2ww = [(1,1),(1,1)]
lww2wp = [(1,1),(1,0)]
lww2pp = [(1,0), (1,0)]
lwp2ww = [(1,1),(0,1)]
lwp2wp = [(1,1),(0,0)]
lwp2pp =1(1,0),(0,0)]
1pp2ww = [(0,1),(0,1)]
1pp2wp =[(0,1),(0,0)]

1pp2pp = [(0,0),(0,0)]

Notice that if an individual is heterozygous at a particular locus, then this notation allows for two
ways of writing the alleles at that locus. For example, genotype 1y p2y p can be written in any one
of four equivalent ways: [(1, 1), (0,0)], [(0,0), (1, 1)], [(1,0), (0, 1)], or [(0, 1), (1,0)].

When modeling daisy drives with a large number of loci, it is helpful to adopt shorthand no-
tation. To do this, we extend the lengths of a and b to be equal to the number of loci, 7. That
is,weleta = (ai,...,ap)andb = (b1,...,by), whereeacha;,b; € {0,1}. For exam-
ple, the genotype 1yw2pp3wp can be written [a,b] = [(1,0,1), (1,0,0)] or, equivalently,
[a,b] = [(1,0,0),(1,0,1)].

We denote by x4 the frequency of individuals with genotype [a, b]. We denote by gj, the rate at
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which gametes with haplotype b are produced. For an n-element daisy drive, gy, is given by

gp = Z Y Al
a7ﬁ

- Q10—
X H {5%'1%'5,31'51‘ [607171' + O‘i—lﬂi—ldl,bi] +(1- 5042‘»32') ﬂ
=1

5 +(1- ai-15¢—1)H50,bi] }

(3.1)
Here, we have defined g = By = 1. d;; is the Kronecker delta, defined by d;; = 1ifi = jand
0ij = 0ifi # j.In Equations (3.1), in the sum over c, 3 when enumerating genotypes, heterozy-
gous loci (cv; # [3;) are each counted once, so there is no double-counting. gy, is linear in each x4,
where all genotypes [, 3] are summed over.
We understand the terms in the factors in brackets as follows. Consider just a single factor in

brackets for a particular value of 4.

* If oy = B; = bj = 0, then individuals of genotype [, 5] have two identical copies of allele 0

at the 7t locus, and those individuals create only gametes with allele 0 at position .

* Ifa; = B; = by = landa;—18i—1 = 1, then individuals of genotype [, 3] have two
identical copies of allele 1 at the i*" locus and no copy of allele 0 at the (i — 1) locus, and

those individuals create only gametes with allele 1 at position 7.

* If oy # Biand oj—18i—1 = 1, then individuals of genotype [c, 3] have a single copy of
allele b; at the i*™® locus, and without any action from the daisy drive, those individuals create

gametes with allele b; and allele (1 + (—1)%)/2 at position i in equal proportion.

* Ifoyy # Biand oj—15;—1 = 0, then individuals of genotype [cv, 3] have a single copy of
allele b; at the i*® locus, and the daisy drive allele at the (i — 1) locus cuts the wild-type
allele at the 7" locus. Homing then occurs with probability H, and gametes with allele 0 at

position % are created.

The prefactor F’ 1=anfn is the fitness cost associated with the payload. It appears if there is at least

one copy of the daisy drive allele at the last position, n, in the daisy chain.
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The selection dynamics for an n-element daisy drive are modeled by the following equations:

Tap = Zga Zgﬁ H [5a¢b¢5aiai55ibi +(1— 5aibi)(1 - 5aiﬁz‘)] - wzwab (3.2)
« B i=1

In Equations (3.2), the haplotypes av and 3 are summed independently. There is one such equation

for each possible genotype [a, b].

We make sense of Equations (3.2) as follows. Each pair of gametes g, and gz makes a new individ-

ual.

* Ifa; = b; = a; = f3;, then gametes of haplotypes o and 3 pair to make only individuals
with genotype [a;, b;] at locus i.

* Ifa; # b;and o; # f3;, then gametes of haplotypes o and 3 pair to make only individuals
with genotype [a;, b;] at locus i.

We impose the density constraint
Z Tap = 1 (33)
a,b

As already noted for Equations (3.1), in the sum over a, b when enumerating genotypes, heterozy-

gous loci (a; # b;) are each counted once, so there is no double-counting. We use the following

identity:

>

a,b

[5%51‘5061’&15,31'171 + (1 - 5aib¢)<1 - 5ai/8i)] =1
1

n
The form of 1) that enforces the density constraint is

=) ga (34)
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3.9.2 EVOLUTIONARY DYNAMICS OF DAISY DRIVE RESISTANCE

Thus far in Section 3.9, we have assumed that there are exactly two alleles at each daisy drive locus:
the daisy drive element, D, and the corresponding wild-type, W. However, additional alleles could
arise in various ways: standing genetic variation, de novo mutation, or misrepair after cutting could
all result in alleles with mismatches between the engineered guide RNAs and their corresponding
recognition sequences. Such alleles would be resistant to the future effects of daisy-mediated cutting.

Our previous consideration of only two classes of allele was motivated by our presumed biolog-
ical design: each daisy element was to target a highly conserved essential gene using multiple guide
RNAs, and the corresponding daisy drive construct was to contain a genetically recoded copy of the
target gene. Under these assumptions, we would expect low rates of standing genetic variation and
de novo mutation, and targets resulting from misrepair would almost certainly produce nonviable
offspring.

However, these assumptions are fairly restrictive. It could be difficult, in practice, to locate highly
conserved regions, recode essential genes, and design multiple guide RNAs for every daisy element
in a large chain, particularly in time-sensitive situations, such as responding to release of a rogue
drive. Thus, in this section, we relax these earlier assumptions by extending our model to account

for drive-resistant alleles.

138



3.9.2.1 MODEL FOR A 2-ELEMENT DAISY DRIVE WITH RESISTANCE

We begin by considering the special case of two daisy drive elements, as in Section 3.9.1.1 above. The
relevant loci are denoted 1 and 2 as before. Now, however, there are three alleles: the wild-type, W,
the drive element, D, and a resistant allele, R, which is immune to the effects of the drive. We as-
sume that resistant alleles primarily arise as the result of misrepair following cutting events (standing
genetic variation could be accounted for by simply varying the initial frequency of the R allele). Be-
cause only the second locus is acted upon by the drive, we ignore resistance at the first locus.

Now, we consider the case where there is at least one drive element at the first locus (e.g., an in-
dividual with genotype 1y p or 1 pp). Then there are six cases, depending on the genotype at the
second locus:

* WW: The drive element cuts at both W alleles until both are resistant to further cutting.
The individual thus converts to genotype 2 at this locus, and all gametes contain the 2

allele.

* W D: The drive element cuts at the IV allele. Subsequent repair occurs by homologous re-
combination with probability H, or by nonhomologous end-joining with probability 1 — H.
In the former case, the individual converts to genotype 2pp and all gametes have the 2 al-
lele. In the latter case, the individual converts to 2 p g and produces gametes with 2p or 2p

alleles with equal proportions.

* W R: The drive element cuts at the I allele. Subsequent repair by either repair pathway
results in a resistant allele, so the individual converts to genotype 2gg. Thus, all gametes

produced contain the 2 allele.
* DD: No cutting occurs, so all gametes contain the 2 allele.

* DR: No cutting occurs, so gametes are produced containing the 2 or 2, allele with equal

proportions.
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Genotype 1W2W 1W2D 1W2R 1D2W 1D2D 1D2R Fitness
Lyw2ww | 1 0 0 0 0 0 1
lyw2wp | 3 : 0 0 0 0 F
lww2wr | 3 0 3 0 0 0 K
lww2Dpr 0 i 3 0 0 0 FK
lww2grr | O 0 1 0 0 0 K
lwp2ww | 0 0 3 0 0 : G
lwp2wp | 0 i L ey o R AC;
lwp2wr | 0 0 3 0 0 3 GK
lwp2pp | 0 3 0 0 3 0 FG
lwp2pr 0 i i 0 i T | FGK
lwp2rr 0 0 3 0 0 3 GK
Ipp2ww | 0 0 0 0 0 1 G
1pp2wp | 0 0 0 o 4 L FG
1pp2wr 0 0 0 0 0 1 GK
1pp2pD 0 0 0 0 1 0 FG
1pp2pr 0 0 0 0 3 | FGK
1pp2kR 0 0 0 0 0 1 GK

Table 3.2: Gamete production probabilities and genotype fitnesses for two-element daisy drive with resistant alleles.

* RR: No cutting occurs, so all gametes contain the 2 allele.

The cases above describe the production probabilities of the various alleles. But what are their
effects on fitness? We assume that the payload element, 2 p, confers a dominant fitness cost, ¢; the
upstream drive element, 1 p, confers a dominant fitness cost, d; and the resistant allele confers a
dominant fitness cost, s. We assume that the all-wild-type individual has maximum fitness 1, so that
0 < ¢,d, s < 1. We then define the shorthand notation F =1 —¢,G =1 —d,and K =1 — s.

These assumptions are summarized in Table 3.2.
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Using these rules, we can formally express the rates at which the six types of gametes are produced
in the population. We denote by g(z) the rate (with implicit time-dependence) at which gametes

with haplotype 2 are produced by individuals in the population.

1 1
9(1W2W) = 1?(1WW2WW) + §F«T(1WW2WD) + iKtT(lWWQWR)
1 1 1+ H
9(1W2D) = §F$(1WW2WD) + Fx(lwaDD) + §FK1'(1WW2DR) + TFG-T(1WD2WD)
1 1
+ §FG$(1WD2DD) + ZFGK(B(IWDQDR)
1 1 1
g(lw2R) = §K«T(1WW2WR) + §FK$(1WW2DR) + K$(1WW2RR) + §GCU(1WD2WW)
1-H 1 1
+ TFG$(1WD2WD) + iGKl'(lWDQWR) + ZFGKI‘(lWDQDR)
1
-+ 5GK$(1WD2RR)
g(1p2w) =0
1+ H 1 1
g(lDQD) = TFG]}(1WD2WD) + §FG$(1WD2DD) + ZFGKQJ‘(1WD2DR)
1+ H 1
+ TFG.I'ODDQWD) + FGx(lDDQDD) -+ iFGKx(lDDzDR)
1 1-H 1
g(1p2R) = §G$(1WD2WW) + TFGQB(IWDQWD) + 5GK$(1WD2WR)
1 1
+ ZFGK$(1WD2DR) + §GK.CU(1WD2RR) + Gx(1pp2ww)
1-H 1
+ TFGa}(lDDQWD) + GKJZ(lDDQWR) + iFGK«T(lDD2DR)

+ GKx(1pp2rR)

Here, z(2) is the frequency of individuals with genotype 2.
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The selection dynamics are then modeled by the following system of equations:

(lww2ww) =
T(lww2wp) =
T(lww2wr) =
#(lww2pp) =
T(lww2pr) =
t(lww2rr) =
(lwp2ww) =
t(lwp2wp) =
#(lwp2wr) =
#(lwp2pp) =
#(lwp2pr) =
&(lwp2rR) =
t(1pp2ww) =
#(1pp2wp) =
i(1pp2wr) =
#(1pp2pp) =
&(1pp2pR) =

#(1pp2rR) =

9(lw2w)? — P> z(Aww2ww)

29(1w2w)g(1w2p) — ¥*z(lww2wp)

29(lw2w)g(lw2r) — Ve (lww2wr)

9(1w2p)? = *x(lww2pp)

29(1w2p)g(lw2r) — ¥ *z(lww2pr)

9(lw2r)* — v’ z(lww2rr)

29(1w2w)g(1p2w) — ¥’ x(lwp2ww)

29(1w2p)g(1p2w) + 29(1w2w)g(1p2p) — ¥*x(lwp2wp)
29(1w2r)9(1p2w) + 29(lw2w)g(1p2r) — ¢ z(lwp2wr)
29(1w2p)g(1p2p) — ¥’ x(lwp2pD)

29(1w2p)9(1p2r) + 29(1w2r)9(102p) — ¥*z(lwp2pR)
29(1w2r)9(1p2r) — *=(lwp2rR)

9(1p2w)? — V*z(1pp2ww)

29(1p2w)g(1p2p) — ¢*=(1pp2wp)

29(1p2w)9(1p2r) — ¥*x(1pp2wr)

9(1p2p)? — ¢¥*x(1pp2pD)

29(1p2p)g(1p2r) — ¢*z(1pp2DR)

9(1p2g)* — ¢¥*x(1pp2RR)
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Note that this formulation assumes random mating as before, i.e., that two random gametes come
together to form an individual. Also note that products g(y)g(z) represent the pairings of different

gametes. At any given time, we require that the total number of individuals sums to one:

Zx(z) =1

z

To enforce this density constraint, we set

Y =g(lw2w) + 9(lw2p) + 9(1w2r) + 9(1p2w) + 9(1p2p) + 9(1p2R)

3.9.2.2 MODEL FOR AN N-ELEMENT DAISY DRIVE WITH RESISTANCE

As in Section 3.9.1.2 above, we now apply the same concept to a daisy drive chain of arbitrary length,
n. To describe this mathematically, we return to and amend our previous notation for an n-element
system.

Consider a daisy drive construct with only two loci, as in Section 3.9.2.1. We use “W” to denote
a wild-type allele, “D” to denote a daisy drive allele, and “R” to denote a resistant allele. To repre-
sent genotypes, we introduce vectors & = (a1, az)andb = (b1, b2), whereeach a1, az, b1,b2 €
{W, D, R}. We construct these vectors such that a; and by represent the two alleles at the first lo-
cus, while as and b represent the two alleles at the second locus. A full genotype is then a list of the
two vectors, [a, b].

Below are a few examples of this naming convention applied to the genotypes of the two-element
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system:

lyw2ww = [(W, W), (W, W)]
Lyww2wp = [(W, W), (W, D)]
lww2pp = [(W, D), (W, D)]
lww2pr = [(W, D), (W, R)]
lwp2ww = [(W, W), (D, W)]
lwp2wp = [(W, W), (D, D)]

To consider daisy drives of arbitrary length, we extend the lengths of the vectors a and b to be
equal to the number of loci, n. Thatis, weleta = (ai,...,an)andb = (by,...,by), where
each a;, b; € {W, D, R}. Again, notice that if an individual is heterozygous at a particular locus,
then this notation allows for two ways of writing the alleles at that locus. For example, the geno-
type 1 pp2RrRr3pR can be written [a,b] = [(D, R, D), (D, R, R)| or, equivalently, [a,b] =
[(D,R,R),(D,R,D)].

We denote by x4 the frequency of individuals with genotype [a, b]. We denote by g3 the rate at

which gametes with haplotype b are produced. For an n-element daisy drive, gy, is given by

9 =Y Tapf(, B)Pas(b) (3:5)
o8

Here we have used shorthand notation: f(«, 3) is the fitness of an individual with genotype [, 3],

and pq g(b) is the probability that an individual with genotype [, 3] produces a gamete with hap-
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lotype b. Notice that this is the same form as our Equations (3.1) above, with the fitness and gamete

production components clearly identified.

The fitness of an [, (] individual, f(cv, ), is given by:

flo, B) = HFsilf(lféai,D)(17551-,D)Kllf(lf(sahR)(lf&Bi!R) 66

%
=1

Here, F; = 1 — ¢;, where c¢; is the fitness cost associated with the 7th daisy drive element. Similarly,
K; = 1 — s;, where s; is the fitness cost of resistance at the ith position. d;; is the Kronecker delta,
defined by 6;; = 1ifi = jandd;; = 0ifi # j. This formulation assumes dominance of each
fitness cost and mutual independence of all costs, as in the two-element system in Section 3.9.2.1
above.

Although the above formulation allows us to assign arbitrary costs at each position, we make the
following simplifying assumptions in our simulations:

* The cost of resistance at upstream (non-payload) elements is zero: K; = --- = K1 = 1.

* All upstream (non-payload) drive elements have identical associated fitness costs: F; =
=F,1=1—-4d.

* We define a cost, s, associated with resistance to the payload element: K, =1 — s.

* We define a cost, ¢, associated with the payload elementitself: F;, =1 —c.
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Then, the probability, p, 5(b), of an [, 3] individual producing gamete b is given by:

n

pas(d) =]] { (1-92 5., 0)
=1
X |00, 5,(2) + G V8 5, (D 5,(1)
1-H
2

1 1+ H
+ 5bi’D’YO?i,,8i(2) + 5(5(,2.71)’}/3’51_(1)’}/2”31,(1) + 2 5bi’D’Y£)/Bi(1)f}/xi/7Bi(1)}

1
+ 66, RV 5, (2) + §5b¢,R’Yi,m(1)%2ﬁi(1) + 8o, 7 Ve, (Do 6, (1)

+ 751'717,31'71 (O)
1 1
X 6bi7W7$,5¢(2) + 76bi’W725,6¢(1)7£,5¢(1) + 76”1‘:”’73:752‘(1)7612,51'(1)
2 2
1 1
+ 0,.0%a,6:(2) + 50,075, (a6, (1) + 506076, (D 7a5, (1)

1 1
+ 51;1-,1%’70]2,5,-(2) + 5&,-,}2752,@(”’75@(1) + §5bi,R’YoIZ,,BZ-(1)’7£ﬂi(1)} }

(3-7)
Here, we use shorthand notation, 'y;i, 3 (k), to count the number of a particular allele at a particular
locus: we definevg, 5 (k) = 1if thereare k copies (k = 0,1,2) of allele ¢ (¢ € {W, D, R})at

position 4 in an individual with genotype [cv, B]. Otherwise, 75, 5. (k) = 0. This is given by:
'Yglﬁz(k) = 5k‘,0 [(1 - 5041-70)(1 - 552-,0)]"‘5&1 [5041-70(1 - 5,81-,6) + 551-,6(1 - 604i70)]+6k,2 [5041-705&,6] :

For example, 73; 5,(2) = Lif there are two copies of a wild-type allele at position ¢ in an [a, 3]
individual; otherwise 7;1/, 5,(2) = 0. We also define ag = By = W.

We understand Equations (3.7) as follows. Inheritance at each locus is independent, so the total
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probability p,, (b) is the product of inheritance probabilities at each individual position. Consider
locus 7. There are two possibilities. Either there is a daisy drive allele at the previous locus, which
entails %IZ- 1 Bia (0) = 0. (This eliminates the sum in the second pair of square brackets.) Or there
is no daisy drive allele at the previous locus, which entails 73, 1 Bia (0) = 1. (This eliminates the
sum in the first pair of square brackets.)

If there is a daisy drive allele at the previous locus, then the value of the factor in the product of

Equations (3.7) depends on the genotype at the current locus:

* (a4, Bi) = (W, W). This entails 'YX[:,@- (2) = 1. Only R alleles are produced at locus i.
Thus, the factor is 1 if 0p, g = 1. Otherwise, it is zero.

* (e, Bi) = (W, D). This entails ’ygjﬁi (1)’}/51_752_ (1) = 1. By the action of the drive, D alleles
are produced at locus 7 with probability (1 + H)/2, or R alleles are produced at locus 7 with
probability (1 — H)/2. Soif d,,p = 1, then the factoris (1 + H)/2. Orif &, r = 1, then

the factoris (1 — H)/2. Otherwise, it is zero.

* (a4, Bi) = (W, R). This entails ’YX[:,ﬁi (1)752,’51_ (1) = 1. Only R alleles are produced at

locus ¢. Thus, the factor is 1if oy, gr = 1. Otherwise, it is zero.

* (e, Bi) = (D, D). This entails 7027&- (2) = 1. Only D alleles are produced at locus ¢. Thus,

the factor is 1 if 0, p = 1. Otherwise, it is zero.

* (e, Bi) = (D, R). This entails %Z,Bi (1)751,7& (1) = 1. Here, D and R alleles are pro-
duced at locus 7 in equal proportions. Thus, the factoris 1/2if &, p = lorifdp, g = 1.

Otherwise, it is zero.

* (e, Bi) = (R, R). This entails %Ii,ﬁi (2) = 1. Only R alleles are produced at locus i. Thus,

the factor is 1 if 0, g = 1. Otherwise, it is zero.

Similarly, if there is no daisy drive allele at the previous locus, then the value of the factor in the
product of Equations (3.7) depends on the genotype at the current locus. However, because there is

no drive, the inheritance probabilities are simply Mendelian:
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* (a4, Bi) = (W, W). This entails ’ygi/’ 5,(2) = 1. Only W alleles are produced at locus i.

Thus, the factor is 1 if 05, v = 1. Otherwise, it is zero.

* (e, Bi) = (W, D). This entails 721-/,61 (1)702761 (1) = 1. There is no drive action, so W
alleles and D alleles are produced at locus 7 in equal proportions. Thus, if 4y, v = 1 or

Op,,p = 1, then the factor is 1/2. Otherwise, it is zero.

* (a4, B;) = (W, R). This entails ’yx[i/ﬁi (l)voliﬂi (1) = 1. Here, W alleles and R alleles are
produced at locus ¢ in equal proportions. Thus, if 0, 157 = 1 or dp, r = 1, then the factor is

1/2. Otherwise, it is zero.

* (a4, Bi) = (D, D). This entails 751,’51_ (2) = 1. Only D alleles are produced at locus ¢. Thus,

the factor is 1 if 05, p = 1. Otherwise, it is zero.

* (e, Bi) = (D, R). This entails 702,52- (1)751_7& (1) = 1. Here, D alleles and R alleles are
produced at locus 7 in equal proportions. Thus, the factoris 1/2if 8, p = lord, r = 1.

Otherwise, it is zero.

* (a4, Bi) = (R, R). This entails Vr]ji,ﬁi (2) = 1. Only R alleles are produced at locus i. Thus,

the factor is 1 if 0, g = 1. Otherwise, it is zero.

The selection dynamics for an n-element daisy drive are then modeled by the following equa-

tions:
n
Tap = Z Ja Z 9B H 52?151 - waab (3-8)
«a B i=1

Here, as shorthand notation, we define

D D
w R w R
+ Ya;,b; (I)Vai,bi <1)7ai,5¢ (1)’7042‘751‘ (1>

D R D R
+ ’Yal,bl (1)’.)/&“1)2 (1)’}/&1,61 (1)7051,51 (]')
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In Equations (3.8), the haplotypes a and 3 are summed independently. There is one such equation
for each possible genotype [a, b].

We impose the density constraint

> wa=1. (3.9)
a,b

We use the following identity:

ST =

a,b i=1

And, as before, the form of 4 that enforces the density constraint is
b= ga- (3.10)
«

3.9.2.3 CONTINUOUS RELEASE

To model a continuous release of individuals carrying the daisy drive construct into a population, we

use the following equations:

n
Tah = Z Ja Z ap H 53;151 + Cap — ¢2 + Z Cozﬁ Lab (3-11)
a B i=1 a,B

A nonzero value of Cy;, models a flow of individuals of genotype [a, b] into the population. Equa-
tions (3.11) are thus a generalization of Equations (3.8). v is given by Equation (3.10), and the density

constraint, Equation (3.9), holds at all times.
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3.9.3 TWO-POPULATION MODEL FOR AN T-ELEMENT DAISY DRIVE WITH RESISTANCE

We now extend the model from Section 3.9.2.3 to include a simple spatial component: two popula-

tions connected by gene flow.

3.9.3.1 TWO-POPULATION MODEL WITHOUT GENE FLOW

First, we consider two populations whose evolutionary dynamics are decoupled. We denote by 44
the frequency of individuals with genotype [a, b] among individuals in the target population, and

we denote by g the frequency of individuals with genotype [a, b] among individuals in the main-

land population. We denote by glET) the rate at which gametes with haplotype b are produced in the

target population, and we denote by glEM) the same for the mainland population. For an n-element

daisy drive, géT) and glEM) are given by

A" =" zapf (e, B)pas(b)
a,B
(3.02)

ngM) = Z yaﬁf(av /B)pa,ﬁ(b)
.p

Here, f(a, [3) is the fitness of the genotype [, 5], and p, 5(b) is the probability that an individual
of genotype [c, 3] produces a gamete with haplotype b. These two quantities are given by Equa-
tions (3.6) and (3.7), respectively.

Equations (3.12) are essentially identical to Equations (3.5), except we assume that only individuals

in the target population contribute to the target population gamete pool and similarly for the main-



land. Thus, the difference between Equations (3.12) and Equations (3.5) arises from the separation of
the two populations via géT), glEM), TaBs and Yaa.

The selection dynamics for an n-element daisy drive system in two populations are then modeled

by the following equations:

=1

=Y 00> g ﬁ os +Cl) = | (™) Y Chi | wa
a B a,B
Jab = Z g8 Z 95 H oot ol — (W ) Z O | ab

Notice that each population experiences selection dynamics identical to the single-population model

(T)

given by Equations (3.11). A nonzero value of C,, * models a flow of individuals of genotype [a, b]

(M)

into the target population, and a nonzero value of C' ;" ” models a flow of individuals of genotype

[a, b] into the mainland population.

The density constraints are

Z Tap = 1
a,b
Z Yab = 1
a,b

To enforce these density constraints, we set

W
400 = 37 6
e
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3.9.3.2 TWO-POPULATION MODEL WITH GENE FLOW

Next, we assume that there is a nonzero rate of migration of individuals from the target population
to the mainland population and vice versa. For notational clarity, we define new frequency vari-
ables. We denote by X, (with an uppercase X)) the frequency of individuals with genotype [a, b]
among individuals in the target population when there is migration, and we denote by Y5 (with an
uppercase V') the frequency of individuals with genotype [a, b] among individuals in the mainland
population when there is migration. We denote by GI()T) (with an uppercase &) the rate at which
gametes with haplotype b are produced in the target population when there is migration, and we de-

note by G I(;M) (with an uppercase ) the same for the mainland population when there is migration.

G,()T) and G,()M) are given by

GI()T) = Z Xaﬂf(a7 /B)pa,ﬁ (b)

o0 (3.3)
GéM) = Z Ya,@f(av 6)p0¢,,3(b)

a,B

Here, f(c, f3) is the fitness of the genotype e, 8], and p,, g(b) is the probability that an individual
of genotype [«, 3] produces a gamete with haplotype b. These two quantities are given by Equa-
tions (3.6) and (3.7), respectively.

We assume that, over a given time interval, the number of individuals migrating in each direction
is equal, so that the population sizes of the target and the mainland each remain constant. The rate

of migration is quantified by the parameter r. We also denote by R the fraction of all individuals
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that are on the target. (Similarly, 1 — R is the fraction of all individuals that are on the mainland.)
The selection dynamics for an n-element daisy drive system in two populations that are connected

by gene flow are then modeled by the following equations:

v=> G G(ﬁT H 5%& +C4) + ; (Yo — Xap) — (‘IJ(T))Q +> c®
[e% ﬁ a,ﬁ

=1

Yoo =Gt M)ZG(M HW F OO0 4 T (X = Ya) — [ (#0) 0 | v
(3.14)

The density constraints are

Y Xa=1
a,b

Z Y =1
a,b

To enforce these density constraints, we set ¥(7) (with an uppercase ¥) and &™) (with an upper-

case ¥) to equal

RN yery
N =3 G

3.9.4 N-POPULATION MODEL FOR AN N-ELEMENT DAISY DRIVE WITH RESISTANCE

The above treatment is readily extended to a population that consists of V islands. Denote the fre-

quency of individuals of genotype [a, b] onisland £ (for1 < ¢ < N)as Xc%)' Gametes with
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haplotype b are produced on island ¢ at rate G l(f)’ where Gl(f) is given by
Gy ZX F(et, B)pas(b)

The rate of migration of individuals between islands £ and w is quantified by the parameter 14, =
Twe. The fraction of all individuals in the population that are on island £ is denoted by Iy. The

dynamics of X (%) are given by

ZG ZGZ)H5“25Z+C®+ZW“( @ xP) | (w0 +Zc X
p s,

(3.15)

The density constraints are
© _
> Koy =1
a,b

To enforce these density constraints, we set ¥(¥) (with an uppercase ¥) to equal

VG gyer

«

3.9.5 PARTICULAR CASE: DAISY-CHAIN VERSUS SELF-PROPAGATING DRIVES ON FIVE IS-

LANDS

It is instructive to contrast the evolutionary dynamics of a daisy-chain gene drive with a self-propagating

gene drive, where in both cases the evolution occurs in a population consisting of five islands. For
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simplicity, we assume that individuals are only exchanged between nearby islands, i.e., there is gene
flow between islands 1 and 2, between islands 2 and 3, between islands 3 and 4, and between islands
4 and 5. We further assume that these rates of gene flow are all equal, and we assume that each island
has the same number of individuals.

In this section, we present the equations necessary to perform simulations of the evolutionary

dynamics for each of these scenarios.

3.9.5.1 H5-POPULATION MODEL FOR AN N-ELEMENT DAISY DRIVE

For modeling the dynamics of a daisy-chain gene drive on five islands, we use Equations (3.15). Sub-
stituting 712/ Ry = 721/ Ro = 123/ Ry = 132/ R3 = r34/R3 = 143/ Ry = 145/ R4 = 154/ R5 =
r, and setting all other migration rates equal to zero, we obtain

D= e o T o+ (- x) - (o) ) 1)
o B o.f

=1

Z G2 Z el H s+ O+ (X5 + x) —2x()) - (\11(2))2 +y ¢ x5
a,p

Z a® Z Gy H o0 ) (Xf;f) +x@ 2X(3)) (\11(3))2 +yoC | x5

=1

Z G Z ay H ou O 4 (X5 + x5 - 2x()) - <\y<4>)2 +3 ) x8
a,B

D=3 o [ o+ () - x) - (89) "+ D) 1
« B o,

=1
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3.9.5.2 5-POPULATION MODEL FOR A SELF-PROPAGATING DRIVE

The equations for modeling the dynamics of a self-propagating gene drive on five islands are based
on the model presented in Chapter 1 (and, correspondingly, in the Supplementary Materials for Ref.
39). For more details and descriptions, please see the writing therein.

For a self-propagating gene drive, consider that there are N guide RNAs. There are the drive
allele, D, N “costly” resistant alleles, R; (with 1 < i < N), N “neutral” resistant alleles, S; (with
1 < i < N), and the wild-type allele, Sp.

0)

We use X, (gb to denote the frequency of individuals of genotype [a, b] on island £. The rates at

which each of the 2N + 2 types of gametes are produced on island £ are given by

N N
¢ ¢ ¢ :
FY = fopXhp + Y pr.ofrn Xy p+ Y psn.nfs.nXs)p

k=1 k=0
N N ‘
PO _ L+ O x® 1 x© . x®
0= 0 LS i S stk
k=0 k=1 k=0
N N
0 1+ O (0) 1 (0)
FRi = TZkaRiXRkRi + 9 ZfRiSkXRiSk
k=1 k=0

7 i—1

¢ ¢
+ kaD,RikaDXf(g,zp + E pSkD,RifSkDXék)D
k=1 k=0

From conservation of probability, we have

N
PR,D,D + ZPR;QD,R,L- =1
i=k
N N
ps,p,D + ZpSkD,Si + Z psyD,R; = 1
i—=k i=k+1
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Since type R D and type Sy D individuals are fully resistant to being manipulated by the drive

construct, they show standard Mendelian segregation in their production of gametes, and we have

PRy D,Ryy = PSyD,Sn = 5

2

For modeling the dynamics of a self-propagating gene drive on five islands, we use the following

equations:

The dynamics of individuals of genotype DD on each island are given by

(F(1)> +C5)
) = (F5)) + )

- (3 3)\ 2 3
5= (87 + )

(o x0) - () )
b (X + XU, —2x2) - @wf+§;c
b (i xB, —axB) - [ (v0) 4
b (x,+ xB) - 2x@) - [ (v0) 4

+4ﬂ%‘@@«5ﬂ+20)
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(2)
ap

3)
af

>.C.
of

(4)
af
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The dynamics of individuals of genotype R; D on each island are given by
(1 1) (1 1 2 1 1
K0l 2D E) + O+ (X2~ X,) — (( o) e >)
(2 2) (2 2 3 1 2 2
Xiop = 2P+ Cp v (X0 + Xy —2x0) - | (9@ ) + Z ) x2,

- (3 3) (3 3 4 2 3 2 3 3
Xy = 2P + Oy 4 (X + X0p —2x ) - | (v9) + 3 | X

(4 4) (4 4 5 3 4 2 4 4
Xiop = 2B B+ iy + v (X + X —2X ) = | (99) + 2 el | Xy
(5 5 5 5 4 5 5
K0 = 2D ED + O+ (x40~ XE,) — (( o) e >)

The dynamics of individuals of genotype S; D on each island are given by

op | Xs,

op
(4 4 4 4 5 3 4 4 4

X4y =280 B + )+ (X0, + x5 —2x()) - | (w@) + > | X8,

of
5 5) (5 5 4 5 2 5 5
X§p =260 FY + Q)+ (X5, - xE)) - ((@@) + Zcfyg) x$),
op

158



The dynamics of individuals of genotype R;S;; on each island are given by
(1 1) (1 1 2 (1) 2 (1) (1)
Xy = 2P FY + ) v (Xgigj - XRZ_SJ) - ((qf“)) +y Ca6> X
) 2
X, = 2P FY + O v (X0 + x5k —2x0 ) - [ (v@) + 3o | x5

- (3 3) (3 3 4 3 2 3 3
Xigs, = 2P + Ol 4 (Xl + X0 —2x0 ) — [ (v9) + 3l | X1

K0 = 2 ED o e (x 1 xP —2xi ) - [ () + el ) xi
Xy =2PQFY) + CY) +r (X}(é)sj - XI(_.;)SJ_) - (( (5) ) Z C 5’) Xg
The dynamics of individuals of genotype R; R; on each island are given by
¥l = (2 )P ED + O+ (X2 — X — (( 0y z) o,
XPp == 0 FPFY + O +7 (XI(;)RJ, + X, — QXg)Rj) - ( <2)) + Z | x5

(3 3) (3 3 4 2 3 2 (3) (3)
X = @) FQFY + O +7 (XI(%)R], +XPp - zxijj) - (\1/<3>) +50% | xPn

- (4 4) (4 4 5 3 4 2 (4) (4)
X = @8 FP Y + O +r (ngRj +XPp ~ 2X;3Rj) . (@4)) +5 0 | xin

°- (5 5 5 5 4 5 5
XPp = (@—0)FFy) +Clp +7 (XI(%}RJ_ - XI(%Z-)RJ-) - (( (5) ) + ZC( )> o
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The dynamics of individuals of genotype S;S; on each island are given by

&%:%2—&ﬂEgﬁgm+ng+r
X0, = @ B DR 2, 1
X§h =@ o) FPFY + @, v
‘ng-:(2_5ﬁﬂé?E$%+ngf+r
XPs = 2= 0)FOFY +CFy +r

The density constraints are

(Xfﬁ}gj —ngj) _ (( 1) Zcu)) Xéls

(x8%, + x5, - 2x8%) -

(6t + X2, 2x8) -

5 3 4
(X%, + X8, —2XGy ) -

(\11(2)>2 + z{; )
(v 3)> +ZC ¥
(@4))2 + ZB: o

(Xf;‘}gj - X@]) _ (( 5) Zam) X8

+ZX D+ZX“ +ZZX +ZZX

i=1 5=0 i=1 j=1

To enforce these density constraints, we set

N N
=Fp) 3 Fi) + )Ry
=1 =0
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Discussion

The goal of this dissertation has been to better understand the evolutionary dynamics of CRISPR-
based gene drive systems, including potential problems and possible solutions.

In summary, progress was made on both fronts. In Chapter 1, I presented a mathematical model
for CRISPR-based gene drive systems with resistance encoded at the drive locus and found that

this form of resistance could, in fact, be a major obstacle to the long-term evolutionary stability of
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CRISPR gene drive elements. I similarly studied the dynamics of an alternative design, and the re-
sults suggested that it could mitigate the stability problem posed by this form of resistance, at least in
principle under the various assumptions of the model.

In Chapter 2, I then turned to the question of how effectively a basic CRISPR-based gene drive
system might spread following accidental or otherwise unauthorized release, despite resistance. This
necessitated a different modeling approach that could capture the effect of stochastic fluctuations
when the drive is rare. The results suggested that even simple drive systems without optimization to
mitigate the evolution of resistance (as studied in Chapter 1) could spread to significant frequencies
in wild populations following small releases. I considered a variety of mitigating factors that have
been observed empirically and found that the results were robust to each of these factors. In light
of these findings, I noted the importance of adhering to previously proposed safety protocols in
experimental design and recommended a great deal of further experimental and theoretical research
before field trials are considered in wild populations.

In Chapter 3, I studied an alternative gene drive system called “daisy-chain gene drive” that seemed,
intuitively, more amenable to containment—and, therefore, a potential technical solution to the
problem of inadvertent spread studied in Chapter 2. As in the previous chapters, I constructed a
mathematical model to clarify our thinking about the system and to study its dynamics given our
assumptions. The results suggested that daisy-chain gene drive systems could be capable of attaining
high frequency in a local population following a small release—making them potentially useful—
while exhibiting low spread in subsequent populations connected by gene flow—making them po-

tentially safer than standard drive designs. This was, of course, a preliminary examination of daisy-
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chain gene drive, and a large volume of future experimental and theoretical work will be required to
evaluate the system’s dynamics in real-world populations.

As for next steps, there are at least two promising future directions for this work. One could seek
to better understand the drive systems considered here or develop entirely new drive systems.

In further studying existing drive systems, there is great potential for future work to use exper-
imental and modeling methods to iteratively inform and refine each other. On the experimental
front, next steps will involve carefully characterizing the effects of drive systems in application-
relevant organisms—beyond the proof-of-principle experiments conducted to date—particularly
considering within-organism drive dynamics, including drive efficiency, fitness effects, common av-
enues that lead to different forms of resistance and off-target cutting effects, as well as higher-level
behavioral and ecological effects. On the other hand, additional modeling will be important for
carefully designing informative experiments, while also producing tentative projections for dynam-
ics of these systems in wild populations—which is the best that can be done prior to field trials. In
modeling efforts of this type, a variety of factors not considered in this dissertation will need to be
carefully considered, including species-specific behavior, interspecies interactions, and environmen-
tal features.

Besides studying existing systems, it will be useful for future work to also consider entirely new
systems. A benefit of the modeling approaches used in this dissertation is that they can be used to
rapidly prototype new designs—on paper—and determine whether they show enough promise to
dedicate experimental resources to their construction and further study. In this effort, designs to

solve known problems, such as containment and evolutionary stability, will continue to be promis-
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ing areas of study.

Finally, perhaps the most important direction for future work in the field more broadly is to bet-
ter understand whether, when and where to use these systems at all—a discussion in which technical
details, as discussed in this dissertation, are only one factor. Moreover, this discussion will require
a tremendous, conscientious effort spanning many stakeholder groups, from local communities to
ethicists and policymakers. The approach of this dissertation has been to make no claims of whether
CRISPR gene drive systems should be used in the wild, but rather to proceed with the assumption
that their potential impact and the likelihood of their future use at least warrant their careful study.
In my estimation, whether CRISPR gene drive systems see an eventual application or not, the efforts

of the field will have been extremely worthwhile.
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Review of CRISPR gene drive experiments

In Table A.1, we present empirical homing efficiencies for all CRISPR gene drive constructs reported
to date. These studies varied in multiple ways: they studied different organisms; they used different
methods for counting drive constructs (ranging from direct genetic measurement, such as quanti-
tative PCR, to indirectly observing visible phenotypes), and they sometimes observed differential

inheritance rates between sexes, possibly due to differences in male and female gamete characteristics.
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Given this complexity, we elaborate here on the specific data we selected for review to produce Table

A.1and the reasoning for our choices.

Organism  Ref. System name Efficiency
Yeast 7 ade2::sgRNA > 99%
ade2::sgRNA+URAj3 100%

sgRNA+ABD1 100%

caso+sgRINA > 99%
ADE2+sgRNA+cas9 > 99%

Fruit flies 3 ~v-MCR 97%
67 nanos 62%

vasa 52%

additional nanos 40%-62%

additional vasa 37%-53%

Mosquitoes * AsMCRkhz (male) 98%
AsMCRkhz2 (female) 14%

B AGAPo11377 83%

AGAPoos5958 95%

AGAPoo7280 99%

Table A.1: Empirical homing efficiencies for all CRISPR gene drive systems published to date.

To begin, all studies performed some variation of producing drive/wild-type heterozygotes (DW),
followed by counting the number which converted their wild-type allele to a drive allele. There were
two main approaches.

1. Some constructs acted in the early embryo, in which case WW and DD individuals were
mated to produce offspring which were initially WD. Observations were then made of adult
genotypes. DD individuals must have undergone drive conversion, while WD individuals
must have avoided conversion. Without drive, all adults are expected to be WD, but with

drive, all are expected to be DD.

2. Other constructs acted in the germline of adults, so that adult WD individuals produce D

gametes more often than chance under the effects of drive. To study these constructs, WD
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individuals were mated with WW individuals. Without drive, half of adults should be WW,
and half should be WD. With drive, however, all adults should be WD.

To employ a consistent strategy across the studies, we calculate two numbers for each drive con-
struct: (i) the total number of initial alleles counted which were drives or were subject to drive, T,
and (ii) the total number of resulting drive alleles, D. The homing efficiency can then be calculated

in the following way:

Notice that if drive is perfectly efficient (P = 1), we have D/T" = 1, i.e., there are twice as many
drive alleles as starting heterozygotes, while under standard inheritance (P = 0), the number of
drive alleles is unchanged from the initial heterozygous state, D /T = 1/2. Below, we explain our

calculations of these quantities for Table A.1.

YEAST, DICARLO ET AL, (2015)

The study by DiCarlo ez 4l. studied 5 distinct gene drive systems in yeast”. We address each distinct

system in subsections below.

1. ADE2::SGRNA

This is the basic split drive system containing only a guide RNA. Its design is depicted in Fig. 2B,
and it is described on pp. 1250-1251, With results pictured in Fig. 2D and Fig. 4. Drive abundances
were measured via colony counting (Fig. 2D), obtaining absolute colony numbers, and via qPCR

(Fig. 4), obtaining relative abundances of drive alleles. By the colony counting method, the drive
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efficiency is measured at 100% (D = T = 72). By the qPCR method, > 99% of alleles counted

from offspring were drive alleles, so D > 0.99T". Therefore:

P >0.99

Strictly speaking, the inequality D > 0.997 entails P > 0.98, but we set this to P > 0.99 because
the qPCR results were indistinguishable from 100%. We make a similar approximation below for

systems 4 and s.

2. ADE2::SGRNA+URAj3

This system aimed to test whether an associated ‘cargo’ gene could be spread with the minimal drive
element. Its design is depicted in Fig. 3a, and results are shown in Fig. 3b. The related experiment

measured drive presence via a visible phenotype (red pigment). In total, 60 haploids were red, or

D = 60, out of 6o total alleles, T' = 60. Thus:

3. SGRNA+ABD1

The sgRNA+ABDi drive system tested the ability to target a recoded essential gene. Its design is de-
picted in Fig. 3¢, and results are discussed in the text (first full paragraph on pp. 1252). The presence

of the drive was measured via sequencing of the ABD1 locus. In total, 72 haploids were found to
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have the drive, D = 72, out of 72 counted, T' = 72.

4. cAS9+SGRNA

The first example of an ‘autonomous’ drive in the paper, this system is depicted in Fig. sa. It con-
sisted of a gRNA and casg together targeting the ADE2 locus (recoded due to safety/containment
considerations). The fractional abundance of drive allele was measured by performing gPCR on
diploid offspring from wild-type/drive haploid matings; the corresponding data is found in Fig. sb.
The fractional abundance of the drive allele was measured to be > 99%, so P > 0.99, as for the first
construct above.

P >0.99

5. ADE2+sGRNA-+casg

This system is DiCarlo ez al.’s example of a ‘reversal’ drive, designed to target and overwrite the au-
tonomous drive (casg+sgRNA, directly above). The system is depicted in Fig. sc. The drive effi-
ciency was measured in the same way as that for the casg+sgRNA drive (QPCR to calculate frac-
tional abundance of the overwriting drive allele in diploid offspring from haploid matings). The

fractional abundance was calculated to be > 99%, so P > 0.99, as above.

P >0.99
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FRUIT FLIES, GANTZ AND BIER, (2015)

Gantz and Bier constructed an X-linked drive construct targeting the (X-linked) yellow locus in
Drosophila melanogaster and acting in the early embryo®. The drive functions to knock out the
yellow gene, which produces a yellow-body phenotype, denoted y—, due to lack of black melanin
pigment formation. The wild-type phenotype is referred to as y+. Females with < 2 ar y+, while
females with 2 copies of the drive or males with 1 copy should appear y—. The related data is found
in Fig. 2E and Table 1.

Two sets of crosses were performed: (i) drive-males with wild-type females, and (ii) drive-females
with wild-type males. To tabulate the allele counts D and T', we discuss the two crosses separately.

First, cross (i): In this cross, male oftspring could not have possibly inherited a drive allele nor
received one through conversion. This is because the only allele they could have inherited from the
drive-male parent was the Y chromosome, but the drive is X-linked. Thus we do not consider male
offspring in the total. As for female offspring, these should inherit exactly one drive allele and one
wild-type allele prior to conversion. Then the adult female individuals should appear y— if and
only if drive-mediated conversion was successful. Thus we add exactly two alleles for each female
offspring toward the total allele count, while we add one or two drive alleles to the drive allele count
if the adults are y+ or y—, respectively. Thisyields Dy = 40 x 2+ 1 x 1 = 8landT; =
40 x 2+ 1 x 2 = 82. The drive efficiency for this cross is Py = 2D 5 /Tz — 1 = 0.976.

Second, cross (ii): In this cross, male oftspring are again uninformative, since each should in-

herit exactly one drive allele from the female parent and one Y allele from the male wild-type parent.
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Thus we ignore male offspring in our counting. Female offspring, on the other hand, should all be-
gin as WD embryos, with y+ phenotypes. Then adults are y— if and only if they have undergone
drive-mediated conversion. Thus we count two alleles for every female offspring in the total, one
drive allele per y+ adult and two drive alleles per y— adult. This yields Do = 203x2+1x6 = 412,
andTo = 203 X 2 + 6 x 2 = 418. The drive efficiency for this cross is thus Py = 2Do /To =
0.971.

We then consider crosses (i) and (ii) together to calculate the overall drive efficiency. This yields:

Dy +Dg | _81+412

P=2 -
T; +To 82+ 418

—-1=0.972

FrUIT FLIES, CHAMPER ET AL, (2017)

Champer et al. constructed two CRISPR gene drive constructs in D. melanogaster®. The first re-
sembled the vasa promoter-driven construct from Gantz ez al., discussed in the section immediately
above. An important addition, however, was a DsRed fluorescent protein as payload in the drive
construct, which allows the drive to be detected in heterozygotes, as its red fluorescent phenotype is
dominant. The second construct used the zanos promoter, which has been shown to restrict drive
function to the germline and is expected to produce less toxicity (and thus a lower fitness cost associ-

ated with the drive construct).
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1. VASA CONSTRUCT

This construct was similar to the one studied by Gantz ez al., discussed above. The construct targets
the X-linked yellow gene. Disruption of the gene produces a recessive yellow phenotype, while the
drive itself carries a DsRed payload, producing a dominant red fluorescent eye phenotype. To assess
the construct’s homing efficiency, wild-type males were crossed with heterozygous DW females. In
this setup, all progeny should exhibit the red eye phenotype if the drive is perfectly efficient, while
roughly s0% of progeny should exhibit the red eye phenotype in the absence of conversion. Here
we count toward the total number of drive or susceptible alleles one allele per male offspring and
one allele per female offspring, since in either case only one allele is inherited from the drive parent.
Toward the number of drive alleles, we count one per offspring if the offspring displays the DsRed
phenotype and zero otherwise. This data is shown in Table 2B of the Champer et al. (2017) study.
We count as follows: Do = 909 + 4 = 913 (i.e., the number of drive alleles counted over female
offspring), To = 909 + 4 + 316 = 1229, D » = 953, T; = 953 + 265 + 3 = 1221. Then we

obtain:

Dy+Dg . 9534913

P=2 =20
Ty +To 1221 + 1229

—1=0.523.

2. NANOS CONSTRUCT

This construct is essentially the same as the vasa construct, except that it uses a different promoter
and targets a different sequence in the yellow gene (the coding sequence, rather than the promoter

as in the previous construct). The data is found in Table 1B of the Champer ez al. (2017) study. We
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count potential drive alleles and total alleles as above. Our count is as follows: Do = 290 + 100 +
108 = 498, To = 290+100+108+119+104+9 = 636, D5 = 594, T, = 594+114103+4-2 =

710. We obtain:

_ Do+ Do 594+ 498

- =20 1=0.622.
T; +To 710 + 636

ADDITIONAL DATA

The constructs described above were then tested in a variety of additional D. melanogaster lines,
detailed in Table 3 of that work. The authors’ efficiency calculations are detailed in the St Dataset.
For the vasa construct (2 lines), the minimum is P = 0.37, and the maximum is P = 0.53. For the

nanos construct (7 lines), the minimum is P = 0.40, and the maximum is P = 0.62.

MosQUITOES, GANTZ ET 4L, (2015)

In this study, Gantz e al. constructed an autonomous CRISPR-based gene drive system in the
malaria vector mosquito Anapheles stephensi®. The construct comprises two effector genes with
anti-Plasmodium falciparum activity, a dominant marker gene (DsRed), and the CRISPR compo-
nents (Casg with a single gRNA), spanning roughly 17 kb. The construct targets the kynurenine

white (

bydroxylase kb" ) locus, which has a recessive white-eye phenotype. The effect of this targeting
is that drive/wild-type heterozygotes display a DsRed phenotype, while drive homozygotes display
both DsRed and white eyes.

While this one construct was made and studied, it exhibited differential transmission between
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lines founded by drive males/wild-type females and drive-females/wild-type males. More specifically,
lines in which drive alleles are inherited only through male parents display drastically higher drive
efficiencies than lines in which the drive allele is inherited at some point via a female parent. To ex-
plain this discrepancy, the authors propose a model whereby in crosses between transgenic females
and wild-type males, maternal deposition of Casg in eggs results in NHE]J-mediated disruption of
the paternally derived wild-type chromosome in the early embryo. Crosses between transgenic males
and wild-type females, on the other hand, do not see Cas9 deposited in the early embryo, and Casg
cutting is better contained to the later germline, where HDR is more efficient.

To account for this discrepancy, we choose to consider these two cases separately and report hom-

ing efficiencies for each.

1. TRANSGENIC MALE LINES

Here we consider all offspring (larvae + adults) whose drive alleles (or potentially-inherited drive
alleles) have been passed down only through male ancestors. This includes all offspring from the
male-founder crosses in Table 1 of the main text (10.1 GoJ" and 10.2 G3J"), as well as crosses 6 and

8 in Table 2 (also Fig. 3). We choose to compile all alleles from each of these crosses together to cal-
culate an average efficiency across all available data. Because the constructs are on autosomes, we
treat male offspring and female offspring identically, and we count toward the total allele count, 7T,
one allele from each offspring (since at most one drive allele can be inherited in each cross), and we
count toward the drive allele total, D, one allele for each DsRed ™ individual observed, since this is a

dominant marker for the drive. Finally, we consider both larvae and adults identically, as conversion
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Gs crosses D T | Reference
10.1 GoxWT, larval | 829 | 832 | TableS3
10.2 Gox WT, larval | 3060 | 3085 | Table S4
10.1 GoxWT, adult | 833 | 836 | TableSs
10.2 GoxWT, adult | 1258 | 1274 | Table S6

Total 5980 | 6027 —

G crosses D T | Reference
Cross 6, larval | 949 | 955 | Table Sy
Cross 8, larval | 609 | 628 | Table S8
Cross 6, adult | 882 | 888 | Table S10
Cross 8,adult | 565 | 583 | Table Sz

Total 3005 | 3054 —

Table A.2: Gantz et al., An. stephensi transgenic male lines. (top) Phenotypes of G progeny. (bottom) Phenotypes of G4
progeny.

is anticipated to have occurred before this stage, and results are similar between adults and larvae.
Values of D and T' for each cross are displayed in Table A.2.
To obtain an average efficiency for the construct, we sum the values of D and T across all crosses

in Table A.2. We obtain:

8985
P=2——-1=0.979.
9081 0.979

2. TRANSGENIC FEMALE LINES

To understand the effect of maternal Cas9 deposition, we count all offspring (larvae + adults) from
crosses such that the any (potentially) inherited drive allele has been inherited via a female parent at
least once. This includes no G3 offspring, as the drive alleles present in Go parents were inherited

from G1 males. Thus we include only G4 offspring of G3 parents, specifically Crosses 1-4, and as for
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Gylarvae | D T | Reference Gyadults | D T | Reference
Cross1 | 28 | 48 | TableS7 Cross 1 19 35 | Table S1o
Cross2 | 332 | 635 | TableS7 Cross2 | 306 | 554 | TableSio
Cross3 | 204 | 324 | Table S8 Cross 3 169 | 272 | TableS11
Cross4 | 372 | 632 | TableS8 Cross 4 | 1430 | 2500 | Table S11

Total | 936 | 1639 — Total 1924 | 3361 —

Table A.3: Gantz et al., An. stephensi transgenic male lines. (left) Phenotypes of G4 larvae. (right) Phenotypes of G4
adults.

the transgenic male lines, we sum both larval and adult crosses. Values of D and T for each cross are

displayed in Table A.3. Summing the values in Table A.3 yields:

P= 2@ —1=0.144.
5000

MosQUITOES, HAMMOND £7 4L, (2015)

In this study, the authors construct three CRISPR-based gene drive systems in the malaria vector
An. gambiae, each targeting a different gene with a recessive female sterility phenotype upon dis-
ruption®. These are examples of suppression drives whose purpose is to reduce or eradicate wild
populations. Each drive construct carries a copy of Caso, a single guide RNA, and red fluorescent
protein (RFP) which has a dominant fluorescent phenotype. Each construct targets one of three
female fertility genes, referred to as AGAPomu377, AGAPoos9s8, and AGAPoo7280, but otherwise
they are identical.

To determine homing efficiency, drive-heterozygotes were crossed with wild-type homozygotes,

and offspring were scored visually for the presence of the dominant marker RFP gene. Thus in our
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tabulations, we count one allele per individual toward the total, T', and we count one allele per
RFP™ individual toward the drive allele count, D. Furthermore, the outcrosses were performed
over several generations. To obtain average homing efficiencies, we sum drive alleles and total alleles
over Ga, G3, Gy, and G5 generations, when applicable. (Some constructs were tested over more gen-
erations than others.) This data is found in Table 2 in the study. Furthermore, we sum across male-
and female-drive parent crosses, since we would expect these to behave identically with respect to

homing, given that the female drive parents are capable of producing offspring.

1. AGAPoi377

This construct was studied over generations G to G in Table 2. The total number of relevant alle-
les resulting from crosses between drive-male parents and wild-type females was T, = 636+1631+
1654 +505 = 4426, while the male drive total was D 5 = 581+ 1442+ 1550 +491 = 4064. The
female total was TQ = 60+92+142 = 294, and the female drive total was DQ =55470+121 =
246. The average efficiency is then:

Dy +Dg 4064+ 246

P=2 =g T2
Ty +Tg 4426 + 294

—1=0.826.

2. AGAPo005958

This construct was studied over generations G2 and G3. There were no oftspring from female-drive

crosses to wild-type due to the low fertility of these individuals. The total was T" = 1689 + 278 =
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1967, and the drive total was D = 1654 + 268 = 1922. The efficiency is thus:

D 1922
P 2T 1 21967 0.95

3. AGAPoo7280

This construct was studied over generations Go and G3. The male total was Tip = 1383 + 505 =
1888, and the male drive total was DO7| = 1377 + 499 = 1876. The female total was TQ = 257,

and the female drive total was DQ = 255. The efficiency is:

D+ D 1876 + 255
d ?
P=2—"*-1=2 —1=0.987.
TO7| + TQ 1888 + 257
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Figure B.1: B—A “split” drives and daisy drive family tree analysis. (A) Family tree resulting from a single-organism
release of a B—A split drive in a large wild-type population in the absence of selection. (In reality, B elements would
be deleterious and thus decline in frequency over time.) For comparison, a C—B—>A daisy drive is shown in main text
Fig. 1c. Green mice have at least one copy of the cargo A element, while grey mice have only the wild-type allele at that
locus. (B) A graphical depiction of total alleles in a population per generation for B— A through D—C—B—>A daisy
drives. Throughout, chromosome illustrations represent genotypes of germline cells after drive has occurred.
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Figure B.2: A potential means of reducing the fitness cost resulting from incorrect repair. One strategy might involve
targeting a gene whose loss impairs gametogenesis, such as a ribosomal gene. Increased replication of correctly re-
paired cells carrying the drive system could potentially result in a wild-type number of gametes, all of which carry the

drive system. 181
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Figure B.3: Fold-change in daisy drive cargo frequency after 20 generations for various daisy chain lengths relative to a
release of organisms only containing the cargo. (left) Homing efficiency is assumed to be 60%, and (middle) 80% and
(right) 95%. All figures assume 10% cargo fitness cost, 0.01% upstream element cost and neutral resistance. Solid
lines correspond to a single release with initial release frequency indicated by the horizontal axes, while dashed lines
correspond to continuous releases with frequency indicated by the horizontal axes. See S| Text Section 2.3 for details
on our continuous release implementation.
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Figure B.4: Analysis of the time that a 3-element (CBA) daisy-chain cargo element remains above 50% frequency in

a single population. In each plot, the parameter indicated on the horizontal axis is varied, and the other parameters

are fixed. The fixed values in the first four panels are: cargo element (A) fitness cost, ¢, 5%, release frequency 10%,
upstream element (C, B) fitness cost, d, 0.01%, homing efficiency, I, 95%, cargo resistance cost, s, 0. In the far-right
panel, all parameters are identical except the release frequency is 1%. In the first panel, we additionally plot a function
a/c, fitted witha = 9.99, to illustrate the inverse relationship between cargo time above 50% and cargo fitness cost,
¢, when cis low. The model used throughout is described in SI Text Section 2.2.
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Figure B.5: Further analysis of the 5-population model, shown in Fig. 4 of the main text and described in Sl Text Sec-
tion 5. Three drive systems are considered, as in main text Fig. 4: CBA daisy-chain drive (left), self-propagating drive
(middle) and inundative non-drive release (right). We assume 5 equally-sized populations connected in a chain via one
constant migration rate, which varies on the horizontal axes from 10~* to 10~ . (e.g., 102 corresponds to a sce-
nario where each population is connected to its neighbors via a migration rate of 10~ 2 ineach direction.) Maximum
frequencies of each allele in each population over 500 generations are then plotted as functions of the migration rate.
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Figure B.6: Daisy drive systems can be constructed using orthogonal Cas9 elements. Such a drive system is resistant
to conversion into a daisy necklace, which would require a recombination event that moved the entire Cas9 gene and
associated guide RNAs into a subsequent locus in the daisy-chain. Ensuring that all the Cas? proteins are expressed
appropriately without re-using promoters and thereby creating homology between elements could be challenging.
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Figure B.7: Multiple sequence alignment of existing tracrRNA sequences from closely related Cas9 systems with
the tracrRNA component of our sgRNA template (i.e., the template from Fig. 3.5C, GTNNNAGAGNNN-GRRA-
NNNCAAGTTVVVATAAGGCNAGTCCGTYHYCANNNN-GRR-A-NNNNGGCACCGAKTCGGTGC). The sequences

with names beginning “Br_

" are taken from Fig. S2 of Briner et al., Mol. Cell (2014) (Ref. 103), and the sequences with

names beginning “Ch_" are taken from Fig. 4 of Chylinski et al., RNA Biol., (2013) (Ref. 111). Alignments were per-
formed via the MAFFT program with default parameters (Refs. 113, 112).
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Figure B.8: Complete list of sequence-divergent guide RNAs generated and assayed using the transcriptional activa-
tion reporter.
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Figure B.9: Results of the pilot screen of the first set of designed sgRNA sequences. 3-6, 10-13, and 17-20 all carried
the extra insert; the latter 8 displayed markedly lower activity and were not further considered. The cause of the
difference is unclear, although it is worth noting that these all had longer stem-loops than did 3-6, all of which were
closer to the activity of the standard or ‘wild-type’ sgRNA.
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Figure B.10: Potential family tree of a C—B—>A genetic load daisy drive for which the cargo in the A element disrupts
afemale fertility gene. The C element is male-linked, ensuring that it does not suffer a fitness cost from the loss of fe-
male fertility. Mating events between two parents carrying the A element (boxed) can produce sterile female offspring
that will suppress the population. Males do not suffer a fitness cost due to disruption of female-specific fertility genes.
Genome illustrations depict germline cells after drive has occurred. Females are placed on the right side in each pair of
individuals.
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A Daisy Reversal Acts As Standard Drive vs Unwanted Drive
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Figure B.11: Utility of a costly daisy reversal drive with orthogonal Cas9 elements in achieving complete genetic rever-
sal of an unwanted drive system to wild-type. Suppose an unwanted drive system has spread a harmful cargo (yellow)
through the target locus A via the commonly used Cas9 protein from Streptococcus pyogenes. (A) A daisy reversal drive
system uses guide RNAs for S. pyogenes Cas9 to copy all elements while overwriting the unwanted drive system and
its cargo. (B) The same daisy reversal drive system spreads as a normal daisy drive using its own orthogonal CRISPR
system (e.g. S. aureus Cas9) on encountering wild-type sequences. (C) An unwanted drive system is countered by re-
leasing the daisy reversal system at multiple sites. The daisy drive system efficiently overwrites the unwanted drive
system throughout its range, spreading into and through the wild-type sequences at the edges of that range to ensure
that it reaches and eliminates every copy. This immediately eliminates the harmful cargo. Because the A element of
the daisy drive system is costly and the other elements are always co-resident with it due to the daisy drive effect, all
elements of the daisy drive will be outcompeted and eliminated by wild-type alleles over time, potentially leading to
complete genetic reversal.
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