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Evolutionary dynamics of CRISPR gene drives

Abstract

The alteration of wild populations has been discussed as a solution to a number of humanity’s

most pressing ecological and public health problems. Enabled by the recent revolution in genome

editing, CRISPR gene drive systems—selfish genetic elements that can be engineered to spread

through populations even if they confer no advantage to their host organism—are rapidly emerg-

ing as a promising approach. However, before real-world applications are considered, it is imperative

to develop a clear understanding of the potential outcomes of drive release in nature. Toward this

aim, in this dissertation, I mathematically study the evolutionary dynamics of CRISPR gene drive

systems. In the first chapter, I demonstrate that the emergence of drive-resistant alleles could present

a major challenge to existing proof-of-principle constructs, and I show that an alternative design that

selects against resistant alleles could potentially improve evolutionary stability. In the second chap-

ter, I address the question of how likely it might be for a small accidental or unauthorized release of

existing CRISPR gene drive organisms to result in significant spread through a wild population—

despite the problem of resistance. The mathematical results in this chapter suggest that significant

spread is highly likely following even small releases, and this has important implications for labo-

ratory containment protocols and future design of field trials. Finally, in the third chapter, I study

the dynamics of a new CRISPR-based gene drive system called “daisy-chain gene drive,” which aims
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to address the issue of accidental spread discussed in the previous chapter. The results suggest that

daisy-chain gene drive constructs could act as “self-limiting” drive systems, with the potential to

spread to high frequency in a local population with a comparatively low risk of spreading indefi-

nitely through many linked populations.
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0
Introduction

The central question of this dissertation is how one might spread a genetic trait through a wild

population. This question has been studied for several decades, but I was fortunate to enter the field

just as it underwent a technological revolution: CRISPR, a recently developed genome engineering

technology, dramatically increased the possibilities of the field and introduced a multitude of inter-
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esting scientific questions. This dissertation addresses a few of these questions using mathematical

modeling.

In addition to these scientific questions, the topic gives rise to many critical—and incredibly

difficult—ethical and policy questions about whether one ought to alter a particular wild popula-

tion at all. Although I do not directly address these questions here, the potential impact of the tech-

nology and the likelihood of its eventual use appear sufficiently great to at least warrant its careful

study, with objectivity and a clear understanding that mathematical results are more a reflection of

our thinking about reality than of reality itself, and with careful consideration of the consequences

that could result from our efforts. Thus, to begin, I will discuss what motivates the field broadly and

the reasons for its rapid expansion in recent years.

In short, there are a variety of wide-reaching problems that might be addressed by genetically

engineering wild populations which are difficult or impossible to solve using traditional methods.

These can be categorized broadly into two groups: mitigation of vector-borne diseases, and control

of destructive invasive species or agricultural pests. While still in their early stages, significant experi-

mental and theoretical progress has been made on both fronts.

Among vector-borne diseases, the most prominent potential targets are those transmitted by

mosquitoes, including malaria, dengue, and Zika. All three diseases present significant burdens,

and malaria alone was responsible for 438,000 deaths across 95 countries in 2015 1. Moreover, under

even the most optimistic scenarios comprising existing interventions, the WHO Global Technical

Strategy for Malaria2 estimates that, although the incidence of malaria and corresponding death

rate could be decreased by 90% by 2030, including complete elimination from 35 countries, the
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disease would continue to persist in 58 countries, presenting an indefinite burden. There appears

to be broad consensus that additional interventions will be required for eradication of malaria to be

achieved 3,4.

Genetically engineering wild populations could help mitigate a vector-borne disease via two basic

approaches. In the first approach, a genetic construct could be spread that reduces the capacity of

a vector to transmit the disease (population alteration). In the second approach, a construct could

be spread that brings about a reduction in the size of the vector population outright (population

suppression).

Genetic constructs that could bring about useful alteration or suppression of mosquitoes—if

they were somehow spread through a population—have already been the subject of significant ex-

perimental investigation. In an alteration approach, so-called “cargo genes” have been identified

that would reduce transmission of malaria 5–9 and dengue 10,11. Although they have not yet been

developed, cargo genes could potentially be constructed to reduce Zika transmission via an RNA

interference approach or via an endonuclease targeting the Zika virus genome, which consists of

single-stranded RNA 12. Population suppression approaches have also been devised and tested in

laboratory populations of mosquitoes, including a genetic construct that reduces female fertility in

Anopheles gambiae, the most prominent malaria vector 13, as well as sex-ratio-distorting constructs,

which are predicted to induce a population crash by reducing the relative number of females over

successive generations if they were spread in the wild 14.

Another example of the potential for population genetic engineering to combat vector-borne

disease is the “Mice Against Ticks” project 15, which recently began with the goal of eventually erad-
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icating Lyme disease—the most common vector-borne disease in the United States 16—from the is-

lands of Nantucket and Martha’s Vineyard. Briefly, white-footed mice (Peromyscus leucopus) serve as

a natural reservoir for Lyme disease, which is transmitted between mice via ticks, which, in turn, bite

humans to transmit the disease from its natural reservoir. To combat the disease, the Mice Against

Ticks project would release mice carrying genes encoding anti-Lyme antibodies, which would immu-

nize them against Lyme and could, correspondingly, reduce the burden of Lyme among humans.

Aside from control of disease vectors, another prominent potential application of population

genetic engineering technology is control of destructive invasive species and agricultural pests. There

are two categories of applications that are often discussed: modification or suppression of invasive

species that (i) cause ecological harm, or (ii) cause economic harm, typically via destruction of agri-

cultural crops. As a striking example of the first category, New Zealand announced in 2016 a goal

of eliminating all of its rats, possums and stoats by 2050 17 because they are invasive to New Zealand

and cause a tremendous amount of damage to the country’s native ecosystems 18. An example of the

second category could include suppression or modification of the citrus psyllid, which, as a vector

of Candidatus Liberibacter species, transmits citrus greening disease 12,19. Another example of the

second category—which has already been proposed and tested in the laboratory 20—could include

suppression or modification ofDrosophila suzukii, a major pest of soft-skinned fruits (e.g., strawber-

ries, raspberries, cherries, etc.), which is estimated to cause a total of $511 million in annual revenue

losses across California, Oregon and Washington21.

Given the tremendous potential upside if these applications could be realized, a great deal of re-

search has been conducted to develop strategies for actually spreading genetic constructs through
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wild populations, dating back at least to the 1960s 22,23. The strategies vary widely in mechanism but

are unified by a common idea: genomes of individuals are engineered to encode both a desired trait

and also some mechanism—broadly referred to as a gene drivemechanism—that induces evolution

to favor the engineered construct (often called a drive element) as the individuals in the population

reproduce over time, even if the construct is deleterious. In principle, only a comparatively small

number of individuals would need to be engineered and released in order to alter an entire popula-

tion.

A variety of mechanisms have been utilized to create these gene drive systems, including un-

derdominance, maternal effect dominant embryonic arrest (Medea), and endonuclease-based ap-

proaches.

Underdominance-based mechanisms utilize bistability brought about by heterozygotes exhibit-

ing lower fitness than homozygotes: when a population is mostly wild-type, the drive element goes

to extinction, but when the drive element is released at high frequency, it goes to fixation. This

creates a “threshold effect,” whereby a large release of engineered organisms (above the thresh-

old frequency, typically about 0.5) leads to spread of the drive element, whereas a smaller release

leads to extinction of the drive element. Two drive systems of this type have been engineered in

Drosophila 24,25, each using a toxin-antidote mechanism. In Ref. 24, two maternally expressed, un-

linked, zygotic toxins are each linked with a zygotic antidote that rescues the lethality of the opposite

toxin. Hence, individuals must inherit either both or neither to be viable. In Ref. 25, a single-locus

construct is engineered, which includes both a gene that targets RNAi to a haploinsufficient gene,

and an RNAi-insensitive rescue gene. The idea is that both wild-type and engineered homozygotes
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have two functional copies of the haploinsufficient gene, resulting in near-wild-type fitness, whereas

heterozygotes have only one functional copy, resulting in lower fitness. The threshold effect has

both an upside and a downside: it could help contain drive systems in populations with limited mi-

gration elsewhere, but it could also preclude use in large populations due to logistical difficulties.

Moreover, underdominance-based approaches can only be utilized for population alteration, not

suppression.

Medea systems also use a toxin-antidote approach but are predicted to exhibit much lower re-

lease thresholds. However, they can also only be utilized for population alteration. An engineered

Medea element consists of two components: first, it encodes a toxin (typically a microRNA) that

is expressed during oogenesis in females and disrupts an embryonic essential gene in every embryo,

regardless of whether it inherits theMedea element or not. Second, it encodes a tightly linked anti-

dote that is expressed only in zygotes that inherit theMedea element. The result of this mechanism

is that wild-type/Medea heterozygotes preferentially pass on theMedea construct to offspring since

onlyMedea-carrying zygotes are rescued from the effects of the maternally-expressed toxin. Model-

ing suggests that the threshold frequency forMedea spread approaches zero as the fitness cost of the

construct (independent from the maternal-effect lethality) approaches zero47.

To date, three proof-of-conceptMedea elements have been engineered inDrosophila 20,26,27. A

downside ofMedea-based systems is that they are difficult to construct in diverse, non-model organ-

isms 12, although this difficulty might be overcome by novel designs that utilize alternative silencing

approaches.

Endonuclease-based systems, in contrast to the other two approaches, exhibit no threshold
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behavior—and can, therefore, see application even in large populations—and can be used for both

alteration and suppression across a diverse range of species. These systems, first proposed by Austin

Burt in a seminal 2003 paper 28, use endonucleases to increase their chance of inheritance from het-

erozygous parents. This inheritance bias can be achieved in one of two ways: the endonuclease can

copy itself onto a homologous chromosome, guaranteeing inheritance (because one of the two chro-

mosomes must be inherited), or it can cleave the opposite allele in such a way that it is lethal if in-

herited (i.e., half of the offspring are nonviable, but all viable offspring inherit the endonuclease

system).

Mechanistically, the first approach (often called homing) proceeds via a two-step process: (i) the

endonuclease cuts the opposite chromosome at a sequence that is homologous to the region where

the endonuclease is encoded, and (ii) template-based DNA repair via homologous recombination

copies the engineered construct—including the endonuclease and any adjacent cargo genes—into

the cut site, repairing the break by inserting the engineered construct. This approach could be used

for alteration or suppression applications. In contrast, the second approach (shredding), which is al-

most exclusively considered for suppression applications, proceeds by cutting the opposite chromo-

some in many locations near the centromere, ensuring that an incomplete copy of the chromosome

is passed on during meiosis, resulting in a nonviable offspring. This approach is typically discussed

in the context of sex-ratio distorting systems, wherein the construct is encoded on the Y chromo-

some, and the X chromosome is “shredded,” guaranteeing that all viable offspring inherit the Y

chromosome and are, therefore, male. This effect is predicted to serve as an extremely effective pop-

ulation suppression strategy, eventually causing a population crash due to the increasingly biased sex
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ratio.

The construction of endonuclease-based gene drive systems was long hindered by a lack of eas-

ily programmable sequence-specific endonucleases. Proof-of-concept systems were originally con-

structed using homing endonuclease genes (HEGs) 29–32 that targeted artificial recognition sites, but

as the recognition sites of HEGs are prescribed by protein structure, producing a drive element to

target an arbitrary endogenous sequence in a new organism would present a difficult challenge in

protein engineering.

The recent advent of CRISPR/Cas9 genome editing technology 33–36 has revolutionized gene

drive engineering by allowing for the simple design and construction of endonuclease drive sys-

tems with arbitrary target sequences. Briefly, Cas9 is an endonuclease whose target is prescribed

by a 20-base sequence in an independently-expressed guide RNA (gRNA). Thus, to engineer an

endonuclease-based gene drive system, all that is now required is to genomically insert a DNA se-

quence encoding Cas9, as well as a DNA sequence encoding a gRNA with the target sequence of

interest. To date, proof-of-concept CRISPR-based gene drive systems have been constructed in

yeast 37, fruit flies 20,20,38, and mosquitoes 5,13, representing both population alteration and population

suppression applications.

Although CRISPR gene drive systems are now being constructed at a rapid pace across a diverse

range of species, there are still significant gaps in our theoretical understanding of their evolutionary

dynamics. Essentially, what would happen if these constructs were released into the wild? Would

they spread? If so, how far? What challenges would they face—i.e., what are the most likely failure

modes? In this dissertation, I study a few of these questions for alteration-type CRISPR gene drive
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systems using mathematical modeling.

In Chapter 1, I study the evolution of alleles that are resistant to CRISPR gene drives and analyze

a strategy that might help mitigate the effect of resistance. In this context, a resistant allele is any al-

lele at the same locus as the CRISPR gene drive construct that is immune to its effects. These are

typically variants of the wild-type allele with mutations at the target sequence of the CRISPR nucle-

ase, and they can arise spontaneously or due to misrepair following CRISPR-mediated cutting—in

addition, they are expected to exist in most populations simply due to standing genetic variation.

There are, of course, many possible known and unknown mechanisms that could result in resistance

to CRISPR gene drives in the wild, but in this chapter, I present a design that could potentially mit-

igate the effects of at least this particular form of resistance. This chapter was published in Science

Advances (Ref. 39), and I was fortunate to be able to carry out the project with fantastic collabora-

tors, including Jason Olejarz, with whom I worked closely on all of the mathematical models and

calculations, as well as Kevin Esvelt, George Church and Martin Nowak, who provided excellent

advising on all aspects of the project.

In Chapter 2, I address the question of how likely it would be for an existing, proof-of-principle

CRISPR gene drive system to spread in a wild population following a very small release, account-

ing for resistance. The basic question I seek to address in this chapter is how invasive CRISPR gene

drives might be—that is, how difficult it might be to contain an intervention to a population of

interest or to protect nearby wild populations from laboratory escapes. The results in this chapter

suggest that many existing CRISPR gene drive elements (even without optimization to mitigate re-

sistance, as discussed in Chapter 1) could potentially spread to high frequencies in wild populations
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following very small releases. To provide empirical grounding for this work, I include as Appendix

A a review of all CRISPR gene drive experiments reported in the literature to date, including a table

of reported drive efficiencies (i.e., how often the cut/copy drive mechanism succeeds, a measure of

how efficiently the construct biases its inheritance). This chapter was published in eLife (Ref. 40).

For this work, I enjoyed a very fruitful collaboration with Ben Adlam on the mathematical models,

as well as extremely insightful advising from George Church, Kevin Esvelt, and Martin Nowak.

Finally, in Chapter 3, I turn to the question of how a CRISPR gene drive system might be de-

signed so that it is easier to contain in a particular population. While some prominent CRISPR gene

drive applications have ambitions of altering or suppressing species across entire continents—e.g.,

malaria, dengue, Zika, schistosomiasis—many potential applications are much more localized in

nature, either because of ecological or policy considerations. Appendix B contains supplementary

figures related to this work. This chapter is currently in review, and I have greatly enjoyed working

together with a variety of experimental and mathematical modeling collaborators in a highly col-

laborative and interdisciplinary project. I worked closely with Jason Olejarz on the mathematical

models; John Min, Joanna Buchthal and Alejandro Chavez designed and performed experiments

to assemble a collection of CRISPR guide RNAs that were required for the proposed approach to

be feasible in reality; Erika DeBenedictis wrote a helpful web-based user interface for visualizing the

results of the model; Andrea Smidler helped build a preliminary discrete generation precursor to our

model; Kevin Esvelt conceived the project, and he, George Church, and Martin Nowak continued

providing extremely helpful advice and unwavering support.
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1
Evolutionary dynamics of drive resistance

1.1 Foreword

In this chapter, I explore the evolutionary dynamics of CRISPR gene drive systems in the face of a

particular form of resistance—that which is genetically encoded at the target site of the drive con-

struct and blocks recognition by CRISPR guide RNA(s). I study two different designs: one that is

typical of existing proof-of-principle gene drive constructs, and a second that was previously pro-
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posed as a means of combating resistance and enhancing the long-term stability of the drive in a

population.

I performed this work together with Jason Olejarz, who contributed great help with developing

and analyzing the mathematical models presented here. We benefited greatly from insight, advising

and support from Kevin Esvelt, George Church and Martin Nowak.

This chapter was first published in Ref. 39:

Charleston Noble∗, Jason Olejarz∗, Kevin M. Esvelt, George M. Church and Martin A. Nowak.

Evolutionary dynamics of CRISPR gene drives. Science Advances 3, e1601964 (2017). (∗equal contri-

bution)

1.2 Introduction

Gene drive systems are selfish genetic elements which bias their own inheritance and spread

through populations in a super-Mendelian fashion (Fig. 1.1A). Such elements have been discussed as

a means of contributing to the eradication of insect-borne diseases, such as malaria, reversing herbi-

cide and pesticide resistance in agriculture, and controlling destructive invasive species 5,13,24,28,29,37,38,41–45.

Various examples of gene drive can be found in nature, including transposons46, Medea elements 26,47,

and segregation distorters48–51, but for ecological engineering purposes, endonuclease gene drive sys-

tems received the most significant attention in the literature 5,13,28–30,37,38,41–44,52,53. In general, these

elements function by converting drive heterozygotes into drive homozygotes through a two-step
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process: (i) the drive construct, encoding a sequence-specific endonuclease, induces a double-strand

break (DSB) at its own position on a homologous chromosome, and (ii) subsequent DSB repair by

homologous recombination (HR) copies the drive into the break site. Any sequence adjacent to the

endonuclease will be copied as well; if a gene is present, we refer to it as “cargo”, as it is “driven” by

the endonuclease through the population.

Although originally proposed over a decade ago 28, the chief technical difficulty of this approach—

inducing easily programmable cutting at arbitrary target sites—has only recently been overcome

by the discovery and development of the CRISPR/Cas9 genome editing system 33–36,54. Briefly,

Cas9 is an endonuclease whose target site is prescribed by an independently expressed guide RNA

(gRNA) via a 20-nucleotide protospacer sequence. Because virtually any position in a genome can

be uniquely targeted by Cas9, so-called RNA-guided gene drive elements can be constructed by in-

serting a suitable sequence encoding both Cas9 and gRNA(s).

Recent studies have demonstrated highly functional CRISPR gene drive elements in mosquitoes 5,13,

yeast 37, and fruitflies 38. In each case, the basic construct consists of a copy of Cas9 with a single corre-

sponding gRNA and cargo sequence (Fig. 1.1B). Despite drive inheritance of about 95%, on average,

in the published studies (compared to 50% expected by Mendelian inheritance), the evolutionary

stability of these constructs in large populations has been debated due to the potential emergence of

drive resistance within a population 28,41,53. A resistant allele is anticipated to arise whenever the cell

repairs the drive-induced DSB using non-homologous end joining (NHEJ) instead of HR, a process

that typically introduces a small insertion or deletion mutation at the target sequence. Because the

reported constructs cut only at a single site, a substantial fraction of NHEJ events will create drive-
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Figure 1.1: CRISPR gene drive inheritance and spread in wild populations. (A) Inheritance and spread of a gene drive

construct, D, in a population of individuals homozygous for the wild-type,W. In the late germline, the drive construct

induces a DSB at its own position on the homologous chromosomewhich is repaired either by HR, converting the in-

dividual to a DD homozygote, or by NHEJ, producing a small insertion/deletion/substitutionmutation at the cut site

which results in a drive-resistant allele. There is also the possibility of nomodification, in which case theW allele re-

mains unchanged. This mechanism can lead to rapid spread of the gene drive in a population or the spread of resistant

alleles, depending on their relative fitness effects. (B) To achieve this mechanism, previously demonstrated drive con-

structs are inserted at some target sequence (blue) and carry a CRISPR nuclease (for example, Cas9) with a gRNA, as

well as a “cargo gene” which can be chosen arbitrarily for the desired application. Disruption of the target sequence

must be nearly neutral for the drive to spread. (C) The construct wemodel here, which was proposed by Esvelt et al. 41,

reconstitutes the target gene after cutting—so an essential gene can be chosen as the target to select against resistant

alleles—and employsmultiple (n) gRNAs.
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resistant alleles that could prevent the construct from spreading to the entire population (Fig. 1.1B).

Drive resistance was first mathematically studied in the context of single-cutting homing endonuclease-

based drive elements 53. There, it was concluded that drive is most effective when the fitness cost of

the drive is low and the fitness cost of resistance is high (see Section 1.6.1 for a description of that

work). Unfortunately, in the drive constructs reported thus far, these two requirements are funda-

mentally at odds: the fitness cost of resistance arises from disruption of the target sequence, but the

drive copies itself precisely by disrupting the target sequence.

Here we study the evolutionary dynamics of an alternative drive architecture that decouples these

effects by rescuing function of the target gene, but only if the drive cassette is successfully copied.

This design was first proposed conceptually by Esvelt et al.41 but has not yet been modeled or con-

structed in the laboratory; hence, we refer to it here as the “proposed” construct. It involves target-

ing multiple sites within the 3’ end of a gene for cutting by the drive and including a completely

genetically recoded 55–57 copy of this 3’ target sequence in the drive construct (Fig. 1.1C). The 3’ un-

translated region of the gene is also replaced with an equivalent sequence in order to remove all

homology between the cut sites and the drive components, which ensures that the drive cassette is

copied as a single unit. If repair occurs by HR, then the target gene is restored to functionality as

the drive is copied. However, if repair occurs by NHEJ, then the target gene is mutated, potentially

resulting in a knockout and a corresponding loss of fitness. Using this design, drive resistance can be

selected against by choosing an essential or even haploinsufficient gene as the drive target.

Because the success of this design is contingent on the ability to genetically recode the 3’ end of

an essential gene without imposing a large fitness cost, we now briefly discuss the plausibility of this
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strategy. In a study of CRISPR-based gene drive in yeast, DiCarlo et al. 37 showed that a drive con-

struct targeting the essentialABD1 gene and encoding a recoded copy ofABD1 functioned with

high efficiency without exhibiting “any obvious fitness defects as compared to wild-type strains”. In

the most comprehensive study of essential gene recoding to date, Ostrov et al. 57 showed that com-

putationally minimizing disruption of existing RNA-binding motifs and secondary structures while

preserving overall codon usage allowed the elimination of seven codons from 91% of essential genes

in Escherichia coli with an overall fitness cost of less than 10%. Moreover, many attempted recod-

ings were costless on the first try without requiring optimization. Wang et al. 58 obtained similar

results. Finally, work inDrosophila on underdominance-based drive systems 24,27 has shown that

partial recoding of haploinsufficient genes in metazoans is possible, although in both studies this

involved RNA interference.

In addition to 3’ target recoding, the construct uses multiple gRNAs. The use of multiple gRNAs

offers two important benefits with respect to resistance: (i) all gRNA target sites must be mutated

or lost before a single allele becomes drive-resistant, and (ii) if cutting occurs at two or more gRNA

target sites simultaneously, then the intervening DNA sequence is lost, resulting in a large deletion

and a knockout of the target gene. This is in contrast to single-cutting constructs, where a knockout

can be avoided by an in-frame indel or substitution mutation.
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1.3 Results

To study this construct, we formulate a deterministic model (Sections 1.5, 1.6.2 and 1.6.3) that con-

siders the evolution of a large population of diploid organisms and focuses on a specific locus with

2n + 2 alleles (Fig. 1.2A). First, there are the wild-type (W) allele and the gene drive allele with n gR-

NAs (D). There are then n distinct “cost-free” resistant alleles that are resistant to drive-induced cut-

ting at 1, 2, . . . , n target sites but are otherwise identical to the wild-type (denoted S1, S2, . . . , Sn).

These could arise via, for example, mutations that block cutting by disrupting the gRNA target se-

quences but do not cause a shift in the reading frame. Finally, there are n distinct “costly” resistant

alleles, which have fitness effects that are distinct from those of the wild-type (denoted R1,R2, . . . ,Rn).

Only the alleles Sn and Rn are fully resistant to cutting by the drive. We also refer to the wild-type al-

lele as S0 for notational convenience. Last, we say that individuals having genotype AB, where A and

B are any of the alleles above, have fitness fAB (alternatively, genotype AB is associated with a cost

1 − fAB) and produce gametes having haplotype C with probability pAB,C . Note that these prob-

abilities pAB,C abstract all individual-level drive dynamics and are agnostic to the mechanism that

produces drive. We allow these parameters to be arbitrary for our analytical calculations and derive

corresponding results that hold for any underlying drive mechanism—including both the previous

drive constructs and the new ones considered here.

For numerical simulations, we further consider a mechanistic model that explicitly describes the

mechanism of drive in individuals (Fig. 1.2B, Section 1.6.4). We assume that, in the germ line of an

individual that is heterozygous for a drive construct and a susceptible allele (DSi where 0 ≤ i < n
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Figure 1.2:Modeling framework and representative simulations. (A)We consider 2n + 2 alleles, wheren is the

number of drive target sites (prescribed by CRISPR gRNAs): the drive construct (D), the wild-type (W),n “neutral”

resistant alleles (Si), andn “costly” resistant alleles (Ri). Previous drives (left) used one target site, whereas our pro-

posed drives usemultiple target sites (right). (B) Conversion dynamics within DWgermline cells during early gameto-

genesis. Cutting occurs at each susceptible target independently with probability q. Then, repair occurs by HRwith
probabilityP or by NHEJwith probability 1 − P . In the case of a single cut (light gray), if there is NHEJ repair, then

repair produces a functional target genewith probability γ or a non-functional target with probability 1 − γ . Two
ormore cuts (light red) certainly produce non-functional targets after NHEJ repair. (C) Representative simulations

are shown using high cutting andHR probabilities (q = P = 0.95), for an initial drive release of 1% in a wild-type

population, with γ = 1/3. Fitness parameters are (left) fSS = fSR = 1, fSD = 95%, fRR = 99%,

fDD = fDR = (99% × 95%) = 94.1%, where S refers to neutral alleles (either S orW), and (right)

fSS = fSR = 1, fSD = fDD = fDR = 95%; fRR = 1%, where S and R refer to allelesW, S1, . . . , S5 and
R1, . . . , R5, respectively. See Section 1.6.4.2 for details regarding our assignments of the inheritance probabilities.
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or DRi where 1 ≤ i < n), each susceptible target site undergoes cutting independently with

probability q. If there is at least one cut, then HR occurs with probability P , whereas NHEJ occurs

with probability 1− P . If HR occurs, then the cell is converted to a drive homozygote. However, if

mutagenic NHEJ occurs, then there are a few possibilities, depending on the number of cuts.

If there is exactly one cut, then one gRNA target is lost on the susceptible allele. If the susceptible

allele was initially functional (Si), then with probability γ it retains function and converts to Si+1;

otherwise, it loses function and converts to Ri+1. We assume that the parameter γ is the probability

that the reading frame is unaffected, so γ = 1/3. If the susceptible allele is initially nonfunctional

(Ri) then we assume that it cannot regain function, so it converts to Ri+1.

If there are two or more cuts, then all j susceptible gRNA targets between and including the out-

ermost damaged targets in the locus are lost (2 ≤ j ≤ n − i). The resulting allele is certainly non-

functional and thus converts to Ri+j . The probability distribution for the number of lost targets is

described in Section 1.6.4.2. It follows directly from our assumptions that cutting at each target site

is independent and that sequential cutting and repair events do not occur.

Regarding initial conditions, our simulations and analytical invasion analysis assume that drive-

homozygotes (genotype DD) are released into a population consisting initially of fully suscepti-

ble wild-type homozygotes (genotype S0S0). However, depending on the sequence targeted by the

drive, standing genetic variation in real populations could result in preexisting resistance at one or

more gRNA targets. For example, in a genome-wide analysis of 192 inbred strains ofDrosophila

melanogaster derived from a single natural population, MacKay et al. 59 found the genome-wide aver-

aged polymorphism value60 to be π = 0.0056. If we assume that polymorphism at each base pair is
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independent, then the number of mismatches at a gRNA target sequence in a particular individual

is binomial with 20 trials and success probability π. And if each gRNA can tolerate, on average, one

mismatch in its target, then single guide-resistant alleles should exist at frequencies roughly on the

order of 10−3. Further assuming that resistance at each gRNA is independent, two guide-resistant

alleles should exist at frequencies roughly on the order of 10−5, and so on. In this example and with

these assumptions, using five guide RNAs would reduce the frequency of preexisting fully-resistant

alleles to 10−12. Of course, complications could arise, such as nonindependence of polymorphism

within or between guides, so we anticipate this to serve as a low estimate of the frequency of preex-

isting resistance in a natural population. Therefore, before any application is considered, standing

variation in the target population should be carefully measured, and the target gene as well as the

number of guides should be adjusted accordingly.

Now, we address two fundamental questions: whether a CRISPR gene drive will invade a resi-

dent wild-type population and, if so, whether it will be evolutionarily stable61. We begin with the

former. We find that a CRISPR gene drive will invade a wild population if

2pWD,DfWD > fWW (1.1)

A derivation of this result can be found in Sections 1.6.2.2 and 1.6.3.2. For the drive to spread

when initially rare, the advantage from inheritance biasing (pWD,D)—typically about 95% in pub-

lished studies—must overcome the lower fitness of the drive/wild-type heterozygote (fWD) com-

pared with the wild-type (fWW ). Note that this condition holds in the context of drive resistance, is
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agnostic to individual-level drive dynamics, and thus applies both to previous drive architectures and

our proposed architecture. Equation (1.1) explains the apparent success of CRISPR drive constructs

reported in the literature 5,13,37,38, which easily invade wild-type laboratory populations, or would be

predicted to do so after optimization of drive expression: Over short time scales, drive resistance is

rare and thus does not affect the dynamics.

However, over longer time scales, NHEJ-mediated resistance will markedly affect the dynamics.

We find that a resident drive population is stable against invasion by resistant alleles if and only if

max
A∈S∪R

(2pDA,AfDA) < fDD (1.2)

Here, the maximization is over all nondrive alleles S0, . . . , Sn and R1, . . . ,Rn. Intuitively, the

drive is stable if and only if no other allele can invade, and each of these has an invasion condition

identical in form to Eq. (1.1). (A derivation of this result can be found in Sections 1.6.2.3 and 1.6.3.3).

Disconcertingly, Eq. (1.2) suggests that drive constructs are necessarily unstable in sufficiently

large populations. An individual who is heterozygous for the drive and the fully resistant cost-free

allele Sn has probability pDSn,Sn = 1/2 of producing an Sn gamete, and this individual has fit-

ness equivalent to (or potentially greater than) the drive/wild-type heterozygote. Thus, if the drive

construct has lower fitness than the wild-type, and if the fully resistant cost-free allele has a nonzero

rate of production in the population, then the latter will certainly invade a resident drive population.

This is especially problematic for highly deleterious population suppression drives, as in the study by

Hammond et al. 13, which have low fitness relative to the wild-type and less costly resistant alleles.
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However, population alteration drives (sometimes referred to as replacement drives) might not re-

quire long-term persistence in a population to produce their desired effect. Some applications might

still be successful as long as the drive construct attains and persists at a sufficiently high frequency in

the population over some length of time.

To quantify the relative effectiveness of the previous and proposed drive architectures, we con-

sider three quantities: (i) the maximum frequency achieved by a drive construct released in a wild

population, (ii) the time required for a drive construct to attain 90% of its maximum frequency,

and (iii) the frequency of the drive construct after 200 generations, roughly the longest relevant

timescale for a typical application. We compute these quantities numerically for drives featuring

cutting and HR probabilities consistent with average drive inheritance rates observed in previous

fruitfly 38 and mosquito 5,13 experiments (q = P = 0.95, modeling a reported drive inheritance rate

of roughly 95% from DW individuals).

Our results suggest that, as anticipated from Eq. (1.1), both the previous and proposed drive con-

structs should spread similarly in the short term, immediately following release (Fig. 1.3, A, B, and

D). However, over longer time scales, the two constructs undergo markedly different dynamics. The

proposed drive constructs, released at an initial frequency of 1% in a wild population, using five gR-

NAs and targeting an essential gene, can attain> 99% frequency in a population (Fig. 1.3, B and

C) in 10 to 20 generations (Fig. 1.3, B and D) and remain above 99% for at least 200 generations

(Fig. 1.3, B and E). Furthermore, this is seen over a large range of drive fitness costs, up to approxi-

mately 30% (Fig. 1.3, C to E). In contrast, the previously demonstrated constructs attain maximum

frequencies between 90% and 95% over a narrower range of fitness values (Fig. 1.3, A and C) and
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demonstrate significantly reduced stability (Fig. 1.3E). In particular, previous constructs exceeding

8% fitness cost invariably fall below their initial release frequency in fewer than 200 generations.

1.4 Discussion

In summary, we constructed and analyzed a mathematical model of CRISPR gene drive that in-

cludes multiplex cutting via multiple guide RNAs and allows for multiple costly and cost-free re-

sistant alleles. Our results suggest that previously demonstrated CRISPR gene drives constructed

as proofs of principle should effectively invade wild populations—consistent with experimental

observations—but could have limited utility due to their inherent instability, brought about by

their production of resistant alleles and vulnerability to preexisting ones. We studied an alternative

drive architecture, first proposed by Esvelt et al.41, which contains (i) multiple CRISPR guide RNAs

which target the 3’ end of a gene, and (ii) a recoded copy of the target gene which is functional but

resistant to cutting. We discussed the plausibility of building such a construct in light of recent ex-

perimental reports, and we concluded that this architecture could substantially improve the stability

of CRISPR gene drives by minimizing the effects of NHEJ-mediated resistance.

Another alternative strategy which we have not modeled here would involve multiple indepen-

dent single-guide drive constructs targeting the same locus. This is conceptually symmetric to the

strategy considered here: Rather than a single drive with multiple (n) gRNAs (“multiple guides”),

one might consider multiple (n) drives with one gRNA each (“multiple drives”). In this strategy,

each independent drive would behave similarly to the previously demonstrated constructs. The
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Figure 1.3: Quantitative comparison of previously demonstrated and recently proposed drive constructs. (A and B)

Drive frequency over time for three particular scenarios: a low-cost alteration drive carrying a cargo gene and target-

ing a neutral site (previous drives) or an essential gene (proposed drives) (red), a low-cost drive whose aim is to disrupt

an important target gene (orange), and a high-cost drive (tan). (C) Themaximum drive allele frequency (heat) observed

in simulations across 200 generations, following an initial release of drive-homozygous organisms comprising 1% of

the total population. In white hatched regions, Eq. (1.1) is not satisfied, so no invasion occurs. (D) Generations to 90%
of themaximum frequency. (E) Frequency of the drive constructs after 200 generations, a measure of stability in the
population. Parameters used are as follows: (throughout) q = P = 0.95, γ = 1/3; (previous drives)n = 1,
fSS = fSR = 1, fSD = 1 − c, fDD = fDR = (1 − c)(1 − s), fRR = 1 − s; (proposed drives)n = 5,
fSS = fSR = 1, fSD = fDD = fDR = 1 − c, fRR = 1 − s, where S and R refer to any alleles S0, . . . , Sn
and R1, . . . , Rn, respectively. Inheritance probabilities are assigned as illustrated in Fig. 1.2B and described in Section
1.6.4.2.
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multiple-drive strategy would likely outperform the previous strategy, but we anticipate that it

would not outperform the multiple-guide strategy. This is because, in the multiple-drive strategy,

each gRNA target can independently undergo NHEJ-mediated mutation, providing stepping-

stones to fully resistant alleles. Furthermore, the multiple-drive strategy lacks the benefit of large

NHEJ knockouts from multiple simultaneous cuts, which help combat cost-free resistance (Fig. 1.2B,

red box), although it would be capable of editing regions unimportant to fitness. And, regardless,

each single-guide drive construct could itself be built in the way we have described here, by using

multiple gRNAs.

An important caveat of our work is that we specifically studied resistance that is genetically en-

coded at the drive locus and is generated by the action of the drive. Many other mechanisms of re-

sistance are certainly possible. For example, standing genetic variation and de novo mutation might

be important considerations, particularly if the target locus is not highly conserved. However, in re-

cent work 62, Unckless et al. showed that NHEJ-mediated resistance should be more impactful for

realistic NHEJ rates (specifically, greater than the inverse of the population size). Aside from these

mechanisms of within-locus resistance, resistance could also arise in trans, for example as heightened

ribonuclease activity or as the evolution of small RNAs which would lead to knockdowns via RNA

interference. In addition, even beyond direct molecular effects, resistance could arise via higher-level

effects, for example as selection for inbreeding behavior in hermaphrodites in response to extremely

costly population suppression drives, as recently studied by Bull63. The large variety of potential

resistance mechanisms underscores the need for further theoretical and experimental work on this

topic.
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Although our work has focused on how to maximize the invasibility and stability of gene drive

systems, “global” CRISPR gene drives, such as those considered here, should only be actively de-

veloped for severe problems that (i) cause a great deal of suffering, and (ii) have few other poten-

tially viable solutions. Examples include malaria and schistosomiasis. Other applications—such as

precision alterations to local populations—will require robust methods to ensure limited spatial

and/or temporal spread. Toward this aim, there are several existing approaches, including non-drive

strategies such as multi-locus assortment64 and threshold-dependent drives ()like toxin-based under-

dominance systems)24,26. Moreover, we, among others, recently proposed an alternative theoretical

approach termed “daisy drive”65.

In conclusion, our results suggest three concrete design principles for future CRISPR gene drive

systems. Constructs will minimize the impact of misrepair and thus maximize evolutionary stability

if (i) multiple gRNAs with minimal off-target effects are used, (ii) disruption of the target locus is

highly deleterious, and (iii) any cargo genes are as close to neutral as possible.

1.5 Brief model description

Here, we briefly state the model used for the numerical simulations presented above. The remainder

of this Chaper is largely used to develop and explain this model (beginning in Section 1.6.2 and later

extended to include neutral resistance in Section 1.6.3).

Throughout this work, we study a genetics-based evolutionary dynamics model. We consider the

evolution of diploid individuals, xIJ where I, J = W,D,R1,R2, . . . ,Rn, S1, S2, . . . , Sn. Here
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D corresponds to the drive with n gRNAs; R1,R2, . . . ,Rn correspond to alleles that are resistant

to cutting at 1, 2, . . . , n target sites, respectively, and S1, . . . , Sn are resistant alleles with no fitness

cost, and W corresponds to the wild-type (which we also denote by S0 for notational convenience).

In Section 1.6.2 (extended to neutral resistance in Section 1.6.3), we present a continuous-time model

for the evolutionary dynamics of this population, as well as derivations for the invasion and stabil-

ity conditions discussed above. Here, we briefly describe this model. First, it makes the following

assumptions: (i) an infinitely large population; (ii) random mating; (iii) standard segregation of

allele pairs at meiosis, unless an individual has genotype DA (where A is one of S0, . . . , Sn−1 or

R1, . . . ,Rn−1) , in which case gametes receive a D allele with probability pDA,D or an A allele with

probability pDA,A; and (iv) viability selection where each genotype IJ has fitness fIJ .

Using these rules, we can formally express the rates at which each of the 2n + 2 types of gametes

is produced in terms of the frequencies of individuals in the population. We denote by FD(t) the

rate (at time t) at which drive gametes (D) are produced by individuals in the population. We denote

by FSi(t) the rate (at time t) at which wild-type gametes (i = 0) or gametes with varying levels of

cost-free resistance (1 ≤ i ≤ n) are produced by individuals in the population. Last, we denote by

FRi(t) the rate (at time t) at which gametes with varying levels of costly resistance (1 ≤ i ≤ n) are

produced by individuals in the population. We have
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FD(t) = fDDxDD(t) +

n∑
k=1

pRkD,DfRkDxRkD(t) +

n∑
k=0

pSkD,DfSkDxSkD(t)

FSi(t) =
n∑

k=0

1 + δki
2

fSkSixSkSi(t) +
1

2

n∑
k=1

fRkSixRkSi(t) +
i∑

k=0

pSkD,SifSkDxSkD(t)

FRi(t) =

n∑
k=1

1 + δki
2

fRkRixRkRi(t) +
1

2

n∑
k=0

fRiSk
xRiSk

(t)

+
i∑

k=1

pRkD,RifRkDxRkD(t) +
i−1∑
k=0

pSkD,RifSkDxSkD(t)

where δki is the Kronecker δ. xIJ(t) denotes the frequency of individuals (at time t) with genotype

IJ , where I, J = D, S0, S1, . . . , Sn,R1, . . . ,Rn. Similarly, fIJ is the fitness of IJ individuals,

and pIJ,K denotes the probability of an individual with genotype IJ producing a K gamete. From

conservation of probability, we have the following identities:

pRkD,D +

n∑
i=k

pRkD,Ri = 1

pSkD,D +

n∑
i=k

pSkD,Si +

n∑
i=k+1

pSkD,Ri = 1

Notice that type RnD and type SnD individuals are fully resistant to being manipulated by the drive

construct; such a fully resistant individual shows standard Mendelian segregation in its production

of gametes. Thus, we have pRnD,Rn = pSnD,Sn = 1/2.
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The selection dynamics are modeled by the following system of equations

ẋDD(t) = F 2
D(t)− ψ2(t)xDD(t)

ẋRiD(t) = 2FRi(t)FD(t)− ψ2(t)xRiD(t)

ẋSiD(t) = 2FSi(t)FD(t)− ψ2(t)xSiD(t)

ẋRiSj (t) = 2FRi(t)FSj (t)− ψ2(t)xRiSj (t)

ẋRiRj (t) = (2− δij)FRi(t)FRj (t)− ψ2(t)xRiRj (t)

ẋSiSj (t) = (2− δij)FSi(t)FSj (t)− ψ2(t)xSiSj (t).

The quantity ψ2(t) represents a density-dependent death rate for the individuals in the population.

At any given time, t, we require that the total number of individuals sums to one

xDD(t)+

n∑
i=1

xRiD(t)+

n∑
i=0

xSiD(t)+

n∑
i=1

n∑
j=0

xRiSj (t)+

n∑
i=1

i∑
j=1

xRiRj (t)+

n∑
i=0

i∑
j=0

xSiSj (t) = 1

To enforce this density constraint, we set

ψ(t) = FD(t) +
n∑

i=1

FRi(t) +
n∑

i=0

FSi(t)

For further details of the model, as well as derivations of our invasion and stability conditions, please

see Sections 1.6.2 and 1.6.3.
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1.6 Supplementary model details and derivations

In the remainder of this Chapter, we briefly review a closely-related previous study, develop the

mathematical model described in Section 1.5 and present derivations of Equations (1.1) and (1.2). We

begin with our discussion of a previous study of homing endonuclease-based gene drive systems in

Section 1.6.1. In Section 1.6.2, we propose a simple model of population genetics of CRISPR-based

gene drive systems with multiple guide RNAs, and we analyze the selection pressure acting on an

engineered drive construct. In Section 1.6.2.2, we derive a condition for an engineered drive allele

to invade a natural population. In Section 1.6.2.3, we derive a condition for a population in which

the drive has fixed to resist invasion by either wild-type or drive-resistant alleles. In Section 1.6.2.4,

we derive equations for interior equilibria permitted by our system. In Section 1.6.2.5, we present

numerical examples of the system’s dynamics. Lastly, in Section 1.6.3, we extend the model from Sec-

tion 1.6.2 to include the effects of “neutral resistance”, leading to the model presented in Section 1.5

and used in numerical simulations throughout Section 1.3.

1.6.1 Previous work on homing endonuclease gene drives

At the time this Chapter was written, the most closely-related existing theoretical study of nuclease-

based gene drive with resistance was presented by Deredec et al. 53. In this Section, we briefly review

that study in order to highlight the parallels and points of difference between our theoretical ap-

proaches and, more importantly, the underlying biological systems.

In the study by Deredec et al., the authors mathematically investigate gene drive systems that uti-
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lize homing endonuclease genes (HEGs). Essentially, HEGs encode proteins that have both nuclease

and DNA-targeting activity. Thus, an HEG-based gene drive can be thought of conceptually as an

example of the “previous” constructs described in Fig. 1.1, if the CRISPR nuclease and gRNA were

fused into one contiguous unit. This leads to an important difference between HEG and CRISPR-

based gene drive systems: There is no analogue to “multiple guides” for HEG-based systems—each

drive system has exactly one target site.

The authors begin their analysis of HEG-based gene drive systems with a two-allele model pre-

cluding resistance, consisting of a wild-type allele and a gene drive allele (pp. 2014–2016 of Dere-

dec et al. 53). As described previously, the model can be thought of as implicitly considering a single

guide RNA because it was motivated by HEGs. In their notation, p is the frequency of the wild-

type allele, and q is the frequency of the drive allele. The authors assume Hardy-Weinberg propor-

tions at all times, and they write a recurrence for q:

q′ =
(1− s)q2 + (1− sh)pq(1 + e)

1− sq2 − 2shpq

Here, s is the fitness cost associated with a drive homozygote, sh is the fitness cost associated with a

drive/wild-type heterozygote, and e is the probability that the HEG copies itself onto the homolo-

gous chromosome (“homes”).
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The authors identify that there are three possible fixed points:

q∗ = 0

q∗ = 1

q∗ =
e− (1 + e)hs

s(1− 2h)

The authors obtain the following invasion condition for the drive allele:

s <
e

h(1 + e)

Intuitively, the fitness cost, sh, of a drive/wild-type heterozygote must be less than a monotonically

increasing function of the homing rate, e, for the homing endonuclease gene to spread when rare.

Low fitness costs of the drive and high homing rates facilitate the invasion of the drive. More specif-

ically, the authors show that, if the drive/wild-type heterozygote has fitness close to the wild-type

(i.e., h close to zero), then the drive invades and fixes (if s is small relative to e), coexists with the

wild-type allele (if s is comparable in magnitude to e), or does not invade and is unstable (if s is large

relative to e). The authors also show that, if the drive/wild-type heterozygote has fitness close to the

drive homozygote (i.e., h close to one), then the drive invades and fixes (if s is small relative to e), is

bistable with the wild-type allele (if s is comparable in magnitude to e), or does not invade and is

unstable (if s is large relative to e). These are important insights into the evolutionary dynamics of

HEG-based gene drive systems.

Deredec et al. then extend their model to consider also a single resistant allele (pp. 2018–2019 of
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Deredec et al. 53). In their notation, p is the frequency of the wild-type allele, qH is the frequency of

the drive allele, and qM is the frequency of the misrepaired (resistant) allele. The authors assume

Hardy-Weinberg proportions at all times, and they write recurrences for qH and qM :

q′H =
q2H(1− sH) + pqH(1 + e(1− γ))(1− hHsH) + qMqH(1− sI)

W

q′M =
q2M (1− sM ) + pqM (1− hMsM ) + pqH(1− hHsH)eγ + qMqH(1− sI)

W

Here,W is the mean fitness of the population, and γ is the probability of misrepair.

The authors then consider a variety of special cases and make observations about each. A general

theme is that low misrepair rates, high fitness of the drive, and low fitness of resistance alleles all act

to improve drive spread. These are crucial points for understanding the evolutionary dynamics of

HEG-based gene drive systems.

For a classic homing endonuclease gene drive, the latter two properties—high fitness of the drive

and low fitness of resistance alleles—are naturally difficult to reconcile with each other, as we de-

scribe in Section 1.3. Since cost-free resistance to a drive construct can certainly arise, alternative drive

designs are necessary for effective population modification. The CRISPR-based gene drive systems

studied in this Chapter facilitate targeting arbitrary (and many) locations in a genome, which greatly

expands the creative potential for manipulating wild populations. However, while CRISPR-based

constructs offer enhanced opportunities for constructing gene drive systems, they also inevitably

exhibit more complex dynamics that must be firmly understood.
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1.6.2 Model with only costly resistance

In this Section, we present and analyze our model for a CRISPR-based gene drive system featuring

n gRNAs and n costly resistant alleles (R1, . . . ,Rn, as described in Fig. 1.2). We later extend this

model to also include the neutral resistant alleles S1, . . . , Sn (Section 1.6.3), but for simplicity we

begin with only the former class of resistant alleles.

1.6.2.1 Model description

To describe the evolutionary dynamics of such a system, we consider a population of diploid organ-

isms featuring a drive allele,D, a wild-type allele, 0, and n resistance alleles, i (with 1 ≤ i ≤ n). (In

Section 1.3, we use the notation “W ” for a wild-type allele rather than “0”. The notation “0” is more

natural for doing calculations.) There are (n + 2)(n + 3)/2 possible genotypes in the population:

ij (with 0 ≤ i ≤ n and 0 ≤ j ≤ n), iD (with 0 ≤ i ≤ n), andDD. The drive mechanism works

as follows.

Consider a type 0D individual; one allele is wild-type, and the other allele is the drive. There are

n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive can cut any number

of targets between 0 and n. If the drive cuts no targets, then the individual remains with genotype

0D. If the drive cuts k targets (with 1 ≤ k ≤ n), then one of several things can happen: One

possibility is that homologous recombination copies the drive allele onto the damaged chromosome,

so that the individual’s genotype becomesDD. This is how the drive construct effects its spread

through a population. Another possibility is that non-homologous end joining repairs the damaged
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chromosome without restoring the lost targets, so that the individual’s genotype becomes iD (with

1 ≤ i ≤ n). This is how resistance to the drive construct emerges. Yet another possibility is that

non-homologous end joining perfectly repairs the damaged chromosome, so that the individual’s

genotype remains 0D.

The drive allele can effect its spread as long as there is at least one remaining target. In an individ-

ual with genotype iD, either the drive cuts at no targets, with the individual’s genotype remaining

iD, or the drive cuts at some number, k, of the n − i remaining targets (so that 1 ≤ k ≤ n − i).

After cutting, the individual can become homozygous in the drive allele (DD), the individual can

lose additional targets by acquiring genotype jD (with i+1 ≤ j ≤ n), or the individual can remain

with genotype iD.

Using these rules, we can formally express the rates at which each of the n+2 types of gametes are

produced in terms of the frequencies of individuals in the population. We denote by FD(t) the rate

(at time t) at which drive gametes (D) are produced by individuals in the population. We denote

by Fi(t) the rate (at time t) at which wild-type gametes (i = 0) or gametes with varying levels of

resistance (1 ≤ i ≤ n) are produced by individuals in the population. We have

FD(t) = fDDxDD(t) +
n∑

k=0

pkD,DfkDxkD(t)

Fi(t) =

i∑
k=0

pkD,ifkDxkD(t) +

n∑
k=0

1 + δki
2

fkixki(t).

(1.3)

Here, δki is the Kronecker delta. We use the following notation: xki(t) denotes the frequency of

individuals (at time t) with only wild-type or resistance alleles, xkD(t) denotes the frequency of in-
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dividuals (at time t) with one wild-type or resistance allele and one drive allele, and xDD(t) denotes

the frequency of individuals (at time t) that are homozygous in the drive allele. (We define xki(t) for

k ̸= i and xkD(t) such that the ordering of the indices does not matter, i.e., xki(t) = xik(t) is the

frequency of individuals with one copy of the k allele and one copy of the i allele, and xkD(t) =

xDk(t) is the frequency of individuals with one copy of the k allele and one copy of the drive allele.)

fki denotes the fitness of individuals with only wild-type or resistance alleles, fkD denotes the fit-

ness of individuals with one wild-type or resistance allele and one drive allele, and fDD denotes the

fitness of individuals that are homozygous in the drive allele. pkD,D denotes the probability that an

individual of genotype kD produces aD gamete. pkD,i denotes the probability that an individual

of genotype kD produces an i gamete. From conservation of probability, we have the following

identity:

pkD,D +
n∑

i=k

pkD,i = 1.

Notice that a type nD individual is fully resistant to being manipulated by the drive construct;

such a fully resistant individual shows standard Mendelian segregation in its production of gametes.

Thus, we have

pnD,n =
1

2
.

We understand Equations (1.3) as follows: TypeDD individuals only produce typeD gametes,

hence the term fDDxDD(t) in the equation for FD(t). Type kD individuals produce typeD ga-

metes with probability pkD,D , hence the terms pkD,DfkDxkD(t) in the equation for FD(t). Type

kD individuals produce type i gametes with probability pkD,i, hence the terms pkD,ifkDxkD(t) in
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the equation for Fi(t). Type ki individuals produce type i gametes with probability 1 if k = i or

with probability 1/2 if k ̸= i, hence the terms [(1 + δki)/2]fkixki(t) in the equation for Fi(t).

The selection dynamics are modeled by the following system of equations:

ẋij(t) = (2− δij)Fi(t)Fj(t)− ψ2(t)xij(t)

ẋiD(t) = 2Fi(t)FD(t)− ψ2(t)xiD(t)

ẋDD(t) = F 2
D(t)− ψ2(t)xDD(t).

(1.4)

Here, an overdot denotes the time derivative, d/dt. In formulating the population dynamics, we

assume random mating; i.e., two random gametes meet to form a new individual. Notice that the

products (2 − δij)Fi(t)Fj(t), 2Fi(t)FD(t), and F 2
D(t) in Equations (1.4) represent the pairings

of the different types of gametes to make new offspring. The quantity ψ2(t) represents a density-

dependent death rate for the individuals in the population.

At any given time, t, we require that the total number of individuals sums to one:

xDD(t) +
n∑

i=0

xiD(t) +
n∑

i=0

i∑
j=0

xij(t) = 1. (1.5)

To enforce this density constraint, we set

ψ(t) = FD(t) +

n∑
i=0

Fi(t). (1.6)

Throughout this Chapter, we choose to work in the framework of continuous time (Equations

37



(1.4)), since we feel that this approach simplifies the mathematical analysis. In much of the remain-

der of this Chapter, we omit explicitly writing the time dependence on dynamical quantities for

notational convenience.

1.6.2.2 Invasion of the drive construct

Consider a wild-type population in which all individuals have genotype 00. We perturb the wild-

type population by introducing a small amount of the drive allele,D. What happens? Does the

drive allele catalyze its own spread in the population, or is it eliminated?

For a perturbation to a wild-type population, we write the frequencies of the genotypes as

x00 = 1 −ϵδ(1)00 − ϵ2δ
(2)
00 −O(ϵ3)

x0D = +ϵδ
(1)
0D + ϵ2δ

(2)
0D +O(ϵ3)

x0i = +ϵδ
(1)
0i + ϵ2δ

(2)
0i +O(ϵ3)

xij = + ϵ2δ
(2)
ij +O(ϵ3)

xiD = + ϵ2δ
(2)
iD +O(ϵ3)

xDD = + ϵ2δ
(2)
DD +O(ϵ3)

(1.7)

In Equations (1.7), it is implied that 1 ≤ i ≤ n and 1 ≤ j ≤ n. The expansions (1.7) are understood

as follows. The frequency of the wild-type allele is approximately one, since we only introduce a

small amount of the drive allele. The frequency of the drive allele is of order ϵ ≪ 1. The small
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number of 0D individuals in the population also produce resistance alleles, and the frequency of

these resistance alleles shortly after the perturbation is also small (i.e., of order ϵ≪ 1). Notice that:

• New type 00 individuals are produced by pairing two wild-type gametes (each at a frequency
O(1)), so new type 00 individuals are generated at a rateO(1).

• New type 0D individuals are produced by pairing a wild-type gamete (at a frequencyO(1))
and a drive gamete (at a frequencyO(ϵ)), so new type 0D individuals are generated at a rate
O(ϵ).

• New type 0i individuals (for 1 ≤ i ≤ n) are produced by pairing a wild-type gamete (at a
frequencyO(1)) and a resistant gamete (at a frequencyO(ϵ)), so new type 0i individuals are
generated at a rateO(ϵ).

• New type ij individuals (for 1 ≤ i ≤ n and 1 ≤ j ≤ n) are produced by pairing two
resistant gametes (each at a frequencyO(ϵ)), so new type ij individuals are generated at a
rateO(ϵ2).

• New type iD individuals (for 1 ≤ i ≤ n) are produced by pairing a resistant gamete (at a
frequencyO(ϵ)) and a drive gamete (at a frequencyO(ϵ)), so new type iD individuals are
generated at a rateO(ϵ2).

• New typeDD individuals are produced by pairing two drive gametes (each at a frequency
O(ϵ)), so new typeDD individuals are generated at a rateO(ϵ2).

Also, notice that a nonzero amount of the drive allele and the resistance alleles are produced at

order ϵ2 by type ij, iD, andDD individuals, so there also exist terms of order ϵ2 in the expansions

for x0D and x0i. Hence, we arrive at the expansions (1.7).

Note that (1.7) and (1.5) impose a constraint on theO(ϵ) terms in the genotype frequencies:

δ
(1)
00 = δ

(1)
0D +

n∑
i=1

δ
(1)
0i . (1.8)
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Also, note that (1.7) and (1.5) impose a constraint on theO(ϵ2) terms in the genotype frequencies:

δ
(2)
00 = δ

(2)
0D + δ

(2)
DD +

n∑
i=1

δ
(2)
0i +

n∑
i=1

δ
(2)
iD +

n∑
i=1

i∑
j=1

δ
(2)
ij .

Substituting (1.6), (1.3), (1.7), and (1.8) into the equation for ẋ0D in (1.4), we obtain

δ̇
(1)
0D = f00 (2p0D,Df0D − f00) δ

(1)
0D.

The drive allele invades a wild-type population if δ̇(1)0D > 0, i.e., if

2p0D,Df0D > f00. (1.9)

1.6.2.3 Stability of the drive construct

Consider a population in which the drive construct has fixed, so that all individuals have genotype

DD. We perturb theDD population by introducing a small amount of the wild-type allele, 0.

What happens? Is theDD population stable to perturbations, or does the wild-type allele or one

of the resistance alleles invade the population?

For a perturbation to a population in which the drive construct has fixed, we write the frequen-
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cies of the genotypes as

xDD = 1 −ϵδ(1)DD − ϵ2δ
(2)
DD −O(ϵ3)

xiD = +ϵδ
(1)
iD + ϵ2δ

(2)
iD +O(ϵ3)

xij = + ϵ2δ
(2)
ij +O(ϵ3)

(1.10)

In Equations (1.10), it is implied that 0 ≤ i ≤ n and 0 ≤ j ≤ n. The expansions (1.10) are un-

derstood as follows. The frequency of the drive allele is approximately one, since we only introduce

a small amount of the wild-type allele. The frequency of the wild-type allele is of order ϵ ≪ 1. The

small number of 0D individuals in the population also produce resistance alleles, and the frequency

of these resistance alleles shortly after the perturbation is also small (i.e., of order ϵ ≪ 1). Notice

that:

• New typeDD individuals are produced by pairing two drive gametes (each at a frequency
O(1)), so new typeDD individuals are generated at a rateO(1).

• New type iD individuals (for 0 ≤ i ≤ n) are produced by pairing a non-drive gamete (at
a frequencyO(ϵ)) and a drive gamete (at a frequencyO(1)), so new type iD individuals are
generated at a rateO(ϵ).

• New type ij individuals (for 0 ≤ i ≤ n and 0 ≤ j ≤ n) are produced by pairing two
non-drive gametes (each at a frequencyO(ϵ)), so new type ij individuals are generated at a
rateO(ϵ2).

Also, notice that a nonzero amount of the non-drive alleles are produced at order ϵ2 by type ij

individuals, so there also exist terms of order ϵ2 in the expansions for xiD. Hence, we arrive at the

expansions (1.10).
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Note that (1.10) and (1.5) impose a constraint on theO(ϵ) terms in the genotype frequencies:

δ
(1)
DD =

n∑
i=0

δ
(1)
iD . (1.11)

Also, note that (1.10) and (1.5) impose a constraint on theO(ϵ2) terms in the genotype frequencies:

δ
(2)
DD =

n∑
i=0

δ
(2)
iD +

n∑
i=0

i∑
j=0

δ
(2)
ij . (1.12)

Substituting (1.6), (1.3), (1.10), and (1.11) into the equations for ẋiD in (1.4), we obtain

δ̇
(1)
iD = Biδ

(1)
iD +

i−1∑
k=0

Ak,iδ
(1)
kD. (1.13)

Here, we use the shorthand notation

Ak,i = 2pkD,ifkDfDD

Bi = Ai,i − f2DD.

To solve (1.13), we take its Laplace transform. Using the notation∆
(1)
iD (s) = L{δ(1)iD (t)}(s) =∫∞

0 e−stδ
(1)
iD (t)dt, we have

∆
(1)
iD (s) =

1

s−Bi
δ
(1)
iD (0) +

1

s−Bi

i−1∑
k=0

Ak,i∆
(1)
kD(s) (1.14)

Here, we use δ(1)iD (0) to denote δ(1)iD (t) evaluated at time t = 0. Equation (1.14) specifies∆(1)
iD (s) in
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terms of each∆(1)
kD(s) for which 0 ≤ k < i. Simplifying, we have

∆
(1)
iD (s) =

δ
(1)
iD (0)

s−Bi
+

i−1∑
k=0

δ
(1)
kD(0)

s−Bk

[
Ak,i

s−Bi

+
i−1∑

u=k+1

Ak,uAu,i

(s−Bu)(s−Bi)

+

i−2∑
u=k+1

i−1∑
v=u+1

Ak,uAu,vAv,i

(s−Bu)(s−Bv)(s−Bi)

+
i−3∑

u=k+1

i−2∑
v=u+1

i−1∑
w=v+1

Ak,uAu,vAv,wAw,i

(s−Bu)(s−Bv)(s−Bw)(s−Bi)

+ · · · ]
(1.15)

We are interested in the time dependence of δ(1)iD (t). From Equation (1.15), notice that when the

Laplace transform is inverted, the time dependence of each term in the resulting equation for δ(1)iD (t)

has the form tα exp(Bjt), where α ≥ 0.

To demonstrate this, consider a set of real numbers {βj} and a set of positive integers {νj}, and

defineFk(s) for k ≥ 0:

Fk(s) =
k∏

j=0

1

(s− βj)νj

If the inverse Laplace transform ofFk(s), denoted byL−1{Fk(s)}(t), is equal to a sum of factors

of the formL−1{1/(s − βj)
ξ}(t), where ξ is a positive integer, then each term in the solution for

δ
(1)
iD (t) has the form tα exp(Bjt), where α ≥ 0.

To prove thatL−1{Fk(s)}(t) is equal to a sum of factors of the formL−1{1/(s− βj)
ξ}(t), we
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use induction. Define

Gk+1(t) = L−1 {Fk+1(s)} (t) = L−1

{
Fk(s)

1

(s− βk+1)νk+1

}
(t) (1.16)

The inverse Laplace transform in (1.16) is calculated as follows:

Gk+1(t) =

∫ t

0
dτ
[
L−1 {Fk(s)} (τ)

] [
L−1

{
1

(s− βk+1)νk+1

}
(t− τ)

]
(1.17)

First, for the base case, consider Equation (1.16) for k = 0. We have

G1(t) = L−1

{
1

(s− β0)ν0
1

(s− β1)ν1

}
(t) (1.18)

From (1.17), this becomes

G1(t) =

∫ t

0
dτ

[
L−1

{
1

(s− β0)ν0

}
(τ)

] [
L−1

{
1

(s− β1)ν1

}
(t− τ)

]

Substituting the expressions forL−1{1/(s − β0)
ν0}(τ) andL−1{1/(s − β1)

ν1}(t − τ), the

equation for G1(t) becomes

G1(t) =

∫ t

0
dτ

[
τν0−1eβ0τ

(ν0 − 1)!

] [
(t− τ)ν1−1eβ1(t−τ)

(ν1 − 1)!

]
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Performing the integration over τ , we have

G1(t) =
(−1)ν0

(ν0 − 1)!(ν1 − 1)!(β0 − β1)ν0

ν1−1∑
j=0

(
ν1 − 1

j

)
(j + ν0 − 1)!

(β0 − β1)j

×
[
(ν1 − j − 1)!L−1

{
1

(s− β1)ν1−j

}
(t)

−
j+ν0−1∑
k=0

(−1)k
(ν1 − j + k − 1)!

k!
(β0 − β1)

kL−1

{
1

(s− β0)ν1−j+k

}
(t)

]

Manipulating the indices and simplifying, we obtain

G1(t) =
(−1)ν0

(ν0 − 1)!(ν1 − 1)!(β0 − β1)ν0+ν1

×

 ν1∑
j=1

L−1

{
1

(s− β1)j

}
(t)

(
ν1 − 1

ν1 − j

)
(ν0 + ν1 − j − 1)!(j − 1)!(β0 − β1)

j

−
ν1∑
j=1

L−1

{
1

(s− β0)j

}
(t)

j−1∑
k=0

(−1)k
(

ν1 − 1

ν1 − j + k

)
(ν0 + ν1 − j + k − 1)!(j − 1)!

k!
(β0 − β1)

j

−
ν0+ν1−1∑
j=ν1+1

L−1

{
1

(s− β0)j

}
(t)

ν1−1∑
k=0

(−1)ν1−j−k

(
ν1 − 1

k

)
(ν0 + k − 1)!(j − 1)!

(j + k − ν1)!
(β0 − β1)

j


(1.19)

We see that G1(t) is equal to a sum of factors of the formL−1{1/(s− βj)
ξ}(t).

Next, consider Equation (1.16) for k > 0. From (1.17), we have

Gk+2(t) =

∫ t

0
dτ
[
L−1 {Fk+1(s)} (τ)

] [
L−1

{
1

(s− βk+2)νk+2

}
(t− τ)

]
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This is equal to

Gk+2(t) =

∫ t

0
dτ [Gk+1(τ)]

[
L−1

{
1

(s− βk+2)νk+2

}
(t− τ)

]
(1.20)

For the inductive step, suppose that Gk+1(t) reduces to a sum of factors of the formL−1{1/(s −

βj)
ξ}(t):

Gk+1(t) =
∑
j

∑
i

L−1

{
1

(s− βj)ξi

}
(t) (1.21)

Substituting (1.21) into (1.20), we have

Gk+2(t) =
∑
j

∑
i

∫ t

0
dτ

[
L−1

{
1

(s− βj)ξi

}
(τ)

] [
L−1

{
1

(s− βk+2)νk+2

}
(t− τ)

]

This is equal to

Gk+2(t) =
∑
j

∑
i

L−1

{
1

(s− βj)ξi
1

(s− βk+2)νk+2

}
(t)

Then from Equations (1.18) and (1.19), we see that Gk+2(t) also necessarily reduces to a sum of fac-

tors of the formL−1{1/(s− βj)
ξ}(t), thus completing the proof.

Since δ(1)iD is equal to a sum of factors of the form tα exp(Bjt), where α ≥ 0, we see that if

allBj < 0, then all δ(1)iD approach zero in the long-time limit, and, from (1.11), we have that δ(1)DD

approaches zero in the long-time limit. Therefore, ifBj < 0 for all values of 0 ≤ j ≤ n, then the

drive construct is evolutionarily stable.
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If, instead,Bj > 0 for at least one value of j, then δ(1)iD has a term whose magnitude grows ex-

ponentially in time. The leading-order (in ϵ) terms in the expansions for xiD in (1.10) are necessarily

positive. Therefore, if the conditionBj > 0 is satisfied for at least one value of j, then δ(1)iD is posi-

tive and grows exponentially in time; i.e., theDD population is unstable to perturbations.

The resulting condition is that theDD population is stable to perturbations with a wild-type

allele if

2max (pkD,kfkD) < fDD. (1.22)

Completely recessive fitness cost for a resistance mutation Now, we consider a

special case in which the fitness cost associated with having resistance to the drive is completely re-

cessive. If the fitness of each heterozygote with a resistance allele, fkD, exactly equals fDD for all k,

then is theDD population stable to perturbations? We expect that pkD,k < 1/2 for all 0 ≤ k < n.

Therefore, if fkD = fDD for all k, then the inequality (1.22) is satisfied for all k < n and becomes

an equality for k = n.

All resistance alleles with at least one target (0 ≤ k < n) are removed from the population

by selective forces. We must focus on the fully resistant allele, n. To probe the stability of theDD

population, we substitute (1.6), (1.3), (1.10), (1.11), and (1.12) into (1.4), and we keep terms that are

O(ϵ2). We have

− δ̇
(2)
DD = fDD (fDD − 2fnn) δ

(2)
nn +

1

4
f2DD

[
δ
(1)
DD

]2
. (1.23)
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We also have

δ̇(2)nn = −f2DDδ
(2)
nn +

1

4
f2DD

[
δ
(1)
DD

]2
. (1.24)

We can integrate (1.24). We get

δ(2)nn =
1

4

[
δ
(1)
DD

]2 [
1− exp

(
−f2DDt

)]
. (1.25)

We are interested in the regime 1 ≪ t ≪ ϵ−1. We must consider the sign of δ̇(2)DD at large times

t ≫ 1 but before the terms in (1.10) become similar in magnitude. Our condition for stability of the

DD population is therefore

lim
ϵt→0
t→∞

δ̇
(2)
DD < 0.

Shortly after the perturbation, the exponential in the solution for δ(2)nn will approach zero. Substi-

tuting (1.25) into (1.23) and simplifying, we see that theDD population is stable to perturbations

if

fnn < fDD. (1.26)

1.6.2.4 Interior equilibria

A drive construct increases in frequency when rare if Equation (1.9) is satisfied. A drive construct

that has already fixed is stable to perturbations if Equation (1.22) is satisfied (or if Equation (1.26) is

satisfied for the case of a completely recessive fitness cost for resistance). But if a small amount of the

drive construct is introduced into a wild-type population, then does the drive spread completely to
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fixation?

To answer this question, it is helpful to know if the model for the drive dynamics, Equations

(1.4), admits an interior equilibrium. Notice that, if all time derivatives are zero, then Equations (1.4)

simplify to

xij =
(2− δij)FiFj

ψ2

xiD =
2FiFD

ψ2

xDD =
F 2
D

ψ2
.

Next, we define xi to equal the frequency of allele i in the population. Thus, x0 is the frequency of

the wild-type allele, and xi for 1 ≤ i ≤ n is the frequency of a resistance allele with i damaged

targets. Also, xD is the frequency of the drive allele. These allele frequencies can be calculated from

the frequencies of individuals of the various genotypes:

xi =
1

2
xiD +

n∑
j=0

1 + δij
2

xij

xD = xDD +
1

2

n∑
i=0

xiD.

Similar to Equation (1.5), the sum of all allele frequencies equals one at all times:

xD +

n∑
i=0

xi = 1.
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We directly compute the following results:

x2i =

1

2
xiD +

n∑
j=0

1 + δij
2

xij

2

=
F 2
i

ψ4

FD +

n∑
j=0

Fj

2

=
F 2
i

ψ2
= xii

x2D =

xDD +
1

2

n∑
j=0

xjD

2

=
F 2
D

ψ4

FD +

n∑
j=0

Fj

2

=
F 2
D

ψ2
= xDD

2xixD =
2FiFD

ψ2
= xiD

(2− δij)xixj =
(2− δij)FiFj

ψ2
= xij .

(1.27)

In summary, we obtain

xij = (2− δij)xixj

xiD = 2xixD

xDD = x2D.

(1.28)

From (1.27), we have that

ψxi = Fi

ψxD = FD.

(1.29)

By substituting Equation (1.6) for ψ and Equations (1.3) for Fi and FD into (1.29), and substituting

(1.28), we obtain

fDDx
2
D + 2

n∑
k=0

fkDxkxD +
n∑

j=0

j∑
k=0

(2− δjk) fjkxjxk

xi = 2
i∑

k=0

pkD,ifkDxkxD+
n∑

k=0

fkixkxi.

(1.30)
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We also obtain

fDDx
2
D + 2

n∑
k=0

fkDxkxD +
n∑

j=0

j∑
k=0

(2− δjk) fjkxjxk

xD = fDDx
2
D+2

n∑
k=0

pkD,DfkDxkxD.

(1.31)

Equations (1.30) and (1.31) must be simultaneously satisfied for 0 ≤ xD ≤ 1 and 0 ≤ xi ≤ 1 for

each i at each interior fixed point. If Equations (1.30) and (1.31) cannot be simultaneously solved for a

given set of parameter values, then no interior fixed point exists.

1.6.2.5 Numerical examples

Numerical simulations of Equations (1.4) are helpful for understanding the evolutionary dynamics

of a drive construct. For simplicity, we consider a single guide (n = 1), and we choose the following

parameter values:

f00 = f10 = 1

f0D = f1D = fDD = 1− c

f11 = 1− s

p0D,0 = 0.

(1.32)

We make the following assumptions: The fitness cost of the drive, c, is dominant. The fitness cost

of the resistant allele, s, is recessive. Also, the drive construct in a 0D heterozygote always cuts at

the target, and either the drive allele is copied by homologous recombination or resistance emerges.

Thus, we have p0D,0 = 0.

In Fig. 1.4 (a and b), numerical simulations demonstrate evolutionary invasion of the drive con-
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struct. For these simulations, the initial condition is xAA = 1 − 10−4 and xDD = 10−4. The

relevant condition for determining evolutionary invasion is Equation (1.9).

• In Fig. 1.4 (a), we set p0D,D = 0.75 and s = 0.4. From Equation (1.9), the critical value of
c for invasion is 1/3. If c = 0.34 (green curve), then the drive construct does not invade. If
c = 0.33 (blue curve), then the drive construct invades.

• In Fig. 1.4 (b), we set p0D,D = 0.65 and s = 0.3. From Equation (1.9), the critical value of c
for invasion is approximately 0.23. If c = 0.235 (green curve), then the drive construct does
not invade. If c = 0.225 (blue curve), then the drive construct invades.

In Fig. 1.4 (c and d), numerical simulations demonstrate evolutionary stability of the drive con-

struct. For these simulations, the initial condition is xDD = 1 − 10−2 and xAA = 10−2. From

(1.32), notice that the condition (1.22) becomes an equality. Therefore, the relevant condition for

determining evolutionary stability is Equation (1.26).

• In Fig. 1.4 (c), we set p0D,D = 0.75 and c = 0.32. From Equation (1.26), the critical value
of s for stability is 0.32. If s = 0.315 (green curve), then the drive construct is unstable. If
s = 0.325 (blue curve), then the drive construct is stable.

• In Fig. 1.4 (d), we set p0D,D = 0.65 and c = 0.2. From Equation (1.26), the critical value
of s for stability is 0.2. If s = 0.195 (green curve), then the drive construct is unstable. If
s = 0.205 (blue curve), then the drive construct is stable.

In Fig. 1.4 (e and f), numerical simulations demonstrate the behavior of the drive construct at

intermediate frequencies. For these simulations, the initial condition is xAA = 1 − 10−4 and

xDD = 10−4. If Equations (1.30) and (1.31) cannot simultaneously be solved numerically, then there

is no interior equilibrium.

• In Fig. 1.4 (e), we set p0D,D = 0.75 and c = 0.32. From numerical analysis of Equations
(1.30) and (1.31), values of s that are slightly below approximately 0.815 permit an interior
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equilibrium, while values of s that are slightly above approximately 0.815 do not. If s =

0.81 (green curve), then the drive construct reaches an equilibrium frequency that is strictly
between 0 and 1. If s = 0.82 (blue curve), then the drive construct spreads to fixation.

• In Fig. 1.4 (f), we set p0D,D = 0.65 and c = 0.2. From numerical analysis of Equations
(1.30) and (1.31), values of s that are slightly below approximately 0.285 permit an interior
equilibrium, while values of s that are slightly above approximately 0.285 do not. If s =

0.28 (green curve), then the drive construct reaches an equilibrium frequency that is strictly
between 0 and 1. If s = 0.29 (blue curve), then the drive construct spreads to fixation.
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Figure 1.4: Numerical simulations of the evolutionary dynamics.
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1.6.3 Model with neutral resistance

In this Section, we present an extension of the model that accounts for the phenomenon of “neutral

resistance”, concluding with the model presented in Section 1.5. Neutral resistance can occur if non-

homologous end joining results in repair at a cut site that disrupts the recognition sequence of a

guide RNA while nonetheless leaving the function of the target gene intact. This can occur, for

example, via an in-frame insertion or deletion or a synonymous mutation. The resulting allele is

similar (with respect to the drive mechanism) to the resistant alleles discussed in previous sections:

the repaired target is immune to cutting by its corresponding guide RNA. However, the mutation

conferring this resistance is not deleterious.

1.6.3.1 Model description

We represent this scenario of neutral resistance by an extension of our original model developed in

Section 1.6.2. We consider a drive allele,D, n “costly” resistant alleles,Ri (with 1 ≤ i ≤ n), n

“neutral” resistant alleles, Si (with 1 ≤ i ≤ n), and the wild-type allele, S0. The drive mechanism

works as follows (see Fig.1.2 for an illustration).

Consider a type S0D individual; one allele is wild-type, and the other allele is the drive. There are

n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive can cut any number

of targets between 0 and n. If the drive cuts no targets, then the individual remains with genotype

S0D. If the drive cuts k targets (with 1 ≤ k ≤ n), then one of several things can happen: One

possibility is that homologous recombination copies the drive allele onto the damaged chromosome,
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so that the individual’s genotype becomesDD. Another possibility is that non-homologous end

joining repairs the damaged chromosome without restoring the lost targets, and the resulting resis-

tant allele is either costly, in which case the individual’s genotype becomesRiD (with 1 ≤ i ≤ n),

or cost-free, in which case the individual’s genotype becomes SiD (with 1 ≤ i ≤ n). Yet another

possibility is that non-homologous end joining perfectly repairs the damaged chromosome, so that

the individual’s genotype remains S0D.

The drive allele can effect its spread as long as there is at least one remaining target. In an individ-

ual with genotypeRiD or SiD, either the drive cuts at no targets, with the individual’s genotype

remainingRiD or SiD, or the drive cuts at some number, k, of the n− i remaining targets (so that

1 ≤ k ≤ n− i). After cutting, the individual can become homozygous in the drive allele (DD), the

individual can lose additional targets by acquiring genotypeRjD or SjD (with i + 1 ≤ j ≤ n),

or the individual can remain with genotypeRiD or SiD. We assume that costly resistant allelesRi

cannot convert to cost-free resistant alleles Sj , but cost-free resistant alleles Si can convert to costly

resistant allelesRj .

Using these rules, we can formally express the rates at which each of the 2n + 2 types of gametes

are produced in terms of the frequencies of individuals in the population. We denote by FD(t) the

rate (at time t) at which drive gametes (D) are produced by individuals in the population. We de-

note by FSi(t) the rate (at time t) at which wild-type gametes (i = 0) or gametes with varying levels

of cost-free resistance (1 ≤ i ≤ n) are produced by individuals in the population. And we denote

by FRi(t) the rate (at time t) at which gametes with varying levels of costly resistance (1 ≤ i ≤ n)
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are produced by individuals in the population. We have

FD(t) = fDDxDD(t) +

n∑
k=1

pRkD,DfRkDxRkD(t) +

n∑
k=0

pSkD,DfSkDxSkD(t)

FSi(t) =
n∑

k=0

1 + δki
2

fSkSixSkSi(t) +
1

2

n∑
k=1

fRkSixRkSi(t) +
i∑

k=0

pSkD,SifSkDxSkD(t)

FRi(t) =

n∑
k=1

1 + δki
2

fRkRixRkRi(t) +
1

2

n∑
k=0

fRiSk
xRiSk

(t)

+
i∑

k=1

pRkD,RifRkDxRkD(t) +
i−1∑
k=0

pSkD,RifSkDxSkD(t).

Here, δki is the Kronecker delta. xIJ(t) denotes the frequency of individuals (at time t) with geno-

type IJ , where I, J = D,S0, S1, . . . , Sn, R1, . . . , Rn. Similarly, fIJ is the fitness of IJ individ-

uals, and pIJ,K denotes the probability of an individual with genotype IJ producing aK gamete.

From conservation of probability, we have the following identities:

pRkD,D +

n∑
i=k

pRkD,Ri = 1

pSkD,D +

n∑
i=k

pSkD,Si +

n∑
i=k+1

pSkD,Ri = 1

Notice that typeRnD and type SnD individuals are fully resistant to being manipulated by

the drive construct; such a fully resistant individual shows standard Mendelian segregation in its

production of gametes. Thus, we have

pRnD,Rn = pSnD,Sn =
1

2
.
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The selection dynamics are modeled by the following system of equations:

ẋDD(t) = F 2
D(t)− ψ2(t)xDD(t)

ẋRiD(t) = 2FRi(t)FD(t)− ψ2(t)xRiD(t)

ẋSiD(t) = 2FSi(t)FD(t)− ψ2(t)xSiD(t)

ẋRiSj (t) = 2FRi(t)FSj (t)− ψ2(t)xRiSj (t)

ẋRiRj (t) = (2− δij)FRi(t)FRj (t)− ψ2(t)xRiRj (t)

ẋSiSj (t) = (2− δij)FSi(t)FSj (t)− ψ2(t)xSiSj (t).

The quantity ψ2(t) represents a density-dependent death rate for the individuals in the population.

At any given time, t, we require that the total number of individuals sums to one:

xDD(t)+

n∑
i=1

xRiD(t)+

n∑
i=0

xSiD(t)+

n∑
i=1

n∑
j=0

xRiSj (t)+

n∑
i=1

i∑
j=1

xRiRj (t)+

n∑
i=0

i∑
j=0

xSiSj (t) = 1

To enforce this density constraint, we set

ψ(t) = FD(t) +
n∑

i=1

FRi(t) +
n∑

i=0

FSi(t).
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1.6.3.2 Invasion of the drive construct

The steps for determining if the drive construct invades when there is neutral resistance are the same

as in Section 1.6.2.2. The drive allele invades a wild-type population if

2pS0D,DfS0D > fS0S0 .

1.6.3.3 Stability of the drive construct

The steps for determining if the drive construct is stable when there is neutral resistance are the same

as in Section 1.6.2.3. TheDD population is stable to perturbations with a wild-type allele if

2 max
A∈S∪R

(pAD,AfAD) < fDD.

1.6.4 Explicit cellular models of CRISPR gene drive

We now specify values of the inheritance probabilities, pAB,C , and fitness values, fAB , which explic-

itly describe possible scenarios by which a CRISPR gene drive acts within individuals. First, we spec-

ify a parameter set that corresponds with the behavior of CRISPR gene drives as described in prior

literature. Then, we specify a parameter set that corresponds with our newly proposed CRISPR

gene drive construct. These specified parameter sets for the previous and newly proposed drive con-

structs are used for the simulations of the previous and newly proposed drive constructs, respec-

tively, in the numerical simulations presented earlier in Section 1.3.
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1.6.4.1 Previous drives

For CRISPR gene drives as described in prior literature, n = 1. Reasonable choices for the fitness

values and inheritance probabilities are as follows.

The wild-type has the maximum fitness of fS0S0 = 1, and the cost-free resistant allele, S1, is

identical to the wild-type allele, S0, with respect to fitness. Disruption of the target gene produces

a recessive fitness cost, s, and the gene drive construct produces a dominant fitness cost, c. How-

ever, since the previously demonstrated drive constructs copied themselves by inserting at (and

thus disrupting) the target sequence, the drive allele contains a disrupted copy of the target gene.

Thus,DD andRD individuals incur both the cost of the drive construct, c, and the cost of re-

sistance, s. These two costs can be assumed to be independent so that the corresponding fitness

effects are multiplicative, i.e., (1 − c)(1 − s). Therefore, we have the following fitness values:

fDD = fRD = (1− c)(1− s), fSD = 1− c, fRR = 1− s, and fRS = fSS = 1.

We then compute the drive-heterozygote gamete production probabilities as follows:

• R1D individuals produceR1 gametes andD gametes equiprobably because the single target
site is resistant to cutting, so we have

pR1D,R1 = pR1D,D =
1

2
.

• S1D individuals produce S1 gametes andD gametes equiprobably because the single target
site is resistant to cutting, so we have

pS1D,S1 = pS1D,D =
1

2
.

• S0D individuals produce S0 gametes precisely when no cutting occurs. Since cutting occurs
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with probability q, we have

pS0D,S0 =
1− q

2
.

• S0D individuals produceD gametes by inheriting the existingD allele, or by cutting at the
single target site with probability q and undergoing HR repair with probability P . We have

pS0D,D =
1

2
+
qP

2
.

• S0D individuals produce S1 gametes by cutting at the single target site with probability
q, undergoing NHEJ repair with probability 1 − P , and repairing the cut perfectly with
probability γ. We have

pS0D,S1 =
q(1− P )γ

2
.

• S0D individuals produceR1 gametes by cutting at the single target site with probability q,
undergoing NHEJ repair with probability 1 − P , and repairing the cut imperfectly with
probability 1− γ. We have

pS0D,R1 =
q(1− P )(1− γ)

2
.

1.6.4.2 Newly proposed drives

For our newly proposed CRISPR gene drive construct, any n ≥ 1 is valid. Reasonable choices for

the fitness values and inheritance probabilities are as follows.

The wild-type has the maximum fitness of fS0S0 = 1, and cost-free resistant alleles, Si, are

identical to the wild-type allele, S0, with respect to fitness. The cost, c, conferred by the drive is dom-

inant, while the cost, s, conferred by costly resistant alleles—which are disrupted copies of the target

gene—is recessive. Furthermore, we assume that the drive allele contains a functional copy of the
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target gene, soDD andRD individuals do not incur the recessive fitness cost for target disruption.

Thus, we have fDD = fRD = fSD = 1− c, fRR = 1− s, and fRS = fSS = 1.

We then assign values to the drive-heterozygote gamete production probabilities according to the

biological description outlined in the main text and illustrated in Fig. 1.2B. We first define a proba-

bility density, PK(k | n, i, q), which describes the probability that k target sites undergo cutting,

given that there are n total targets, of which i are currently resistant to cutting, and where each of

the n− i susceptible targets are cut independently with probability q. This distribution is binomial,

specifically:

PK(k | n, i, q) =
(
n− i

k

)
qk(1− q)n−i−k.

This distribution is defined for 0 ≤ k ≤ n− i.

In the case that two or more cuts occur, we assume that all target sites between the two outermost

cuts are lost due to loss of the intervening DNA sequence. To account for this effect, we further de-

fine a probability density, PL(l | k, n, i), which describes the probability that l targets are lost given

k cuts, n total target sites, and i currently resistant sites. This distribution can be straightforwardly

computed:

PL(l | k, n, i) = (n− i− l + 1)

(
l − 2

k − 2

)/(
n− i

k

)
.

This distribution is defined for 2 ≤ k ≤ l ≤ n− i.

We then compute the drive-heterozygote gamete production probabilities as follows:

• RiD individuals produceD gametes by inheriting the existingD allele, or by cutting at one
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or more sites on theRi chromosome (each with probability q) and undergoing HR repair
(with probability P ). We have

pRiD,D =
1

2
+
P

2
(1− (1− q)n−i).

• RiD individuals produceRi gametes precisely when no cutting occurs. Each of the n − i

sites is susceptible to cutting, and cutting occurs independently at each with probability q, so
we have

pRiD,Ri =
1

2
(1− q)n−i.

• RiD individuals produceRi+1 gametes (with i < n) by cutting at exactly one target site
(where each is cut independently with probability q) and undergoing NHEJ repair (with
probability 1 − P ). Since we assume that costly resistant alleles cannot convert back to cost-
free alleles, we do not consider the efficacy of repair by NHEJ. In this case, we have

pRiD,Ri+1 =
1− P

2
(n− i)q(1− q)n−i−1.

• RiD individuals produceRk gametes (with i + 2 ≤ k ≤ n) by losing k − i target sites
and undergoing NHEJ repair (with probability 1 − P ). Since we assume that costly resistant
alleles cannot convert back to cost-free alleles, we do not consider the efficacy of repair by
NHEJ. In this case, we have

pRiD,Rk
=

1− P

2

k−i∑
j=2

PL(k − i | j, n, i)PK(j | n, i, q).

The sum is over the number of simultaneous cuts, j, which could possibly give rise to a loss
of k − i targets.

• SiD individuals produceD gametes by inheriting the existingD allele, or by cutting at one
or more sites on the Si chromosome (each with probability q) and undergoing HR repair
(with probability P ). We have

pSiD,D =
1

2
+
P

2
(1− (1− q)n−i).

• SiD individuals produce Si gametes precisely when no cutting occurs. Each of the n− i sites
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is susceptible to cutting, and cutting occurs independently at each with probability q, so we
have

pSiD,Si =
1

2
(1− q)n−i.

• SiD individuals produce Si+1 gametes (with i < n) by cutting at exactly one target site
(where each is cut independently with probability q), undergoing NHEJ repair (with proba-
bility 1− P ), and repairing the cut perfectly (with probability γ). We have

pSiD,Si+1 =
1− P

2
(n− i)q(1− q)n−i−1γ.

• SiD individuals do not produce Sk gametes when k ≥ i + 2. This is because cutting at two
or more target sites would lead to a large deletion in the intervening DNA sequence, resulting
in loss of target gene function. Thus

pSiD,Si+2 = · · · = pSiD,Sn = 0.

• SiD individuals produceRi+1 gametes (with i < n) by cutting at exactly one target site
(where each is cut independently with probability q), undergoing NHEJ repair (with proba-
bility 1− P ), and repairing the cut imperfectly (with probability 1− γ). We have

pSiD,Ri+1 =
1− P

2
(n− i)q(1− q)n−i−1(1− γ).

• SiD individuals produceRk gametes (with i + 2 ≤ k ≤ n) by losing k − i target sites and
undergoing NHEJ repair (with probability 1 − P ). This is because cutting at two or more
target sites would lead to a large deletion in the intervening DNA sequence, resulting in loss
of target gene function. Thus we have

pSiD,Rk
=

1− P

2

k−i∑
j=2

PL(k − i | j, n, i)PK(j | n, i, q).

The sum is over the number of simultaneous cuts, j, which could possibly give rise to a loss
of k − i targets.

For the numerical simulations of both the previous and newly proposed drive constructs shown

in the main text, we set q = P = 0.95 and γ = 1/3.
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2
Invasiveness of current CRISPR gene drives

2.1 Foreword

The results in Chapter 1 paint a general picture of CRISPR gene drive dynamics in infinite wild

populations: drive elements spread when initially rare, persist in the population over some typical

timescale and then go extinct in the long run. This chapter asks how these dynamics play out in

finite populations with small initial introductions of drive-carrying organisms. The motivating sce-
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nario is a hypothetical field trial in which a drive element is released to alter only one population

among several that are connected by low rates of migration. Our analysis asks how likely the drive is

to be contained to the target population under various circumstances.

I performed this work together with Ben Adlam, who contributed great help with developing

and analyzing the mathematical models presented here. We benefited immensely from insight, advis-

ing and support from George Church, Kevin Esvelt and Martin Nowak.

This chapter was first published in Ref. 40:

Charleston Noble∗, Ben Adlam∗, George M. Church, Kevin M. Esvelt and Martin A. Nowak. Cur-

rent CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7, e33423

(2018). (∗equal contribution)

2.2 Introduction

Following reports of successful CRISPR gene drive systems in yeast 37 and fruit flies 38, scientists em-

phasized the need to employ strategies beyond traditional barrier containment as a laboratory safe-

guard42,66. These precautions were judged necessary to prevent unintended ecological effects, but

also because any unauthorized release affecting a wild population could severely damage trust in

scientists and governance, significantly delaying or even precluding applications of gene drive and

other biotechnologies.

Drive resistance can result from, among other mechanisms, mutations that block cutting by the

CRISPR nuclease, which can arise via de novo mutation, standing genetic variation or—as analyzed
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in detail in the previous chapter—because the drive itself is not perfectly efficient. Moreover, recent

experimental and theoretical studies of resistance have predicted that this phenomenon will prevent

drive fixation in large wild populations unless additional mitigating strategies are employed, such as

multiplex targeting of essential genes using multiple gRNAs 28,39,41,53,62,67–69 (Section 1.3).

On the other hand, recent articles highlighting the problem of resistance have suggested that it

might prevent drive invasion in wild populations—with some even implying that resistance could

serve as a safeguard70,71. While we agree that resistance should prevent drive fixation in large popula-

tions, an allele can nonetheless spread to significant frequency without fixing. To clarify this point,

we sought here to quantify the likelihood and magnitude of spread in the most likely unauthorized

release scenario—a small number of engineered individuals released into a wild population.

As discussed in the previous chapter, CRISPR-based gene drive systems function by convert-

ing drive-heterozygotes into homozygotes in the late germline or early embryo41 (Fig. 2.1A). First,

a CRISPR nuclease encoded in the drive construct cuts at the corresponding wild-type allele—its

target prescribed by one or more independently expressed guide RNAs (gRNAs)—producing a

double-strand break 33. This break is then repaired either through homology-directed repair, produc-

ing a second copy of the gene drive construct, or through a nonhomologous repair pathway (non-

homologous end joining, NHEJ, or microhomology-mediated end joining, MMEJ), which typically

introduces a mutation at the target site 34,35. Because the drive target is determined through sequence

homology, such a mutation generally results in resistance to future cutting by the gene drive. Thus,

the allele converts from a wild-type to resistant allele if it undergoes repair by a pathway other than

homology-directed repair. Moreover, drive-resistant alleles are expected to exist in wild populations
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simply due to standing genetic variation62,68.

Deterministic models, which assume an infinite, well-mixed population, predict whether an allele

is favored to increase in frequency when initially rare in a wild population. Whether gene drives are

predicted to invade by deterministic models depends on two key parameters: the homing efficiency

(P ), or the probability of undergoing homology-directed repair instead of nonhomologous repair,

and fitness (f ), or the relative fecundity or death rate the drive and its cargo confer on their organism

compared to the wild-type. Mathematically, drives are initially favored by selection if f(1 + P ) > 1

(which arises from Eq. (1.1) with pWD,D = (1 + P )/2, fWW = 1, and fWD = f ), i.e., if

the inheritance bias of the drive exceeds its fitness penalty 39,53,72. Given that the homing efficiencies

of reported drive systems typically range from 0.37 to 0.99 (Table A.1), current drive systems can

clearly invade in deterministic models. Although the fitness parameter, f , is typically not measured

in proof-of-concept studies, a substantial fitness cost is tolerable by all reported CRISPR drive con-

structs 5,13,37,38,67 (Fig. 2.1B).

However, in finite populations, the fate of initially rare alleles is determined not only by selec-

tion but also by stochastic fluctuations73–75. Therefore, stochastic models are required to predict

the probability that a drive will invade a population upon the introduction of a very small number

of individuals, even when deterministic models predict that they are to invade. A previous, and ar-

guably prescient, stochastic model of endonuclease drive containment found that homing-based

drives, such as those subsequently developed using CRISPR, were among the likeliest to invade of

the various drive alternatives76. To determine whether self-propagating homing drives are still able

to invade in the presence of resistance, we formulated a finite population, stochastic, Moran-based
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model that allows us to study small releases in finite and structured populations (Section 2.5).
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2.3 Results

Our model considers three distinct allelic classes: wild-type (W), gene drive (D), and resistant (R).

Consistent with experiments, we assume that the drive invariably cuts the wild-type allele in the

germline of a heterozygous WD individual, converting to a drive allele with probability P , or a re-

sistant allele with probability 1 − P . Each genotype, AB, has a relative reproductive rate, fAB , cor-

responding to its fitness in deterministic models, normalized such that the wild-type homozygote

has fitness one (fWW = 1), the drive confers a dominant cost (fDW = fDD = fDR < 1), and

resistance is neutral (fWR = fRR = 1). This ordering of the parameters conservatively represents

the worst-case scenario for drive spread (Section 2.5.9).

At the population level, our basic model considersN diploid individuals mating randomly. The

process unfolds in discrete steps, during which parents are chosen for reproduction, an offspring

is chosen according to the mechanism above, and another individual is replaced by the offspring

(Fig. 2.1C and Section 2.5.1). These steps are repeated until one allele fixes. A generation isN time-

steps, which corresponds to the mean lifespan of an individual.

Code to perform numerical simulations of this model and all model extensions described below

(C++, Matlab), as well as data files, documentation, and code to reproduce all of the figures shown

in this Chapter (Matlab) can be found at GitHub77.

Figure 2.1D shows typical simulations for drive efficiencies of 0.15, 0.5, and 0.9, which corre-

spond respectively to a constitutively active drive system targeting a common insertion site, and con-

servative and high efficiency systems (based on previous experimental studies, Table A.1, Fig. 2.1B,
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Figure 2.1 (following page): Existing alteration-type CRISPR gene drive systems should invadewell-mixedwild pop-

ulations. (A) Typical construction and function of alteration-type CRISPR gene drive systems. A drive construct (D),

including a CRISPR nuclease, guide RNA (gRNA), and “cargo” sequence, induces cutting at a wild-type allele (W) with

homology to sequences flanking the drive construct. Repair by homologous recombination (HR) results in conversion

of the wild-type to a drive allele, or repair by nonhomologous end-joining (NHEJ) produces a drive-resistant allele (R).

(B) Drives are predicted to invade by deterministic models when the fitness of DWheterozygotes, f , and the homing
efficiency,P , are in the shaded region. Vertical lines indicate empirical efficiencies from Table A.1. (C) Diagram of a

single step of the gene-driveMoran process. (D) Finite-population simulations of 15 drive individuals released into a

wild population of size 500, assuming conservative (P = 0.5) or high (P = 0.9) homing efficiencies, as well as a low-
efficiency, constitutively active system (P = 0.15). Individual sample simulations (solid lines), and 50% confidence

intervals (shaded), calculated from 103 simulations. Drive-allele frequencies red and resistant-allele frequencies blue.
Peak drive, or maximum frequency reached, is illustrated by dashed lines and arrows. (E) Peak drive distributions and

medians with varying numbers of individual organisms released (P=0.5). (F)Medians of peak drive distributions for

varying homing efficiencies (P = 0.15, bottom;P = 0.5, middle;P = 0.9, top). Throughout, we assume neutral
resistance (fWR = fRR = 1) and a 10% dominant drive fitness cost (fWD = fDD = fDR = 0.9).
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Figure 2.1: (continued)
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Appendix A). These simulations assume a dominant drive fitness cost of 10%, a population of size

500, and a release of 15 drive-homozygous individuals. (Note that the dynamics are similar for larger

population sizes; see Section 2.5.4 and Fig. 2.3.) In all three cases, the drive, on average, irreversibly

alters a majority of the population, either via invasion of the drive itself or via spread of drive-created

resistant alleles. We call the maximum frequency of drive alleles reached during a simulation the

peak drive, and we say a drive has invaded if it establishes in the population, ensuring behavior qual-

itatively similar to deterministic models (Section 2.5.9). Notably, for sufficiently large populations,

arbitrarily low frequencies meet this standard, as it depends on the absolute number of drive alleles

rather than their frequency (Section 2.5.10). Note also that each of these examples is chosen from

the parameter regime in which invasion is predicted by deterministic models, since invasion is very

unlikely outside of this regime.

We next calculated the distribution of peak drive while varying the number of organisms released

(Figs. 2.1E and 2.1F). We find that these distributions are bimodal, with one mode centered around

the initial frequency (corresponding to drift leading rapidly to extinction) and one centered roughly

around the maximum values observed in the large-release scenarios in Fig. 2.1D. The former mode

shrinks rapidly as more organisms are released, and for the parameters studied, a release of 10 indi-

viduals nearly guarantees invasion with substantial peak drive (Section 2.5.9, Fig. 2.10).
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To understand the extent to which isolation might prevent invasion of other populations con-

nected by gene flow, we introduced population structure. Our model consists of five subpopula-

tions (or islands) that are equally connected by migration (Figs. 2.2A and Section 2.5.2). Typical

dynamics are illustrated in Fig. 2.2C. Figures 2.2B and 2.2D show the escape probability, or the prob-

ability of the drive invading (arbitrarily defined as attaining a frequency of 0.1) at least one subpop-

ulation other than its originating one, and Figure 2.2E shows the probability of invading a varying

number of subpopulations.

Our results in Fig. 2.2 suggest that if the migration rate is extremely low, then the drive is ef-

fectively contained in the initial subpopulation. If the migration rate is high, the drive is almost

guaranteed to invade all subpopulations linked to the originating one. For intermediate migration

rates—characterized roughly by migration rates on the order of the inverse of the drive extinction

time—both outcomes occur. In the scenario studied in Fig. 2.2, a migration rate of 10−3, which

corresponds to a single migration event every 2 generations on average (Section 2.5.2), virtually guar-

antees escape for moderate drive efficiencies. For further details and analytical formulae allowing

rapid estimation of escape probabilities, see Section 2.5.10.

Finally, we sought to understand the effects of additional mitigating factors that could potentially

affect peak drive or invasion. We considered the most prominent factors that have arisen in previ-

ous papers, and we studied each by varying parameters in our basic model and developing model

extensions. Our results are explored in detail in Section 2.5.

First, we considered preexisting drive resistance resulting from standing genetic variation62,68

(Section 2.5.5). We find that increasing the proportion of the population that is initially resistant lin-
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Figure 2.2 (following page): Existing CRISPR gene drive systems should invade linked subpopulations connected by

gene flow. (A) Diagram of well-mixed subpopulations (circles) linked by gene flow (edges). Individuals represented

by chromosomes with wild-type (gray), drive (red), or resistant (blue) haplotypes. (B) Few drive homozygotes are

released in one subpopulation. The drive escapes if it invades another subpopulation before going extinct. Otherwise

it is contained. (C) Typical simulations for varyingmigration rates (m = 10−1, top, tom = 10−4, bottom), following

introduction into a single subpopulation. Lines represent drive frequencies in each subpopulation. Circles correspond

to the time the drive invades a subpopulation. Population color is by invasion order, not predetermined. (D) Escape

probability as a function of homing efficiency,P , andmigration rate,m. Arrows indicatemigration rates fromB. Each

pixel is calculated from 103 simulations. (E) Probability of invading 1, 2, 3, or 4 additional populations (aside from
the originating population, which is typically invaded), assuming a homing efficiency ofP = 0.5. Each data point
is calculated from 104 simulations. Throughout, we consider 5 subpopulations connected in a complete graph, each
consisting of 100 individuals. Initially, 15 drive homozygotes are introduced into one subpopulation. Resistance is

neutral (fWR = fRR = 1) and the drive confers a dominant 10% cost (fWD = fDD = fDR = 0.9).
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Figure 2.2: (continued)
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early decreases the mean peak drive (R2 = 0.996). Using the parameters in Fig. 2.1E and considering

a release of 15 individuals, more than 50% preexisting resistance is required to contain average peak

drive below 10% (Fig. 2.4).

Second, we studied the effect of varying family size, which may be relevant to species such as

mosquitoes with large egg batch sizes 13,78. We extended the model so that k (adult) offspring are

produced from a reproduction event, rather than one. We find that this effect scales the release and

population sizes79 by a factor of 4/(2k+6). For illustration, we estimated k for Anopheles gambiae

to be roughly 10 (Section 2.5.6), so that a release of 7 individuals roughly corresponds to a release of

1 individual in our basic model. While this effect somewhat reduces the chance of drive invasion for

small release sizes, it does not preclude it.

Third, we varied drive fitness, resistant-individual fitness and homing efficiency across their en-

tire parameter regimes and recorded peak drive (Section 2.5.7, Fig. 2.7, Fig. 2.8). While varying drive

fitness, we find that peak drive is on average greater than 30% across the majority of the regime and

almost always greater than 10% (Fig. 2.7, left)—and, as a technical aside, we find that this is the case

whether the fitness cost of the drive manifests itself via a reduction in birth rate or via increase in

death rate (Fig. 2.7, right). Moreover, in line with previous deterministic results, we find that peak

drive can be substantially increased by associating a fitness cost with resistance (Fig. 2.8), which

could be expected for drive constructs intended for large-scale application, utilizing methods such

as multiplex targeting of essential genes 39,41,69.

Fourth, we studied the effect of inbreeding, which has been shown in several recent theoretical

studies63,68 to impede drive spread (Section 2.5.8). We extended the model to include a probability
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s of an individual selfing rather than mating with a second individual63. The model assumes no in-

breeding depression and thus considers the worst-case scenario for drive63. We find that even in this

scenario, high selfing probabilities are required to reduce peak drive and the probability of invasion

for moderate drive costs.

There are a variety of other phenomena that could affect invasiveness, e.g., density dependence 52,

environment80, costly resistance 81, local ecology, and even mating incompatibilities between some

laboratory strains and wild individuals. Such effects should be carefully studied in subsequent pa-

pers. Most importantly, the drive architecture itself should affect invasiveness; we consider here only

alteration-type drive systems, while others, e.g., sex-ratio distorters and genetic load drives, would be

expected to yield different dynamics. In particular, population suppression drive systems may locally

self-extinguish before invading new populations. However, for alteration drives, our key qualitative

finding—that peak drive is difficult to reliably contain below a socially tolerable threshold following

a very small release of organisms—appears robust to a variety of mitigating factors. Fundamentally,

we exercise caution by omitting application-specific phenomena that might aid containment in par-

ticular instances but not in general.

2.4 Discussion

Our results suggest that current first-generation CRISPR-based gene drive systems for population

alteration are capable of far-reaching—perhaps, for species distributed worldwide, global—spread,

even for very small releases. A simple, constitutively expressed CRISPR nuclease and guide RNA
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cassette targeting the neutral site of insertion—an arrangement that could occur accidentally—may

be capable of altering many populations of the target species depending on the homing efficiency of

the organism in question. More generally, resistance can be problematic for intentional applications

of gene drives, but we find that it is not a major impediment to invasion of unintended populations.

These findings raise two important questions: (1) How likely are unauthorized releases of self-

propagating gene drive systems in the first place? (2) How likely are serious negative consequences

given the apparently high likelihood of spread to most populations of the target species? Rigor-

ously addressing these questions is an important direction for future work, and we can offer only

opinions here. The answer to the first question likely depends on a large number of factors, such as

species, application, containment strategies, economic motivations, drive development stages, ge-

ography, and the caution of the investigators, so we omit speculation here. However, we consider

the answer to the second question to be clearer: although most laboratory gene drive systems are un-

likely to cause ecological changes—they are typically predicted to be transient and are not designed

to alter traits of the host organism, least of all interactions with other species—the history of genetic

engineering offers many examples suggesting that substantial social backlash could be triggered by

unauthorized spread of a self-propagating gene drive 82,83. Any such event could significantly reduce

public support for interventions against diseases such as malaria that could possibly save millions of

lives. We believe it would be profoundly unwise to proceed with anything less than an abundance of

caution.

On a more technical note, our findings are specific to population alteration drive and cannot be

directly generalized to self-propagating suppression drive, which could potentially self-extinguish
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before invading other populations. However, our results suggest a method for rough comparison

between these scenarios: we find that the primary factor in determining drive spread between ad-

jacent populations is the average number of migrants per generation (Section 2.5.10), which can,

in principle, be compared between models. For example, an earlier model of suppression drive sys-

tems 52 predicted a total number of drive-carrying organisms over time which is remarkably similar

to our example of an inefficient alteration drive system that is rapidly outcompeted by resistant al-

leles (Fig. 2.1D, middle). Thus, assuming comparable migration rates, it might not be surprising to

see qualitatively similar levels of invasiveness. Accordingly, we urge researchers to exercise caution in

developing or advocating for self-propagating suppression drives for applications other than malaria

prevention—or similar projects intended to affect an entire species—until explicit models of inva-

siveness are available.

Additionally, our findings emphasize the importance of the containment strategy known as “eco-

logical confinement”, which was proposed previously41,42. Given the risk that organisms may escape

through accidents or outside intervention, laboratories in regions with endemic wild populations

may wish to refrain from constructing self-propagating systems capable of invading those popula-

tions and undergoing unwanted spread. Laboratories in regions with endemic wild populations can

reliably prevent accidental invasion by employing intrinsic molecular confinement mechanisms such

as synthetic site targeting or split drive as recommended by the National Academies’ report on gene

drives66.

Perhaps most importantly, any development efforts looking ahead toward field trials, a com-

ponent of the staged testing strategy outlined by the National Academies report, should be aware
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that there could be a high likelihood of unwanted spread across international borders, even from

ostensibly isolated islands. The development of ‘local’, intrinsically self-exhausting gene drive sys-

tems 26,27,65,84,85, sensitive methods of monitoring population genetics, and strategies for countering

self-propagating drive systems and removing all engineered genes from wild populations should be

correspondingly high priorities.

2.5 Supplementary model details and extensions

2.5.1 Well-mixed finite population model

To model gene drives in finite populations, we introduce a Moran-type model with sexual reproduc-

tion (illustrated in Fig. 2.1C). We consider a population ofN individuals, each of which is diploid.

We focus on a locus with three allelic classes: wild-type (W), CRISPR gene drive element (D) and

drive-resistant (R). There are six possible genotypes: WW, WD, WR, DD, DR, and RR. We assign

to each genotype α a reproductive rate fα.

The process proceeds in discrete time-steps, during each of which three events occur in succes-

sion (Fig. 2.1C). First, two individuals are chosen without replacement for mating with probabilities

proportional to their reproductive rates, so that genotype α is selected with probability

fαNα∑
β fβNβ

. (2.1)

HereNα is the number of individuals having genotype α, and the sum in the denominator is over
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all six genotypes. Second, after selecting the two parents, the offspring genotype is chosen randomly

based on the genotypes of the two parents. To proceed, we introduce notation α = AB to mean

that genotype α consists of allelesA andB, and we index these alleles via α1 = A and α2 = B.

Note that we track only one genotype for each heterozygote, implicitly combining counts for geno-

types AB and BA. Using this notation, the probability that an offspring of genotype γ is chosen

given a mating between parents of genotypes α and β is given by the quantity qγαβ , which is equal to

qγ1α q
γ2
β + qγ2α q

γ1
β

1 + δγ1γ2
. (2.2)

Here qAα is a gamete production probability—the probability that a parent with genotype α pro-

duces a gamete with haplotypeA—and δAB is the Kronecker delta, defined by δAB = 1 ifA = B

(i.e., if the offspring under consideration is a homozygote), and δAB = 0 otherwise. The gamete

production probabilities, qAα , are determined by accounting for the gene drive process described

above. They are given by: qWWW = qDDD = qRRR = 1, qDWD = (1 + P )/2, qRWD = (1 − P )/2,

qWWR = qRWR = qDDR = qRDR = 1/2. The remaining values not listed, e.g., qRWW , are zero. Third,

an individual is chosen uniformly at random for death. Thus, the population size remains constant.

The resulting counts become the starting abundances for the next iteration of the process. The pro-

cess is initialized with a small number, i, of drive homozygotes (DD) and the remaining population,

N − i, wild-type homozygotes (WW). The process continues as described above either until a spec-

ified number of time steps have elapsed or until one of the three alleles has fixed. Any of the alleles

can fix, but typically either the wild-type or resistant alleles fix, due to the emergence of resistance.
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2.5.2 Finite population model with population structure

To study the effects of population structure on drive containment, we extended the well-mixed

model from the previous section. We now consider l well-mixed subpopulations, each consisting

initially ofN/l individuals. The process proceeds in discrete time steps, as before. In each time

step, we either migrate an individual from one population to another, or we choose a particular

subpopulation and proceed through one mating and replacement iteration, as outlined above. More

specifically, one step of the process proceeds as follows (illustrated in Fig. 2.11). With probabilitym,

we initiate a migration event. In this case, we perform three steps. First, we choose a source popu-

lation with probability proportional to its size. Second, we choose an individual uniformly at ran-

dom from the source population for migration. Finally, we move the chosen individual to a linked

subpopulation uniformly at random. Or, with probability 1 − m, we initiate a mating event as

described in the well-mixed section. To carry this out, we first choose the population in which the

event will occur. We choose this population with probability proportional to the square of its total

fitness, since this counts the rate of reproduction for every possible mating pair in the population

(as matings occur with rates proportional to the fitness of each parent). We then step through one

iteration of the well-mixed mating process within this subpopulation. Note that in this model the

migration rate has a simple interpretation. The time between migrations is geometrically distributed

with parameterm, so the mean time between migrations is 1/m time steps. Recall that a “genera-

tion” is equal to the mean lifespan of an individual, that is,N reproduction events orN/(1 − m)
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time steps. Then the typical time between migrations can be expressed with the units as generations:

E[T ] =
1−m

Nm
. (2.3)

2.5.3 Deterministic model

To compare our stochastic simulations with deterministic results, we use the model from Chapter 1,

described in Section 1.5 and published in Ref. 39. In particular, we use the “previous drive” model,

as it was designed to agree with the existing proof-of-concept CRISPR drive constructs that we con-

sider here. Specifically, we consider the case of 1 guide RNA (n = 1 in that model’s notation), and

zero production of costly resistant alleles (γ = 1).

2.5.4 Population size

Above, we present results from simulations which assume populations of sizeN = 500. We claim

thatN = 500 is a reasonable approximation for the dynamics in the large-population limit, which

is the relevant regime for widespread invasion or for species with very large population sizes, e.g.,

mosquitoes. Here we briefly evaluate this claim.

Figure 2.3 recreates Figure 2.1E with additional population sizes overlaid: N = 1000, 2500,

5000, and 10000. The distributions narrow for largerN until plateauing at roughlyN = 5000.

However, the central tendencies show little change with increasingN .
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Figure 2.3: Peak drive distributions for variable release and population sizes. Parameters are chosen to corre-

spond to Fig. 2.1E:P = 0.5, f = 0.9 and neutral resistance. Population sizes are, from light to dark,N =
500, 1000, 2500, 5000, 10000. Note thatN = 500 corresponds exactly to Fig. 2.1E. Each distribution corre-
sponds to 103 simulations.

2.5.5 Standing genetic variation

Several recent studies have explored the effect of pre-existing drive resistant alleles in a population

brought about by standing genetic variation (SGV) at the target locus62,68. These studies developed

deterministic models and showed that pre-existing resistant alleles—presumably neutral—should

rapidly outcompete costly drives due to selection, resulting in rapid drive extinction. The study by

Drury et al.68 used sequencing to quantify this standing variation in diverse populations of flour

beetles and found resistance-conferring mutations to exist at a wide range of frequencies, from 0 to
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0.375, with an average of roughly 0.1.

However, these studies were primarily concerned with long-term outcomes following drive

release, in which case resistance certainly outcompetes the drive. For our purposes, however, we

are concerned with the intermediate time regime in which the dynamics of resistance are less clear.

Moreover, these studies employed deterministic models, whereas our model is stochastic. Here, we

seek to understand the effect of SGV in our model.

To incorporate SGV, we simply alter the initial conditions: rather than introducing i drive ho-

mozygotes into a population ofN − iwild-type homozygotes, we introduce i drive homozygotes

into a population consisting of j resistant homozygotes (we choose resistant homozygotes for sim-

plicity, since they rapidly go to Hardy-Weinberg equilibrium following release) andN − i − j

wild-type homozygotes. Figure 2.4 shows the effect of SGV on peak drive for pre-existing resistance

frequencies up to 0.5.

We find that the effect of SGV is to linearly decrease the mean peak drive (R2 = 0.996). Our

intuition for this result is as follows. Because the population is well-mixed, the effect of resistance is

simply to decrease the size of the population that is susceptible to the effects of the drive. This can

be roughly viewed as linearly scaling the drive-frequency axis. For example, if the population has a

0.1 frequency of resistant alleles immediately prior to release, then the population that is susceptible

to drive is roughly 90% of the census population size, and the drive undergoes its usual dynamics

within this subpopulation. There are of course complications to this simplistic explanation, e.g., se-

lection increasing the size of the resistant population and diploidy mixing resistant and drive alleles.

Furthermore, the linear relationship only holds for sufficiently low levels of SGV. In our example
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here, the relationship holds to roughly 0.5 initial resistance frequency. However, this is still higher

than would be anticipated for drives engineered to spread in the wild.

Overall, our results suggest that a high level of SGV would be required to protect against drive

invasion. In our conservative example (Fig. 2.4) assuming 0.5 homing efficiency, 0.9 drive fitness,

and neutral resistance, pre-existing resistance of greater than 0.5 frequency is required to contain

peak drive to below 10% of the population, compared to 35% in the absence of SGV.
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Figure 2.4: Pre-existing drive-resistant allele frequency linearly decreases peak drive. Distributions (violin plots),

means (orange, circles) and linear regression of themean values (red, squares). Parameters are chosen to correspond

to Fig. 2.1E:P = 0.5, f = 0.9, neutral resistance,N = 500. Each distribution corresponds to 5000 simulations.
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2.5.6 Offspring number distribution

In the model presented above, we assume that each mating produces one offspring. However, a va-

riety of application-relevant species are known to produce many offspring per mating. For example,

femaleAnopheles gambiaemosquitoes can lay hundreds of eggs per lifetime 13. It is not clear, a pri-

ori, how varying the offspring number distribution in our model would affect the results presented

above. Thus we here analyze a simple extension of the model which allows us to vary the number of

offspring following a given mating event.

To begin, recall our model. We consider a population of constant sizeN with the following pro-

cess: At each time-step, two individuals are chosen for mating; an offspring is sampled according

to the parental genotypes; a third individual is chosen for removal from the population, and the

parents’ offspring takes its place. (We implicitly assume that these offspring are only the offspring

which successfully reach adulthood, i.e., reproductive age.) We now add a new parameter, k, which

determines number of (adult) offspring produced by a mating pair. The process proceeds as before,

except now k offspring are independently sampled from the parental genotypes, and k individuals

are chosen uniformly (without replacement) for removal from the population. Clearly the model

presented in the main text is the special case k = 1.

Note that this parameter k is not equivalent to brood size, clutch size, egg batch size, etc.—values

often considered in the ecological literature—in that k describes the number of offspring produced

per mating which successfully attain reproductive age. This number can of course be much lower

than these other parameters due to death during juvenile life stages. We provide an example calcula-
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tion for this parameter inAn. gambiae at the end of this section.

We now argue that increasing the number of offspring per mating, k, corresponds to decreasing

the effective size of the population,Ne. We omit rigorous proof here, but we provide a formula for

the effective population size in our model and present numerical simulations as support. To begin,

Hill showed in 1972 that the variance effective population size in the standard Moran model is79

Ne =
4N

2 + σ2X
. (2.4)

HereN is the census population size, and σ2X is the variance in the distribution of the total number

of offspring produced by an individual over the course of its lifetime (i.e., its lifetime reproductive

success). It was proven that this formula holds both for the Wright-Fisher model with discrete gen-

erations and for the Moran model with overlapping generations, provided that σ2X is the same and

that the total number of individuals entering the population in each generation is equal79. Our

model meets both of these requirements—indeed, the only difference is that two parents are cho-

sen to sample offspring types, rather than one, and this has no bearing on the number of offspring

produced—so we conjecture that Eq. (2.4) holds for our case as well.

To proceed, we calculate σ2X for our extended model and employ the variance effective popu-

lation size given by Eq. (2.4). Consider one particular individual in the population, and let t =

1, 2, . . . count time-steps. As described, in each step, k individuals are uniformly sampled (without

replacement) for removal. Thus, an individual has probability k/N of dying in each step. Its lifes-

pan, T , is thus geometrically distributed, T ∼ Geometric(k/N).
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Next, letX be a random variable describing the number of offspring an individual produces in

its lifetime, so thatX|T is the number of such events given that the individual survives T time-steps.

Because each mating event is independent, (X|T ) ∼ k · Bin(T, 2/N). The success probability de-

rives from the fact that two individuals are chosen for mating in each time-step and that the process

is neutral. Thus,

EX = EE [X | T ] = Ek(2/N)T = k(2/N)N/k = 2

and

Var(X) = EVar(X | T ) + Var(E(X | T ))

= Ek2T (2/N)(1− 2/N) + Var(k(2/N)T )

= kN(2/N)(1− 2/N) + (2k/N)2N(N − k)/k2

= 4 + 2k(N − 4)/N.

Returning to the variance effective population size expression in Eq. (2.4), we obtain for our

model:

Ne =
4N

2k + 6
. (2.5)

Note that in the case k = 1we recoverNe = N/2, which is the variance effective population size

for the standard Moran model.

In Fig. 2.5, we present peak drive distributions (as in Figs. 2.1E and 2.3) for varying values of k

with the effective population size,Ne, and effective release size, ie, both determined by Eq. (2.5),
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held constant. In this case we usedNe = 250 and ie = 8, which correspond toN = 500 and

an initial release of i = 16 in our standard model with k = 1. The peak drive distributions for

all values of k studied are approximately identical. This suggests that the dynamics for larger k can

indeed be inferred from the standard model with k = 1 and population/release sizes appropriately

scaled via Eq. (2.5). An immediate consequence of this result is that releases of organisms which

have many offspring (e.g., mosquitoes) are effectively smaller than would be expected from simply

counting. For example, an organism which typically has 100 offspring that survive to adulthood

would need a release size of roughly 258 to surpass the 10-individual initial release threshold we have

observed. Note that the 10-individual threshold discussed throughout the text is the census release

size; the effective release size is ie = 5.

In Fig. 2.6, we recalculate the distributions in Fig. 2.5 holding the actual population and release

sizes constant, rather than their effective values. Two effects are apparent. First, the decrease in ef-

fective population size,Ne, leads to greater variation in peak drive among simulations that invade,

i.e., the distribution centered around≈ 0.4widens. Second, the decrease in effective release size, ie,

leads to a greater probability of simulations immediately going extinct, i.e., the relative mass of the

mode centered around≈ 0 increases. In sufficiently large populations the first effect would be less

pronounced—see Fig. 2.3—while the second effect should apply for any small release.

Finally, as an example, we provide an estimate of our model’s k parameter for a particularly rel-

evant species,An. gambiae. To do this, we find the typical size, n, of egg batches laid by females

following a particular mating event; then we estimate the total number of these which survive to

adulthood using parameters from the literature.
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Figure 2.5: Peak drive distributions for varying numbers of offspring per mating with effective population and release

sizes held constant. (top) Population and release sizes used in the simulations below. For the case k = 1, we use our
usual population size ofN = 500with an initial release of i = 16 drive homozygotes. According to Eq. (2.5), the
effective total population and release sizes in this case areNe = 250 and ie = 8. For other values of k, we use
values ofN and iwhichmaintain constant effective population and release sizes:N = Ne(2k + 6)/4 and i =
ie(2k + 6)/4. These values are plotted:N (light blue) and i (dark blue). (bottom) Peak drive distributions assuming
values ofN and i as in the above plot. All employP = 0.5, f = 0.9, and neutral resistance. Each distribution
includes 5000 simulations.

The first number, n, varies according to a variety of environmental and ecological factors 13,78, so

we assume a large but reasonable value in order to avoid underestimating our parameter k. For this,

we assume that n ≈ 186, which is roughly the highest value observed by Hammond et al. in the

CRISPR drive study 13 and is in line with previous field work78.

To estimate the survival probability for each egg to adulthood, we employ the method and pa-
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Figure 2.6: Peak drive distributions for varying numbers of offspring per mating with census population and actual

release sizes held constant. (top) Population and release sizes used in the simulations below. Actual population size,

N (light blue, circles) and actual release size, i (light blue, triangles). Note thatN = 500 and i = 15 are constant.
Effective values calculated via Eq. (2.5): population size,Ne (dark blue, circles) and release size, ie (dark blue, trian-
gles). (bottom) Peak drive distributions for simulations using indicated values of k and population and release sizes as
depicted above. Compare with Fig. 2.5 which holds the effective population and release sizes constant, whereas here

we hold the census population and release sizes constant. All simulations employP = 0.5, f = 0.9, and neutral
resistance. Each distribution includes 5000 simulations.

rameters presented by Deredec et al. 52 Each egg goes through three juvenile stages before reaching

adulthood—the egg stage, the larva stage, and the pupae stage. We denote the probabilities of surviv-

ing each of these stages by θ0, θL, and θP , respectively. The probability of a particular egg reaching

adulthood is then p = θ0θLθP . These parameters were estimated to be θ0 = 0.831, θL = 0.076,

and θP = 0.831. Thus we have p = 0.0525.
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Given this formulation, the number of eggs laid per mating event which reach adulthood is dis-

tributed according to Bin(n, p). We take the mean of this distribution to obtain:

k ≈ np = 9.76.

Therefore, whileAn. gambiae females exhibit large egg batch sizes, the value of k for our model is

much lower—indeed, low enough that the central tendency of the peak drive distribution remains

roughly unchanged in Fig. 2.6.

2.5.7 Effect of varying fitness and homing efficiency

Above, we study various values of the homing efficiency, P , but we perform less exploration of the

parameters governing drive fitness, f , and resistance cost, s. This is motivated primarily by the abun-

dance of data for the former—see Table A.1—and the lack of data for the latter parameters.

In addition, we have assumed throughout that death rates are identical for the various genotypes,

while reproductive events occur with probabilities proportional to fitness. On the other hand, some

drive constructs might behave the opposite way: reducing fitness by increasing an organism’s death

rate, while leaving its birth rate unchanged.

In this section we explore these three effects: (i) varying drive fitness across its entire range, (ii)

varying the fitness cost of resistance across its entire range, and (iii) modifying the model so that

death rates are affected by fitness, rather than birth rates.

To begin, we consider our standard model for fitness and study drive spread across the entire
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range of values for drive fitness, f , and homing efficiency, P . In particular, we consider 51 values of

each parameter: P ∈ [0, 1] and f ∈ [0.5, 1], both evenly spaced, for a total of 2,601 parameter pairs.

For each pair, the average peak drive is calculated over 100 simulations, and the results are shown in

Fig. 2.7, left.

We find that maximum drive frequencies of greater than 0.3 are common across a wide range of

drive fitness values. In particular, for our lower-bound estimate of empirical drive efficiency (P =

0.5), drives can confer fitness costs as high as 20% before the peak drive drops below 0.3. For more

typical empirical efficiencies (P > 0.8), the peak drive is typically greater than 0.5 even for costly

drives (f ≈ 0.7), and low-cost drives (f > 0.9) have peak drive of greater than 0.9.

We next modified our standard well-mixed model in the following way. Recall that the model

involves choosing two parents to mate, then choosing an individual to die and be replaced by the

parents’ offspring. In our standard model, the two parents are chosen to reproduce with probabil-

ities proportional to their fitnesses, and an individual is chosen to die uniformly. In our modified

model, we choose the two parents uniformly and then choose the individual to die with probabil-

ity proportional to the inverse of its fitness. Results from the modified model are shown in Fig. 2.7,

right and are nearly identical to the results from the standard model.

In both cases, it is important to note that the peak drive and likelihood of invasion deemed so-

cially acceptable for accidental release would likely be lower than those discussed above. With this

in mind, our simulations suggest that if a drive is predicted to invade by deterministic models (i.e.,

if it lies above the boundary in Fig. 2.7), then it will almost certainly reach a maximum frequency

greater than 0.1. While acceptable levels of peak drive are as-yet unknown and will likely vary be-
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tween species, applications, jurisdictions and so on, spread to this extent will likely surpass it.
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Figure 2.7:Mean peak drive for varying homing efficiency,P , and drive-individual fitness values, f (i.e., individuals

with genotypesWD, DD, andDR), assuming that fitness affects birth rate (left) or death rate (right). The left panel

corresponds to our standardmodel, shown in Fig. 2.1C, while the right panel represents amodification: parents are

chosen uniformly, and individuals die with probability proportional to the inverse of their fitness. The solid white

line shows the boundary from Fig. 2.1B indicating whether the drive is predicted to invade by deterministic models.

The drive is only expected to invade based on deterministic models if the fitness/homing efficiency pair lie above the

boundary. The dashedwhite lines indicate the empirically measured homing efficiencies from Table A.1 and Fig. 2.1B.

Each point in the grid (51 × 51) depicts an average of 100 simulations. Parameters used include a population size
of 500, with an initial release of 15 drive homozygotes to ensure that trajectories establish. Neutral resistance is as-

sumed throughout with no standing genetic variation.

Finally, we sought to understand the effect of varying the fitness cost associated with drive-resistance.

Throughout the text above we have assumed that resistance is neutral, as this presumably represents

the best case for containment. However, drive constructs developed for applications are likely to

employ resistance-mitigating strategies, such as multiplex targeting of essential genes 39,41, which es-

sentially increase the fitness cost associated with drive-resistance. Thus, we ran simulations varying

drive-individual fitness, f , in the range f ∈ [0.5, 1], and resistant-individual (RR) fitness in the

range [0, 1], assuming conservative drive efficiency, P = 0.5. In both dimensions we considered 51

parameter values, evenly spaced, for a total of 2,601 parameter pairs. For each pair, the average peak
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drive is calculated over 100 simulations, and the results are shown in Fig. 2.8.

We find qualitatively that there are two regimes, determined by the fitness cost of resistance, s

(i.e., individuals with genotype RR have fitness 1 − s), and the deterministic invasion condition,

f(1 + P ) > 1. In the figure, we assume that P = 1/2, so the deterministic invasion condition is

simply f > 2/3. When the fitness cost of resistance, s, is sufficiently low (s < 1/3), then the dy-

namics are determined by the relationship between the fitness of drive individuals and the fitness of

resistant individuals: if the fitness of drive individuals is greater than the fitness of resistant individ-

uals, then the spread of the drive is dramatically improved—typically reaching fixation—compared

to the baseline neutral-resistance case. However, if the fitness cost of resistance is sufficiently high

(s > 1/3), then the improvement in drive spread brought about by increasing the cost of resistance

saturates, since the drive can now be less costly than resistance (f > 1 − s) but also too costly to

invade (f < 2/3). That is, for resistance costs higher than 1/3, the mean peak drive as a function

of drive fitness, f , remains essentially unchanged with increasing s, since the deterministic invasion

condition can no longer be satisfied when the drive has fitness f < 2/3, no matter the cost of resis-

tance.

2.5.8 Inbreeding

Since the drive functions only in heterozygotes, inbreeding in a population—which in effect reduces

the frequency of heterozygotes—would be expected to impact drive invasiveness. Indeed, this has

been shown in recent theoretical studies by Bull63 and Drury et al.68 Thus we here extend our well-

mixed model to include inbreeding and study its effect.
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Figure 2.8:Mean peak drive for varying drive-individual fitness values, f , and resistant-individual (RR) fitness values,
1 − s, where s is the cost associated with resistance. Each point in the grid (51 × 51) depicts an average of 100
simulations. Parameters used include homing efficiencyP = 0.5, population size of 500, with an initial release of 15
drive homozygotes to ensure that trajectories establish. Throughout we assume no standing genetic variation (i.e., the

initial frequency of the resistant allele is 0).

For simplicity, we consider a partial selfing model. In each update step of our process (see Fig. 2.1C),

we typically choose two parents for mating with probabilities proportional to their fitnesses. To in-

clude selfing, we instead choose the first parent as usual, with probability proportional to its fitness.

We then choose the first parent as the second parent as well with probability s; or, with probability

1 − s, we choose a second parent from the remaining population, with probability proportional

to its fitness. Note that the fitness of each offspring is determined entirely by its genotype and does

not account for inbreeding depression. Implicitly, we thus consider the case of zero inbreeding de-

pression. As this effect helps protect against drive invasion, we essentially consider the worst-case

scenario for drive containment63.
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Using our extended model, we then computed peak drive distributions for values of s between

0 and 1 and for the three values of P explored above: P = 0.15, 0.5, 0.9. The results are shown

in Fig. 2.9. We find that a fairly high degree of selfing is required to impact the peak drive distribu-

tion in a meaningful way. For highly effective drive, P = 0.9, the mass of the upper mode in the

frequency distribution is larger than the lower mode until roughly s ≈ 0.75. For conservative

drive, P = 0.5, this occurs at roughly s ≈ 0.6, and for ineffective drive there is little change, as

the maximum frequency begins very near zero. To compare with previous results, we can consider

the inbreeding coefficient rather than the selfing probability. In our model, the inbreeding coeffi-

cient, F , is given by s/(2 − s). Thus highly effective drive can tolerate inbreeding of F ≈ 0.6 and

conservative drive can tolerate F ≈ 0.43.

2.5.9 Comparison with deterministic model

To show that the deterministic ODE solutions provide reasonable approximations to the typical be-

havior of our stochastic mode, we overlay numerical solutions to the ODEs for the systems studied

in Fig. 2.1D of the main text. The results are shown in Fig. 2.10.

Throughout we have assumed that resistance is neutral with respect to the wild-type. This as-

sumption is biologically realizable as resistance is conferred by changing sequence homology to the

drive’s gRNA—something that could be achieved with synonymous codon substitutions, for ex-

ample. In practice, some resistance mutations could be costly and those that are neutral could be

rare. However, assuming resistance is always neutral represents the worst-case scenario for drive in-

vasiveness, as resistance can increase in frequency without being selected against with respect to the
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Figure 2.9: Peak drive distributions andmeans for varying selfing rates in our partial selfingmodel. (top) Effective

drive,P = 0.9. (middle) conservative drive,P = 0.5, and (bottom) constitutive drive,P = 0.15. Each distribu-
tion comprises 1000 simulations. Parameters used include a population size of 500with an initial release of 15 drive
homozygotes. Neutral resistance is assumed throughout with no standing genetic variation, and the offspring number

per mating is k = 1.

wild-type.

When resistance is no longer assumed to be neutral, other interesting dynamics can occur 81. In

particular, when resistance is costly with respect to the wild-type, but not so costly as the drive and

its cargo, the dynamics resemble the Rock-Paper-Scissors game. This allows the drive to avoid extinc-

tion indefinitely.
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2.5.10 Analytic formulae for the escape probability in structured populations

m1−m

Pick subpop.

Move individual Pick destination

Pick source Pick individual

WW
DD

DR
WD

WR DD
DD

One
reproduction
in subpop.

Start

DR

Figure 2.11: Diagram of simulation scheme. In each time step, a migration occurs with probabilitym, or a mating

happens with probability 1−m. If a migration occurs, a source population is chosen randomly proportional to its size;

an individual is chosen uniformly at random, then a destination is chosen uniformly at random, and the individual is

moved. If a mating occurs, the dynamics proceed as in the well-mixed case for a particular subpopulation (Fig. 2.1C).

We consider a deme structured population, where each subpopulation has sizeN and there are n
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demes. We define a Moran-type process, where in each time step either a reproduction or migration

event takes place (illustrated in Fig. 2.11). A reproduction event occurs with probability 1 −m and

a migration event occurs otherwise. If a reproduction occurs, then a subpopulation is selected pro-

portional to the square of its total fitness. Next, two individuals in the subpopulation are selected

proportional to their fitnesses and they produce an offspring according to the mechanism above.

Finally, another individual from the subpopulation is chosen uniformly at random for death. If a

migration event occurs, then an individual is selected uniformly at random and migrates to a new

subpopulation uniformly at random. We denote the proportion of genotype α at time t in the ini-

tial subpopulation by Pα
t .

The process begins with i drive homozygotes andN − iwild-type homozygotes in a single sub-

population. The remaining subpopulations consist only of wild-type homozygotes. Let E be the

event that the frequency of drive alleles reaches 10% in a subpopulation other than where the drive

was released, given that i drive homozygotes were released in the initial subpopulation. We assume

that i is small with respect toN .

As an aside, note that the choice of 10% is arbitrary—any other percentage (less than the peak

drive in the deterministic model, c) would be equivalent ifN is large enough. This is clear from

Fig. 2.1E, where either the drive does not invade and so peak drive is roughly equal to the initial fre-

quency or the drive does invade and the peak drive is close to c. This claim is equivalent to stating

that the probability that the drive starting at frequency c0 attains frequency c1 (such that c0 < c1 <

c) before going extinct tends to 1. This behavior is typical of Moran-type models, since the extinc-

tion probability of i drive homozygotes rapidly approaches 0, even in an infinite population, as i
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increases76. Specifically, if we have i = c0N , then the extinction probability approaches 0 asN be-

comes large, and moreover, if the drive does not go extinct, then it behaves almost deterministically

and will reach frequency c and thus also c1.

Returning to approximating the probability of E , note that for E to take place a drive allele has

to migrate from the initial subpopulation and this allele has to survive stochastic fluctuations and

avoid extinction in its new subpopulation. The drive alleles do not last indefinitely in the initial pop-

ulation. We denote the random time at which the drive alleles go extinct by T . As long as the initial

drives do not go extinct due to stochastic fluctuations, the frequency of the drive increases rapidly, as

it outcompetes the wild-type. Concurrently, resistant alleles are produced that eventually push the

drive to extinction. This means that the drive has a finite time to migrate to other subpopulations.

Although this process is stochastic it shows fairly deterministic behavior once there are a sufficient

number of drive alleles (see Fig. 2.10)—that is, if the drive avoids immediate extinction. Let ei,j , be

the probability that the drive survives stochastic fluctuations and avoids immediate extinction when

starting with i drive homozygotes and j heterozygotes. Implicitly, here we are assume that ei,j does

not depend on whether the heterozygotes are wild-type or resistant heterozygotes. Note that when

i or j areO(N), ei,j is approximately 1, so when i, j ≪ N , we assume that the probability that the

drive migrates is approximately 0. Moreover, since the drive will almost certainly go extinct, there is

some time where the frequency of drive alleles is again much less thanO(N). We also assume here

that the probability that the drive migrates is approximately 0.

At each time step, there is a small probability that the drive migrates from the initial population

and invades another subpopulation. To calculate, we first condition on the non-extinction of the
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initial i drive homozygotes. Second, we note that if the drive does not migrate and avoid extinction

in another subpopulation, then it does not do so at any particular time t. Third, we assume that

these events for each t are approximately independent. Finally, we numerically solve a deterministic

ODE system representing the dynamics 39 to approximate the probability that the drive does not

migrate at time t. Thus,

P{E} = P{E | drive avoids extinction}ei,0 + P{E | drive does not avoid extinction}(1− ei,0)

≈ P{E | drive avoids extinction}ei,0

≈ ei,0

(
1−

T∏
t=1

P{drive does not migrate and invade at time t}

)

= ei,0

(
1−

T∏
t=1

(1− P{drive invades | drive migrates at time t}P{drive migrates at time t})

)

= ei,0

(
1−

T∏
t=1

(
1−me1,0EPDD

t −me0,1(EPWD
t + EPDR

t )
))

,

since if the drive avoids extinction it will invade. Now we substitute the ODE solution pαβt for

EPαβ
t in the above expression to find that

P{E} ≈ ei,0

(
1− exp

(
N

∫ T/(1−λ)

0
dt log

(
1− λe1,0p

DD
(1−λ)t − λe0,1

(
pWD
(1−λ)t + pDR

(1−λ)t

))))

≈ ei,0

(
1− exp

(
N

1− λ

∫ T

0
dt log(1− λe1,0p

DD
t − λe0,1(p

WD
t + pDR

t ))

))
.

Here, we approximated the product with an integral and used a change of variables.

Note that ifm = O(1/T ) and heuristically we replace EPα
t in the above expressions with its
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time average, denoted ϕα, then

ei,0

[
1−

T∏
t=1

(
1−me1,0EPDD

t −me0,1(EPWD
t + EPDR

t )
)]

≈ ei,0

[
1−

(
1− e1,0ϕ

DD + e0,1(ϕ
WD + ϕDR)

T

)T
]

≈ ei,0
[
1− exp

(
−e1,0ϕDD + e0,1(ϕ

WD + ϕDR)
)]
.

Thus, when the migration rate is on the order of the inverse of the drive extinction time, the inva-

sion probability is order 1.
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3
Daisy-chain gene drives for local alteration

3.1 Foreword

Taken together, the previous chapters suggest that standard CRISPR-based gene drive systems could

be difficult to contain within particular populations. While this is a benefit in some situations—for

example, malaria eradication, where the goal would be to alter as many populations as possible—it

could be a drawback in others. In this chapter, we analyze the dynamics of a new CRISPR-based
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gene drive design, called “daisy-chain gene drive”, which we hypothesized would offer a balance

between spread and containment.

This work was truly an interdisciplinary, team effort. I built and analyzed the mathematical mod-

els presented here with Jason Olejarz; John Min, Kevin Esvelt and Andrea Smidler ran preliminary

simulations; John Min and Kevin Esvelt designed the library of gRNAs; Joanna Buchthal and Ale-

jandro Chavez performed experiments to analyze the activity of the gRNAs; Erika DeBenedictis

created a publicly available web applet for visualizing the model; and we all benefited greatly from

insight, advising and support from George Church, Martin Nowak, and Kevin Esvelt.

This chapter first appeared as a preprint on bioRxiv (Ref. 65) and is currently under review:

Charleston Noble∗, John Min∗, Jason Olejarz, Joanna Buchthal, Alejandro Chavez, Andrea L. Smi-

dler, Erika A. DeBenedictis, George M. Church, Martin A. Nowak, Kevin M. Esvelt. Daisy-chain

gene drives for the alteration of local populations. bioRxiv (2016). (∗equal contribution)

3.2 Introduction

RNA-guided gene drive systems based on CRISPR nucleases could be used to spread many

types of genetic alterations through sexually reproducing species41. These systems function by

“homing”, or the conversion of heterozygotes to homozygotes in the germline, which renders off-

spring more likely to inherit the gene drive element and the accompanying alteration than via nor-

mal Mendelian inheritance 28 (Fig. 3.1A). To date, gene drive systems based on Cas9 have been demon-
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strated in yeast 37, fruit flies 38,67, and two species of mosquito 5,13. Suggested applications include

eliminating vector-borne and parasitic diseases, promoting sustainable agriculture, and enabling

ecological conservation by curtailing or removing invasive species41.

The self-propagating nature of standard RNA-guided gene drive systems renders the technology

uniquely suited to addressing large-scale ecological problems, but the high likelihood of spread to

most populations of the target species40,76 tremendously complicates discussions of whether and

how to proceed with any given intervention86. Technologies capable of unilaterally altering the

shared environment require broad public support. Because people will not be able to opt-out of

technologies intended to alter the shared environment, ethical gene drive research and development

should be openly guided by the communities and nations that depend on the potentially affected

ecosystems. Unfortunately, attaining this level of engagement becomes progressively more chal-

lenging as the size of the affected region increases. Candidate applications that will affect multiple

nations could be delayed indefinitely due to a lack of agreement, particularly given the possibility

that it may not be possible to conduct safely contained field trials40,76.

A method of preventing gene drive systems from spreading indefinitely would greatly simplify

community-directed development and deployment while also enabling safe field testing. Existing

theoretical self-exhausting strategies64,85 can locally spread cargo genes nearly to fixation if suffi-

ciently many organisms (>30% of the local population) are released, while “threshold-dependent”

drive systems such as those employing underdominance 87 will spread to fixation in small and geo-

graphically isolated subpopulations if organisms are released in an amount exceeding the threshold

for population takeover (typically≈ 50%). Toxin-based underdominance approaches are promising
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and have been demonstrated in fruit flies 24,25, though they cannot directly suppress populations. All

of these approaches involve releasing comparatively large numbers of organisms, which may not be

politically, economically, or environmentally feasible for some applications.

A way to construct highly efficient yet locally confined RNA-guided drive systems could enable

many potential applications for which neither self-propagating invasive drive systems nor existing

local drives are suitable. Here we describe “daisy drive”, a powerful yet self-exhausting form of lo-

cal drive based on CRISPR-mediated homing in which the drive components are separated into

an interdependent daisy-chain. We additionally report newly characterized guide RNA sequences

required for evolutionary stability and safe use.

3.3 Design and modeling

A daisy drive system consists of a linear series of genetic elements arranged such that each element

drives the next in the chain (Fig. 3.1B). The final element in the chain, which carries the “cargo”,

is driven to higher and higher frequencies in the population by the earlier elements in the chain.

No element can drive itself (Fig. 3.1C). The bottom element is lost from the population over time,

causing the next element to cease driving and be lost in turn. This process continues along the chain

until, eventually, the population returns to its wild-type state (Fig. 3.1B).

The simplest form of daisy drive—a two-element chain—is obtained by separating CRISPR

gene drive components such that the cargo-carrying element, designated ‘A’, exhibits drive only

in the presence of an unlinked, non-driving element, ‘B’ (Fig. B.1). These “split drives” have been
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Figure 3.1: Comparison of self-propagating and daisy-chain gene drive. (A) Self-propagating CRISPR gene drives

distort inheritance in a self-propagatingmanner by converting wild-type (W) alleles to drive alleles in heterozygous

germline cells. (B) A “daisy drive” system consists of a linear chain of serially dependent, unlinked drive elements; in

this example, A, B, and C are on separate chromosomes. Elements at the base of the chain cannot drive and are succes-

sively lost over time via natural selection, limiting overall spread. (C) Family tree resulting from the release of a single

daisy drive organism in a resident wild-type population in the absence of selection. On the right is a graphical depiction

of the total number of alleles per generation. Throughout, chromosome illustrations represent genotypes in germline

cells.

110



described41, demonstrated 37, and recommended42 as a stringent laboratory confinement strategy.

Because any accidental release would involve only a small number of organisms carrying the B ele-

ment, the driving effect experienced by the A element—and thus its spread—would be negligible in

a large population 37. As long as the cargo confers a fitness cost to the host organism, both elements

will eventually disappear due to natural selection.

We hypothesized that the spread of the cargo-carrying element, A, could be enhanced to useful

levels by adding more elements to the base of the daisy chain. To explore this idea, we formulated a

deterministic model that considers the evolution of a large population of diploid organisms affected

by a daisy drive system with elements spread across n loci (Sections 3.9.1 and 3.9.2). At each locus

there are three alleles, the wild-type (W), the corresponding daisy drive element (D) and an allele

that is resistant to the effects of the upstream daisy element (R). Such resistant alleles could exist

before release in the form of standing genetic variation, or they could be created through misrepair

following drive-mediated cleavage or by de novo mutation 39,62,67.

To model the effects of daisy drive in individuals, we make a few assumptions: (i) Daisy drive

alleles cut their targeted wild-type alleles with probability 1 5,67,88; (ii) Drive and resistant alleles are

immune to drive-mediated cutting; (iii) Cutting is followed by homologous repair (HR) with prob-

abilityH , leading to duplication of whatever allele is present at the homologous chromosome, or

by nonhomologous end-joining (NHEJ) with probability 1 − H , resulting in production of a new

resistant allele. While we model the rates of outcomes following cutting, we do not vary the cutting

efficiency. If the cutting rate were diminished, we expect our results to remain qualitatively similar

but with lengthened timescales and perhaps decreased maximum spread.
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Figure 3.2: Dynamics of CBA daisy-chain gene drive systems. (A) After being cut by an upstream daisy allele, a wild-

type allele is repaired either by homologous recombination (HR), creating a second copy of the other allele at the locus,

or by nonhomologous repair (e.g., NHEJ), leading to generation of a resistant allele. This process occurs in the germ

line and is independent at each locus. We assume that resistance at the cargo locus, A, is dominant lethal if inherited.

(B) A highly efficient daisy drive (95% homing efficiency) with an 8% fitness cost for the cargo element seeded at 2%,

spreads the cargo nearly to fixation (left). A low-efficiency drive (60%) with the same initial release size no longer

allows drive spread (middle). Increasing the release size of the inefficient drive to 15% again allows cargo spread to

near fixation (right). (C) Themaximum frequency achieved by cargo alleles as a function of the homing efficiency and

the cargo fitness cost, for release sizes of 1% (left), 5% (middle), and 10% (right). Throughout, we assume a 0.01%
fitness cost for C and B elements and neutral resistant alleles at the C and B loci.

The effect of a daisy drive element at a particular locus (e.g. B) depends on the genotype at the

next locus in the daisy-chain (Fig. 3.2A). If that genotype is DD, DR, or RR, then no cutting occurs

and the genotype remains unchanged. If the genotype is WW then both wild-type alleles are cut un-

til the locus is converted to RR. Similarly, WR is converted to RR. However, if the genotype is WD,

then the W allele is converted to D with probabilityH , or to R with probability 1 −H . We assume

that standard Mendelian segregation occurs after conversion, so that, for example, individuals ini-

tially WD at a locus produce D gametes with probability (1 +H)/2 or R gametes with probability

(1 − H)/2, assuming a daisy allele exists at the previous locus to facilitate the conversion. Finally,
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we assume that all loci undergo inheritance independently (i.e., all elements are unlinked, ideally

on different chromosomes), so that the total probability of an individual producing a gamete of a

particular haplotype is the product of its individual-locus inheritance probabilities. Details can be

found in Section 3.9.2.2, with gamete-production probabilities explicitly written in Eq. (3.7).

To model selection dynamics, we assume that each daisy drive element confers a dominant fitness

cost, ci, on its host organism. Furthermore, we assume that resistance at every upstream (non-cargo)

locus is neutral, while resistance at the cargo locus is dominant lethal. The latter requirement can

be attained by targeting a haploinsufficient essential gene with the cargo element while including a

genetically recoded copy in the drive construct 39,41. All costs are assumed to be independent. (See

Section 3.9.2.2 for further details. Fitness calculations are performed via Eq. (3.6).)

While the requirement of dominant lethality for resistance at the cargo locus might seem pro-

hibitively difficult to achieve, it is worth noting that recent experimental studies support the feasi-

bility of this approach. In a study of CRISPR-Cas9 gene drive in yeast, DiCarlo et al. constructed a

drive targeting an essential gene, ABD1, while including a recoded copy in the drive construct, and

no obvious impact on fitness was observed compared to wild-type strains 37. Furthermore, Ostrov et

al. employed genetic recoding to successfully eliminate seven codons from 91% of essential genes in

E. coli, leading to an overall fitness cost of less than 10% 57. Models predict that cutting multiple sites

within genes important for fitness is required for a drive system to affect an entire population 39,69,

and recent experiments featuring a two-gRNA drive element in fruit flies appear to provide evidence

for simultaneous and reliable cutting by more than one gRNA 88.

Gene drive dynamics are sensitive to homing efficiency (H) and fitness cost. In the four species ex-
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amined, homing efficiency has ranged from 37% to 99%, with almost all the range stemming from

variation across experiments in fruit flies. The rate was over 99% for each of the many drive systems

tested in yeast 37, 99.8% for the drive system inAn. stephensi 5, 87.3% to 99.7% for the three drive

systems inAn. gambiae 13, and 37% to 95% for the three drive systems in the fruit fly, which varied

with genetic background 38,67. Fitness costs have not been rigorously measured, but costs associated

with non-cargo daisy drive elements are expected to be much lower than typical cargoes 89,90 because

they will only encode guide RNAs. Potentially costly off-target cutting is minimal when using high-

fidelity Cas9 variants91,92. If the target gene is haploinsufficient for proliferative gametogenesis, the

cost may approach zero and the homing rate 100% in some species (Fig. B.2).

We studied a three-element daisy drive system (CBA) via numerical simulation (Fig. 3.2). As ex-

pected, arbitrarily high frequencies of the cargo element, A, can be achieved by varying the release

frequency. However, the system displays high sensitivity to the homing rate and cargo cost. In par-

ticular, moderate release sizes (>10% of the resident population) are required to drive costly cargoes

if homing efficiency is on the lower end of observed drive systems (≈60%).

We next explored the effects of adding additional elements to the daisy drive system as a potential

means of increasing potency. We observe that longer chains lead to much stronger drive (Fig. 3.3A).

At a homing efficiency of 95% per daisy drive element, six- and seven-element systems driving a

cargo with a 10% cost could be released at frequencies as low as 1% and still exceed 99% frequency

in fewer than 20 generations. On a per-organism basis, these are 10 to 1000-fold more efficient than

simply releasing organisms with the cargo, depending on the homing efficiency (Fig. B.3).

Adjusting the model to include repeated releases in every subsequent generation, we observed
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that daisy drives can readily alter local populations if repeatedly released in very small numbers, al-

though the benefit of repeated release is lost when the repeated release size becomes large (>5%)

(Fig. 3.3B). This may be useful for applications that must affect large geographic regions over ex-

tended periods of time, as well as for local eradication campaigns93. (More accurately, we simulated

a continuous release of engineered individuals into a wild population for convenience in doing the

simulations; see Section 3.9.2.3 for details on this implementation.)
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Figure 3.3: Quantitative evaluation of cargo spread in a single population, for single and repeated releases. (A) Results

assuming a single release of daisy drive organisms in a wild population. (left) Representative simulations assuming a

1% release. (right) Time to achieve 99% frequency for varying release frequency. (B) Results assuming a constant

rate of release of daisy drive organisms. (left) Representative simulations, assuming an initial 1% release with a subse-

quent release rate of 1% per generation (see Section 3.9.2.3 for details). (right) Time to 99% frequency with varying

release rate, which we set as both the initial release frequency as well as the subsequent continuous release frequency,

indicated by the horizontal axis. (See Section 3.9.2.3 for details on continuous release.) All simulations assume a 10%
cargo cost, 0.01% cost per upstream element, and 60% (top), 80% (middle), or 95% (bottom) homing efficiencies.

Given that the cargo element could achieve arbitrarily high frequencies in a population, we
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next asked how long the cargo might persist after attaining a high frequency. Thorough quantita-

tive analysis of this point will be an important direction for future work, but as a first step we here

sought to understand qualitatively how each of our model parameters impacts this persistence time.

To accomplish this, we returned to our basic 3-element (CBA) model and performed the following

procedure: (i) We chose a particular set of parameter values such that the drive could attain at least

50% frequency across a range of nearby values for each parameter. (ii) We then varied each parame-

ter individually while measuring the number of generations that the cargo element remained above

50% frequency, thus isolating the effect of each parameter.

The results of this analysis are shown in Fig. B.4. Overall, we find that the persistence time (i.e.,

the number of generations above 50% frequency) varies significantly across plausible ranges for the

parameters in our model. The most dramatic effect is observed by varying the fitness cost of resis-

tance at the cargo element, s. We find that, roughly, if s is less than c, the fitness cost of the cargo

element, then the cargo is unlikely to achieve near-fixation, while if s > c, then resistance is more

deleterious than the cargo itself, and the cargo can remain in the population indefinitely barring

mutations that inactivate its function. Regarding the other parameters, we find that the persistence

time is inversely proportional to c and more robust to small perturbations in the homing efficiency,

H , release frequency, and fitness cost, d, associated with upstream elements (C, B).

Finally, we considered the potential for daisy drive systems to affect local populations of invasive

species on islands or other regions with limited gene flow. To study the extent of spread between

populations, we formulated a metapopulation model consisting ofN populations connected by

pairwise gene flow rates in a directed-graph-based structure (Sections 3.9.3 and 3.9.4). Within each
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population, we assume random mating with selection and germline dynamics identical to those

described in the single-population model above.

To begin our analysis of this model, we studied a particular case consisting of 5 equally-sized pop-

ulations connected in a chain, with each population exchanging individuals with its neighboring

populations immediately before and/or after it in the chain (Section 3.9.5). We further assumed gene

flow rates of 10−2 between each pair of neighboring populations.

Given this population structure, we compared three scenarios, each beginning with a release of

engineered individuals in the population at the beginning of the chain (Fig. 3.4): (1) A three-element

(CBA) daisy-chain drive; (2) A standard self-propagating drive element designed with multiple gR-

NAs to mitigate resistance (adapting the model from Chapter 1 and Ref. 39; see Section 3.9.5.2 for

details); (3) An inundative release of engineered alleles that do not drive at all. (This scenario was

simulated using the same model as in scenario 2, as described in Section 3.9.5.2, except we set the

cutting rate, q, to zero so that standard Mendelian inheritance occurs.)

To ensure that the three scenarios were comparable, we employed identical parameters where ap-

plicable. In the two drive scenarios (1 and 2) we assumed a moderate 80% homing efficiency, 15%

release size and 10% fitness cost for the cargo element (as well as perfect cutting efficiency, as de-

scribed above). Additionally, for daisy drive, we continued assuming a low fitness cost for the C and

B elements (0.01%). For the inundative release scenario, we assumed an identical 10% dominant

fitness cost for the engineered element, but we set the release size to 99.9%.

Results for these three initial scenarios can be found in Fig. 3.4. For daisy-chain drive, we find that

the cargo element can be driven to near-fixation in its initial-release population while attaining sig-
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nificant frequency (≈0.8) in the second population, low frequency in the third population (≈0.2)

and only negligible frequencies in the subsequent populations. Moreover, transience of the cargo

element is ensured in the initial population by influx of wild-type individuals. This constitutes a

mechanism for transience that cannot be captured by our single-population model; therefore, we

would expect our persistence time results discussed above and presented in Fig. B.4 to be substan-

tially different in this more realistic multiple-population context. In contrast, the self-propagating

drive rapidly spreads to near-fixation in all populations.

We then further analyzed inter-population spread in this model via numerical simulation, and

additional results can be found in Fig. B.5. Specifically, we varied the migration rate between 10−4

and 10−1 for each of the three scenarios described above and measured the maximum frequency

achieved by each allele across 500-generation simulations. We find that, for migration rates below

10−2 (the value assumed in Fig. 3.4), maximum daisy-chain cargo frequency in the second popula-

tion decreases roughly linearly with the migration rate, whereas self-propagating drive approaches

fixation in all populations even for very low migration rates. Notably, the resistant allele at the B

locus can exhibit high frequencies in multiple populations due to its assumed low fitness cost; how-

ever, this effect could potentially be mitigated by engineering that element to select against resistance

in the same way as the A element.
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Figure 3.4:Modeling daisy drive containment in a system of populations connected by gene flow. (left) Illustration of

the population structure: five populations with equal sizes are connected in a chain, and each neighboring pair has

bidirectional gene flowwith rate 10−2 in each direction. The three figure panel columns then correspond to the three

scenarios described in the text: (left) CBA daisy-chain drive, (middle) self-propagating (“standard”) drive withmultiple

gRNAs targeting an essential gene, as in Chapter 1 and Ref. 39, (right) non-drive inundative release. Frequencies

over time are indicated for each allele in each of the populations. Drive-based simulations (daisy-chain and standard)

assume 80% homing efficiency, 10% dominant cargo element fitness cost and 15% release frequency. Daisy-chain

drive simulations further assume 0.01% upstream element (C, B) fitness cost. Inundative release simulations assume

10% dominant fitness cost and 99.9% release. See Section 3.9.5 for details.
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3.4 Evolutionary stability and CRISPR multiplexing

Despite these promising theoretical results, current technological limitations preclude the safe use of

daisy drive systems. Specifically, a recombination event that moves one or more guide RNAs within

an upstream element of the chain into any downstream element could convert a linear daisy drive

chain into a self-propagating ‘necklace’ anticipated to spread to populations worldwide (Fig. 3.5A).

One way to reliably prevent such events is to eliminate regions of homology between the ele-

ments. Promoter homology can be removed by using different U6, H1, or tRNA promoters to ex-

press the required guide RNAs94–96; if there are insufficient promoters then each can drive expres-

sion of multiple guide RNAs using tRNA97,98 or miRNA processing99–101. However, each element

must still encode multiple guide RNAs >80 base pairs in length in order to prevent the creation of

drive-resistant alleles, precluding safe and stable daisy drive designs.

One alternative is to use a distinct orthogonal CRISPR system for every daisy element 102 (Fig. B.6).

Unfortunately, it is more difficult to find multiple promoters suitable for nuclease expression than

for gRNA expression, and the fitness cost is likely higher than an equivalent gRNA element. We ac-

cordingly sought to identify highly active guide RNA sequences for S. pyogenes Cas9 with minimal

homology to one another that could enable safe daisy drive using only a single CRISPR nuclease.

We compared known tracrRNA, crRNA, and alternative sgRNA sequences for CRISPR sys-

tems related to that of S. pyogenes to identify bases tolerant of variation 103,104 within the sequence

of the most commonly used sgRNA (Figs. 3.5B-C, B.7). We then created dozens of sgRNA variants

designed to be as divergent from one another as possible. Assaying these using a sensitive tdTomato-
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based transcriptional activation reporter in human cell culture identified 15 different sgRNAs with

activities comparable to the self-propagating version (Fig. 3.5D). Activity increased with the length

of the first stem in agreement with other reports 105 (Figs. B.8 and B.9). This set of minimally ho-

mologous sgRNAs can be used to construct stable daisy drive systems of up to 5 elements with 4

sgRNAs per driving element, and will also facilitate multiplexed Cas9 targeting in the laboratory by

permitting the commercial synthesis of DNA fragments encoding many sequence-divergent guide

RNAs. Future studies will need to examine the stability of the resulting daisy drive systems in large

populations of animal models.

Importantly, our divergent guide RNAs will also enable self-propagating CRISPR gene drive

elements to overcome the problem of instability caused by including multiple repetitive guide RNA

sequences in the drive cassette 106, which is needed to overcome drive-resistant alleles 39,69. Using non-

repetitive guides may consequently allow stable and efficient self-propagating drive systems to affect

every organism in the target population.

3.5 Construction and deployment

On a practical level, researchers need only construct one ‘generic’ daisy drive strain per species that

could subsequently be loaded with any desired cargo. This generic daisy drive system, which would

typically harbor the nuclease gene in the A position, could be used in three different ways.

First, one or more “effector” elements carrying cargo genes and guide RNAs sufficient to drive

themselves in the presence of nuclease could be added directly to the generic daisy drive strain. In
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Figure 3.5: Preventing the formation of “daisy necklaces”. (A) Any recombination event that moves a guide RNA from

one element to another, where it will be reliably copied, could create a “daisy necklace” capable of self-propagating

drive. (B) Because promoters can be changed, repetition of the conserved guide RNA sequence is a key problem. (C)

Using existing data, we generated a template identifying candidate positions presumed tolerant of sequence changes.

(D) Relative activities of candidate guide RNAs generated from the template were assayed using a Cas9 transcriptional

activator screen using a tdTomato reporter in human cells.

this configuration, the nuclease-encoding element would become the B element with the effec-

tor(s) in the A position. These daisy-drive organisms would then be mass-produced and released

in a single-strain, single-stage approach.

Second, the generic daisy drive strain could be released in the target region alongside organisms
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carrying effector elements already present from releases in adjacent areas. Matings in the wild would

then combine the daisy-chain and effector elements, allowing more precise control in spreading the

effector cargo into new areas.

Third, the generic daisy drive strain could be released without an effector, and the spread of the

nuclease gene could be monitored. This would allow for precise prediction and tuning of the region

affected before a later release of strains carrying effector elements to initiate the desired effect. If

necessary, the extent of nuclease spread could be adjusted by releasing wild-type or more daisy-drive

organisms to fine-tune the areas affected, allowing a level of control not afforded by classic gene drive

architectures, albeit one that is imperfect due to stochastic migration. Superior control might be

obtained by coupling daisy drive to underdominance to limit dispersion of the alteration to areas in

which it is already in the majority 107.

3.6 Field trials and safeguards

Ecological problems such as malaria are so widely distributed geographically that addressing them

may require self-propagating CRISPR-based gene drive systems. However, alteration drive systems

of this type arguably cannot be tested in field trials without a substantial risk of eventual interna-

tional spread40,76, and future models may demonstrate that the same is true of self-propagating

suppression drive. Daisy drive systems, which are capable of mimicking the molecular effects of any

self-propagating drive on a local level, may offer a potential solution.

Notably, daisy drive systems might be used to directly suppress target populations by imposing
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a genetic load or by sex-biasing the local population, exactly as would equivalent self-propagating

CRISPR-based drive systems. For example, a daisy drive that disrupts female fertility genes, such as

those recently identified in malarial mosquitoes 13, might encode the basal element of the daisy chain

on the Y chromosome or an equivalent male-specific locus, thereby ensuring that most male off-

spring preferentially inherit the complete daisy suppression drive system and enabling outcrossing to

wild females during production (Fig. B.10). As with a Y-linked suppression element 108, such males

should suffer no direct fitness costs from the genetic load relative to competing wild-type males.

Finally, scientists currently have few attractive options for controlling unauthorized or accidentally-

released CRISPR-based gene drive systems. While it is possible to overwrite genome-level alterations

and undo phenotypic changes using immunizing reversal drives41, these countermeasures must nec-

essarily spread to the entire population in order to immunize them against the unwanted drive sys-

tem; strategies based on pure reversal drives 37 or variations such as gene drive ‘brakes’ 109 should only

slow it down. In contrast, daisy drive systems may be powerful enough to eliminate all copies of an

unwanted self-propagating drive system via local immunizing reversal, population suppression, or

both (conceptually illustrated in Fig. B.11). Feasibility, especially in species with high dispersal rates,

should be investigated by modeling and metapopulation experiments.

3.7 Discussion

RNA-guided gene drives based on CRISPR have generated considerable excitement as a potential

means of addressing otherwise intractable ecological problems. While experiments have raced ahead
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at a rapid pace, the high likelihood of international spread once released into a wild population may

prove a formidable barrier given the need for public support and international regulatory approval,

which may not be achievable if the proposed system cannot be safely tested in the field. These eth-

ical and diplomatic complications are most acute for drive systems aiming to solve the most urgent

humanitarian problems, including malaria, schistosomiasis, dengue, and other vector-borne and

parasitic diseases, as the lack of international agreement could significantly delay releases.

Similarly, the potential for RNA-guided drive systems to be released accidentally or unilaterally

has led to many calls for caution and expressions of alarm, not least from scientists in the vanguard

of the field41–43. Any such event could have potentially devastating consequences for public trust

and support for future interventions.

In contrast, our results suggest that daisy drive systems might be safely developed in the labora-

tory, assessed in the field, and deployed to accomplish transient alterations that should minimally

impact other nations or jurisdictions. They might be used to locally duplicate the effects of a self-

propagating drive system for safe field studies, to efficiently alter entire local populations with lim-

ited gene flow such as those on islands, or to accomplish transient changes to pockets of mainland

populations.

However, it is essential to note that daisy drive alone cannot prevent the spread of engineered

genes into adjacent populations 110. Addressing this problem further could require, for example,

triggering a threshold-dependent drive system after the daisy drive has been exhausted to actively

eliminate engineered alleles from adjacent populations where they are in the minority 107.

By using molecular constraints to limit generational and geographic spread, daisy drive approaches
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could expand the scope of ecological engineering by enabling local communities to make decisions

concerning their own local environments.

3.8 Experimental methods

The biological experiments performed for this study were designed and carried out by John Min,

Joanna Buchthal and Alejandro Chavez, with advising from Kevin Esvelt and George Church. For

completeness (as this work has been submitted for publication together in its entirety), I present

the results of these experiments in Section 3.4, as well as in Figs. 3.5, B.8, and B.9, and the related

methods follow in this Section (Sec. 3.8).

3.8.1 Guide RNA design

We examined existing data on crRNA and tracrRNA sequences from closely related Cas9 systems

(from Fig. S2 of Ref. 103 and Fig. 4 of Ref. 111) by multiple sequence alignment 112,113, as well as the

crystal structure of S. pyogenes Cas9 in complex with sgRNA, to construct a template specifying

bases most likely to tolerate mutations. The template is shown in Fig. 3.5C, and the tracrRNA mul-

tiple sequence alignment is shown in Fig. B.7. We used this template to design a set of 20 sgRNA

sequences sharing no more than 17bp of homology with one another. Activity assays (see below)

with two replicates identified sequence changes harmful to activity. These experiments suggested

that the large insertion found in sgRNAs from closely related bacteria was well-tolerated in only one

case. Additional sgRNAs lacking this feature were designed to preserve the 17bp homology limit

across the set. All candidates were then assayed to identify those with sufficiently high activity. Fu-
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ture experiments requiring additional highly divergent sgRNAs, such as daisy suppression drives

in which the A element encodes many guide RNAs that disrupt multiple recessive fertility genes at

multiple sites, will require a more comprehensive library-based approach to activity profiling.

3.8.2 Measuring guide RNA activity

HEK293T cells were grown in Dulbecco’s Modified Eagle Medium (Life Technologies) fortified with

10% FBS (Life Technologies) and Penicillin/Streptomycin (Life Technologies). Cells were incubated

at a constant temperature of 37◦C with 5% CO2. In preparation for transfection, cells were split

into 24-well plates, divided into approximately 50,000 cells per well. Cells were transfected using 2ul

of Lipofectamine 2000 (Life Technologies) with 200ng of dCas9 activator plasmid, 25ng of guide

RNA plasmid, 60ng of reporter plasmid and 25ng of EBFP2 expressing plasmid.

Fluorescent transcriptional activation reporter assays were performed using a modified version of

addgene plasmid #47320, a reporter expressing a tdTomato fluorescent protein adapted to contain

an additional gRNA binding site 100bp upstream of the original site. gRNAs were co-transfected

with reporter, dCas9-VPR, a tripartite transcriptional activator fused to the C-terminus of nuclease-

null Streptococcus pyogenes Cas9, and an EBFP2 expressing control plasmid into HEK293T cells.

48 hours post-transfection, cells were analyzed by flow cytometry. In order to exclusively analyze

transfected cells, cells with less than 103 arbitrary units of EBFP2 fluorescence were ignored. The

preliminary screen of the initial 20 designs was performed with only two replicates to identify critical

bases. Experiments evaluating the final set of sgRNA sequences were performed with six biological

replicates.
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3.9 Supplementary model details

In this Section, we develop the mathematical models used for numerical simulations throughout

this chapter. We begin with a very simple model of daisy-chain gene drive and then successively ex-

tend it until concluding with the versions used for simulations. We begin in Section 3.9.1 by present-

ing a simple model for daisy-chain gene drive without resistant alleles. This description begins with

a simple 2-element model (Section 3.9.1.1), which is extended to include n elements in Section 3.9.1.2.

Then, in Section 3.9.2, we extend the 2-element and n-element models from Section 3.9.1 to include

resistant alleles, resulting in the model used for all single-population simulations throughout this

chapter. In Section 3.9.3, we then extend the model with resistance (Sec. 3.9.2) to include two dis-

tinct populations connected by gene flow, and this model is then extended toN populations in Sec-

tion 3.9.4. Lastly, in Section 3.9.5 we explicitly write the equations for the special case of the model

from Section 3.9.4 wherein 5 islands are connected in a chain, results from which are presented in

Figs. 3.4, B.5 and related discussion.

3.9.1 Evolutionary dynamics of a daisy drive construct

To begin, we describe a model for a daisy drive system consisting of only two elements (i.e., B and A),

with only wild-type and drive alleles at each locus (i.e., no resistance). This simple case demonstrates

the principles behind daisy drive engineering and illustrates the modeling approaches we employ

in the more complex scenarios. We then describe a daisy drive system with an arbitrary number of

elements in Section 3.9.1.2.
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3.9.1.1 Model for a 2-element daisy drive

We consider a wild population of diploid organisms and focus on two loci, “1” and “2”. The wild-

type alleles at the two loci are 1W and 2W , and we denote by 1WW 2WW the genotype of an individ-

ual that is homozygous for both.

Using CRISPR genome editing technology, one can engineer what we refer to as “daisy” alleles

at both loci (1D and 2D). They function as follows. The 1D allele effects cutting of the 2W allele in

an individual’s germline. We assume that the two loci are independent and that a single copy of 1D

always induces cutting of the 2W allele.

In addition, we assume for now (relaxed in Section 3.9.2) that theW allele at the second locus is a

haploinsufficient essential gene that is targeted with multiple gRNAs (as described in Chapter 1) and

that the 2D allele contains a genetically recoded copy of of the wild-type allele. Therefore, 2WW ,

2DW and 2DD genotypes are all viable, but a loss-of-function variant of the 2W allele—which

can result from drive-mediated cutting without successful homing, due to the multiple gRNA

assumption—is dominant lethal.

Due to this multiple gRNA/haploinsuffient assumption, if an individual has genotype 1WD2WW

or 1DD2WW , then the drive allele at the first locus cuts and disrupts both wild-type alleles at the sec-

ond locus, resulting in nonviable gametes. If an individual has genotype 1WD2WD or 1DD2WD ,

then the drive allele at the first locus cuts the wild-type allele at the second locus, and one of two

things can happen. If a homing event occurs, then the drive allele at the second locus is successfully

copied into the position of the shredded wild-type allele, resulting in gametes that necessarily have
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Genotype 1W2W 1W2D 1D2W 1D2D
1WW2WW 1 0 0 0
1WW2WD

1
2
F 1

2
F 0 0

1WW2DD 0 F 0 0
1WD2WW 0 0 0 0
1WD2WD 0 1

2
HF 0 1

2
HF

1WD2DD 0 1
2
F 0 1

2
F

1DD2WW 0 0 0 0
1DD2WD 0 0 0 HF
1DD2DD 0 0 0 F

Table 3.1: Gamete production table showing the relative rates at which individuals of each genotype (rows) produce

gametes of each haplotype (columns).

the drive allele at the second locus. If a homing event does not occur, then the resulting gametes are

nonviable. This results in super-Mendelian inheritance of the 2D allele in a 1D-mediated fashion.

Importantly, the 1D allele undergoes standard inheritance and does not facilitate its own spread

similarly.

(Notice that in this simplified treatment, we do not explicitly study evolution with a resistant

allele, as described in the main text. This simplified model illustrates the principle behind daisy

drive engineering without concern for complications arising from emergence of resistance. In Sec-

tion 3.9.2, we introduce resistance into the model.)

To see how the daisy drive works, consider Table 3.1, which is understood as follows:

Gametes of haplotype 1W 2W are produced in the following ways:

• 1WW 2WW individuals produce only 1W 2W gametes. We set the rate of production of
1W 2W gametes by 1WW 2WW individuals to be 1.

• 1WW 2WD individuals produce gametes with a wild-type allele at the second locus with prob-
ability 1/2. There is a fitness effect, F , due to the payload of the drive allele at the second
locus. So 1WW 2WD individuals produce 1W 2W gametes at relative rate F/2.
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Gametes of haplotype 1W 2D are produced in the following ways:

• 1WW 2WD individuals produce gametes with a drive allele at the second locus with probabil-
ity 1/2. There is a fitness effect, F , due to the payload of the drive allele at the second locus.
So 1WW 2WD individuals produce 1W 2D gametes at relative rate F/2.

• 1WW 2DD individuals produce only 1W 2D gametes. There is a fitness effect, F , due to the
payload of the drive allele at the second locus. So 1WW 2DD individuals produce 1W 2D

gametes at relative rate F .

• 1WD2WD individuals produce gametes with a wild-type allele at the first locus with proba-
bility 1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the
second locus, and homing occurs with probabilityH . There is a fitness effect, F , due to the
payload of the drive allele at the second locus. So 1WD2WD individuals produce 1W 2D ga-
metes at relative rateHF/2.

• 1WD2DD individuals produce gametes with a wild-type allele at the first locus with probabil-
ity 1/2. There is a fitness effect, F , due to the payload of the drive allele at the second locus.
So 1WD2DD individuals produce 1W 2D gametes at relative rate F/2.

Gametes of haplotype 1D2D are produced in the following ways:

• 1WD2WD individuals produce gametes with a drive allele at the first locus with probability
1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the second
locus, and homing occurs with probabilityH . There is a fitness effect, F , due to the payload
of the drive allele at the second locus. So 1WD2WD individuals produce 1D2D gametes at
relative rateHF/2.

• 1WD2DD individuals produce gametes with a drive allele at the first locus with probability
1/2. There is a fitness effect, F , due to the payload of the drive allele at the second locus. So
1WD2DD individuals produce 1D2D gametes at relative rate F/2.

• 1DD2WD individuals have only the drive allele at the first locus. The action of the drive allele
at the first locus is to cut the wild-type allele at the second locus, and homing occurs with
probabilityH . There is a fitness effect, F , due to the payload of the drive allele at the second
locus. So 1DD2WD individuals produce 1D2D gametes at relative rateHF .
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• 1DD2DD individuals produce only 1D2D gametes. There is a fitness effect, F , due to the
payload of the drive allele at the second locus. So 1DD2DD individuals produce 1D2D ga-
metes at relative rate F .

(Notice that ifH is interpreted as the homing probability and F is interpreted as the fitness ef-

fect due to the drive payload, then Table 3.1 is naturally interpreted as describing drive that occurs

in the embryo. That is, individuals with at least one copy of the drive allele at the first locus and a

single copy of the drive allele at the second locus shred the wild-type allele at the second locus during

embryonic development. And if homing does not occur, then the resulting, mature individuals are

nonviable since theW (orD) allele is haploinsufficient. But Table 3.1 also effectively describes the

production of gametes in the case of meiotic drive. The subtle distinction in that case would be that,

if cutting occurs and homing does not follow, then 1WD2WD and 1DD2WD individuals produce

a nonzero amount of gametes with a mutilated wild-type allele at the second locus. But when those

gametes pair with any other gamete, the resulting individuals are necessarily nonviable, and so, effec-

tively, 1WD2WD and 1DD2WD individuals only produce gametes with a drive allele at the second

locus.)

Using these rules, we can formally express the rates at which the four types of gametes are pro-

duced in the population. We denote by g(z) the rate (with implicit time-dependence) at which
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gametes with haplotype z are produced by individuals in the population.

g(1W 2W ) = x(1WW 2WW ) +
1

2
Fx(1WW 2WD)

g(1W 2D) =
1

2
Fx(1WW 2WD) + Fx(1WW 2DD) +

1

2
HFx(1WD2WD) +

1

2
Fx(1WD2DD)

g(1D2W ) = 0

g(1D2D) =
1

2
HFx(1WD2WD) +

1

2
Fx(1WD2DD) +HFx(1DD2WD) + Fx(1DD2DD)

Here, x(z) is the frequency of individuals with genotype z.

The selection dynamics are then modeled by the following system of equations:

ẋ(1WW 2WW ) = g(1W 2W )2 − ψ2x(1WW 2WW )

ẋ(1WW 2WD) = 2g(1W 2W )g(1W 2D)− ψ2x(1WW 2WD)

ẋ(1WW 2DD) = g(1W 2D)
2 − ψ2x(1WW 2DD)

ẋ(1WD2WW ) = 2g(1W 2W )g(1D2W )− ψ2x(1WD2WW )

ẋ(1WD2WD) = 2g(1W 2D)g(1D2W ) + 2g(1W 2W )g(1D2D)− ψ2x(1WD2WD)

ẋ(1WD2DD) = 2g(1W 2D)g(1D2D)− ψ2x(1WD2DD)

ẋ(1DD2WW ) = g(1D2W )2 − ψ2x(1DD2WW )

ẋ(1DD2WD) = 2g(1D2W )g(1D2D)− ψ2x(1DD2WD)

ẋ(1DD2DD) = g(1D2D)
2 − ψ2x(1DD2DD)

Here, an overdot denotes the time derivative, d/dt. Throughout this Chapter, we omit explicitly
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writing the time dependence of our dynamical quantities. Note that this formulation assumes ran-

dom mating, i.e., that two random gametes come together to form an individual. Also note that

products g(y)g(z) represent the pairings of different gametes. At any given time, we require that

the total number of individuals sums to one:

∑
z

x(z) = 1

To enforce this density constraint, we set

ψ = g(1W 2W ) + g(1W 2D) + g(1D2W ) + g(1D2D)

3.9.1.2 Model for an n-element daisy drive

We can apply the same engineering to a daisy drive chain of arbitrary length, n, where the drive allele

at one locus induces cutting of the wild-type allele at the next locus in the sequence. To describe this

mathematically, it is helpful to generalize our notation.

Consider a daisy drive construct with only two loci, as in Section 3.9.1.1. We use a “1” bit to denote

a wild-type allele, and we use a “0” bit to denote a daisy drive allele. To represent genotypes, we

introduce vectors a = (a1, a2) and b = (b1, b2), where each a1, a2, b1, b2 ∈ {0, 1}. We construct

these vectors such that a1 and b1 represent the two alleles at the first locus, while a2 and b2 represent

the two alleles at the second locus. A full genotype is then a list of the two vectors, [a, b]. We write
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the nine possible genotypes for a two-element drive system as:

1WW 2WW = [(1, 1), (1, 1)]

1WW 2WD = [(1, 1), (1, 0)]

1WW 2DD = [(1, 0), (1, 0)]

1WD2WW = [(1, 1), (0, 1)]

1WD2WD = [(1, 1), (0, 0)]

1WD2DD = [(1, 0), (0, 0)]

1DD2WW = [(0, 1), (0, 1)]

1DD2WD = [(0, 1), (0, 0)]

1DD2DD = [(0, 0), (0, 0)]

Notice that if an individual is heterozygous at a particular locus, then this notation allows for two

ways of writing the alleles at that locus. For example, genotype 1WD2WD can be written in any one

of four equivalent ways: [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(1, 0), (0, 1)], or [(0, 1), (1, 0)].

When modeling daisy drives with a large number of loci, it is helpful to adopt shorthand no-

tation. To do this, we extend the lengths of a and b to be equal to the number of loci, n. That

is, we let a = (a1, . . . , an) and b = (b1, . . . , bn), where each ai, bj ∈ {0, 1}. For exam-

ple, the genotype 1WW 2DD3WD can be written [a, b] = [(1, 0, 1), (1, 0, 0)] or, equivalently,

[a, b] = [(1, 0, 0), (1, 0, 1)].

We denote by xab the frequency of individuals with genotype [a, b]. We denote by gb the rate at
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which gametes with haplotype b are produced. For an n-element daisy drive, gb is given by

gb =
∑
α,β

xαβF
1−αnβn

×
n∏

i=1

{
δαibiδβibi [δ0,bi + αi−1βi−1δ1,bi ] + (1− δαiβi

)

[
αi−1βi−1

2
+ (1− αi−1βi−1)Hδ0,bi

]}
(3.1)

Here, we have defined α0 = β0 = 1. δij is the Kronecker delta, defined by δij = 1 if i = j and

δij = 0 if i ̸= j. In Equations (3.1), in the sum over α, β when enumerating genotypes, heterozy-

gous loci (αi ̸= βi) are each counted once, so there is no double-counting. gb is linear in each xαβ ,

where all genotypes [α, β] are summed over.

We understand the terms in the factors in brackets as follows. Consider just a single factor in

brackets for a particular value of i.

• If αi = βi = bi = 0, then individuals of genotype [α, β] have two identical copies of allele 0
at the ith locus, and those individuals create only gametes with allele 0 at position i.

• If αi = βi = bi = 1 and αi−1βi−1 = 1, then individuals of genotype [α, β] have two
identical copies of allele 1 at the ith locus and no copy of allele 0 at the (i − 1)th locus, and
those individuals create only gametes with allele 1 at position i.

• If αi ̸= βi and αi−1βi−1 = 1, then individuals of genotype [α, β] have a single copy of
allele bi at the ith locus, and without any action from the daisy drive, those individuals create
gametes with allele bi and allele (1 + (−1)bi)/2 at position i in equal proportion.

• If αi ̸= βi and αi−1βi−1 = 0, then individuals of genotype [α, β] have a single copy of
allele bi at the ith locus, and the daisy drive allele at the (i − 1)th locus cuts the wild-type
allele at the ith locus. Homing then occurs with probabilityH , and gametes with allele 0 at
position i are created.

The prefactor F 1−αnβn is the fitness cost associated with the payload. It appears if there is at least

one copy of the daisy drive allele at the last position, n, in the daisy chain.
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The selection dynamics for an n-element daisy drive are modeled by the following equations:

ẋab =
∑
α

gα
∑
β

gβ

n∏
i=1

[δaibiδαiaiδβibi + (1− δaibi)(1− δαiβi
)]− ψ2xab (3.2)

In Equations (3.2), the haplotypes α and β are summed independently. There is one such equation

for each possible genotype [a, b].

We make sense of Equations (3.2) as follows. Each pair of gametes gα and gβ makes a new individ-

ual.

• If ai = bi = αi = βi, then gametes of haplotypes α and β pair to make only individuals
with genotype [ai, bi] at locus i.

• If ai ̸= bi and αi ̸= βi, then gametes of haplotypes α and β pair to make only individuals
with genotype [ai, bi] at locus i.

We impose the density constraint ∑
a,b

xab = 1 (3.3)

As already noted for Equations (3.1), in the sum over a, bwhen enumerating genotypes, heterozy-

gous loci (ai ̸= bi) are each counted once, so there is no double-counting. We use the following

identity: ∑
a,b

n∏
i=1

[δaibiδαiaiδβibi + (1− δaibi)(1− δαiβi
)] = 1

The form of ψ that enforces the density constraint is

ψ =
∑
α

gα (3.4)
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3.9.2 Evolutionary dynamics of daisy drive resistance

Thus far in Section 3.9, we have assumed that there are exactly two alleles at each daisy drive locus:

the daisy drive element,D, and the corresponding wild-type,W . However, additional alleles could

arise in various ways: standing genetic variation, de novo mutation, or misrepair after cutting could

all result in alleles with mismatches between the engineered guide RNAs and their corresponding

recognition sequences. Such alleles would be resistant to the future effects of daisy-mediated cutting.

Our previous consideration of only two classes of allele was motivated by our presumed biolog-

ical design: each daisy element was to target a highly conserved essential gene using multiple guide

RNAs, and the corresponding daisy drive construct was to contain a genetically recoded copy of the

target gene. Under these assumptions, we would expect low rates of standing genetic variation and

de novo mutation, and targets resulting from misrepair would almost certainly produce nonviable

offspring.

However, these assumptions are fairly restrictive. It could be difficult, in practice, to locate highly

conserved regions, recode essential genes, and design multiple guide RNAs for every daisy element

in a large chain, particularly in time-sensitive situations, such as responding to release of a rogue

drive. Thus, in this section, we relax these earlier assumptions by extending our model to account

for drive-resistant alleles.
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3.9.2.1 Model for a 2-element daisy drive with resistance

We begin by considering the special case of two daisy drive elements, as in Section 3.9.1.1 above. The

relevant loci are denoted 1 and 2 as before. Now, however, there are three alleles: the wild-type,W ,

the drive element,D, and a resistant allele,R, which is immune to the effects of the drive. We as-

sume that resistant alleles primarily arise as the result of misrepair following cutting events (standing

genetic variation could be accounted for by simply varying the initial frequency of theR allele). Be-

cause only the second locus is acted upon by the drive, we ignore resistance at the first locus.

Now, we consider the case where there is at least one drive element at the first locus (e.g., an in-

dividual with genotype 1WD or 1DD). Then there are six cases, depending on the genotype at the

second locus:

• WW : The drive element cuts at bothW alleles until both are resistant to further cutting.
The individual thus converts to genotype 2RR at this locus, and all gametes contain the 2R
allele.

• WD: The drive element cuts at theW allele. Subsequent repair occurs by homologous re-
combination with probabilityH , or by nonhomologous end-joining with probability 1−H .
In the former case, the individual converts to genotype 2DD and all gametes have the 2D al-
lele. In the latter case, the individual converts to 2DR and produces gametes with 2D or 2R
alleles with equal proportions.

• WR: The drive element cuts at theW allele. Subsequent repair by either repair pathway
results in a resistant allele, so the individual converts to genotype 2RR. Thus, all gametes
produced contain the 2R allele.

• DD: No cutting occurs, so all gametes contain the 2D allele.

• DR: No cutting occurs, so gametes are produced containing the 2D or 2R allele with equal
proportions.
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Genotype 1W2W 1W2D 1W2R 1D2W 1D2D 1D2R Fitness
1WW2WW 1 0 0 0 0 0 1
1WW2WD

1
2

1
2

0 0 0 0 F
1WW2WR

1
2

0 1
2

0 0 0 K
1WW2DD 0 1 0 0 0 0 F
1WW2DR 0 1

2
1
2

0 0 0 FK
1WW2RR 0 0 1 0 0 0 K
1WD2WW 0 0 1

2
0 0 1

2
G

1WD2WD 0 1+H
4

1−H
4

0 1+H
4

1−H
4

FG
1WD2WR 0 0 1

2
0 0 1

2
GK

1WD2DD 0 1
2

0 0 1
2

0 FG
1WD2DR 0 1

4
1
4

0 1
4

1
4

FGK
1WD2RR 0 0 1

2
0 0 1

2
GK

1DD2WW 0 0 0 0 0 1 G
1DD2WD 0 0 0 0 1+H

2
1−H
2

FG
1DD2WR 0 0 0 0 0 1 GK
1DD2DD 0 0 0 0 1 0 FG
1DD2DR 0 0 0 0 1

2
1
2

FGK
1DD2RR 0 0 0 0 0 1 GK

Table 3.2: Gamete production probabilities and genotype fitnesses for two-element daisy drive with resistant alleles.

• RR: No cutting occurs, so all gametes contain the 2R allele.

The cases above describe the production probabilities of the various alleles. But what are their

effects on fitness? We assume that the payload element, 2D, confers a dominant fitness cost, c; the

upstream drive element, 1D, confers a dominant fitness cost, d; and the resistant allele confers a

dominant fitness cost, s. We assume that the all-wild-type individual has maximum fitness 1, so that

0 ≤ c, d, s ≤ 1. We then define the shorthand notation F = 1 − c,G = 1 − d, andK = 1 − s.

These assumptions are summarized in Table 3.2.
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Using these rules, we can formally express the rates at which the six types of gametes are produced

in the population. We denote by g(z) the rate (with implicit time-dependence) at which gametes

with haplotype z are produced by individuals in the population.

g(1W 2W ) = x(1WW 2WW ) +
1

2
Fx(1WW 2WD) +

1

2
Kx(1WW 2WR)

g(1W 2D) =
1

2
Fx(1WW 2WD) + Fx(1WW 2DD) +

1

2
FKx(1WW 2DR) +

1 +H

4
FGx(1WD2WD)

+
1

2
FGx(1WD2DD) +

1

4
FGKx(1WD2DR)

g(1W 2R) =
1

2
Kx(1WW 2WR) +

1

2
FKx(1WW 2DR) +Kx(1WW 2RR) +

1

2
Gx(1WD2WW )

+
1−H

4
FGx(1WD2WD) +

1

2
GKx(1WD2WR) +

1

4
FGKx(1WD2DR)

+
1

2
GKx(1WD2RR)

g(1D2W ) = 0

g(1D2D) =
1 +H

4
FGx(1WD2WD) +

1

2
FGx(1WD2DD) +

1

4
FGKx(1WD2DR)

+
1 +H

2
FGx(1DD2WD) + FGx(1DD2DD) +

1

2
FGKx(1DD2DR)

g(1D2R) =
1

2
Gx(1WD2WW ) +

1−H

4
FGx(1WD2WD) +

1

2
GKx(1WD2WR)

+
1

4
FGKx(1WD2DR) +

1

2
GKx(1WD2RR) +Gx(1DD2WW )

+
1−H

2
FGx(1DD2WD) +GKx(1DD2WR) +

1

2
FGKx(1DD2DR)

+GKx(1DD2RR)

Here, x(z) is the frequency of individuals with genotype z.
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The selection dynamics are then modeled by the following system of equations:

ẋ(1WW 2WW ) = g(1W 2W )2 − ψ2x(1WW 2WW )

ẋ(1WW 2WD) = 2g(1W 2W )g(1W 2D)− ψ2x(1WW 2WD)

ẋ(1WW 2WR) = 2g(1W 2W )g(1W 2R)− ψ2x(1WW 2WR)

ẋ(1WW 2DD) = g(1W 2D)
2 − ψ2x(1WW 2DD)

ẋ(1WW 2DR) = 2g(1W 2D)g(1W 2R)− ψ2x(1WW 2DR)

ẋ(1WW 2RR) = g(1W 2R)
2 − ψ2x(1WW 2RR)

ẋ(1WD2WW ) = 2g(1W 2W )g(1D2W )− ψ2x(1WD2WW )

ẋ(1WD2WD) = 2g(1W 2D)g(1D2W ) + 2g(1W 2W )g(1D2D)− ψ2x(1WD2WD)

ẋ(1WD2WR) = 2g(1W 2R)g(1D2W ) + 2g(1W 2W )g(1D2R)− ψ2x(1WD2WR)

ẋ(1WD2DD) = 2g(1W 2D)g(1D2D)− ψ2x(1WD2DD)

ẋ(1WD2DR) = 2g(1W 2D)g(1D2R) + 2g(1W 2R)g(1D2D)− ψ2x(1WD2DR)

ẋ(1WD2RR) = 2g(1W 2R)g(1D2R)− ψ2x(1WD2RR)

ẋ(1DD2WW ) = g(1D2W )2 − ψ2x(1DD2WW )

ẋ(1DD2WD) = 2g(1D2W )g(1D2D)− ψ2x(1DD2WD)

ẋ(1DD2WR) = 2g(1D2W )g(1D2R)− ψ2x(1DD2WR)

ẋ(1DD2DD) = g(1D2D)
2 − ψ2x(1DD2DD)

ẋ(1DD2DR) = 2g(1D2D)g(1D2R)− ψ2x(1DD2DR)

ẋ(1DD2RR) = g(1D2R)
2 − ψ2x(1DD2RR)
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Note that this formulation assumes random mating as before, i.e., that two random gametes come

together to form an individual. Also note that products g(y)g(z) represent the pairings of different

gametes. At any given time, we require that the total number of individuals sums to one:

∑
z

x(z) = 1

To enforce this density constraint, we set

ψ = g(1W 2W ) + g(1W 2D) + g(1W 2R) + g(1D2W ) + g(1D2D) + g(1D2R)

3.9.2.2 Model for an n-element daisy drive with resistance

As in Section 3.9.1.2 above, we now apply the same concept to a daisy drive chain of arbitrary length,

n. To describe this mathematically, we return to and amend our previous notation for an n-element

system.

Consider a daisy drive construct with only two loci, as in Section 3.9.2.1. We use “W ” to denote

a wild-type allele, “D” to denote a daisy drive allele, and “R” to denote a resistant allele. To repre-

sent genotypes, we introduce vectors a = (a1, a2) and b = (b1, b2), where each a1, a2, b1, b2 ∈

{W,D,R}. We construct these vectors such that a1 and b1 represent the two alleles at the first lo-

cus, while a2 and b2 represent the two alleles at the second locus. A full genotype is then a list of the

two vectors, [a, b].

Below are a few examples of this naming convention applied to the genotypes of the two-element
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system:

1WW 2WW = [(W,W ), (W,W )]

1WW 2WD = [(W,W ), (W,D)]

1WW 2DD = [(W,D), (W,D)]

1WW 2DR = [(W,D), (W,R)]

1WD2WW = [(W,W ), (D,W )]

1WD2WD = [(W,W ), (D,D)]

To consider daisy drives of arbitrary length, we extend the lengths of the vectors a and b to be

equal to the number of loci, n. That is, we let a = (a1, . . . , an) and b = (b1, . . . , bn), where

each ai, bj ∈ {W,D,R}. Again, notice that if an individual is heterozygous at a particular locus,

then this notation allows for two ways of writing the alleles at that locus. For example, the geno-

type 1DD2RR3DR can be written [a, b] = [(D,R,D), (D,R,R)] or, equivalently, [a, b] =

[(D,R,R), (D,R,D)].

We denote by xab the frequency of individuals with genotype [a, b]. We denote by gb the rate at

which gametes with haplotype b are produced. For an n-element daisy drive, gb is given by

gb =
∑
α,β

xαβf(α, β)pα,β(b) (3.5)

Here we have used shorthand notation: f(α, β) is the fitness of an individual with genotype [α, β],

and pα,β(b) is the probability that an individual with genotype [α, β] produces a gamete with hap-
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lotype b. Notice that this is the same form as our Equations (3.1) above, with the fitness and gamete

production components clearly identified.

The fitness of an [α, β] individual, f(α, β), is given by:

f(α, β) =
n∏

i=1

F
1−(1−δαi,D

)(1−δβi,D)

i K
1−(1−δαi,R

)(1−δβi,R)

i (3.6)

Here, Fi = 1 − ci, where ci is the fitness cost associated with the ith daisy drive element. Similarly,

Ki = 1 − si, where si is the fitness cost of resistance at the ith position. δij is the Kronecker delta,

defined by δij = 1 if i = j and δij = 0 if i ̸= j. This formulation assumes dominance of each

fitness cost and mutual independence of all costs, as in the two-element system in Section 3.9.2.1

above.

Although the above formulation allows us to assign arbitrary costs at each position, we make the

following simplifying assumptions in our simulations:

• The cost of resistance at upstream (non-payload) elements is zero: K1 = · · · = Kn−1 = 1.

• All upstream (non-payload) drive elements have identical associated fitness costs: F1 =

· · · = Fn−1 = 1− d.

• We define a cost, s, associated with resistance to the payload element: Kn = 1− s.

• We define a cost, c, associated with the payload element itself: Fn = 1− c.
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Then, the probability, pα,β(b), of an [α, β] individual producing gamete b is given by:

pα,β(b) =
n∏

i=1

{(
1− γDαi−1,βi−1

(0)
)

×
[
δbi,Rγ

W
αi,βi

(2) + δbi,Rγ
R
αi,βi

(1)γWαi,βi
(1)

+ δbi,Rγ
R
αi,βi

(2) +
1

2
δbi,Rγ

R
αi,βi

(1)γDαi,βi
(1) +

1−H

2
δbi,Rγ

W
αi,βi

(1)γDαi,βi
(1)

+ δbi,Dγ
D
αi,βi

(2) +
1

2
δbi,Dγ

D
αi,βi

(1)γRαi,βi
(1) +

1 +H

2
δbi,Dγ

D
αi,βi

(1)γWαi,βi
(1)
]

+ γDαi−1,βi−1
(0)

×
[
δbi,Wγ

W
αi,βi

(2) +
1

2
δbi,Wγ

W
αi,βi

(1)γDαi,βi
(1) +

1

2
δbi,Wγ

W
αi,βi

(1)γRαi,βi
(1)

+ δbi,Dγ
D
αi,βi

(2) +
1

2
δbi,Dγ

D
αi,βi

(1)γRαi,βi
(1) +

1

2
δbi,Dγ

D
αi,βi

(1)γWαi,βi
(1)

+ δbi,Rγ
R
αi,βi

(2) +
1

2
δbi,Rγ

R
αi,βi

(1)γWαi,βi
(1) +

1

2
δbi,Rγ

R
αi,βi

(1)γDαi,βi
(1)
]}
(3.7)

Here, we use shorthand notation, γcαi,βi
(k), to count the number of a particular allele at a particular

locus: we define γcαi,βi
(k) = 1 if there are k copies (k = 0, 1, 2) of allele c (c ∈ {W,D,R}) at

position i in an individual with genotype [α, β]. Otherwise, γcαi,βi
(k) = 0. This is given by:

γcαi,βi
(k) = δk,0 [(1− δαi,c)(1− δβi,c)]+δk,1 [δαi,c(1− δβi,c) + δβi,c(1− δαi,c)]+δk,2 [δαi,cδβi,c] .

For example, γWαi,βi
(2) = 1 if there are two copies of a wild-type allele at position i in an [α, β]

individual; otherwise γWαi,βi
(2) = 0. We also define α0 = β0 =W .

We understand Equations (3.7) as follows. Inheritance at each locus is independent, so the total
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probability pα,β(b) is the product of inheritance probabilities at each individual position. Consider

locus i. There are two possibilities. Either there is a daisy drive allele at the previous locus, which

entails γDαi−1,βi−1
(0) = 0. (This eliminates the sum in the second pair of square brackets.) Or there

is no daisy drive allele at the previous locus, which entails γDαi−1,βi−1
(0) = 1. (This eliminates the

sum in the first pair of square brackets.)

If there is a daisy drive allele at the previous locus, then the value of the factor in the product of

Equations (3.7) depends on the genotype at the current locus:

• (αi, βi) = (W,W ). This entails γWαi,βi
(2) = 1. OnlyR alleles are produced at locus i.

Thus, the factor is 1 if δbi,R = 1. Otherwise, it is zero.

• (αi, βi) = (W,D). This entails γWαi,βi
(1)γDαi,βi

(1) = 1. By the action of the drive,D alleles
are produced at locus iwith probability (1 +H)/2, orR alleles are produced at locus iwith
probability (1−H)/2. So if δbi,D = 1, then the factor is (1 +H)/2. Or if δbi,R = 1, then
the factor is (1−H)/2. Otherwise, it is zero.

• (αi, βi) = (W,R). This entails γWαi,βi
(1)γRαi,βi

(1) = 1. OnlyR alleles are produced at
locus i. Thus, the factor is 1 if δbi,R = 1. Otherwise, it is zero.

• (αi, βi) = (D,D). This entails γDαi,βi
(2) = 1. OnlyD alleles are produced at locus i. Thus,

the factor is 1 if δbi,D = 1. Otherwise, it is zero.

• (αi, βi) = (D,R). This entails γDαi,βi
(1)γRαi,βi

(1) = 1. Here,D andR alleles are pro-
duced at locus i in equal proportions. Thus, the factor is 1/2 if δbi,D = 1 or if δbi,R = 1.
Otherwise, it is zero.

• (αi, βi) = (R,R). This entails γRαi,βi
(2) = 1. OnlyR alleles are produced at locus i. Thus,

the factor is 1 if δbi,R = 1. Otherwise, it is zero.

Similarly, if there is no daisy drive allele at the previous locus, then the value of the factor in the

product of Equations (3.7) depends on the genotype at the current locus. However, because there is

no drive, the inheritance probabilities are simply Mendelian:
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• (αi, βi) = (W,W ). This entails γWαi,βi
(2) = 1. OnlyW alleles are produced at locus i.

Thus, the factor is 1 if δbi,W = 1. Otherwise, it is zero.

• (αi, βi) = (W,D). This entails γWαi,βi
(1)γDαi,βi

(1) = 1. There is no drive action, soW
alleles andD alleles are produced at locus i in equal proportions. Thus, if δbi,W = 1 or
δbi,D = 1, then the factor is 1/2. Otherwise, it is zero.

• (αi, βi) = (W,R). This entails γWαi,βi
(1)γRαi,βi

(1) = 1. Here,W alleles andR alleles are
produced at locus i in equal proportions. Thus, if δbi,W = 1 or δbi,R = 1, then the factor is
1/2. Otherwise, it is zero.

• (αi, βi) = (D,D). This entails γDαi,βi
(2) = 1. OnlyD alleles are produced at locus i. Thus,

the factor is 1 if δbi,D = 1. Otherwise, it is zero.

• (αi, βi) = (D,R). This entails γDαi,βi
(1)γRαi,βi

(1) = 1. Here,D alleles andR alleles are
produced at locus i in equal proportions. Thus, the factor is 1/2 if δbi,D = 1 or δbi,R = 1.
Otherwise, it is zero.

• (αi, βi) = (R,R). This entails γRαi,βi
(2) = 1. OnlyR alleles are produced at locus i. Thus,

the factor is 1 if δbi,R = 1. Otherwise, it is zero.

The selection dynamics for an n-element daisy drive are then modeled by the following equa-

tions:

ẋab =
∑
α

gα
∑
β

gβ

n∏
i=1

δαiβi

aibi
− ψ2xab (3.8)

Here, as shorthand notation, we define

δαiβi

aibi
= δaibiδαiaiδβibi

+ γWai,bi(1)γ
D
ai,bi

(1)γWαi,βi
(1)γDαi,βi

(1)

+ γWai,bi(1)γ
R
ai,bi

(1)γWαi,βi
(1)γRαi,βi

(1)

+ γDai,bi(1)γ
R
ai,bi

(1)γDαi,βi
(1)γRαi,βi

(1)
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In Equations (3.8), the haplotypes α and β are summed independently. There is one such equation

for each possible genotype [a, b].

We impose the density constraint ∑
a,b

xab = 1. (3.9)

We use the following identity: ∑
a,b

n∏
i=1

δαiβi

aibi
= 1

And, as before, the form of ψ that enforces the density constraint is

ψ =
∑
α

gα. (3.10)

3.9.2.3 Continuous release

To model a continuous release of individuals carrying the daisy drive construct into a population, we

use the following equations:

ẋab =
∑
α

gα
∑
β

gβ

n∏
i=1

δαiβi

aibi
+ Cab −

ψ2 +
∑
α,β

Cαβ

xab (3.11)

A nonzero value ofCab models a flow of individuals of genotype [a, b] into the population. Equa-

tions (3.11) are thus a generalization of Equations (3.8). ψ is given by Equation (3.10), and the density

constraint, Equation (3.9), holds at all times.
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3.9.3 Two-population model for an n-element daisy drive with resistance

We now extend the model from Section 3.9.2.3 to include a simple spatial component: two popula-

tions connected by gene flow.

3.9.3.1 Two-population model without gene flow

First, we consider two populations whose evolutionary dynamics are decoupled. We denote by xab

the frequency of individuals with genotype [a, b] among individuals in the target population, and

we denote by yab the frequency of individuals with genotype [a, b] among individuals in the main-

land population. We denote by g(T )
b the rate at which gametes with haplotype b are produced in the

target population, and we denote by g(M)
b the same for the mainland population. For an n-element

daisy drive, g(T )
b and g(M)

b are given by

g
(T )
b =

∑
α,β

xαβf(α, β)pα,β(b)

g
(M)
b =

∑
α,β

yαβf(α, β)pα,β(b)

(3.12)

Here, f(α, β) is the fitness of the genotype [α, β], and pα,β(b) is the probability that an individual

of genotype [α, β] produces a gamete with haplotype b. These two quantities are given by Equa-

tions (3.6) and (3.7), respectively.

Equations (3.12) are essentially identical to Equations (3.5), except we assume that only individuals

in the target population contribute to the target population gamete pool and similarly for the main-
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land. Thus, the difference between Equations (3.12) and Equations (3.5) arises from the separation of

the two populations via g(T )
b , g(M)

b , xαβ , and yαβ .

The selection dynamics for an n-element daisy drive system in two populations are then modeled

by the following equations:

ẋab =
∑
α

g(T )
α

∑
β

g
(T )
β

n∏
i=1

δαiβi

aibi
+ C

(T )
ab −

(ψ(T )
)2

+
∑
α,β

C
(T )
αβ

xab

ẏab =
∑
α

g(M)
α

∑
β

g
(M)
β

n∏
i=1

δαiβi

aibi
+ C

(M)
ab −

(ψ(M)
)2

+
∑
α,β

C
(M)
αβ

 yab

Notice that each population experiences selection dynamics identical to the single-population model

given by Equations (3.11). A nonzero value ofC(T )
ab models a flow of individuals of genotype [a, b]

into the target population, and a nonzero value ofC(M)
ab models a flow of individuals of genotype

[a, b] into the mainland population.

The density constraints are ∑
a,b

xab = 1

∑
a,b

yab = 1

To enforce these density constraints, we set

ψ(T ) =
∑
α

g(T )
α

ψ(M) =
∑
α

g(M)
α
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3.9.3.2 Two-population model with gene flow

Next, we assume that there is a nonzero rate of migration of individuals from the target population

to the mainland population and vice versa. For notational clarity, we define new frequency vari-

ables. We denote byXab (with an uppercaseX) the frequency of individuals with genotype [a, b]

among individuals in the target population when there is migration, and we denote by Yab (with an

uppercase Y ) the frequency of individuals with genotype [a, b] among individuals in the mainland

population when there is migration. We denote byG(T )
b (with an uppercaseG) the rate at which

gametes with haplotype b are produced in the target population when there is migration, and we de-

note byG(M)
b (with an uppercaseG) the same for the mainland population when there is migration.

G
(T )
b andG(M)

b are given by

G
(T )
b =

∑
α,β

Xαβf(α, β)pα,β(b)

G
(M)
b =

∑
α,β

Yαβf(α, β)pα,β(b)

(3.13)

Here, f(α, β) is the fitness of the genotype [α, β], and pα,β(b) is the probability that an individual

of genotype [α, β] produces a gamete with haplotype b. These two quantities are given by Equa-

tions (3.6) and (3.7), respectively.

We assume that, over a given time interval, the number of individuals migrating in each direction

is equal, so that the population sizes of the target and the mainland each remain constant. The rate

of migration is quantified by the parameter r. We also denote byR the fraction of all individuals
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that are on the target. (Similarly, 1 − R is the fraction of all individuals that are on the mainland.)

The selection dynamics for an n-element daisy drive system in two populations that are connected

by gene flow are then modeled by the following equations:

Ẋab =
∑
α

G(T )
α

∑
β

G
(T )
β

n∏
i=1

δαiβi

aibi
+ C

(T )
ab +

r

R
(Yab −Xab)−

(Ψ(T )
)2

+
∑
α,β

C
(T )
αβ

Xab

Ẏab =
∑
α

G(M)
α

∑
β

G
(M)
β

n∏
i=1

δαiβi

aibi
+ C

(M)
ab +

r

1−R
(Xab − Yab)−

(Ψ(M)
)2

+
∑
α,β

C
(M)
αβ

Yab

(3.14)

The density constraints are ∑
a,b

Xab = 1

∑
a,b

Yab = 1

To enforce these density constraints, we setΨ(T ) (with an uppercaseΨ) andΨ(M) (with an upper-

caseΨ) to equal

Ψ(T ) =
∑
α

G(T )
α

Ψ(M) =
∑
α

G(M)
α

3.9.4 N -population model for an n-element daisy drive with resistance

The above treatment is readily extended to a population that consists ofN islands. Denote the fre-

quency of individuals of genotype [a, b] on island ℓ (for 1 ≤ ℓ ≤ N ) asX(ℓ)
ab . Gametes with
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haplotype b are produced on island ℓ at rateG(ℓ)
b , whereG(ℓ)

b is given by

G
(ℓ)
b =

∑
α,β

X
(ℓ)
αβf(α, β)pα,β(b)

The rate of migration of individuals between islands ℓ and ω is quantified by the parameter rℓω =

rωℓ. The fraction of all individuals in the population that are on island ℓ is denoted byRℓ. The

dynamics ofX(ℓ)
ab are given by

Ẋ
(ℓ)
ab =

∑
α

G(ℓ)
α

∑
β

G
(ℓ)
β

n∏
i=1

δαiβi

aibi
+ C

(ℓ)
ab +

N∑
ω=1
ω ̸=ℓ

rℓω
Rℓ

(
X

(ω)
ab −X

(ℓ)
ab

)
−

(Ψ(ℓ)
)2

+
∑
α,β

C
(ℓ)
αβ

X
(ℓ)
ab

(3.15)

The density constraints are ∑
a,b

X
(ℓ)
ab = 1

To enforce these density constraints, we setΨ(ℓ) (with an uppercaseΨ) to equal

Ψ(ℓ) =
∑
α

G(ℓ)
α

3.9.5 Particular case: Daisy-chain versus self-propagating drives on five is-

lands

It is instructive to contrast the evolutionary dynamics of a daisy-chain gene drive with a self-propagating

gene drive, where in both cases the evolution occurs in a population consisting of five islands. For
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simplicity, we assume that individuals are only exchanged between nearby islands, i.e., there is gene

flow between islands 1 and 2, between islands 2 and 3, between islands 3 and 4, and between islands

4 and 5. We further assume that these rates of gene flow are all equal, and we assume that each island

has the same number of individuals.

In this section, we present the equations necessary to perform simulations of the evolutionary

dynamics for each of these scenarios.

3.9.5.1 5-population model for an n-element daisy drive

For modeling the dynamics of a daisy-chain gene drive on five islands, we use Equations (3.15). Sub-

stituting r12/R1 = r21/R2 = r23/R2 = r32/R3 = r34/R3 = r43/R4 = r45/R4 = r54/R5 =

r, and setting all other migration rates equal to zero, we obtain

Ẋ
(1)
ab =

∑
α

G(1)
α

∑
β

G
(1)
β

n∏
i=1

δαiβi

aibi
+ C

(1)
ab + r

(
X

(2)
ab −X

(1)
ab

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
ab

Ẋ
(2)
ab =

∑
α

G(2)
α

∑
β

G
(2)
β

n∏
i=1

δαiβi

aibi
+ C

(2)
ab + r

(
X

(3)
ab +X

(1)
ab − 2X

(2)
ab

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
ab

Ẋ
(3)
ab =

∑
α

G(3)
α

∑
β

G
(3)
β

n∏
i=1

δαiβi

aibi
+ C

(3)
ab + r

(
X

(4)
ab +X

(2)
ab − 2X

(3)
ab

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
ab

Ẋ
(4)
ab =

∑
α

G(4)
α

∑
β

G
(4)
β

n∏
i=1

δαiβi

aibi
+ C

(4)
ab + r

(
X

(5)
ab +X

(3)
ab − 2X

(4)
ab

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
ab

Ẋ
(5)
ab =

∑
α

G(5)
α

∑
β

G
(5)
β

n∏
i=1

δαiβi

aibi
+ C

(5)
ab + r

(
X

(4)
ab −X

(5)
ab

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
ab
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3.9.5.2 5-population model for a self-propagating drive

The equations for modeling the dynamics of a self-propagating gene drive on five islands are based

on the model presented in Chapter 1 (and, correspondingly, in the Supplementary Materials for Ref.

39). For more details and descriptions, please see the writing therein.

For a self-propagating gene drive, consider that there areN guide RNAs. There are the drive

allele,D,N “costly” resistant alleles,Ri (with 1 ≤ i ≤ N ),N “neutral” resistant alleles, Si (with

1 ≤ i ≤ N ), and the wild-type allele, S0.

We useX(ℓ)
ab to denote the frequency of individuals of genotype [a, b] on island ℓ. The rates at

which each of the 2N + 2 types of gametes are produced on island ℓ are given by

F
(ℓ)
D = fDDX

(ℓ)
DD +

N∑
k=1

pRkD,DfRkDX
(ℓ)
RkD

+

N∑
k=0

pSkD,DfSkDX
(ℓ)
SkD

F
(ℓ)
Si

=
N∑
k=0

1 + δki
2

fSkSiX
(ℓ)
SkSi

+
1

2

N∑
k=1

fRkSiX
(ℓ)
RkSi

+
i∑

k=0

pSkD,SifSkDX
(ℓ)
SkD

F
(ℓ)
Ri

=

N∑
k=1

1 + δki
2

fRkRiX
(ℓ)
RkRi

+
1

2

N∑
k=0

fRiSk
X

(ℓ)
RiSk

+
i∑

k=1

pRkD,RifRkDX
(ℓ)
RkD

+
i−1∑
k=0

pSkD,RifSkDX
(ℓ)
SkD

From conservation of probability, we have

pRkD,D +

N∑
i=k

pRkD,Ri = 1

pSkD,D +
N∑
i=k

pSkD,Si +
N∑

i=k+1

pSkD,Ri = 1
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Since typeRND and type SND individuals are fully resistant to being manipulated by the drive

construct, they show standard Mendelian segregation in their production of gametes, and we have

pRND,RN = pSND,SN =
1

2

For modeling the dynamics of a self-propagating gene drive on five islands, we use the following

equations:

The dynamics of individuals of genotypeDD on each island are given by

Ẋ
(1)
DD =

(
F

(1)
D

)2
+ C

(1)
DD + r

(
X

(2)
DD −X

(1)
DD

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
DD

Ẋ
(2)
DD =

(
F

(2)
D

)2
+ C

(2)
DD + r

(
X

(3)
DD +X

(1)
DD − 2X

(2)
DD

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
DD

Ẋ
(3)
DD =

(
F

(3)
D

)2
+ C

(3)
DD + r

(
X

(4)
DD +X

(2)
DD − 2X

(3)
DD

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
DD

Ẋ
(4)
DD =

(
F

(4)
D

)2
+ C

(4)
DD + r

(
X

(5)
DD +X

(3)
DD − 2X

(4)
DD

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
DD

Ẋ
(5)
DD =

(
F

(5)
D

)2
+ C

(5)
DD + r

(
X

(4)
DD −X

(5)
DD

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
DD
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The dynamics of individuals of genotypeRiD on each island are given by

Ẋ
(1)
RiD

= 2F
(1)
Ri
F

(1)
D + C

(1)
RiD

+ r
(
X

(2)
RiD

−X
(1)
RiD

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
RiD

Ẋ
(2)
RiD

= 2F
(2)
Ri
F

(2)
D + C

(2)
RiD

+ r
(
X

(3)
RiD

+X
(1)
RiD

− 2X
(2)
RiD

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
RiD

Ẋ
(3)
RiD

= 2F
(3)
Ri
F

(3)
D + C

(3)
RiD

+ r
(
X

(4)
RiD

+X
(2)
RiD

− 2X
(3)
RiD

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
RiD

Ẋ
(4)
RiD

= 2F
(4)
Ri
F

(4)
D + C

(4)
RiD

+ r
(
X

(5)
RiD

+X
(3)
RiD

− 2X
(4)
RiD

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
RiD

Ẋ
(5)
RiD

= 2F
(5)
Ri
F

(5)
D + C

(5)
RiD

+ r
(
X

(4)
RiD

−X
(5)
RiD

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
RiD

The dynamics of individuals of genotype SiD on each island are given by

Ẋ
(1)
SiD

= 2F
(1)
Si
F

(1)
D + C

(1)
SiD

+ r
(
X

(2)
SiD

−X
(1)
SiD

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
SiD

Ẋ
(2)
SiD

= 2F
(2)
Si
F

(2)
D + C

(2)
SiD

+ r
(
X

(3)
SiD

+X
(1)
SiD

− 2X
(2)
SiD

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
SiD

Ẋ
(3)
SiD

= 2F
(3)
Si
F

(3)
D + C

(3)
SiD

+ r
(
X

(4)
SiD

+X
(2)
SiD

− 2X
(3)
SiD

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
SiD

Ẋ
(4)
SiD

= 2F
(4)
Si
F

(4)
D + C

(4)
SiD

+ r
(
X

(5)
SiD

+X
(3)
SiD

− 2X
(4)
SiD

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
SiD

Ẋ
(5)
SiD

= 2F
(5)
Si
F

(5)
D + C

(5)
SiD

+ r
(
X

(4)
SiD

−X
(5)
SiD

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
SiD
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The dynamics of individuals of genotypeRiSj on each island are given by

Ẋ
(1)
RiSj

= 2F
(1)
Ri
F

(1)
Sj

+ C
(1)
RiSj

+ r
(
X

(2)
RiSj

−X
(1)
RiSj

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
RiSj

Ẋ
(2)
RiSj

= 2F
(2)
Ri
F

(2)
Sj

+ C
(2)
RiSj

+ r
(
X

(3)
RiSj

+X
(1)
RiSj

− 2X
(2)
RiSj

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
RiSj

Ẋ
(3)
RiSj

= 2F
(3)
Ri
F

(3)
Sj

+ C
(3)
RiSj

+ r
(
X

(4)
RiSj

+X
(2)
RiSj

− 2X
(3)
RiSj

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
RiSj

Ẋ
(4)
RiSj

= 2F
(4)
Ri
F

(4)
Sj

+ C
(4)
RiSj

+ r
(
X

(5)
RiSj

+X
(3)
RiSj

− 2X
(4)
RiSj

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
RiSj

Ẋ
(5)
RiSj

= 2F
(5)
Ri
F

(5)
Sj

+ C
(5)
RiSj

+ r
(
X

(4)
RiSj

−X
(5)
RiSj

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
RiSj

The dynamics of individuals of genotypeRiRj on each island are given by

Ẋ
(1)
RiRj

= (2− δij)F
(1)
Ri
F

(1)
Rj

+ C
(1)
RiRj

+ r
(
X

(2)
RiRj

−X
(1)
RiRj

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
RiRj

Ẋ
(2)
RiRj

= (2− δij)F
(2)
Ri
F

(2)
Rj

+ C
(2)
RiRj

+ r
(
X

(3)
RiRj

+X
(1)
RiRj

− 2X
(2)
RiRj

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
RiRj

Ẋ
(3)
RiRj

= (2− δij)F
(3)
Ri
F
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The dynamics of individuals of genotype SiSj on each island are given by
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4
Discussion

The goal of this dissertation has been to better understand the evolutionary dynamics of CRISPR-

based gene drive systems, including potential problems and possible solutions.

In summary, progress was made on both fronts. In Chapter 1, I presented a mathematical model

for CRISPR-based gene drive systems with resistance encoded at the drive locus and found that

this form of resistance could, in fact, be a major obstacle to the long-term evolutionary stability of
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CRISPR gene drive elements. I similarly studied the dynamics of an alternative design, and the re-

sults suggested that it could mitigate the stability problem posed by this form of resistance, at least in

principle under the various assumptions of the model.

In Chapter 2, I then turned to the question of how effectively a basic CRISPR-based gene drive

system might spread following accidental or otherwise unauthorized release, despite resistance. This

necessitated a different modeling approach that could capture the effect of stochastic fluctuations

when the drive is rare. The results suggested that even simple drive systems without optimization to

mitigate the evolution of resistance (as studied in Chapter 1) could spread to significant frequencies

in wild populations following small releases. I considered a variety of mitigating factors that have

been observed empirically and found that the results were robust to each of these factors. In light

of these findings, I noted the importance of adhering to previously proposed safety protocols in

experimental design and recommended a great deal of further experimental and theoretical research

before field trials are considered in wild populations.

In Chapter 3, I studied an alternative gene drive system called “daisy-chain gene drive” that seemed,

intuitively, more amenable to containment—and, therefore, a potential technical solution to the

problem of inadvertent spread studied in Chapter 2. As in the previous chapters, I constructed a

mathematical model to clarify our thinking about the system and to study its dynamics given our

assumptions. The results suggested that daisy-chain gene drive systems could be capable of attaining

high frequency in a local population following a small release—making them potentially useful—

while exhibiting low spread in subsequent populations connected by gene flow—making them po-

tentially safer than standard drive designs. This was, of course, a preliminary examination of daisy-
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chain gene drive, and a large volume of future experimental and theoretical work will be required to

evaluate the system’s dynamics in real-world populations.

As for next steps, there are at least two promising future directions for this work. One could seek

to better understand the drive systems considered here or develop entirely new drive systems.

In further studying existing drive systems, there is great potential for future work to use exper-

imental and modeling methods to iteratively inform and refine each other. On the experimental

front, next steps will involve carefully characterizing the effects of drive systems in application-

relevant organisms—beyond the proof-of-principle experiments conducted to date—particularly

considering within-organism drive dynamics, including drive efficiency, fitness effects, common av-

enues that lead to different forms of resistance and off-target cutting effects, as well as higher-level

behavioral and ecological effects. On the other hand, additional modeling will be important for

carefully designing informative experiments, while also producing tentative projections for dynam-

ics of these systems in wild populations—which is the best that can be done prior to field trials. In

modeling efforts of this type, a variety of factors not considered in this dissertation will need to be

carefully considered, including species-specific behavior, interspecies interactions, and environmen-

tal features.

Besides studying existing systems, it will be useful for future work to also consider entirely new

systems. A benefit of the modeling approaches used in this dissertation is that they can be used to

rapidly prototype new designs—on paper—and determine whether they show enough promise to

dedicate experimental resources to their construction and further study. In this effort, designs to

solve known problems, such as containment and evolutionary stability, will continue to be promis-
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ing areas of study.

Finally, perhaps the most important direction for future work in the field more broadly is to bet-

ter understand whether, when and where to use these systems at all—a discussion in which technical

details, as discussed in this dissertation, are only one factor. Moreover, this discussion will require

a tremendous, conscientious effort spanning many stakeholder groups, from local communities to

ethicists and policymakers. The approach of this dissertation has been to make no claims of whether

CRISPR gene drive systems should be used in the wild, but rather to proceed with the assumption

that their potential impact and the likelihood of their future use at least warrant their careful study.

In my estimation, whether CRISPR gene drive systems see an eventual application or not, the efforts

of the field will have been extremely worthwhile.
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A
Review of CRISPR gene drive experiments

In Table A.1, we present empirical homing efficiencies for all CRISPR gene drive constructs reported

to date. These studies varied in multiple ways: they studied different organisms; they used different

methods for counting drive constructs (ranging from direct genetic measurement, such as quanti-

tative PCR, to indirectly observing visible phenotypes), and they sometimes observed differential

inheritance rates between sexes, possibly due to differences in male and female gamete characteristics.
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Given this complexity, we elaborate here on the specific data we selected for review to produce Table

A.1 and the reasoning for our choices.

Organism Ref. System name Efficiency
Yeast 37 ade2::sgRNA > 99%

ade2::sgRNA+URA3 100%
sgRNA+ABD1 100%
cas9+sgRNA > 99%
ADE2+sgRNA+cas9 > 99%

Fruit flies 38 γ-MCR 97%
67 nanos 62%

vasa 52%
additional nanos 40%–62%
additional vasa 37%–53%

Mosquitoes 5 AsMCRkh2 (male) 98%
AsMCRkh2 (female) 14%

13 AGAP011377 83%
AGAP005958 95%
AGAP007280 99%

Table A.1: Empirical homing efficiencies for all CRISPR gene drive systems published to date.

To begin, all studies performed some variation of producing drive/wild-type heterozygotes (DW),

followed by counting the number which converted their wild-type allele to a drive allele. There were

two main approaches.

1. Some constructs acted in the early embryo, in which case WW and DD individuals were
mated to produce offspring which were initially WD. Observations were then made of adult
genotypes. DD individuals must have undergone drive conversion, while WD individuals
must have avoided conversion. Without drive, all adults are expected to be WD, but with
drive, all are expected to be DD.

2. Other constructs acted in the germline of adults, so that adult WD individuals produce D
gametes more often than chance under the effects of drive. To study these constructs, WD
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individuals were mated with WW individuals. Without drive, half of adults should be WW,
and half should be WD. With drive, however, all adults should be WD.

To employ a consistent strategy across the studies, we calculate two numbers for each drive con-

struct: (i) the total number of initial alleles counted which were drives or were subject to drive, T ,

and (ii) the total number of resulting drive alleles,D. The homing efficiency can then be calculated

in the following way:

P =
2D

T
− 1

Notice that if drive is perfectly efficient (P = 1), we haveD/T = 1, i.e., there are twice as many

drive alleles as starting heterozygotes, while under standard inheritance (P = 0), the number of

drive alleles is unchanged from the initial heterozygous state,D/T = 1/2. Below, we explain our

calculations of these quantities for Table A.1.

Yeast, DiCarlo et al., (2015)

The study by DiCarlo et al. studied 5 distinct gene drive systems in yeast 37. We address each distinct

system in subsections below.

1. ade2::sgRNA

This is the basic split drive system containing only a guide RNA. Its design is depicted in Fig. 2B,

and it is described on pp. 1250-1251, with results pictured in Fig. 2D and Fig. 4. Drive abundances

were measured via colony counting (Fig. 2D), obtaining absolute colony numbers, and via qPCR

(Fig. 4), obtaining relative abundances of drive alleles. By the colony counting method, the drive
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efficiency is measured at 100% (D = T = 72). By the qPCR method,> 99% of alleles counted

from offspring were drive alleles, soD > 0.99T . Therefore:

P > 0.99

Strictly speaking, the inequalityD > 0.99T entails P > 0.98, but we set this to P > 0.99 because

the qPCR results were indistinguishable from 100%. We make a similar approximation below for

systems 4 and 5.

2. ade2::sgRNA+URA3

This system aimed to test whether an associated ‘cargo’ gene could be spread with the minimal drive

element. Its design is depicted in Fig. 3a, and results are shown in Fig. 3b. The related experiment

measured drive presence via a visible phenotype (red pigment). In total, 60 haploids were red, or

D = 60, out of 60 total alleles, T = 60. Thus:

P = 1

3. sgRNA+ABD1

The sgRNA+ABD1 drive system tested the ability to target a recoded essential gene. Its design is de-

picted in Fig. 3c, and results are discussed in the text (first full paragraph on pp. 1252). The presence

of the drive was measured via sequencing of the ABD1 locus. In total, 72 haploids were found to
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have the drive,D = 72, out of 72 counted, T = 72.

P = 1

4. cas9+sgRNA

The first example of an ‘autonomous’ drive in the paper, this system is depicted in Fig. 5a. It con-

sisted of a gRNA and cas9 together targeting the ADE2 locus (recoded due to safety/containment

considerations). The fractional abundance of drive allele was measured by performing qPCR on

diploid offspring from wild-type/drive haploid matings; the corresponding data is found in Fig. 5b.

The fractional abundance of the drive allele was measured to be> 99%, so P > 0.99, as for the first

construct above.

P > 0.99

5. ADE2+sgRNA+cas9

This system is DiCarlo et al.’s example of a ‘reversal’ drive, designed to target and overwrite the au-

tonomous drive (cas9+sgRNA, directly above). The system is depicted in Fig. 5c. The drive effi-

ciency was measured in the same way as that for the cas9+sgRNA drive (qPCR to calculate frac-

tional abundance of the overwriting drive allele in diploid offspring from haploid matings). The

fractional abundance was calculated to be> 99%, so P > 0.99, as above.

P > 0.99
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Fruit flies, Gantz and Bier, (2015)

Gantz and Bier constructed an X-linked drive construct targeting the (X-linked) yellow locus in

Drosophila melanogaster and acting in the early embryo 38. The drive functions to knock out the

yellow gene, which produces a yellow-body phenotype, denoted y−, due to lack of black melanin

pigment formation. The wild-type phenotype is referred to as y+. Females with< 2 ar y+, while

females with 2 copies of the drive or males with 1 copy should appear y−. The related data is found

in Fig. 2E and Table 1.

Two sets of crosses were performed: (i) drive-males with wild-type females, and (ii) drive-females

with wild-type males. To tabulate the allele countsD and T , we discuss the two crosses separately.

First, cross (i): In this cross, male offspring could not have possibly inherited a drive allele nor

received one through conversion. This is because the only allele they could have inherited from the

drive-male parent was the Y chromosome, but the drive is X-linked. Thus we do not consider male

offspring in the total. As for female offspring, these should inherit exactly one drive allele and one

wild-type allele prior to conversion. Then the adult female individuals should appear y− if and

only if drive-mediated conversion was successful. Thus we add exactly two alleles for each female

offspring toward the total allele count, while we add one or two drive alleles to the drive allele count

if the adults are y+ or y−, respectively. This yieldsD♂ = 40 × 2 + 1 × 1 = 81 and T♂ =

40× 2 + 1× 2 = 82. The drive efficiency for this cross is P♂ = 2D♂/T♂ − 1 = 0.976.

Second, cross (ii): In this cross, male offspring are again uninformative, since each should in-

herit exactly one drive allele from the female parent and one Y allele from the male wild-type parent.
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Thus we ignore male offspring in our counting. Female offspring, on the other hand, should all be-

gin as WD embryos, with y+ phenotypes. Then adults are y− if and only if they have undergone

drive-mediated conversion. Thus we count two alleles for every female offspring in the total, one

drive allele per y+ adult and two drive alleles per y− adult. This yieldsD♀ = 203×2+1×6 = 412,

and T♀ = 203 × 2 + 6 × 2 = 418. The drive efficiency for this cross is thus P♀ = 2D♀/T♀ =

0.971.

We then consider crosses (i) and (ii) together to calculate the overall drive efficiency. This yields:

P = 2
D♂ +D♀
T♂ + T♀ − 1 = 2

81 + 412

82 + 418
− 1 = 0.972

Fruit flies, Champer et al., (2017)

Champer et al. constructed two CRISPR gene drive constructs inD. melanogaster 67. The first re-

sembled the vasa promoter-driven construct from Gantz et al., discussed in the section immediately

above. An important addition, however, was a DsRed fluorescent protein as payload in the drive

construct, which allows the drive to be detected in heterozygotes, as its red fluorescent phenotype is

dominant. The second construct used the nanos promoter, which has been shown to restrict drive

function to the germline and is expected to produce less toxicity (and thus a lower fitness cost associ-

ated with the drive construct).
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1. vasa construct

This construct was similar to the one studied by Gantz et al., discussed above. The construct targets

the X-linked yellow gene. Disruption of the gene produces a recessive yellow phenotype, while the

drive itself carries a DsRed payload, producing a dominant red fluorescent eye phenotype. To assess

the construct’s homing efficiency, wild-type males were crossed with heterozygous DW females. In

this setup, all progeny should exhibit the red eye phenotype if the drive is perfectly efficient, while

roughly 50% of progeny should exhibit the red eye phenotype in the absence of conversion. Here

we count toward the total number of drive or susceptible alleles one allele per male offspring and

one allele per female offspring, since in either case only one allele is inherited from the drive parent.

Toward the number of drive alleles, we count one per offspring if the offspring displays the DsRed

phenotype and zero otherwise. This data is shown in Table 2B of the Champer et al. (2017) study.

We count as follows: D♀ = 909 + 4 = 913 (i.e., the number of drive alleles counted over female

offspring), T♀ = 909 + 4 + 316 = 1229,D♂ = 953, T♂ = 953 + 265 + 3 = 1221. Then we

obtain:

P = 2
D♂ +D♀
T♂ + T♀ − 1 = 2

953 + 913

1221 + 1229
− 1 = 0.523.

2. nanos construct

This construct is essentially the same as the vasa construct, except that it uses a different promoter

and targets a different sequence in the yellow gene (the coding sequence, rather than the promoter

as in the previous construct). The data is found in Table 1B of the Champer et al. (2017) study. We
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count potential drive alleles and total alleles as above. Our count is as follows: D♀ = 290 + 100 +

108 = 498, T♀ = 290+100+108+119+10+9 = 636,D♂ = 594, T♂ = 594+11+103+2 =

710. We obtain:

P = 2
D♂ +D♀
T♂ + T♀ − 1 = 2

594 + 498

710 + 636
− 1 = 0.622.

Additional data

The constructs described above were then tested in a variety of additionalD. melanogaster lines,

detailed in Table 3 of that work. The authors’ efficiency calculations are detailed in the S1 Dataset.

For the vasa construct (2 lines), the minimum is P = 0.37, and the maximum is P = 0.53. For the

nanos construct (7 lines), the minimum is P = 0.40, and the maximum is P = 0.62.

Mosquitoes, Gantz et al., (2015)

In this study, Gantz et al. constructed an autonomous CRISPR-based gene drive system in the

malaria vector mosquitoAnopheles stephensi 5. The construct comprises two effector genes with

anti-Plasmodium falciparum activity, a dominant marker gene (DsRed), and the CRISPR compo-

nents (Cas9 with a single gRNA), spanning roughly 17 kb. The construct targets the kynurenine

hydroxylasewhite (khw) locus, which has a recessive white-eye phenotype. The effect of this targeting

is that drive/wild-type heterozygotes display a DsRed phenotype, while drive homozygotes display

both DsRed and white eyes.

While this one construct was made and studied, it exhibited differential transmission between
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lines founded by drive males/wild-type females and drive-females/wild-type males. More specifically,

lines in which drive alleles are inherited only through male parents display drastically higher drive

efficiencies than lines in which the drive allele is inherited at some point via a female parent. To ex-

plain this discrepancy, the authors propose a model whereby in crosses between transgenic females

and wild-type males, maternal deposition of Cas9 in eggs results in NHEJ-mediated disruption of

the paternally derived wild-type chromosome in the early embryo. Crosses between transgenic males

and wild-type females, on the other hand, do not see Cas9 deposited in the early embryo, and Cas9

cutting is better contained to the later germline, where HDR is more efficient.

To account for this discrepancy, we choose to consider these two cases separately and report hom-

ing efficiencies for each.

1. Transgenic male lines

Here we consider all offspring (larvae + adults) whose drive alleles (or potentially-inherited drive

alleles) have been passed down only through male ancestors. This includes all offspring from the

male-founder crosses in Table 1 of the main text (10.1 G2♂ and 10.2 G2♂), as well as crosses 6 and

8 in Table 2 (also Fig. 3). We choose to compile all alleles from each of these crosses together to cal-

culate an average efficiency across all available data. Because the constructs are on autosomes, we

treat male offspring and female offspring identically, and we count toward the total allele count, T ,

one allele from each offspring (since at most one drive allele can be inherited in each cross), and we

count toward the drive allele total,D, one allele for each DsRed+ individual observed, since this is a

dominant marker for the drive. Finally, we consider both larvae and adults identically, as conversion
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G3 crosses D T Reference
10.1G2×WT, larval 829 832 Table S3
10.2G2×WT, larval 3060 3085 Table S4
10.1G2×WT, adult 833 836 Table S5
10.2G2×WT, adult 1258 1274 Table S6

Total 5980 6027 —

G4 crosses D T Reference
Cross 6, larval 949 955 Table S7
Cross 8, larval 609 628 Table S8
Cross 6, adult 882 888 Table S10
Cross 8, adult 565 583 Table S11

Total 3005 3054 —

Table A.2: Gantz et al., An. stephensi transgenic male lines. (top) Phenotypes of G3 progeny. (bottom) Phenotypes of G4

progeny.

is anticipated to have occurred before this stage, and results are similar between adults and larvae.

Values ofD and T for each cross are displayed in Table A.2.

To obtain an average efficiency for the construct, we sum the values ofD and T across all crosses

in Table A.2. We obtain:

P = 2
8985

9081
− 1 = 0.979.

2. Transgenic female lines

To understand the effect of maternal Cas9 deposition, we count all offspring (larvae + adults) from

crosses such that the any (potentially) inherited drive allele has been inherited via a female parent at

least once. This includes no G3 offspring, as the drive alleles present in G2 parents were inherited

from G1 males. Thus we include only G4 offspring of G3 parents, specifically Crosses 1-4, and as for
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G4 larvae D T Reference
Cross 1 28 48 Table S7
Cross 2 332 635 Table S7
Cross 3 204 324 Table S8
Cross 4 372 632 Table S8
Total 936 1639 —

G4 adults D T Reference
Cross 1 19 35 Table S10
Cross 2 306 554 Table S10
Cross 3 169 272 Table S11
Cross 4 1430 2500 Table S11
Total 1924 3361 —

Table A.3: Gantz et al., An. stephensi transgenic male lines. (left) Phenotypes of G4 larvae. (right) Phenotypes of G4

adults.

the transgenic male lines, we sum both larval and adult crosses. Values ofD and T for each cross are

displayed in Table A.3. Summing the values in Table A.3 yields:

P = 2
2860

5000
− 1 = 0.144.

Mosquitoes, Hammond et al., (2015)

In this study, the authors construct three CRISPR-based gene drive systems in the malaria vector

An. gambiae, each targeting a different gene with a recessive female sterility phenotype upon dis-

ruption 13. These are examples of suppression drives whose purpose is to reduce or eradicate wild

populations. Each drive construct carries a copy of Cas9, a single guide RNA, and red fluorescent

protein (RFP) which has a dominant fluorescent phenotype. Each construct targets one of three

female fertility genes, referred to as AGAP011377, AGAP005958, and AGAP007280, but otherwise

they are identical.

To determine homing efficiency, drive-heterozygotes were crossed with wild-type homozygotes,

and offspring were scored visually for the presence of the dominant marker RFP gene. Thus in our
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tabulations, we count one allele per individual toward the total, T , and we count one allele per

RFP+ individual toward the drive allele count,D. Furthermore, the outcrosses were performed

over several generations. To obtain average homing efficiencies, we sum drive alleles and total alleles

over G2, G3, G4, and G5 generations, when applicable. (Some constructs were tested over more gen-

erations than others.) This data is found in Table 2 in the study. Furthermore, we sum across male-

and female-drive parent crosses, since we would expect these to behave identically with respect to

homing, given that the female drive parents are capable of producing offspring.

1. AGAP011377

This construct was studied over generations G2 to G5 in Table 2. The total number of relevant alle-

les resulting from crosses between drive-male parents and wild-type females was T♂ = 636+1631+

1654+505 = 4426, while the male drive total wasD♂ = 581+1442+1550+491 = 4064. The

female total was T♀ = 60+92+142 = 294, and the female drive total wasD♀ = 55+70+121 =

246. The average efficiency is then:

P = 2
D♂ +D♀
T♂ + T♀ − 1 = 2

4064 + 246

4426 + 294
− 1 = 0.826.

2. AGAP005958

This construct was studied over generations G2 and G3. There were no offspring from female-drive

crosses to wild-type due to the low fertility of these individuals. The total was T = 1689 + 278 =
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1967, and the drive total wasD = 1654 + 268 = 1922. The efficiency is thus:

P = 2
D

T
− 1 = 2

1922

1967
− 1 = 0.954.

3. AGAP007280

This construct was studied over generations G2 and G3. The male total was T♂ = 1383 + 505 =

1888, and the male drive total wasD♂ = 1377 + 499 = 1876. The female total was T♀ = 257,

and the female drive total wasD♀ = 255. The efficiency is:

P = 2
D♂ +D♀
T♂ + T♀ − 1 = 2

1876 + 255

1888 + 257
− 1 = 0.987.
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Figure B.1: B→A “split” drives and daisy drive family tree analysis. (A) Family tree resulting from a single-organism

release of a B→A split drive in a large wild-type population in the absence of selection. (In reality, B elements would

be deleterious and thus decline in frequency over time.) For comparison, a C→B→A daisy drive is shown inmain text

Fig. 1c. Greenmice have at least one copy of the cargo A element, while greymice have only the wild-type allele at that

locus. (B) A graphical depiction of total alleles in a population per generation for B→A throughD→C→B→A daisy

drives. Throughout, chromosome illustrations represent genotypes of germline cells after drive has occurred.
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Figure B.6: Daisy drive systems can be constructed using orthogonal Cas9 elements. Such a drive system is resistant

to conversion into a daisy necklace, which would require a recombination event that moved the entire Cas9 gene and

associated guide RNAs into a subsequent locus in the daisy-chain. Ensuring that all the Cas9 proteins are expressed

appropriately without re-using promoters and thereby creating homology between elements could be challenging.
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template           1 -----------------------------------------N----NNC-AAGTTVVVATAAGGC--------------N
Br_S.pyogenes      1 -----------------TTGTTGGAACCATTCAAAACAGCAT----AGC-AAGTTAAAATAAGGC--------------T
Br_S.dysagalact    1 -----------------TTGTTGGAACCATTCAAAACAACGT----AGC-AAGTTAAAATAAGGC--------------T
Br_S.equi          1 -----------------CCTATGGAACTATTCAATACAGCAT----AGCAAAGTTAAAATAAGGC-------------TT
Br_S.thermophil    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.salivarius    1 -----------------GGTTTGAAACCATTCGAAACAATAC----AGCAAAGTTAAAATAAGGC-------------TT
Br_S.gallolytic    1 -----------------TTGTTGGAGCTATTCGAAACAACAC----AGC-GAGTTAAAATAAGGC-------------TT
Br_S.lutetiensi    1 -----------------TTGTTGGAACTATTCGAAACAACAC----AGT-GAGTTAAAATAAGGC-------------TT
Br_S.anginosisB    1 -----------------ATGTTGGAATCATTCGAAACAACAC----AGC-AAGTTAAAATAAGGC-------------TT
Br_S.mitis         1 -----------------TCGTTGGAACTATTCGAAACAACAC----AGCAAAGTTAAAATAAGGC-------------TT
Br_S.sanguinis     1 -----------------TTGTTGGAACTATTCGAAACAACAC----AGC-AAGTTAAAATAAGGC-------------TT
Br_S.oralis        1 -----------------TTGTTGGAACTATTCGAAACAACAC----AGC-AAGTTAAAATAAGGC-------------TT
Br_S.mutans        1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.intermediu    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.anginosusA    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.thermophil    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.vestibular    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.gordonii      1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.parasangui    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.orisratti     1 ----------------CTTGCACAGTTACTTAAATCTTGCAG----AGC-CTACAAAGATAAGGC-------------TT
Br_S.henryi        1 ----------------CTTGCACAGTTACTTAAATCTTGCTG----AGC-CTACAAAGATAAGGC-------------TT
Br_S.infantariu    1 ----------------CTTGCACGGTTACTTAAATCTTGCAG----AGC-CTACAAAGATAAGGC-------------TT
Ch_C.jejuni        1 ------------------------------AAGAAATTTAAA----AAG-GGACTAAAATAAAGAGTT--TGCGGGACTC
Ch_F.novicida      1 ----------------------------ATCTAAAATTATAA--ATGTA-CCAAATAATTAATGC-------------TC
Ch_S.thermophil    1 ------TTG-------TGGTTTGAAACCATTCGAAACAACAC----AGC-GAGTTAAAATAAGGC-------------TT
Ch_M.mobile        1 TGTATTTCGAAATACAGATGTACAGTTAAGAATACATAAGAATGATACA-TCACTAAAAAAAGGC-------------TT
Ch_L.innocua       1 -------------------ATTGTTAGTATTCAAAATAACAT----AGC-AAGTTAAAATAAGGC-------------TT
Ch_S.pyogenes      1 -------------------GTTGGAACCATTCAAAACAGCAT----AGC-AAGTTAAAATAAGGC--------------T
Ch_S.mutans        1 -------------------GTTGGAATCATTCGAAACAACAC----AGC-AAGTTAAAATAAGGCAGTGATTTTTAATCC
Ch_S.thermophil    1 ------TTG-------TGGTTTGAAACCATTCGAAACAACAC----AGC-GAGTTAAAATAAGGC-------------TT
Ch_N.meningitid    1 ---------------ACATATTGTCGCACTGCGAAATGAGAA----CCG-TTGCTACAATAAGGCC--------------
Ch_P.multocida     1 ---------------GCATATTGTTGCACTGCGAAATGAGAG----ACG-TTGCTACAATAAGGC---------------

template          21 AGTCCGTYHYCANNNNGRRA--NNNNG-GCACCGAKTCGGTGC-------------------------------------
Br_S.pyogenes     45 AGTCCGTTATCAACTTGAAA--AAGTG-GCACCGAGTCGGTGCTTTTTTT------------------------------
Br_S.dysagalact   45 AGTCCGTTATCAACTTGAAA--AAGTG-GCACCGAGTCGGTGCTTTTT--------------------------------
Br_S.equi         47 TGTCCGTAATCAACCTGAAA--AGGGGAGCACCGAATCGGTGCTTTTTT-------------------------------
Br_S.thermophil   47 AGTCCGTACTCAACTTGAAA--AGGTG-GCACCGATTCGGAAGGC-------------TTCATGCCGAAATCAACACCCT
Br_S.salivarius   47 AGTCCGTATTCAACTTGAGA--AAGTG-GCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.gallolytic   46 TGTCCGTACACAACTTGTAA--AAGTGGCACCCGATTCGGGTGCGTTTTTTT----------------------------
Br_S.lutetiensi   46 TGTCCGTACACAACTTATAA--AAGTGGCACCCGATTCGGATGCATTTTTT-----------------------------
Br_S.anginosisB   46 TGTCCGTACTCAACTT-AAA--AAGTGCGCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.mitis        47 TGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.sanguinis    46 TGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.oralis       46 TGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTT--------------------------------
Br_S.mutans       47 CATGCCGAAATCAACACCCT--ATCTATTATAAGATAGGGTGTTTT----------------------------------
Br_S.intermediu   47 CATGCCGAAATCAACACCCT--GTC-----TATGACGGGGTGTTTT----------------------------------
Br_S.anginosusA   47 CATGCCGAAATCAACACCCT--GTC-----TATGACGGGGTGTTTT----------------------------------
Br_S.thermophil   47 AGTCCGTACTCAACTTGAAA--AGGTG-GCACCGATTCGGAAGGC-------------TTCATGCCGAAATCAACACCCT
Br_S.vestibular   47 CATGCCGAAATCAACACCCT--GTCA-TTTTATGGCAGGGTGTTTT----------------------------------
Br_S.gordonii     47 CATGCCGAATTCAACACCCT--GTCA--TTTATGGCGGGGTGTTTT----------------------------------
Br_S.parasangui   47 CATGCCGAATTCAACACCCT--GTCA--TTTATGGCGGGGTGTTTT----------------------------------
Br_S.orisratti    47 TATGCCGAAATCAAGCACCC--C-----GTTTATACGAGGTGCTTTT---------------------------------
Br_S.henryi       47 CATGCCGAAATCAAGCACCC--CCGT-TTTTAACGAGGGGTGCTTTT---------------------------------
Br_S.infantariu   47 CATGCCGAATTCAAGCACCC--CA---TGTTTACATGGGGTGCTTTT---------------------------------
Ch_C.jejuni       44 TGCGGGGTTACAATCCCCTA--AAAC--------------CGCTTTT---------------------------------
Ch_F.novicida     37 TGTAATCATTTAAAAGTATTTTGAACGGACCTCTGTTTGACACGTCTGAATAACTAAAAA--------------------
Ch_S.thermophil   50 CATGCCGAAATCAACACCCT--GTCA-TTTTATGGCAGGGAAGGC-------------TTAGTCCGTACTCAACTTGAAA
Ch_M.mobile       67 TATGCCGTAACTACTACTTA-------TTTTCAAAATAAGTAGTTTTTTTT-----------------------------
Ch_L.innocua      44 TGTCCGTTATCAACTTTTAATTAAGTA-GCGCTGTTTCGGCGCTTTTTTT------------------------------
Ch_S.pyogenes     43 AGTCCGTTATCAACTTGAAA--AAGTG-GCACCGAGTCGGTGCTTTTTTT------------------------------
Ch_S.mutans       57 AGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTTTATTT---------------------------
Ch_S.thermophil   50 CATGCCGAAATCAACACCCT--GTCA-TTTTATGGCAGGGAAGGC-------------TTAGTCCGTACTCAACTTGAAA
Ch_N.meningitid   47 ------------GTCTGAAA--AGATGTGCCGCAACGCTCTGCCCCTTAAAGCTTCTGCTTTAAGGGG---------CA-
Ch_P.multocida    46 ------------TTCTGAAA--AGAATGACCGTAACGCTCTGCCCCTTGTGATTCTTAATTGCAAGGGGCATCGTTTTT-

template             ---------------------------------------------------------------------
Br_S.pyogenes        ---------------------------------------------------------------------
Br_S.dysagalact      ---------------------------------------------------------------------
Br_S.equi            ---------------------------------------------------------------------
Br_S.thermophil  111 --GTCA-TTTTATGGCAGGGGTTTTTTTT------------------------------TGTTTT----
Br_S.salivarius      ---------------------------------------------------------------------
Br_S.gallolytic      ---------------------------------------------------------------------
Br_S.lutetiensi      ---------------------------------------------------------------------
Br_S.anginosisB      ---------------------------------------------------------------------
Br_S.mitis           ---------------------------------------------------------------------
Br_S.sanguinis       ---------------------------------------------------------------------
Br_S.oralis          ---------------------------------------------------------------------
Br_S.mutans          ---------------------------------------------------------------------
Br_S.intermediu      ---------------------------------------------------------------------
Br_S.anginosusA      ---------------------------------------------------------------------
Br_S.thermophil  111 --GTCA-TTTTATGGCAGGGGTTTTTTTT------------------------------TGTTTT----
Br_S.vestibular      ---------------------------------------------------------------------
Br_S.gordonii        ---------------------------------------------------------------------
Br_S.parasangui      ---------------------------------------------------------------------

Figure B.7:Multiple sequence alignment of existing tracrRNA sequences from closely related Cas9 systemswith

the tracrRNA component of our sgRNA template (i.e., the template from Fig. 3.5C, GTNNNAGAGNNN–GRRA–

NNNCAAGTTVVVATAAGGCNAGTCCGTYHYCANNNN-GRR-A-NNNNGGCACCGAKTCGGTGC). The sequences

with names beginning “Br_” are taken from Fig. S2 of Briner et al.,Mol. Cell (2014) (Ref. 103), and the sequences with

names beginning “Ch_” are taken from Fig. 4 of Chylinski et al., RNA Biol., (2013) (Ref. 111). Alignments were per-

formed via theMAFFT programwith default parameters (Refs. 113, 112).
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Figure B.8: Complete list of sequence-divergent guide RNAs generated and assayed using the transcriptional activa-

tion reporter.
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Figure B.9: Results of the pilot screen of the first set of designed sgRNA sequences. 3-6, 10-13, and 17-20 all carried

the extra insert; the latter 8 displayedmarkedly lower activity andwere not further considered. The cause of the

difference is unclear, although it is worth noting that these all had longer stem-loops than did 3-6, all of which were

closer to the activity of the standard or ‘wild-type’ sgRNA.
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Figure B.10: Potential family tree of a C→B→A genetic load daisy drive for which the cargo in the A element disrupts

a female fertility gene. The C element is male-linked, ensuring that it does not suffer a fitness cost from the loss of fe-

male fertility. Mating events between two parents carrying the A element (boxed) can produce sterile female offspring

that will suppress the population. Males do not suffer a fitness cost due to disruption of female-specific fertility genes.

Genome illustrations depict germline cells after drive has occurred. Females are placed on the right side in each pair of

individuals.
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Figure B.11: Utility of a costly daisy reversal drive with orthogonal Cas9 elements in achieving complete genetic rever-

sal of an unwanted drive system towild-type. Suppose an unwanted drive system has spread a harmful cargo (yellow)

through the target locus A via the commonly used Cas9 protein from Streptococcus pyogenes. (A) A daisy reversal drive

system uses guide RNAs for S. pyogenesCas9 to copy all elements while overwriting the unwanted drive system and

its cargo. (B) The same daisy reversal drive system spreads as a normal daisy drive using its own orthogonal CRISPR

system (e.g. S. aureus Cas9) on encountering wild-type sequences. (C) An unwanted drive system is countered by re-

leasing the daisy reversal system atmultiple sites. The daisy drive system efficiently overwrites the unwanted drive

system throughout its range, spreading into and through the wild-type sequences at the edges of that range to ensure

that it reaches and eliminates every copy. This immediately eliminates the harmful cargo. Because the A element of

the daisy drive system is costly and the other elements are always co-resident with it due to the daisy drive effect, all

elements of the daisy drive will be outcompeted and eliminated bywild-type alleles over time, potentially leading to

complete genetic reversal.
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