

1 **ED SUM: A multicenter study compares 13 commonly used single-cell RNA-seq**
2 **protocols.**

3

4 **Benchmarking single-cell RNA sequencing protocols for cell atlas projects**

5

6

7 Elisabetta Mereu^{1,+}, Atefeh Lafzi^{1,+}, Catia Moutinho¹, Christoph Ziegenhain², Davis J. McCarthy^{3,4,5},
8 Adrián Álvarez-Varela⁶, Eduard Batlle^{6,7,8}, Sagar⁹, Dominic Grün⁹, Julia K. Lau¹⁰, Stéphane C. Boutet¹⁰,
9 Chad Sanada¹¹, Aik Ooi¹¹, Robert C. Jones¹², Kelly Kaihara¹³, Chris Brampton¹³, Yasha Talaga¹³, Yohei
10 Sasagawa¹⁴, Kaori Tanaka¹⁴, Tetsutaro Hayashi¹⁴, Caroline Braeuning¹⁵, Cornelius Fischer¹⁵, Sascha
11 Sauer¹⁵, Timo Trefzer¹⁶, Christian Conrad¹⁶, Xian Adiconis^{17,18}, Lan T. Nguyen¹⁷, Aviv Regev^{17, 19, 20},
12 Joshua Z. Levin^{17,18}, Swati Parekh²¹, Aleksandar Janjic²², Lucas E. Wange²², Johannes W. Bagnoli²²,
13 Wolfgang Enard²², Marta Gut¹, Rickard Sandberg², Itoshi Nikaido^{14,23}, Ivo Gut^{1,24}, Oliver Stegle^{3,4,25},
14 Holger Heyn^{1,24,*}

15

16 ¹ CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST),
17 Barcelona, Spain

18 ² Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden

19 ³ European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton,
20 Cambridge, UK

21 ⁴ European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany

22 ⁵ St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.

23 ⁶ Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology,
24 Barcelona, Spain.

25 ⁷ ICREA, Barcelona, Spain.

26 ⁸ Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.

27 ⁹ Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany

28 ¹⁰ 10x Genomics, Pleasanton, CA, USA

29 ¹¹ Fluidigm Corporation, South San Francisco, USA

30 ¹² Department of Bioengineering, Stanford University, Stanford, CA, USA

31 ¹³ Bio-Rad, Hercules, CA, USA

32 ¹⁴ Laboratory for Bioinformatics Research RIKEN Center for Biosystems, Dynamics Research, Saitama, Japan

33 ¹⁵ Max Delbrück Center for Molecular Medicine / Berlin Institute of Health, Berlin, Germany

34 ¹⁶ Digital Health Center, Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany

35 ¹⁷ Klarman Cell Observatory, Broad Institute of MIT & Harvard, Cambridge, MA, USA

36 ¹⁸ Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA, USA

37 ¹⁹ Koch Institute of Integrative Cancer Research, MIT, Cambridge, MA, USA

38 ²⁰ Howard Hughes Medical Institute, Dept. of Biology, MIT, Cambridge, MA, USA

39 ²¹ Max-Planck-Institute for Biology of Ageing, Cologne, Germany

40 ²² Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Martinsried, Germany

41

42 ²³ Bioinformatics Course, Master's/Doctoral Program in Life Science, Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Wako, Saitama, Japan

43

44 ²⁴ Universitat Pompeu Fabra (UPF), Barcelona, Spain

45 ²⁵ Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany

46

47

48 ⁺ These authors contributed equally

49

50 * Correspondence should be addressed to HH (holger.heyn@cnag.crg.eu)

51

52

53

54

55

56

57

58

59

60 Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the
61 transcriptome of individual cells in a sample. The latest protocols are scalable to thousands of
62 cells and are being used to compile cell atlases of tissues, organs and organisms. However, the
63 protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs,
64 and their relative advantages for different applications are unclear. Here, we generated
65 benchmark datasets to systematically evaluate protocols in terms of their power to
66 comprehensively describe cell types and states. We performed a multi-center study comparing
67 13 commonly used single-cell and single-nucleus RNA-seq protocols applied to a
68 heterogeneous reference sample resource. Comparative analysis revealed marked differences in
69 protocol performance. The protocols differed in library complexity and their ability to detect
70 cell type marker, impacting on their predictive value and suitability for integration into
71 reference cell atlases. These results provide guidance both for individual researchers and for
72 consortia projects such as the Human Cell Atlas.

73

74

75

76

77 Single-cell genomics provides an unprecedented view of the cellular makeup of complex and
78 dynamic systems. Single-cell transcriptomics approaches in particular have led the
79 technological advances that allow unbiased charting of cell phenotypes¹. The latest
80 improvements in scRNA-seq allow these technologies to scale to thousands of cells per
81 experiment, providing comprehensive profiling of tissue composition^{2,3}. This has led to the
82 identification of novel cell types⁴⁻⁶ and the fine-grained description of cell plasticity in dynamic
83 systems, such as development^{7,8}. Recent large-scale efforts, such as the Human Cell Atlas
84 (HCA) project⁹, are attempting to produce cellular maps of entire cell lineages, organs, and
85 organisms^{10,11} by conducting phenotyping at the single-cell level. The HCA project aims to
86 advance our understanding of tissue function and to serve as a reference for defining variation in
87 human health and disease. In addition to methods that capture the spatial organization of
88 tissues^{12,13}, the main approach it is using is scRNA-seq analysis of dissociated cells. Therefore,
89 tissues are disaggregated and individual cells captured by cell sorting or using microfluidic
90 systems¹. In sequential processing steps, cells are lysed, the RNA is reverse transcribed to
91 cDNA, amplified, and processed to sequencing-ready libraries.

92

93 Continuous technological development has improved the scale, accuracy and sensitivity
94 of scRNA-seq methods, and now allows us to create tailored experimental designs by selecting
95 from a plethora of different scRNA-seq protocols. However, there are marked differences
96 between these methods, and it is not clear which protocols are best for different applications.
97 For large-scale consortium projects, experience has shown that neglecting benchmarking,
98 standardization and quality control at the beginning can lead to major problems later on in the
99 analysis of the results¹⁴. Thus, success depends critically on implementing a high, common
100 standard. A comprehensive comparison of available scRNA-seq protocols will benefit both
101 large- and small-scale applications of scRNA-seq.

102

103 The available scRNA-seq protocols vary in the efficiency of RNA molecule capture,
104 which results in differences in sequencing library complexity and in the sensitivity of the
105 method to identify transcripts and genes¹⁵⁻¹⁷. There has been no systematic testing of how their
106 performance varies between cell types, and how this affects the resolution of cell phenotyping in
107 complex samples. In this paper, we extend previous efforts to compare the molecule capture
108 efficiency of scRNA-seq protocols^{15,16} by systematically evaluating the capability of these
109 techniques to describe tissue complexity and their suitability for creating a cell atlas. We
110 performed a multi-center benchmarking study to compare scRNA-seq protocols using a unified
111 reference sample resource. Our reference sample contained: i) a high degree of cell type
112 heterogeneity with various frequencies, ii) closely related subpopulations with subtle differences
113 in gene expression, iii) a defined cell composition with trackable markers, and iv) cells from
114 different species. By analyzing human peripheral blood and mouse colon tissue, we have
115 covered a broad range of cell types and states from cells in suspension and solid tissues, in order
116 to represent common scenarios in cell atlas projects. We have also added spike-in cell lines to
117 allow us to assess batch effects, and have combined different species to pool samples into a
118 single reference. We performed a comprehensive comparative analysis of 13 different scRNA-
119 seq protocols, representing the most commonly used methods. We applied a wide range of
120 different quality control metrics to evaluate datasets from different perspectives, and to test their
121 suitability for producing a reproducible, integrative and predictive reference cell atlas.

122 We observed striking differences between protocols in converting RNA molecules into
123 sequencing libraries. Varying library complexities affected the protocol's power to quantify
124 gene expression levels and to identify cell type markers, a trend consistently observed across
125 cell and tissue types. This critically impacted on the resolution of tissue profiles and the
126 predictive value of the datasets. Protocols further differed in their capacity to be integrated into
127 reference tissue atlases and, thus, their suitability for consortia-driven projects with flexible
128 production designs.

129

130

131 **Results**

132

133 **Reference sample and experimental design.**

134 We benchmarked current scRNA-seq protocols to inform the methodology selection process of
135 cell atlas projects. Ideally, methods should a) be accurate and free of technical biases, b) be
136 applicable across distinct cell properties, c) fully disclose tissue heterogeneity, including subtle
137 differences in cell states, d) produce reproducible expression profiles, e) comprehensively detect
138 population markers, f) be integratable with other methods, and g) have predictive value with
139 cells mapping confidently to a reference atlas.

140 For a systematic comparison of protocols, we designed a reference sample containing human
141 peripheral blood mononuclear cells (PBMC) and mouse colon, which are tissue types with
142 highly heterogeneous cell populations, as determined by previous single-cell sequencing
143 studies^{18,19}. In addition to the well-defined cell types, the tissues contain cells in transition states
144 (e.g. colon transit amplifying or enterocyte progenitor cells) that show transcriptional
145 differences during their differentiation trajectory²⁰. The reference sample also included a wide
146 range of cell sizes (e.g. B-cells: ~7 µm; HEK293: ~15 µm) and RNA content, which are key
147 parameters that affect performance in cell capture and library preparation. Interrogating tissues
148 from different species allowed us to pool a large variety of cell types in a single reference
149 sample in order to maximize complexity while minimizing variability introduced during sample
150 preparation. In addition to the intra-tissue complexity, the fluorescence-labeled spiked-in cell
151 lines allowed us to monitor cell type composition during sample processing, and to identify
152 batch effects and biases introduced during cell capture and library preparation.

153 Specifically, the reference sample contained (estimated % viable cells): PBMC (60%, human),
154 colon (30%, mouse), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP
155 labelled mouse cells) and MDCK (1%, TurboFP650 labelled dog cells) (**Figure 1**). To reduce
156 variability due to technical effects during library preparation, the reference sample was prepared
157 in a single batch, distributed into aliquots of 250,000 cells, and cryopreserved. We have
158 previously shown that cryopreservation is suitable for single-cell transcriptomics studies of

159 these tissue types²¹. For cell capture and library preparation, the thawed samples underwent
160 FACS separation to remove damaged cells and physical doublets (see below for detailed
161 analysis of cell viability sorting).

162

163 **A reference dataset for benchmarking experimental and computational protocols.**

164 To obtain sufficient sensitivity to capture low-frequency cell types and subtle differences in cell
165 state, we profiled ~3,000 cells with each scRNA-seq protocol. In total, we produced datasets for
166 5 microtiter plate-based methods and 7 microfluidics systems, including cell-capture
167 technologies based on droplets (4), nanowells (1) and integrated fluidic circuits (IFC), to capture
168 small (1) and medium (1) sized cells (**Figure 1** and **Supplementary Table 1**). We also included
169 experiments to produce single-nucleus RNA sequencing (snRNA-seq) libraries (1), and an
170 experimental variant that profiled >50,000 cells to produce a reference of our complex sample.

171 The unified sample resource and standardized sample preparation (**Online Methods**) were
172 designed to largely eliminate sampling effects, and allow the systematic comparison of scRNA-
173 seq protocol performance.

174 To compare the different protocols, and to create a resource for the benchmarking and
175 development of computational tools (e.g. batch effect correction, data integration and
176 annotation), all datasets were processed in a uniform manner. Therefore, we designed a
177 streamlined primary data processing pipeline tailored to the peculiarities of the reference sample
178 (**Online Methods**). Briefly, raw sequencing reads were mapped to a joint human, mouse and
179 canine reference genome and separately to their respective references to produce gene count
180 matrices for subsequent analysis (GSE133549). Overall, we detected human, mouse and canine
181 cell numbers consistent with the composition design of the reference sample (**Figure 1**).

182 However, some protocols varied markedly from the expected frequencies in human (34-95%),
183 mouse (4-66%) and canine (0-9%) cells. Although the reference sample was prepared in a
184 standardized way, we cannot entirely exclude the introduction of composition variability during
185 sample handling. Thus, the subsequent evaluation of protocol performance was performed on
186 cell types and states common to all protocols.

187 Notably, we observed a higher fraction of mouse colon cells in unsorted (Chromium) and the
188 single-nucleus sequencing dataset (Chromium (sn)). This likely results from damaging the more
189 fragile colon cells during sample preparation, resulting in proportionally fewer colon cells when
190 selecting for cell viability. To test if this composition bias in scRNA-seq can be avoided by
191 skipping viability selection, we generated matched datasets selecting or not for intact cells.

192 After quality control the detection of mouse colon cells increased proportionally without
193 viability selection (51% vs 19%), with good-quality cells showing comparable library
194 complexity in both libraries (e.g. numbers of detected genes; **Supplementary Figs. 1 and 2**).

195 However, considerably more cells were removed during quality filtering (44% vs 15%), and this
196 is a source of unwanted sequencing costs that must be taken into account, especially for tissues
197 with high cell damage. Consequently, replacing viability staining with thorough *in silico* quality
198 filtering in cell atlas experiments might better conserve the composition of the original tissue,
199 but result in higher sequencing costs.

200 The canine cells, spiked-in at a low concentration, were detected by all protocols (1-9%) except
201 gmeSCRB-seq. Furthermore, the different methods showed notable differences in mapping
202 statistics between different genomic locations (**Figure 1**). As expected, due to the presence of
203 unprocessed RNA in the nucleus, the snRNA-seq experiment detected the highest proportion of
204 introns, although scRNA-seq protocols also showed high frequencies of intronic and intergenic
205 mappings. The increased detection of unprocessed transcripts in CEL-seq2 may be due to a
206 freezing step (-80°C) after cell isolation and subsequent denaturation at high temperatures
207 (95°C), which could favor the accessibility of nuclear and chromatin-bound RNA molecules.

208

209 **Molecule capture efficiency and library complexity**

210 We produced reference datasets by analyzing 30,807 human and 19,749 mouse cells
211 (Chromium V2; **Figure 2a-c**). The higher cell number allowed us to annotate the major cell
212 types in our reference sample, and to extract population-specific markers (**Supplementary**
213 **Table 2**). Noteworthy, the reference samples solely provided the basis to assign cell identities
214 and gene marker sets and was not utilized to quantify the methods' performance. This strategy

215 ensured that the choice of technology for deriving the reference does not influence downstream
216 analyses. Cell clustering and reference-based cell annotation showed high agreement (average
217 83%; **Supplementary Table 3**), and only cells with consistent annotations were used
218 subsequently for comparative analysis at cell type level. The PBMCs (human) and colon cells
219 (mouse) represented two largely different scenarios. While the differentiated PBMCs clearly
220 separated into subpopulations (e.g. T/B-cells, monocytes, **Figure 2b** and **Supplementary Fig.**
221 **3a, 4a-d**), colon cells were ordered as a continuum of cell states that differentiate from intestinal
222 stem cells into the main functional units of the colon (i.e. absorptive enterocytes and secretory
223 cells, **Figure 2c** and **Supplementary Figs. 3b, 5a-d**). Notably, the subpopulation structure of
224 our references was largely consistent with that of published datasets for human PBMC¹⁸ and
225 mouse colon²² (**Supplementary Figs. 6** and **7**). After identifying major subpopulations and their
226 respective markers in our reference sample, we clustered the cells of each sc/snRNA-seq
227 protocol and annotated cell types using *matchSCore2* (**Online Methods**). This algorithm allows
228 a gene marker-based projection of single cells (cell-by-cell) onto a reference sample and, thus,
229 the identification of cell types in our datasets (**Supplementary Fig. 8** and **9**).
230 To compare the efficiency of mRNA capture between protocols we downsampled the
231 sequencing reads per cell to a common depth and step-wise reduced fractions. Stochasticity
232 introduced during downsampling did not affect the reproducibility of the results
233 (**Supplementary Fig. 10**). Library complexity was determined separately for largely
234 homogenous cell types with markedly different cell properties and function, namely human
235 HEK293T cells, monocytes and B-cells (**Figure 2d,e**), and mouse colon secretory and transit-
236 amplifying (TA) cells (**Supplementary Fig. 11a,b**). We observed large differences in the
237 number of detected genes and molecules between the protocols, with consistent trends across
238 cell types and gene quantification strategies (**Supplementary Fig. 11c,d**). Notably, some
239 protocols, such as Smart-seq2 and Chromium V2, performed better with higher RNA quantities
240 (HEK293T) compared to lower starting amounts (monocytes and B-cells), suggesting an input-
241 sensitive optimum. Considering the different assay versions and application types of the
242 Chromium system, a dedicated analysis showed increased detection of molecules and genes

243 from nuclei to intact cells and towards the latest protocol versions (**Supplementary Fig. 12**).
244 Consistent with the variable library complexity, the protocols presented large differences in
245 drop-out probabilities (**Figure 2f**), with Quartz-seq2, Chromium V2 and CEL-seq2 showing
246 consistently lower probability. Note that, despite the considerable differences between
247 protocols, we observed a generally high technical reproducibility within the methods
248 (**Supplementary Fig. 13**).

249

250 **Technical effects and information content.**

251 We further assessed the magnitude of technical biases, and the protocols' ability to describe cell
252 populations. To quantify the technical variation within and across protocols, we selected highly
253 variable genes (HVG) across all datasets, and plotted the variation in the main principle
254 components (PC; **Figure 3a**). Using the downsampled data for HEK293T cells, monocytes and
255 B-cells, we observed strong protocol-specific profiles, with the main source of variability being
256 the number of genes detected per cell (**Figure 3b**). Data from snRNA-seq did not show notable
257 outliers, indicating conserved representation of the transcriptome between the cytoplasm and
258 nucleus. To quantify the protocol-related variance, we identified the PCs that correlated with the
259 protocols' covariates in a linear model²³. Indeed, the variance in the data was mainly explained
260 by the protocols (HEK293T= 37.3%, Monocytes= 52.8% and B-cells=36.2%), a value that was
261 reduced in HEK293T and monocytes when considering snRNA-seq as specific covariate
262 (HEK293T= 9.7%, Monocytes= 22.2% and B-cells= 48.3%; **Online Methods**). The technical
263 effects were also visible when using t-distributed stochastic neighbor embedding (tSNE) as non-
264 linear dimensionality reduction method (**Supplementary Fig. 14**). By contrast, the methods
265 largely mixed when the analysis was restricted to cell type-specific marker genes, suggesting a
266 conserved cell identity profile across techniques (**Supplementary Fig. 15**).

267 Next, we quantified the similarities in information content of the protocols. Again, we used the
268 downsampled datasets and commonly expressed genes and calculated the correlation between
269 methods in average transcript counts across multiple cells, thus compensating for the sparsity of
270 single-cell transcriptome data. For the three human cell types, we observed a broad spectrum of

271 correlation between technologies, with generally lower correlation for smaller cell types (**Figure**
272 **3c**). While the transcriptome representation was generally conserved (**Figure 3a**), the snRNA-
273 seq protocol resulted in a notable outlier when correlating the expression levels of common
274 genes between protocols, possibly driven by decreased correlation of immature transcripts.
275 Restricting the correlation analysis to population-specific marker genes, we observed less
276 variation between protocols (Pearson's r, 0.5-0.7), which underlines that the expression of these
277 markers is largely conserved between the methods (**Supplementary Fig. 16**).
278 To further test the suitability of protocols to describe cell types, we determined their sensitivity
279 to detect population specific expression signatures, and found that they had remarkably variable
280 power to detect marker genes. Specifically, population markers were detected with different
281 accuracies (**Supplementary Fig. 17** and **18**), and the detection level varied substantially
282 (**Figure 3d,e** and **Supplementary Table 4**). Quartz-seq2 and Smart-seq2 showed high
283 expression levels for all cell type signatures, indicating that they have higher power for cell type
284 identification. Since marker genes are particularly important for data interpretation (e.g.
285 annotation), low marker detection levels could severely limit the interpretation of poorly
286 explored tissues, or when trying to identify subtle differences between subpopulations. SnRNA-
287 seq showed generally lower marker detection levels. However, gene markers were selected from
288 intact cell experiments, which could lead to underestimating the performance of snRNA-seq to
289 identify cell-type specific signatures in this analysis approach.
290 The protocols also detected vastly different total numbers of genes when accumulating
291 transcript information over multiple cells, with strong positive outliers observed for the smaller
292 cell types (**Figure 3f**). In particular, CEL-seq2 and Quartz-seq2 identified many more genes
293 than other methods. Intriguingly, CEL-seq2 outperformed all other methods by detecting many
294 weakly expressed genes; genes detected specifically by CEL-seq2 had significantly lower
295 expression than the common genes detected by Quartz-seq2 ($p < 2.2e-16$). The greater sensitivity
296 to weakly expressed genes makes this protocol particularly suitable for describing cell
297 populations in detail, an important prerequisite for creating a comprehensive cell atlas and
298 functional interpretation.

299 Surprisingly, considering the increased library complexity of single-cell compared to single-
300 nucleus RNA-seq, the latter protocol identified a similar number of genes when combining
301 information across multiple cells and suggesting overall similar transcriptome complexity of the
302 two compartments (**Supplementary Fig. 12**). scRNA-seq detected additional genes enriched in
303 biological processes such as organelle function, including many mitochondrial genes that were
304 largely absent in the snRNA-seq datasets (**Supplementary Table 5**).

305 To further illustrate the power of the different protocols to chart the heterogeneity of complex
306 samples, we clustered and plotted downsampled datasets in two-dimensional space (**Figure 4a**)
307 and then calculated the cluster accuracy and Average Silhouette Width (ASW²⁴, **Figure 4b**), a
308 commonly used measure for assessing the quality of data partitioning into communities.
309 Consistent with the assumption that library complexity and sensitive marker detection provides
310 greater power to describe complexity, methods that performed well for these two attributes
311 showed better separation of subpopulations, greater ASW and cluster accuracy. This is
312 illustrated in the monocytes, for which accurate clustering protocols separated the major
313 subpopulations (CD14+ and FCGR3A+), while methods with low ASW did not distinguish
314 between them. Similarly, several methods were able to distinguish between CD8+ and NK cells,
315 while others were not.

316

317 **Joint analysis across datasets**

318 A common scenario for cell atlas projects is that data are produced at different sites using
319 different scRNA-seq protocols. However, the final atlas is created from a combination of
320 datasets, which requires that the technologies used are compatible. To assess how suitable it is
321 to combine the results from our protocols into a joint analysis, we used downsampled human
322 and mouse datasets to produce a joint quantification matrix for all techniques²⁵. Importantly,
323 single cells grouped themselves by cell type, suggesting that cell phenotypes are the main driver
324 of heterogeneity in the joint datasets (**Figure 5a-d** and **Supplementary Fig. 19a,b** and **20**).
325 Indeed, the combined data showed a clear separation of cell states (e.g. T-cell and enterocyte
326 subpopulations) and rarer cell types, such as dendritic cells. However, within these populations,

327 differences between the protocols pointed to the presence of technical effects that could not be
328 entirely removed with downsampling to equal read depth and different merging tools (**Figure**
329 **5e-f** and **Supplementary Fig. 19c,d, 21a,b** and **22a,b**). To formally assess the capacity of the
330 methods to be joined, we calculated the degree to which technologies mix in the merged
331 datasets (**Figure 5g,h** and **Supplementary Figs. 21c,d** and **22c,d**). The protocols' suitability to
332 be combined (mixability) was directly correlated with their power to discriminate between cell
333 types (clustering accuracy). Thus, well-performing protocols result in high-resolution cellular
334 maps and are suitable for consortium-driven projects that include different data sources. When
335 integrating further downsampled datasets, we observed a drop in mixing ability
336 (**Supplementary Fig. 19e**). Consequently, quality standard guidelines for consortia might
337 define minimum coverage thresholds to ensure the subsequent option of data integration. A
338 separate analysis of the single-nucleus and single-cell Chromium datasets resulted in well-
339 integrated profiles, further supporting the potential to integrate cell atlases from cells and nuclei
340 (**Supplementary Fig. 23** and **24**).

341 Cell atlas datasets will serve as a reference for annotating cell types and states in future
342 experiments. Therefore, we assessed cells' ability to be projected onto our reference sample
343 (**Figure 2b,c**). We used the population signature model defined by *matchSCore2* and evaluated
344 the protocols based on their cell-by-cell mapping probability, which reflects the confidence of
345 cell annotation (**Supplementary Fig. 25a-c**). Although there were some differences in the
346 protocols' projection probabilities and a potential bias due to the selection of the reference
347 protocol, a confident annotation was observed for most cells with inDrop and ddSEQ reporting
348 the highest probabilities. Notably, high probability scores were also observed in further
349 downsampled datasets (**Supplementary Fig. 25b**). This has practical consequences, as data
350 derived from less well performing methods (from a cell atlas perspective) or from poorly
351 sequenced experiments could be identifiable and thus suitable for specific analysis types, such
352 as tissue composition profiling.

353

354

355 **Discussion**

356

357 Systematic benchmarking of available technologies is a crucial prerequisite for large-scale
358 projects. Here, we evaluated scRNA-seq protocols for their power to produce a cellular map of
359 complex tissues. Our reference sample simulated common scenarios in cell atlas projects,
360 including differentiated cell types and dynamic cell states. We defined the strengths and
361 weaknesses of key features that are relevant for cell atlas studies, such as comprehensiveness,
362 integratability, and predictive value. The methods revealed a broad spectrum of performance,
363 which should be considered when defining guidelines and standards for international consortia
364 (**Figure 6**).

365

366 We expect that our results will guide informed decision-making processes for designing
367 sc/snRNAseq studies. There are several features to consider when selecting protocols to produce
368 a reproducible, integrative, and predictive reference cell atlas. At a given sequencing depth, the
369 number and complexity of detected RNA molecules defines the power to describe cell
370 phenotypes and infer their function. There are also additional essential features for cell atlas
371 projects and their interpretation, such as population marker identification. Improved versions of
372 plate-based methods, including Quartz-seq2, CEL-seq2, and Smart-seq2 generate such high-
373 resolution transcriptome profiles. Also, microfluidic systems showed excellent performance in
374 our comparison, particularly the Chromium system. While the scale of plate-based experiments
375 is limited by the lower throughput of their individual processing units, microfluidic systems,
376 especially droplet-based methods, can be easily applied to thousands of cells simultaneously.
377 Protocol modification scales up throughput even further, and allows more cost-effective
378 experiments²⁶⁻²⁹. Generally, late multiplexing methods, such as Smart-seq2, are more costly, but
379 costs can be reduced by minituarization³⁰ and using non-commercial enzymes³¹. Custom
380 droplet-based protocols have lower costs than their commercialized counterparts, but the
381 optimized chemistry in commercial systems resulted in improved performance in this
382 comparison. Nevertheless, existing platforms are undergoing continued development in both the

383 private (**Supplementary Fig. 12**) and academic sector, so updated protocol versions promise to
384 improve performance further. For consortium-driven projects, it is important to consider the
385 integratability of data. We have shown that several protocols, including those with reduced
386 library complexity and snRNA-seq, were readily integratable with other methods.

387

388 The use of PBMCs is ideal for multi-centre benchmarking efforts; blood cells are easy to isolate
389 and show a high recovery rate after freezing. We also included mouse colon, a solid tissue
390 requiring dissociation before scRNA-seq. Tissue digestion and cryopreservation of colon cells
391 present additional challenges (e.g., increased rate of damaged cells), which we addressed by
392 focusing on commonly detected cell types. Although we observed differences in the frequencies
393 of cells from mouse and human, the composition of cell subtypes within tissues was conserved,
394 reassuring the consistent capture of major cell types across all methods. Accordingly,
395 subsequent analyses could be stratified by cell type, avoiding the need for a ground truth in
396 sample composition. Further, viability sorting with minimal mechanic forces (low speed and
397 wide nozzle size) was applied to remove damaged cells and to benchmark protocols with high-
398 quality samples. This work standardized sample processing in order to limit technical variance
399 to the library preparation steps, a crucial requisite for the multi-center benchmarking design.
400 Nevertheless, on-site differences introduced during sample thawing or viability sorting could
401 not entirely be excluded. However, our analysis also showed that viable cells selected by sorting
402 or through thorough data quality control generate highly similar library complexity, suggesting
403 potential differences in sample processing to have minor impacts on the data quality and
404 supporting the robustness our results. Processing time presents another variable related to
405 sample and data quality. While cells are directly sorted into their respective reaction volumes
406 for plate-based methods, processing times can vary between microfluidic systems. However,
407 this was considered as inherent feature of the protocols' library preparation workflow which
408 contributes to the overall performance.

409

410 Across sample origins and cell types, all tested features pointed to consistent protocol
411 performance. In addition to the differences in protocol performance, it was the cells' RNA
412 content and complexity that dominated the molecule and gene detection rates, which we have
413 seen through the stratified analysis of vastly different cells types. As such, we expect the
414 conclusions to be valid beyond the here tested human and mouse tissues.

415 Several additional steps are crucial for the success of single-cell projects, especially sample
416 preparation. Optimizing sample procurement and tissue processing conditions is of crucial
417 importance to avoid composition biases and gene expression artifacts³²⁻³⁵ that could limit the
418 value of a cell atlas. Therefore, dedicated studies are required to define optimal conditions for
419 tissue and organ preparation in healthy and disease contexts.

420

421 From a technical perspective, multiple steps of a protocol are critical for generating complex
422 sequencing libraries. All sc/snRNA-seq methods require multi-step whole-transcriptome
423 amplification, including reverse-transcription (RT), conversion to amplifiable cDNA, and
424 amplification¹. Theoretically, the multiplicative reaction-efficiency of respective steps
425 determines a method's power to detect RNA molecules, and in this sense Quartz-Seq2 was
426 particularly efficient. We specifically tested for potential advantages of the Quartz-seq2 column-
427 over bead-based purification, but did not detect differences in cDNA yield (**Supplementary**
428 **Fig. 26**). However, we observed that bead concentration critically affected the yield of amplified
429 cDNA. Moreover, performance was more stable for purification with columns compared to
430 beads, which should be taken into account when implementing existing or developing novel
431 sc/snRNA-seq methods.

432

433 A further essential step towards complex libraries is the conversion of first-strand cDNA to
434 amplifiable cDNA. Three main strategies are used for this conversion, a) template-switching, b)
435 RNaseH-DNA polymerase I mediated second-strand synthesis for *in vitro* transcription, and c)
436 poly-A tagging¹. Improvement of the three strategies led to better quantitative performance of
437 scRNA-seq³⁶⁻³⁹. For Quartz-Seq2³⁷, improved poly-A tagging was most important to increase

438 the amplified cDNA yield compared to Quartz-Seq⁴⁰, and probably explains the excellent result
439 in this benchmarking exercise. However, optimization of the cDNA conversion still has
440 potential to improve scRNA-seq methods.

441

442 Within the cDNA amplification step, increased PCR cycle numbers lead to PCR biases within
443 the sequencing libraries. Early pooling increases the amount of cDNA molecules in the
444 amplification step and reduces PCR bias. This especially favors early pooling methods at low
445 sequencing depth (as performed in this work), as previously shown for bulk RNA-seq⁴¹.

446 Similarly, *in vitro* transcription linearly amplifies cDNA with less biases than PCR-based
447 methods, and partly explains the good performance of CEL-seq2. Further, early multiplexing of
448 different cell numbers leads to different PCR cycle requirements (Quartz-Seq2: 768 cells and 10
449 cycles vs gmcSCRB-seq: 96 cells and 19 cycles, using the same DNA polymerase for
450 amplification). The number of cells per amplification pool depends on the amount of
451 amplifiable cDNA, implying that the good performance of Quartz-Seq2 was mainly due to
452 efficient conversion of amplifiable cDNA from RNA with poly-A tagging.

453

454 It is equally important to benchmark computational pipelines for data analysis and
455 interpretation^{23,42-44}. We envision that the datasets provided by our study will serve as a valuable
456 resource for the single-cell community to develop and evaluate novel strategies towards an
457 informative and interpretable cell atlas. Moreover, the multi-center benchmarking framework
458 presented here can readily be transferred to other organs where common tissue/cell types are
459 analyzed using different scRNA-seq protocols (e.g. brain atlas projects).

460

461

462 **Acknowledgements**

463 This project has been made possible in part by grant number 2018-182827 from the Chan
464 Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. HH is a
465 Miguel Servet (CP14/00229) researcher funded by the Spanish Institute of Health Carlos III
466 (ISCIII). CM is supported by an AECC postdoctoral fellowship. This work has received funding
467 from the European Union's Horizon 2020 research and innovation programme under Marie
468 Skłodowska-Curie grant agreement No. H2020-MSCA-ITN-2015-675752 (Singek), and the
469 Ministerio de Ciencia, Innovación y Universidades (SAF2017-89109-P; AEI/FEDER, UE). S is
470 supported by the DFG (GR4980) the Behrens-Weise-Foundation. DG and S are supported by
471 the Max Planck Society. CZ is supported by EMBO through long-term fellowship ALTF 673-
472 2017. The single-nucleus RNA-Seq data were generated with support from the National
473 Institute of Allergy and Infectious Diseases grant U24AI118672, the Manton Foundation, and
474 the Klarman Cell Observatory (AR). IN was supported by JST CREST grant number
475 JPMJCR16G3; Japan and the Projects for Technological Development, Research Center
476 Network for Realization of Regenerative Medicine by Japan, the Japan Agency for Medical
477 Research and Development (AMED). AJ, LEW, JWB, and WE have been supported by funding
478 from the DFG (EN 1093/2-1 and SFB1243 TP A14). We thank ThePaperMill for critical
479 reading and scientific editing services and the Eukaryotic Single Cell Genomics Facility at
480 Scilifelab (Stockholm, Sweden) for support. This publication is part of a project
481 (BCLLATLAS) that has received funding from the European Research Council (ERC) under
482 the European Union's Horizon 2020 research and innovation programme (grant agreement No
483 810287). Core funding is from the ISCIII and the Generalitat de Catalunya.

484

485 **Author Contributions**

486 HH designed the study. EM and AL performed all data analyses. CM, AAV and EB prepared
487 the reference sample. CZ, DJM, SP and OS supported the data analysis. MG and IG provided
488 technical and sequencing support. S, DG, JKL, SCB, CS, AO, RCJ, KK, CB, YT, YS, KT, TH,
489 CB, CF, SS, TT, CC, XA, LTN, AR, JZL, AJ, LEW, JWB, WE, RS, IN provided sequencing-

490 ready single-cell libraries or sequencing raw data. HH, EM and AL wrote the manuscript with
491 contributions from the co-authors. All authors read and approved the final manuscript.

492

493 **Conflicts of Interest**

494 AR is a co-founder and equity holder of Celsius Therapeutics, and an SAB member of
495 ThermoFisher Scientific and Syros Pharmaceuticals. AR is a co-inventor on patent applications
496 to numerous advances in single-cell genomics, including droplet based sequencing technologies,
497 as in PCT/US2015/0949178, and methods for expression and analysis, as in
498 PCT/US2016/059233 and PCT/US2016/059239. KK, CB and YT are employed by Bio-Rad
499 Laboratories. JKL and SCB are employees and shareholders at 10x Genomics, Inc.. SCB is a
500 former employee and shareholder of Fluidigm Corporation. CS and AO are employed by
501 Fluidigm. All other authors declare no conflicts of interest associated with this manuscript.

502

503

504 **References**

505

506 1. Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for the experimental
507 design of single-cell RNA sequencing studies. *Nat. Protoc.* **13**, 2742–2757 (2018).

508 2. Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-
509 cell ‘omics’ with microfluidic devices. *Nat. Rev. Genet.* **18**, 345–361 (2017).

510 3. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell
511 RNA-seq in the past decade. *Nat. Protoc.* **13**, 599–604 (2018).

512 4. Montoro, D. T. *et al.* A revised airway epithelial hierarchy includes CFTR-expressing
513 ionocytes. *Nature* **560**, 319–324 (2018).

514 5. Plasschaert, L. W. *et al.* A single-cell atlas of the airway epithelium reveals the CFTR-rich
515 pulmonary ionocyte. *Nature* **560**, 377–381 (2018).

516 6. Aizarani, N. *et al.* A human liver cell atlas reveals heterogeneity and epithelial progenitors.
517 *Nature* **572**, 199–204 (2019).

518 7. Karaiskos, N. *et al.* The Drosophila embryo at single-cell transcriptome resolution. *Science*
519 **358**, 194–199 (2017).

520 8. Wagner, D. E. *et al.* Single-cell mapping of gene expression landscapes and lineage in the
521 zebrafish embryo. *Science* **360**, 981–987 (2018).

522 9. Regev, A. *et al.* Science Forum: The Human Cell Atlas. *eLife* **6**, e27041 (2017).

523 10. Cao, J. *et al.* Comprehensive single-cell transcriptional profiling of a multicellular
524 organism. *Science* **357**, 661–667 (2017).

525 11. Plass, M. *et al.* Cell type atlas and lineage tree of a whole complex animal by single-cell
526 transcriptomics. *Science* eaaq1723 (2018) doi:10.1126/science.aaq1723.

527 12. Moffitt, J. R. *et al.* High-throughput single-cell gene-expression profiling with multiplexed
528 error-robust fluorescence in situ hybridization. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 11046–
529 11051 (2016).

530 13. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell *in situ* RNA
531 profiling by sequential hybridization. *Nat. Methods* **11**, 360–361 (2014).

532 14. Alioto, T. S. *et al.* A comprehensive assessment of somatic mutation detection in cancer
533 using whole-genome sequencing. *Nat. Commun.* **6**, 10001 (2015).

534 15. Ziegenhain, C. *et al.* Comparative Analysis of Single-Cell RNA Sequencing Methods. *Mol.*
535 *Cell* **65**, 631-643.e4 (2017).

536 16. Svensson, V. *et al.* Power analysis of single-cell RNA-sequencing experiments. *Nat.*
537 *Methods* **14**, 381–387 (2017).

538 17. Tung, P.-Y. *et al.* Batch effects and the effective design of single-cell gene expression
539 studies. *Sci. Rep.* **7**, 39921 (2017).

540 18. Zheng, G. X. Y. *et al.* Massively parallel digital transcriptional profiling of single cells.
541 *Nat. Commun.* **8**, 14049 (2017).

542 19. Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium. *Nature* **551**, 333–
543 339 (2017).

544 20. Grün, D. *et al.* Single-cell messenger RNA sequencing reveals rare intestinal cell types.
545 *Nature* **525**, 251–255 (2015).

546 21. Guillaumet-Adkins, A. *et al.* Single-cell transcriptome conservation in cryopreserved cells
547 and tissues. *Genome Biol.* **18**, 45 (2017).

548 22. Consortium, T. T. M., Quake, S. R., Wyss-Coray, T. & Darmanis, S. Transcriptomic
549 characterization of 20 organs and tissues from mouse at single cell resolution creates a
550 *Tabula Muris*. *bioRxiv* 237446 (2017) doi:10.1101/237446.

551 23. Büttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for
552 assessing single-cell RNA-seq batch correction. *Nat. Methods* **16**, 43–49 (2019).

553 24. Azuaje, F. A cluster validity framework for genome expression data. *Bioinforma. Oxf. Engl.*
554 **18**, 319–320 (2002).

555 25. Lin, Y. *et al.* scMerge leverages factor analysis, stable expression, and pseudoreplication to
556 merge multiple single-cell RNA-seq datasets. *Proc. Natl. Acad. Sci.* 201820006 (2019)
557 doi:10.1073/pnas.1820006116.

558 26. Kang, H. M. *et al.* Multiplexed droplet single-cell RNA-sequencing using natural genetic
559 variation. *Nat. Biotechnol.* **36**, 89–94 (2018).

560 27. Stoeckius, M. *et al.* Cell Hashing with barcoded antibodies enables multiplexing and
561 doublet detection for single cell genomics. *Genome Biol.* **19**, 224 (2018).

562 28. McGinnis, C. S. *et al.* MULTI-seq: sample multiplexing for single-cell RNA sequencing
563 using lipid-tagged indices. *Nat. Methods* **16**, 619–626 (2019).

564 29. Gaublomme, J. T. *et al.* Nuclei multiplexing with barcoded antibodies for single-nucleus
565 genomics. *Nat. Commun.* **10**, 1–8 (2019).

566 30. Mora-Castilla, S. *et al.* Miniaturization Technologies for Efficient Single-Cell Library
567 Preparation for Next-Generation Sequencing. *J. Lab. Autom.* **21**, 557–567 (2016).

568 31. Picelli, S. *et al.* Tn5 transposase and tagmentation procedures for massively scaled
569 sequencing projects. *Genome Res.* **24**, 2033–2040 (2014).

570 32. Brink, S. C. van den *et al.* Single-cell sequencing reveals dissociation-induced gene
571 expression in tissue subpopulations. *Nat. Methods* **14**, 935–936 (2017).

572 33. Wohnhaas, C. T. *et al.* DMSO cryopreservation is the method of choice to preserve cells for
573 droplet-based single-cell RNA sequencing. *Sci. Rep.* **9**, 1–14 (2019).

574 34. Tostì, L. *et al.* Single nucleus RNA sequencing maps acinar cell states in a human pancreas
575 cell atlas. *bioRxiv* 733964 (2019) doi:10.1101/733964.

576 35. Massoni-Badosa, R. *et al.* Sampling artifacts in single-cell genomics cohort studies. *bioRxiv*
577 2020.01.15.897066 (2020) doi:10.1101/2020.01.15.897066.

578 36. Picelli, S. *et al.* Smart-seq2 for sensitive full-length transcriptome profiling in single cells.
579 *Nat. Methods* **10**, 1096–1098 (2013).

580 37. Sasagawa, Y. *et al.* Quartz-Seq2: a high-throughput single-cell RNA-sequencing method
581 that effectively uses limited sequence reads. *Genome Biol.* **19**, (2018).

582 38. Hashimshony, T. *et al.* CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq.
583 *Genome Biol.* **17**, 77 (2016).

584 39. Bagnoli, J. W. *et al.* Sensitive and powerful single-cell RNA sequencing using mcSCRB-
585 seq. *Nat. Commun.* **9**, 2937 (2018).

586 40. Sasagawa, Y. *et al.* Quartz-Seq: a highly reproducible and sensitive single-cell RNA
587 sequencing method, reveals non-genetic gene-expression heterogeneity. *Genome Biol.* **14**,
588 3097 (2013).

589 41. Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. The impact of
590 amplification on differential expression analyses by RNA-seq. *Sci. Rep.* **6**, 25533 (2016).

591 42. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential
592 expression analysis. *Nat. Methods* **15**, 255–261 (2018).

593 43. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory
594 inference methods: towards more accurate and robust tools. *bioRxiv* 276907 (2018)
595 doi:10.1101/276907.

596 44. Holland, C. H. *et al.* Robustness and applicability of transcription factor and pathway
597 analysis tools on single-cell RNA-seq data. *Genome Biol.* **21**, 36 (2020).

598 45. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell
599 differential expression analysis. *Nat. Methods* **11**, 740–742 (2014).

600 46. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of
601 single-cell gene expression data. *Nat. Biotechnol.* **33**, 495–502 (2015).

602 47. Korsunsky, I. *et al.* Fast, sensitive, and accurate integration of single cell data with
603 Harmony. *bioRxiv* 461954 (2018) doi:10.1101/461954.

604

605

606 **Online Methods**

607

608 **Ethical Statement**

609 This study was approved by the Parc de Salut MAR Research Ethics Committee (reference
610 number: 2017/7585/I) to Dr. Holger Heyn. We adhered to ethical and legal protection guidelines
611 for human subjects, including informed consent.

612

613 **Reference sample**

614

615 **Cell Lines**

616 NIH3T3-GFP, MDCK-TurboFP650 and HEK293-RFP were cultured at 37°C in an atmosphere
617 of 5% (v/v) carbon dioxide in Dulbecco's Modified Eagle's Medium, supplemented with 10%
618 (w/v) fetal bovine serum, 100 U penicillin, and 100 µg/L streptomycin (Invitrogen). On the
619 reference sample preparation day, the culture medium was removed and the cells washed with
620 1X PBS. Afterwards, cells were trypsinized (trypsin 100X), pelleted at 800 x g for 5min,
621 washed in 1X PBS, re-suspended in PBS-EDTA (2mM) and stored on ice.

622

623 **Mouse Colon Tissue**

624 The colon from eleven mice (7x*LGR5/GFP* and 4WT) was dissected and removed. For single-
625 cell separation the colons were treated separately. The colon was sliced, opened and washed
626 twice in cold 1X HBSS. It was then placed on a petri plate on ice and minced with razor blades
627 until disintegration. The minced tissue was transferred to a 15 ml tube containing 5 ml of 1X
628 HBSS and 83 µl of collagenase IV (final concentration 166 U/ml). The solution was incubated
629 for 15 min at 37°C (vortexed for 10 sec every 5 min). To inactivate the collagenase IV, 1 ml of
630 FBS was added and vortexed for 10 seconds. The solution was filtered through a 70 µm nylon
631 mesh (changed when clogged). Finally, all samples were combined, cells pelleted for 5 min at

632 400 g at 4°C. The supernatant was removed, and the cells resuspended in 20 ml of 1X HBSS
633 and stored on ice.

634

635 **Isolation of peripheral blood mononuclear cells (PBMC)**

636 Whole blood was obtained from four donors (two female, two male). The extracted blood was
637 collected in Heparin tubes (GP supplies) and processed immediately. For each donor, PBMCs
638 were isolated according to the manufacturer's instructions for FICOLL extraction (pluriSelect).
639 Briefly, blood from two Heparin tubes (approximately 8 ml) was combined, diluted in 1X PBS
640 and carefully added to a 50 ml tube containing 15 ml FICOLL. The tubes were centrifuged for
641 30 min at 500 g (minimum acceleration and deceleration). The interphase was carefully
642 collected and diluted with 1X PBS + EDTA (2mM). Following a second centrifugation, the
643 supernatant was discarded and the pellet resuspended in 2 ml of 1X PBS + EDTA (2mM) and
644 stored on ice.

645

646 **Preparation of the reference sample**

647 Cell counting was performed using an automated cell counter (TC20™ Automated Cell
648 Counter, Bio-Rad Laboratories). The reference sample was calculated to include human PBMC
649 (60%), mouse colon (30%), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP
650 labelled mouse cells) and MDCK (1%, TurboFP650 labelled dog cells). To adjust for cell
651 integrity loss during sample processing, we measured the viability during cell counting, and
652 accounted for an expected viability loss after cryopreservation (10% for cell lines and PBMC;
653 50% for colon²¹). All single cell solutions were combined in the proportions mentioned above
654 and diluted to 250,000 viable cells per 0.5 ml. For cryopreservation, 0.5 ml of cell suspension
655 was aliquoted into cryotubes and gently mixed with a freezing solution (final concentration 10%
656 DMSO; 10% heat-inactivated FBS). Cells were then frozen by gradually decreasing the
657 temperature (1°C/min) to -80°C (cryopreserved), and stored in liquid nitrogen. MARS-Seq and
658 Smart-Seq2 experiments were performed to validate sample quality and composition before
659 distributing aliquots to the partners.

660

661 **Sample processing**

662 Samples were stored at -80°C upon arrival. Before processing, samples were de-frozen in a
663 water bath (37°C) with continuous agitation until the material was almost thawed. The entire
664 volume was transferred to a 15 ml Falcon using a 1000 ul tip (wide-bored or cut tip) without
665 mixing by pipetting. 1000 ul of pre-warmed (37°C) Hibernate-A were added drop-wise while
666 gently swirling the sample. Sample was rested for 1 min. An additional 2000 ul of pre-warmed
667 (37°C) Hibernate-A were added drop-wise while gently swirling the sample. Sample was rested
668 for 1 min. Another 2000 ul of pre-warmed (37°C) Hibernate-A were added drop-wise while
669 gently swirling the sample. Sample was rested for 1 min. Then, 3000 ul of pre-warmed (37°C)
670 Hibernate-A were added drop-wise and the Falcon inverted 6 times. Sample was rested for 1
671 min. An additional 5000 ul of pre-warmed (37°C) Hibernate-A were added drop-wise and the
672 Falcon inverted 6 times. Sample was rested for 1 min. The sample was centrifuged at 400 x g
673 for 5 min at 4°C (pellet clearly visible). The supernatant was removed until 500 ul remained in
674 the tube. The pellet was resuspended by gentle pipetting. 3500 ul of 1X PBS + 2mM EDTA
675 were added and the sample stored on ice until processing. Before FACS isolation, cells were
676 filtered through a nylon mesh and 3 ul of DAPI were added before gentle mixing. During FACS
677 isolation, DAPI-positive cells were excluded to remove dead and damaged cells. Further, the
678 exclusion of GFP-positive cells simulated the removal of a cell type from a complex sample.
679 **Supplementary Fig. 27** shows representative FACS plots and gating strategies.

680

681 **Single-cell RNA sequencing library preparation**

682 For a detailed sample processing description see **Supplementary Notes**.

683

684 **Data analysis**

685 For Primary data preprocessing, Clustering, Sample deconvolution and annotation and

686 Reference datasets see **Supplementary Notes**.

687

688 ***MatchSCore2***

689 To systematically assign cell identities to unannotated cells coming from different protocols, we
690 used *matchSCore2*, a mathematical framework for classifying cell types based on reference data
691 (<https://github.com/elimereu/matchSCore2>). The reference data consists of a matrix of gene
692 expression counts in individual cells whose identity is known. The main steps of the
693 *matchSCore2* annotation are the following:

694

695 *1. Normalization of the reference data*

696 Gene expression counts are log-normalized for each cell using the natural logarithm of
697 $1 + \text{counts per 10,000}$. Genes are then scaled and centered using the *ScaleData* function
698 in the *Seurat* package.

699

700 *2. Definition of signatures and their relative scores*

701 For each of the cell types in the reference data, positive markers were computed using
702 the Wilcoxon Rank sum test. The top 100 ranked markers in each cell type were used as
703 the signature for that type. To each cell, we assigned a vector $x = (x_1, \dots, x_n)$ of signature
704 scores, where n is the number of cell types in the reference data. The i -th signature score
705 for the k -th cell is computed as follows:

706 $\text{Score}_k = \sum_{j \text{ in } J} z_{jk}$

707 where J is the set of genes in signature i , and z_{jk} represents the z-score of gene j in the k -
708 th cell.

709

710 *3. Training of the probabilistic model on the reference data.*

711 We proposed a supervised multinomial logistic regression model, which uses the
712 enrichment of the signature of each reference cell type in each cell to assign identity to

713 that cell. In other words, for each cell k and signature i , we calculate the i -th cell type
714 signature score X_i in the k -th cell as described in point 2. The distribution of the
715 signature scores is preserved, independent of which protocol is used (**Supplementary**
716 **Fig. 28 and 29**). More specifically, we defined the variables X_1, \dots, X_n , where X_i is the
717 vector in which the scores for signature i of all cells are contained. Then we used X_i as
718 the predictors of a multinomial logistic regression.

719 The model assumes that the number of cells from each type in the training reference
720 data T_1, T_2, \dots, T_n , are random variables and that the variable $T = (T_1, T_2, \dots, T_n)$ follows a
721 multinomial distribution $M(N, \pi = (\pi_1, \dots, \pi_n))$, where π_i is the proportion of the i -th cell
722 type and N is the total number of cells.

723

724 To test the performance of the model, training and test sets were created by
725 subsampling the reference into two datasets, maintaining the original proportions of cell
726 types in both sets. The model was trained by using the *multinom* function from the *nnet*
727 R package (*decay*=1e-04, *maxit*=500). To improve the convergence of the model
728 function, X_i variables were scaled to the interval [0,1].

729

730 *Cell Classification*

731 For each cell, model predictions consisted of a set of probability values per identity class, and
732 the highest probability was used to annotate the cell if it was >0.5 ; otherwise the cell resulted
733 unclassified.

734

735 *Model accuracy*

736 To evaluate the fitted model using our reference datasets, we assessed the prediction accuracy in
737 the test set, which was around 0.9 for human and 0.85 for mouse reference. We further assessed
738 *matchScore2* classifications in datasets from other sequencing methods by looking at the
739 agreement between clusters and classification. Notably, the resulting average agreement was of

740 80% (range: from 58% in gmcSCRB-seq to 92% in Quartz-Seq2), while the rate of unclassified
741 cells was less than 2%.

742

743 **Downsampling**

744 To decide on a common downsampling threshold for sequencing depth per cell, we inspected
745 the distribution of the total number of reads per cell for each technique, and chose the lowest
746 first quartile (fixed to 20,000 reads/cell). We then performed stepwise downsampling (25%,
747 50% and 75%) using the zUMIs downsampling function. We omitted cells that did not achieve
748 the required minimum depth (**Supplementary Table 6**). Notably, stochasticity introduced
749 during downsampling did not affect the results of this study, as exemplified by the consistent
750 numbers of detected molecules across different downsampling iterations (**Supplementary Fig.**
751 **10**).

752

753 **Estimation of dropout probabilities**

754 We investigated the impact of dropout events in HEK293T, monocytes and B-cells extracted for
755 each technique on downsampled data (20,000 reads/cell). For datasets with >50 cells from the
756 selected populations, we randomly sampled 50 cells to eliminate the effect of differing cell
757 number. The dropout probability was computed using SCDE R package⁴⁵. SCDE models the
758 measurements of each cell as a mixture of a negative binomial process to account for the
759 correlation between amplification and detection of a transcript and its abundance, and a Poisson
760 process to account for the background signal. We then used estimated individual error models
761 for each cell as a function of expression magnitude to compute dropout probabilities using
762 SCDE's scde.failure.probability function. Next, we calculated the average estimated dropout
763 probability for each cell type and technique. To integrate dropout measures into the final
764 benchmarking score, we calculated the Area Under the Curve (AUC) of the expression prior and
765 failure probabilities (**Figure 2f** and **Supplementary Table 7**). We expected that protocols that
766 result in fewer dropouts would have lower AUC.

767

768 **Quantification of variance introduced by batches**

769 In order to quantify the amount of variance that is introduced by batches (protocols, processing
770 units or experiments), we used the top 20 PCs and the standard deviation of each PC, previously
771 calculated on HVG. Next, using pcRegression function of kBET R package²³, we regressed the
772 batch covariate (protocols/processing units/experiments as categories defined in the kBET
773 model) and each PC to get the coefficient of determination as an approximation of the variance
774 explained by batches and the proportions of explained variance in each PC. We either reported
775 the percentage of the variance that is significantly correlating with batch in first 20 PCs, or R-
776 squared measures of the model for each PC.

777

778 **Cumulative number of genes**

779 The cumulative number of detected genes in downsampled data was calculated separately for
780 each cell type. For cell types with >50 cells annotated, we randomly selected 50 cells and
781 calculated the average number of detected genes per cell after 50 permutations over n sampled
782 cells, where n is an increasing sequence of integers from 1 to 50.

783

784 **GO enrichment analysis**

785 In order to compare functional gene sets between single-cell and single-nucleus datasets, we
786 performed GO enrichment analysis on the set of protocol-specific genes using *simpleGO*
787 (<https://github.com/iaconogi/simpleGO>). For each cell type (HEK293T, monocytes, B-cells), we
788 selected two gene sets extracted from the cumulated genes and using the maximum number of
789 detected cells common to all three Chromium versions: i) Genes that were uniquely detected in
790 the intersection of Chromium (V2) and (V3), but not in Chromium (sn) and ii) genes that were
791 uniquely identified with Chromium (sn). For each of the gene sets we identified the union over
792 cell types before applying *simpleGO*.

793

794 **Correlation analysis.**

795 Pearson correlations across protocols were computed independently for B-cells, Monocytes and
796 HEK293T cells. For each cell type, cells were downsampled to the maximum common number
797 of cells across all protocols. Gene counts of commonly expressed genes (from datasets
798 downsampled to 20K reads) were averaged across cells before computing their Pearson's
799 correlations. The *corplot* library was then used to plot resulting correlations. Protocols were
800 ordered by agglomerative hierarchical clustering.

801

802 **Silhouette scores**

803 To measure the strength of the clusters, we calculated the Average Silhouette Width (ASW)²⁴.
804 The downsampled data (20,000 reads/cell) were clustered by Seurat⁴⁶, using graph based
805 clustering with the first 8 principle components and resolution of 0.6. We then computed an
806 average Silhouette width for the clusters using a Euclidean distance matrix (based on principle
807 components 1 to 8). We report the average Silhouette width for each technique separately.

808

809 **Dataset merging**

810 Dataset integration across protocols is challenging and we applied different tools to assess the
811 integratability of the sc/snRNA-seq methods, while conserving biological variability. To
812 integrate datasets, we used Seurat⁴⁶, harmony⁴⁷ and scMerge²⁵, evaluated the results separately
813 and averaged the integration capacity of the protocols into a joint score. We combined
814 downsampled count matrices using the *sce_cbind* function in scMerge, which includes the union
815 of genes from different batches. While both harmony and Seurat integration apply similar
816 preprocessing steps (log-normalization, scaling and highly variable genes identification) as
817 implemented in the Seurat tool, scMerge uses a set of genes with stable expression levels across
818 different cell types and then creates pseudo-replicates across datasets, allowing the estimation
819 and correction for undesired sources of variability. However, for all three alignment methods,
820 Seurat was applied to perform clustering and UMAP after the protocol correction, in order to
821 minimize the variability related to the downstream analysis. The clustering accuracy metric was
822 used together with the mixability score to quantify the success of the integration. Omitting the

823 cell integration step before visualizing the datasets together in a single tSNE/UMAP resulted in
824 a protocol-specific distribution with cell types scattered to multiple clusters (**Supplementary**
825 **Fig. 30**).

826

827 **Clustering accuracy**

828 To determine the clusterability of methods to identify cell types, we measured the probability of
829 cells to be clustered with cells of the same type. Let C_k , $k \in \{1, \dots, N\}$ represent the cluster of
830 cells corresponding to a unique cell type (based on the highest agreement between clusters and
831 cell types), and T_j , $j \in \{1, \dots, S\}$ the set of different cell types, where $C \subseteq T$. For each cell type
832 T_j , we compute the proportion p_{jk} of T_j cells that cluster in their correct cluster C_k . We define the
833 cell-type separation accuracy as the average of these proportions.

834

835 **Mixability**

836 To account for the level of mixing of each technology, we used kBet²³ to quantify batch effects
837 by measuring the rejection rate of a Pearson's χ^2 test for random neighborhoods. To make a fair
838 comparison, kBet was applied to the common cell types separately by subsampling batches to
839 the minimum number of cells in each cell type. Due to the reduced number of cells, the option
840 heuristic was set to 'False', and the testSize was increased to ensure a minimum number of
841 cells.

842 Mixability was calculated by averaging cell type specific rejection rates.

843

844 **Benchmarking score**

845 To create an overall benchmarking score with which to compare technologies, we considered
846 six key metrics: gene detection, overall level of expression in transcriptional signatures, cluster
847 accuracy, classification probability, cluster accuracy after integration, and mixability. Each
848 metric was scaled to the interval [0,1], then in order to equalize the weight of each metric score,
849 the harmonic mean across these metrics was calculated to obtain the final Benchmarking scores.

850 Gene detection, overall expression in cell type signatures, and classification probabilities were
851 computed separately for B-cells, HEK293T cells and monocytes, and then aggregated by the
852 arithmetic mean across cell types. Notably, the choice of protocol to create the reference dataset
853 (Chromium) for initial cell annotation had no impact on the outcome of the study
854 (**Supplementary Fig. 31**).

855

856 **Data Availability**

857 All raw sequencing data and processed gene expression files are freely available through the
858 Gene Expression Omnibus (GEO; GSE133549).

859

860 **Code availability**

861 All code for the analysis is provided as supplementary material. All code is also available under
862 https://github.com/ati-lz/HCA_Benchmarking and <https://github.com/elimereu/matchSCore2>.

863 **Figure legends**

864

865 **Figure 1. Overview of the experimental design and data processing.**

866 The reference sample consists of human PBMC (60%) and HEK293T (6%), mouse colon (30%)
867 and NIH3T3 (3%) and dog MDCK (1%). The sample was prepared in one single batch,
868 cryopreserved and sequenced by 13 different sc/snRNA-seq methods. Sequences were
869 uniformly mapped to a joint human, mouse and canine reference and then separately to produce
870 gene expression counts for each sequencing method.

871

872 **Figure 2. Comparison of 13 sc/snRNA-seq methods.**

873 **a.** Color legend of sc/snRNA-seq protocols. **b.** UMAP of 30,807 cells from the human reference
874 sample (Chromium) colored by cell type annotation. **c.** UMAP of 19,749 cells from the mouse
875 reference (Chromium) colored by cell type annotation. **d.** Boxplots displaying the minimum,
876 1st, 2nd, 3rd quantiles and the maximum number of genes detected across protocols, in
877 downsampled (20K) HEK293T cells, monocytes and B-cells. Cell identities were defined by
878 combining the clustering of each dataset and cell projection onto the reference. **e.** Number of
879 detected genes at step-wise downsampled sequencing depths. Points represent the average
880 number of detected genes as a fraction of all cells of the corresponding cell type at the
881 corresponding sequencing depth. **f.** Dropout probabilities as a function of expression magnitude,
882 for each protocol and cell type, calculated on downsampled data (20K) for 50 randomly selected
883 cells.

884

885 **Figure 3. Similarity measures of sc/snRNA sequencing methods.**

886 **a,b.** PCA analysis on downsampled data (20K) using highly variable genes between protocols,
887 separated into HEK293T cells, monocytes and B-cells, and color-coded by protocol (**a**) and
888 number of detected genes per cell (**b**). **c.** Pearson correlation plots across protocols using
889 expression of common genes. For a fair comparison, cells were downsampled to the same
890 number for each method (B cells=32, Monocytes = 57, HEK293T= 55). Protocols are ordered

891 by agglomerative hierarchical clustering. **d.** Average log expression values of cell-type-specific
892 reference markers for downsampled (20K) HEK293T cells, monocytes, and B-cells. **e.** Log
893 expression values of reference markers on downsampled data (20K) for HEK293T cells,
894 monocytes and B-cells (maximum 50 random cells per technique). **f.** Cumulative gene counts
895 per protocol as the average of 100 randomly sampled HEK293T cells, monocytes and B-cells
896 separately on downsampled data (20K).

897

898 **Figure 4. Clustering analysis of 13 sc/snRNA-seq methods on downsampled datasets**

899 **(20K).** **a.** T-SNE visualizations of unsupervised clustering in human samples from 13 different
900 methods. Each dataset was analyzed separately after downampling to 20K reads per cell. Cells
901 are colored by cell type inferred by *matchSCore2* before downampling. Cells that did not
902 achieve a probability score of 0.5 for any cell type were considered unclassified. **b.** Clustering
903 accuracy and Average Silhouette Width for clusters in each protocol.

904

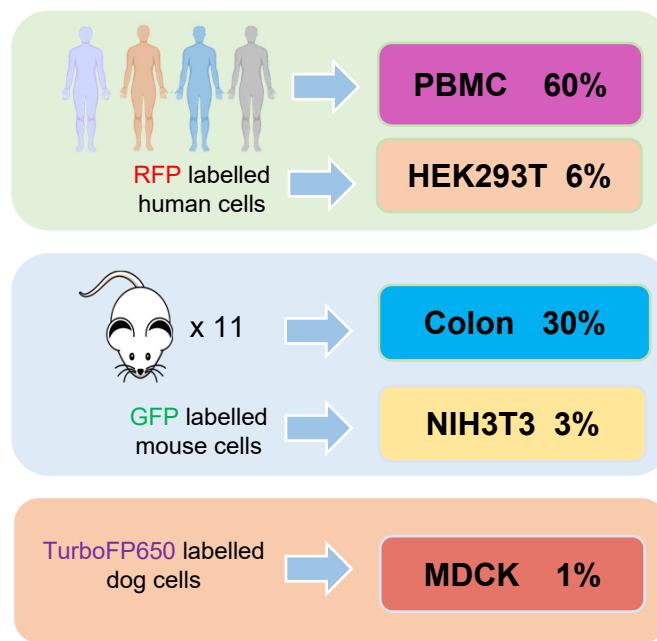
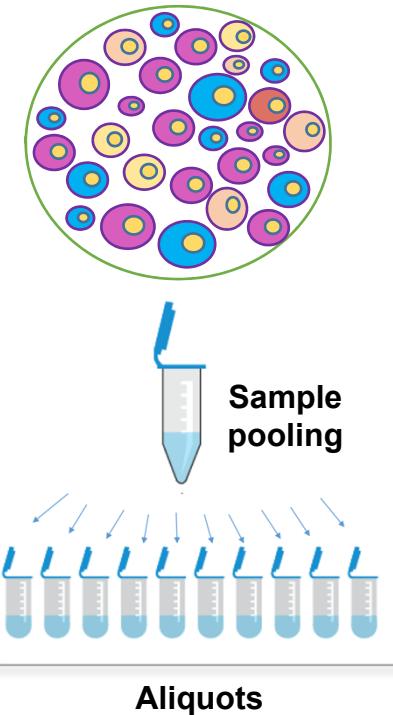
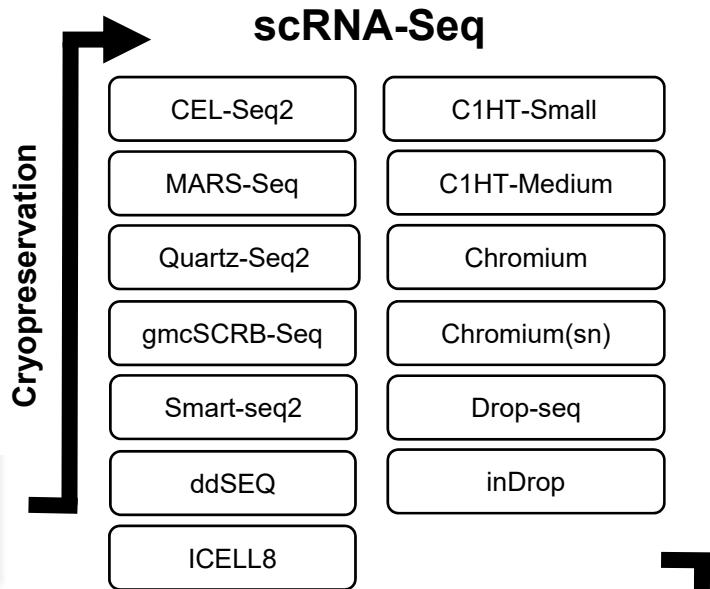
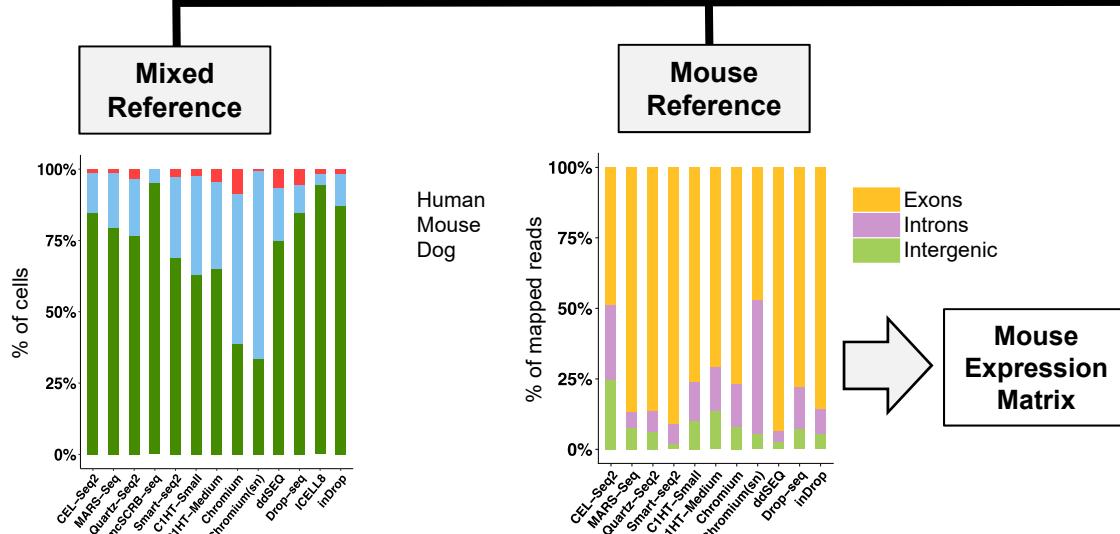
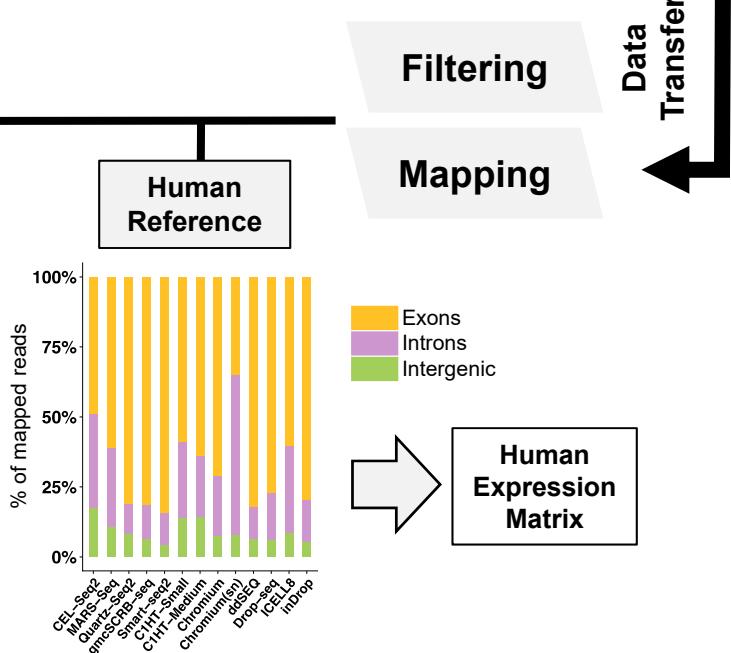
905 **Figure 5. Integration of sc/snRNA-seq methods.** UMAP visualization of cells after integrating
906 technologies for 18,034 human **(a,b)** and 7,902 mouse **(c,d)** cells. Cells are colored by cell type
907 **(a,c)** and sc/snRNA-seq protocol **(b,d)**. **e,f.** Barplots showing normalized and method-corrected
908 (integrated) expression scores of cell-type-specific signatures for human HEK293T cells,
909 monocytes, B-cells **(e)** and mouse secretory and transit-amplifying cells **(f)**. Bars represent cells
910 and colors methods. **g,h.** Evaluation of method integratability in human **(g)** and mouse **(h)**.
911 Protocols are compared according to their ability to group cell types into clusters (after
912 integration) and mix with other technologies within the same clusters. Points are colored by
913 sequencing method.

914

915 **Figure 6. Benchmarking summary of 13 sc/snRNA-seq methods.** Methods are scored by key
916 analytical metrics, characterizing protocols according to their ability to recapitulate the original
917 structure of complex tissues, and their suitability for cell atlas projects. The methods are ordered

918 by their overall benchmarking score, which is computed by averaging the scores across metrics

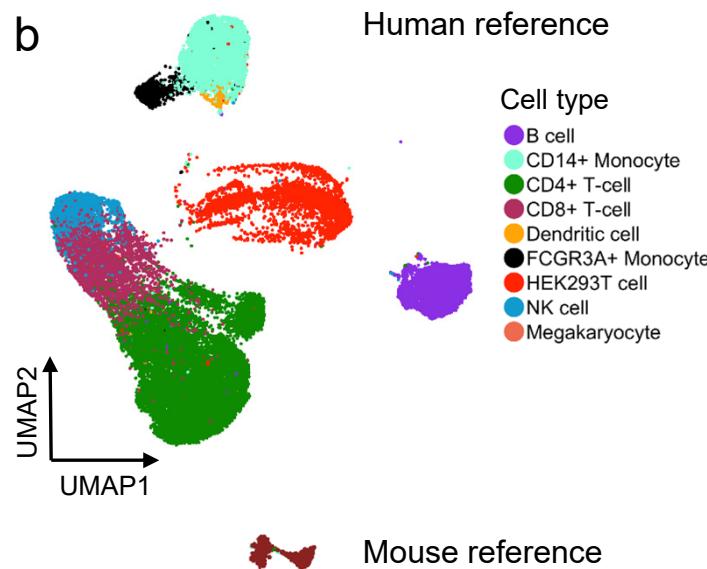
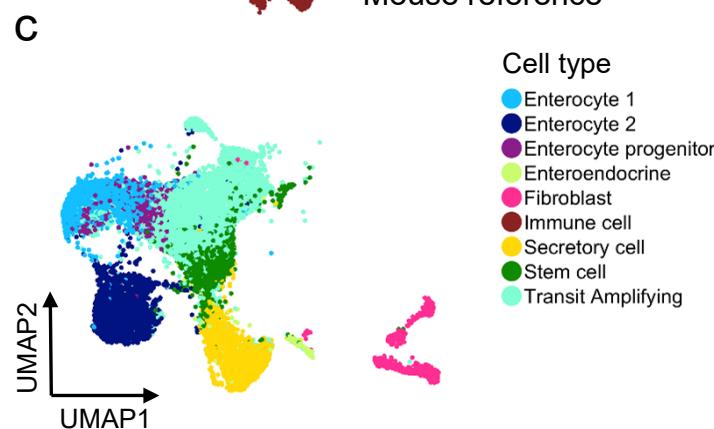
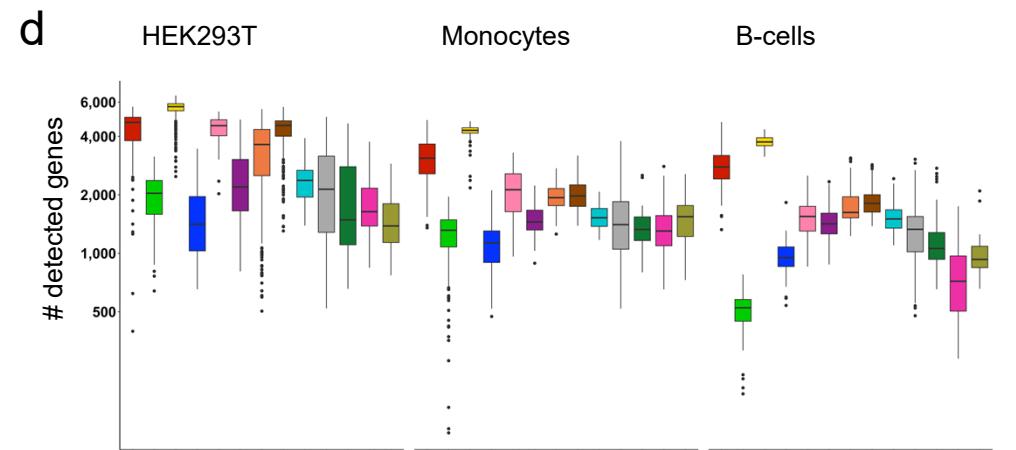
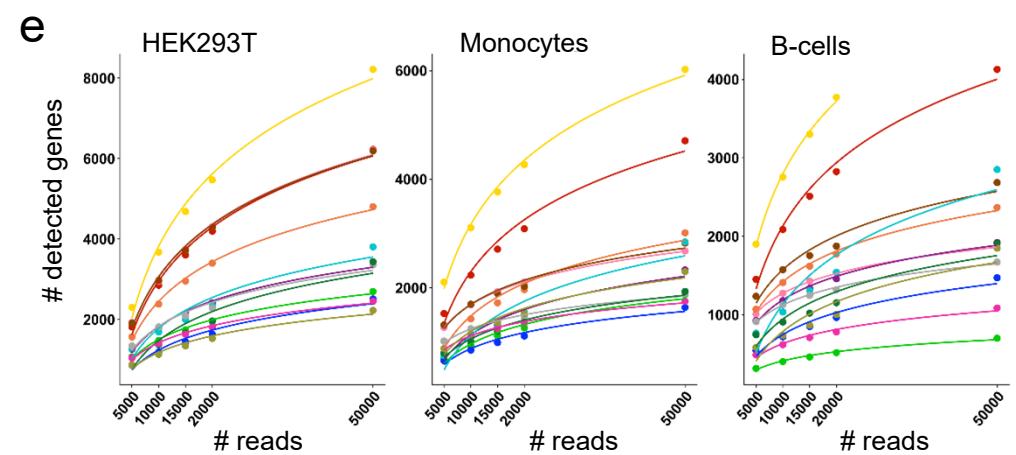
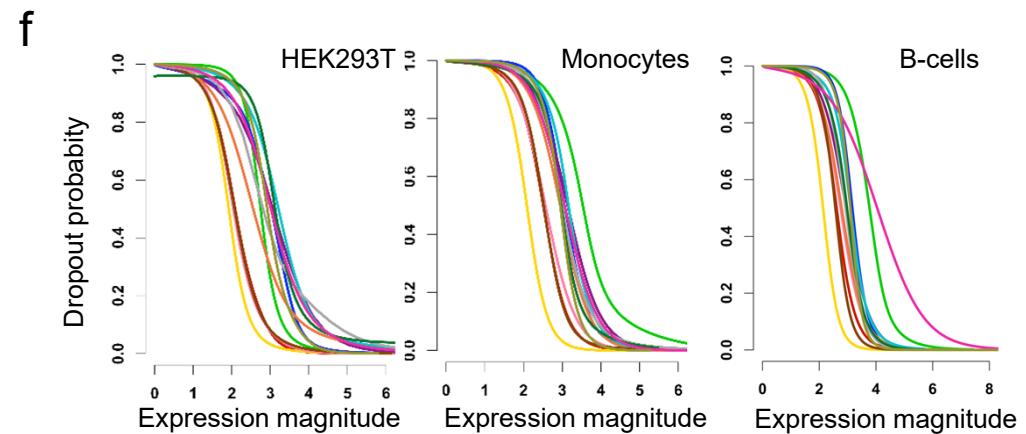
919 assessed from the human datasets.

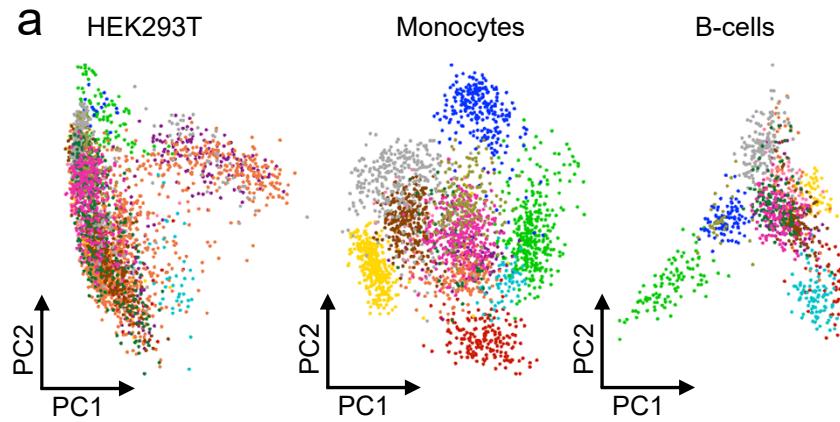
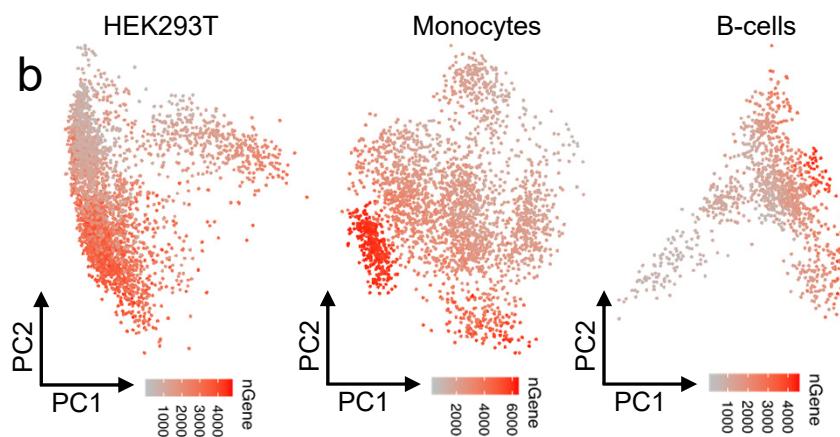
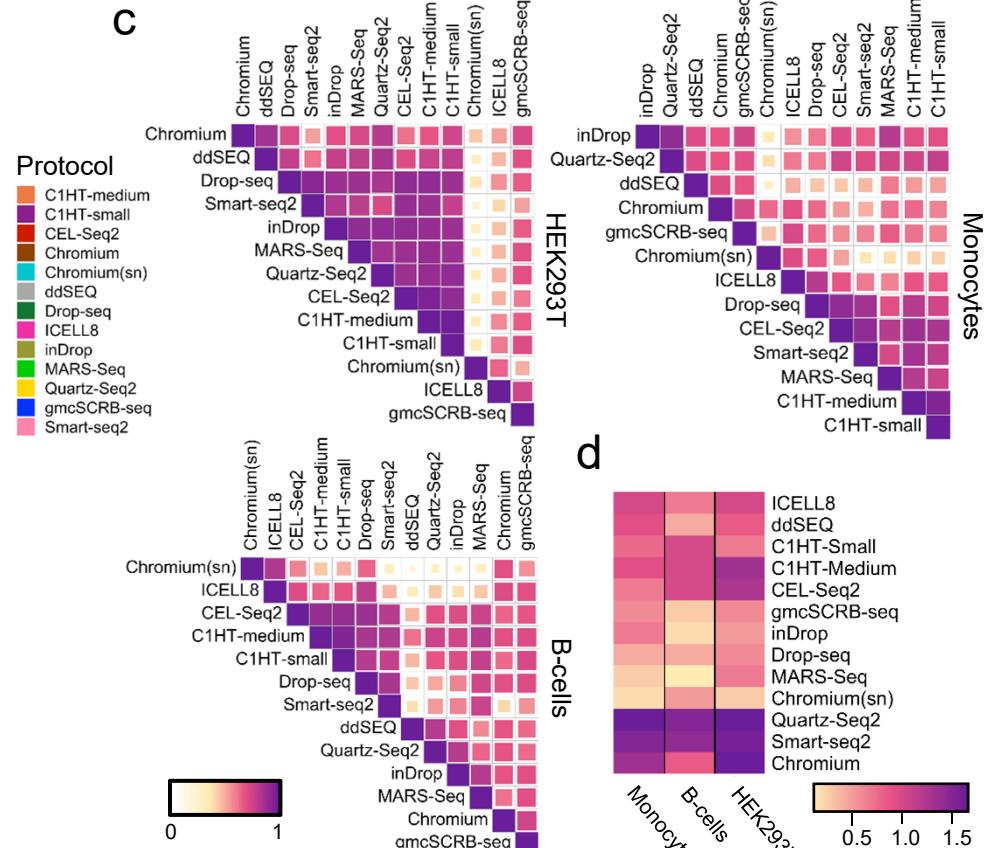
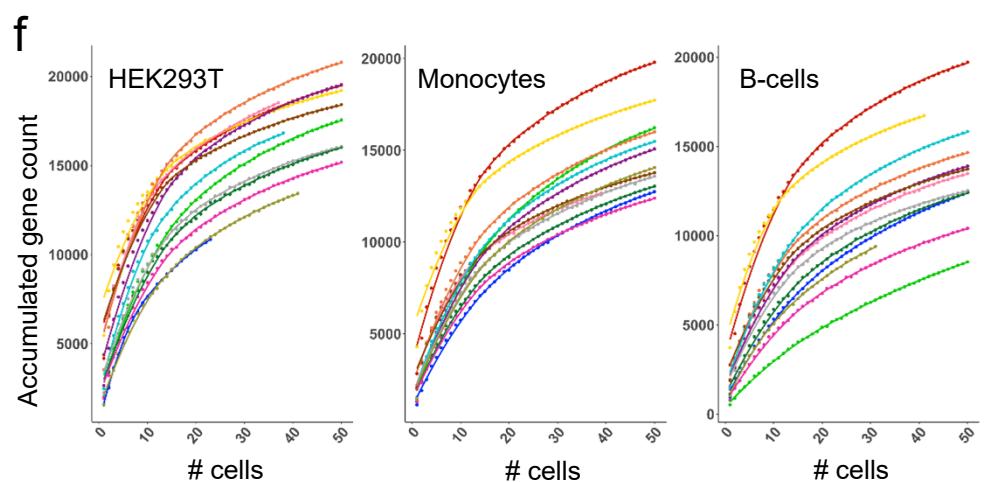


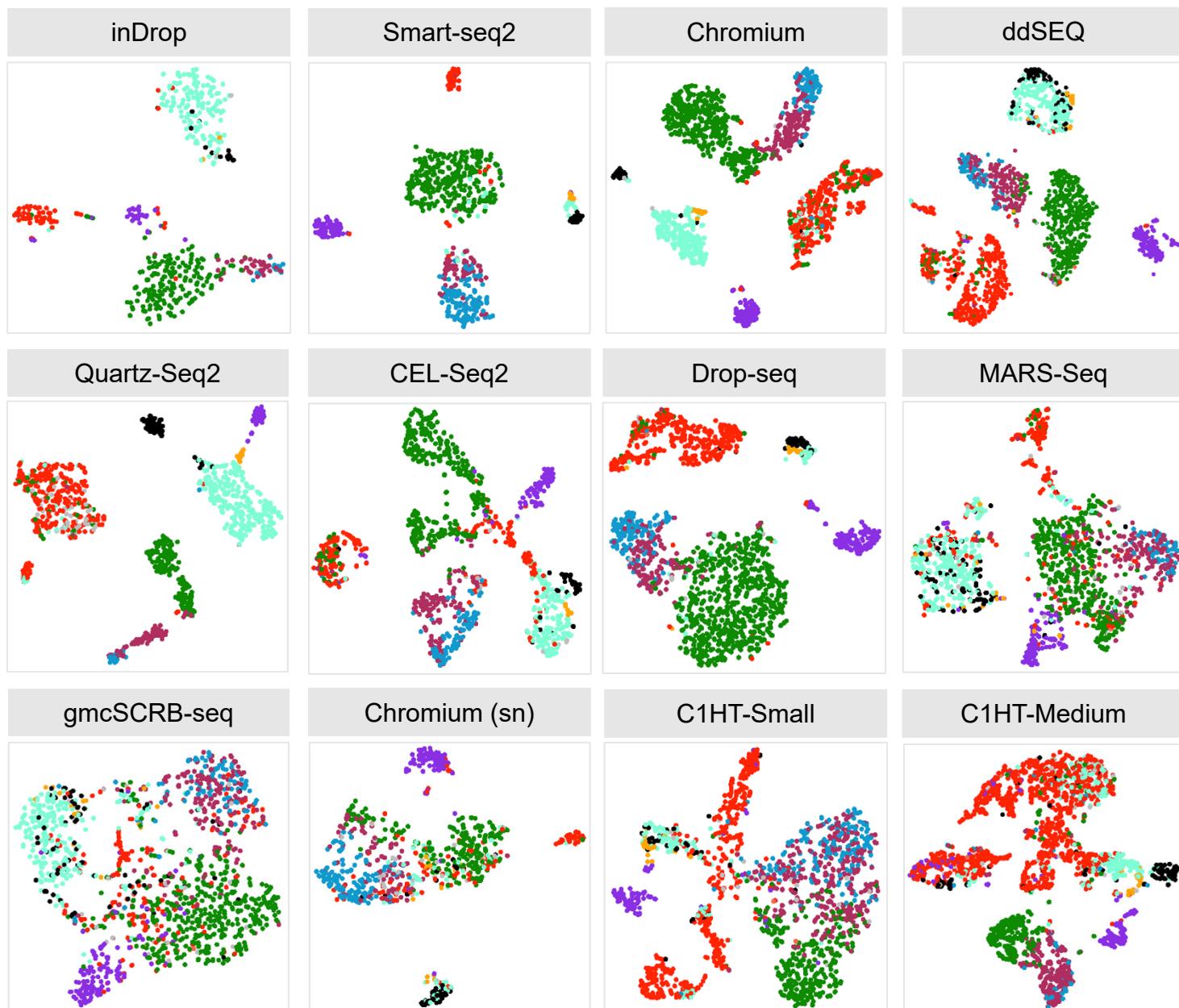
Filtering

Mapping

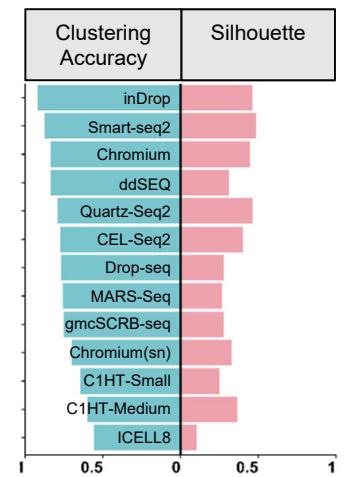
Data Transfer

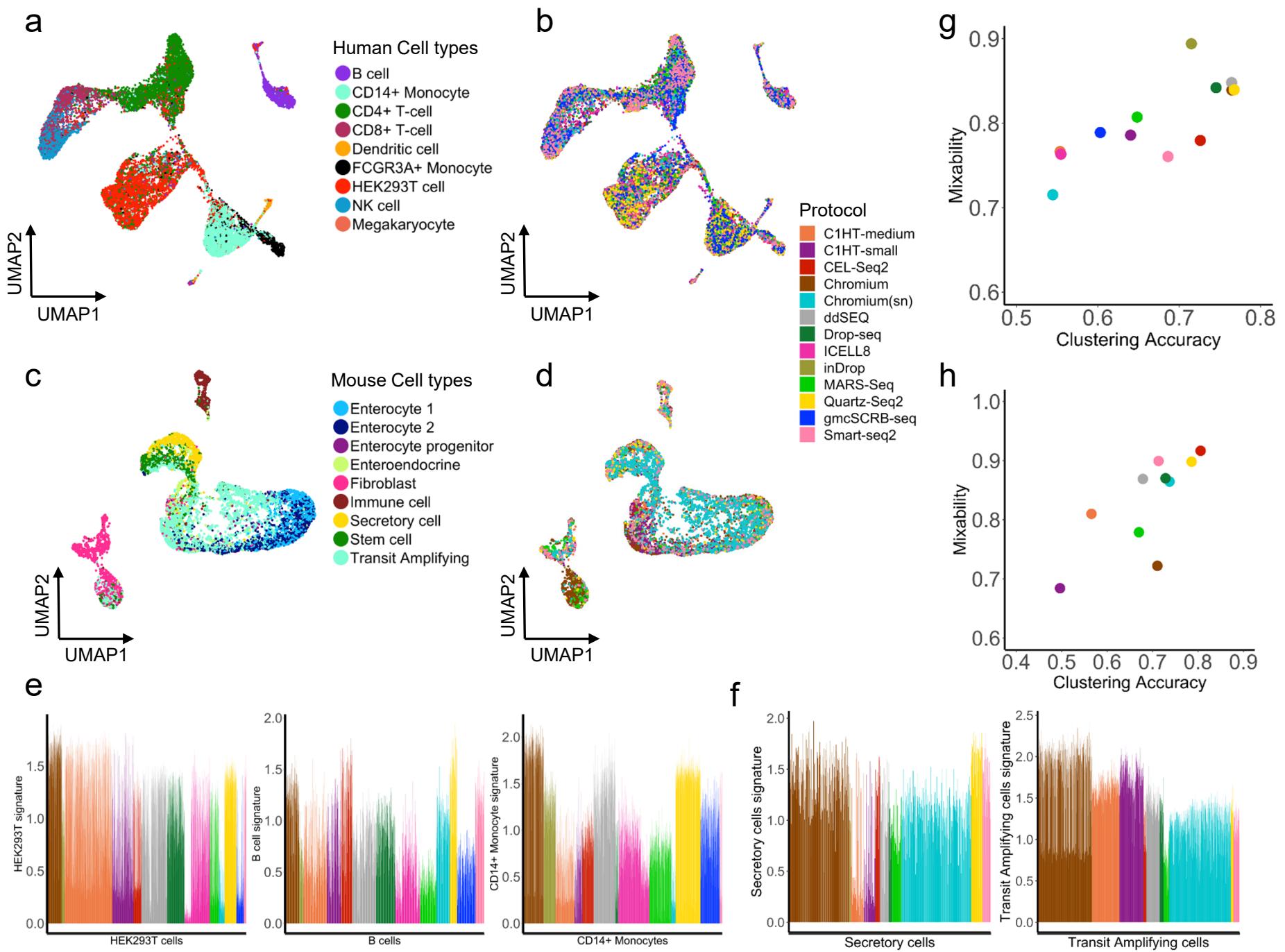


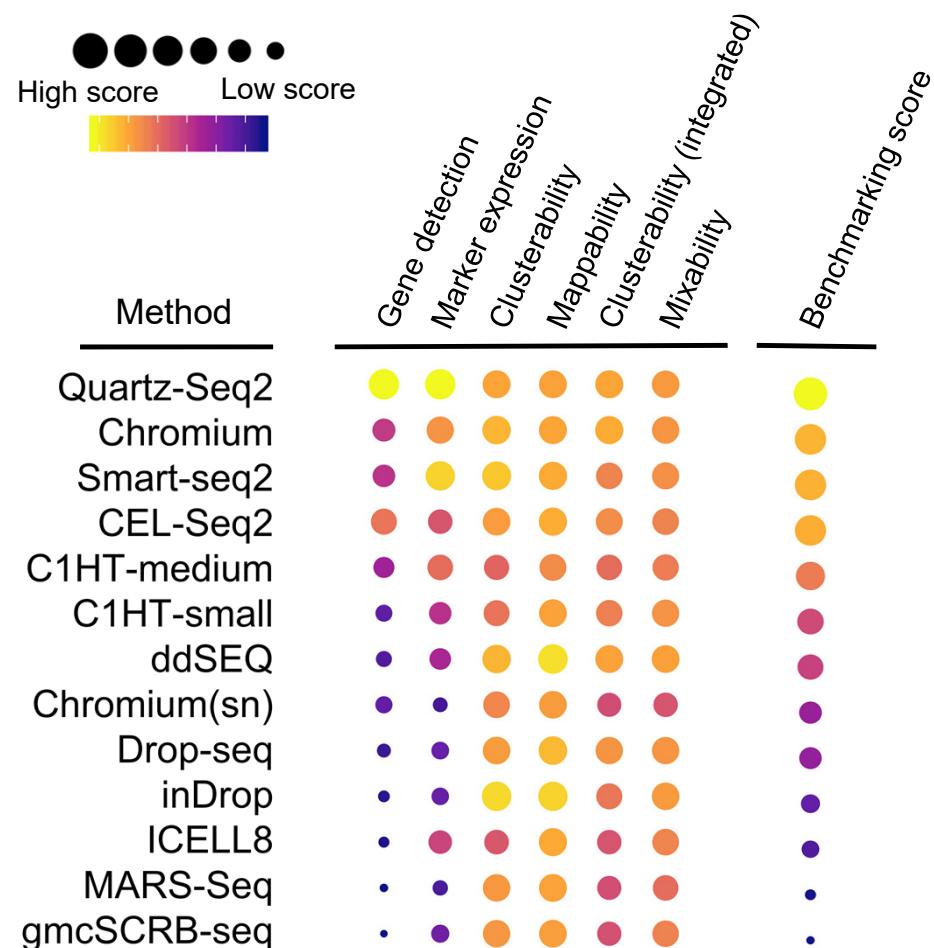


a**Cell type**

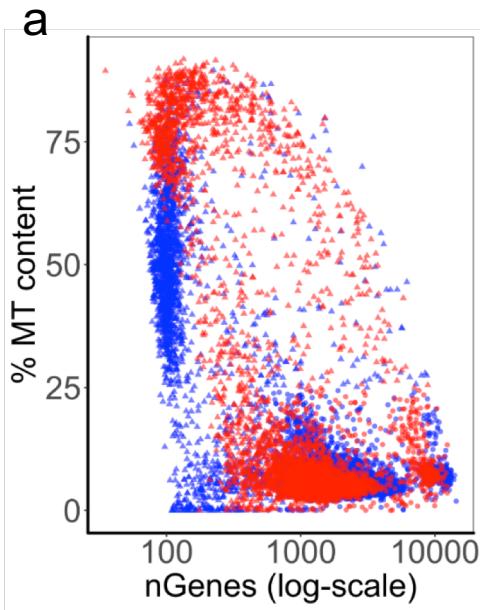
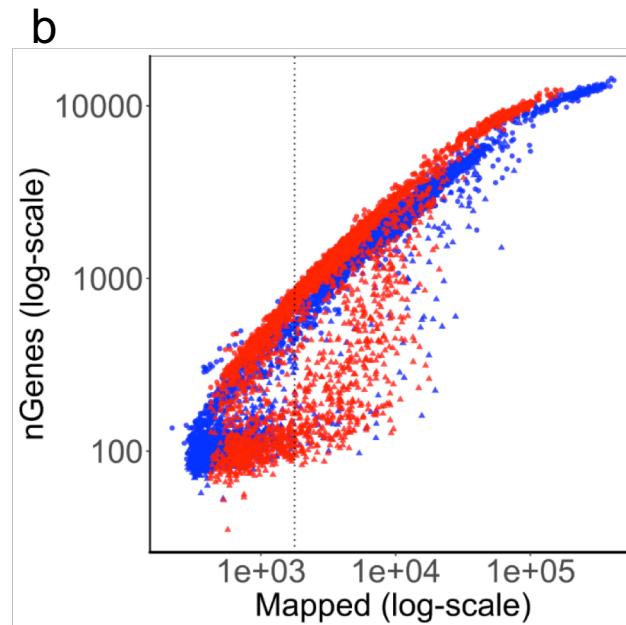
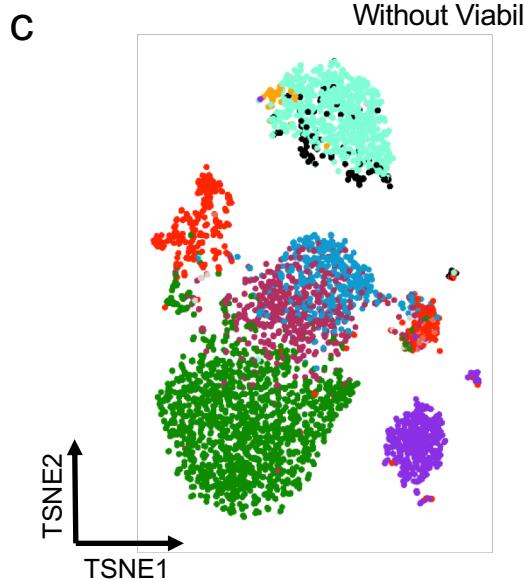
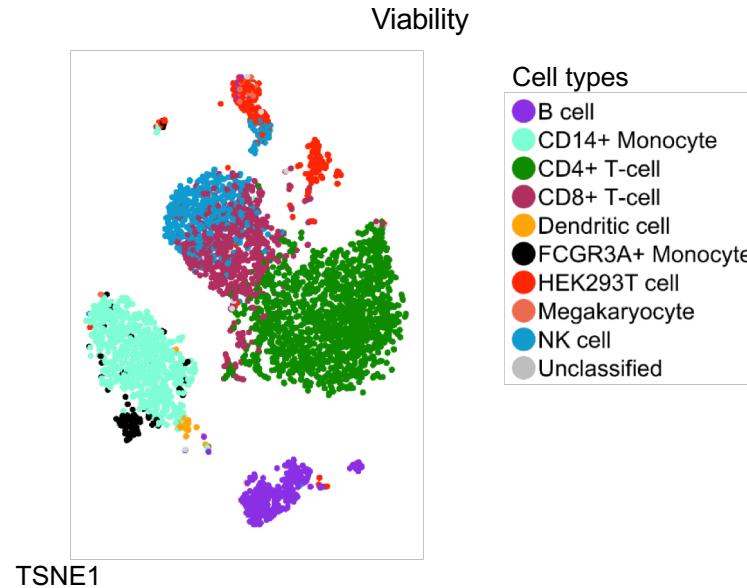
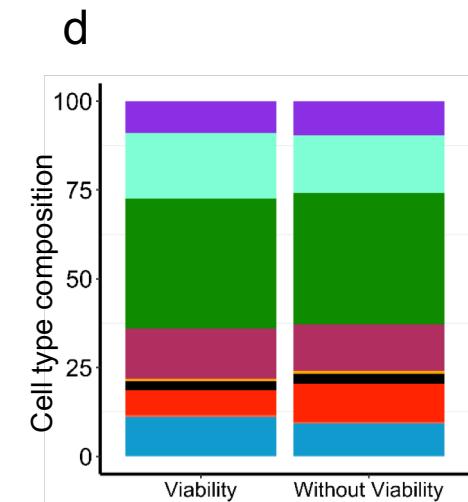
- B cells
- CD14+ Monocytes
- CD4 T cells
- CD8 T cells
- Dendritic cells
- FCGR3A+ Monocytes
- HEK cells
- Megakaryocytes
- NK cells

b**ICELL8**

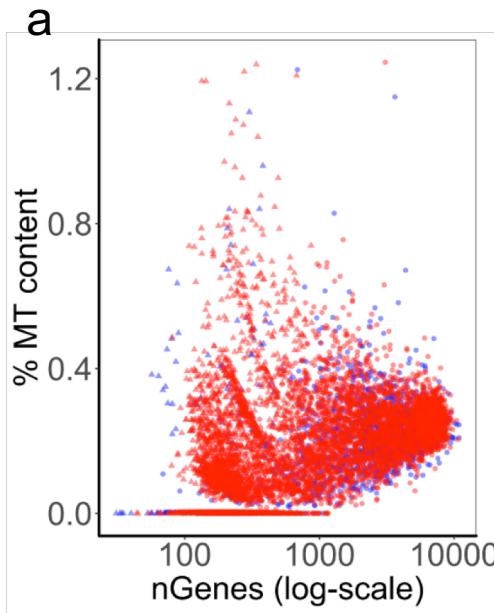
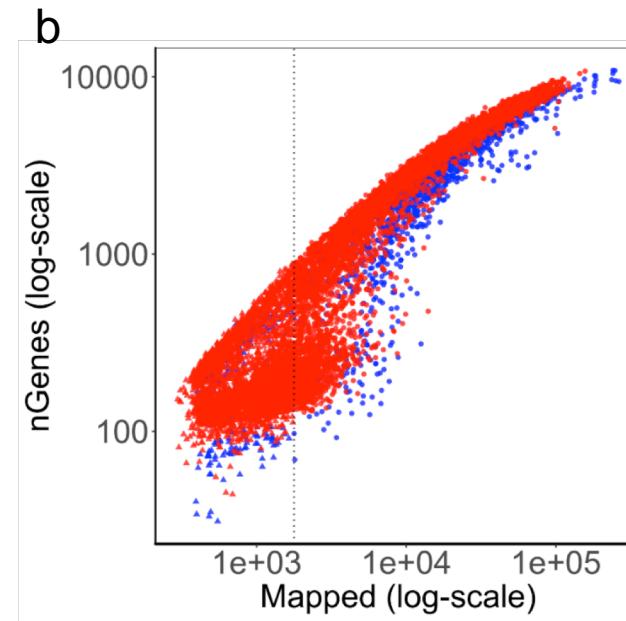
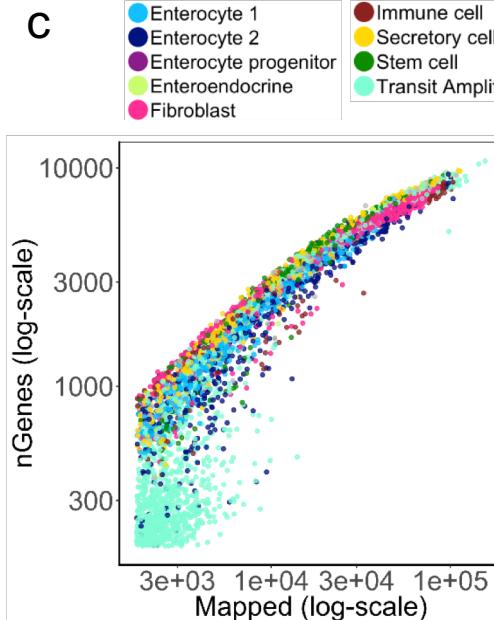
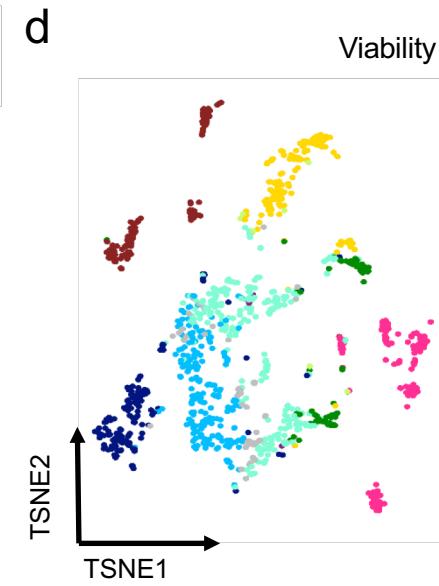
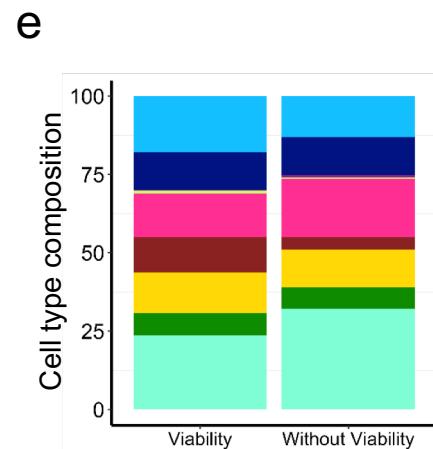




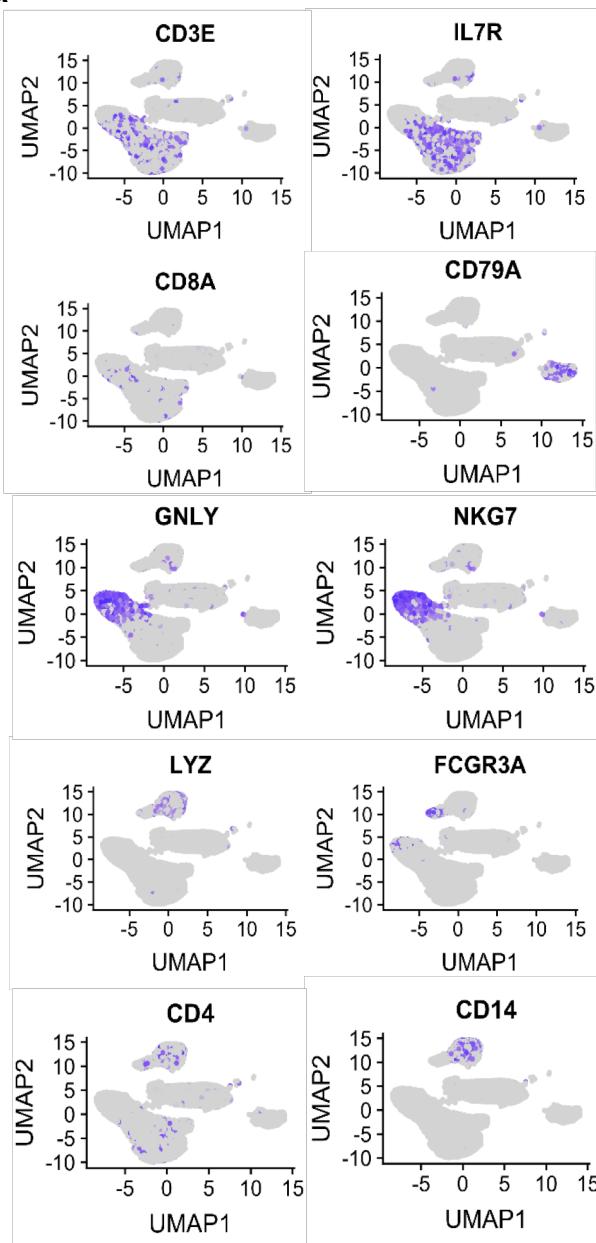
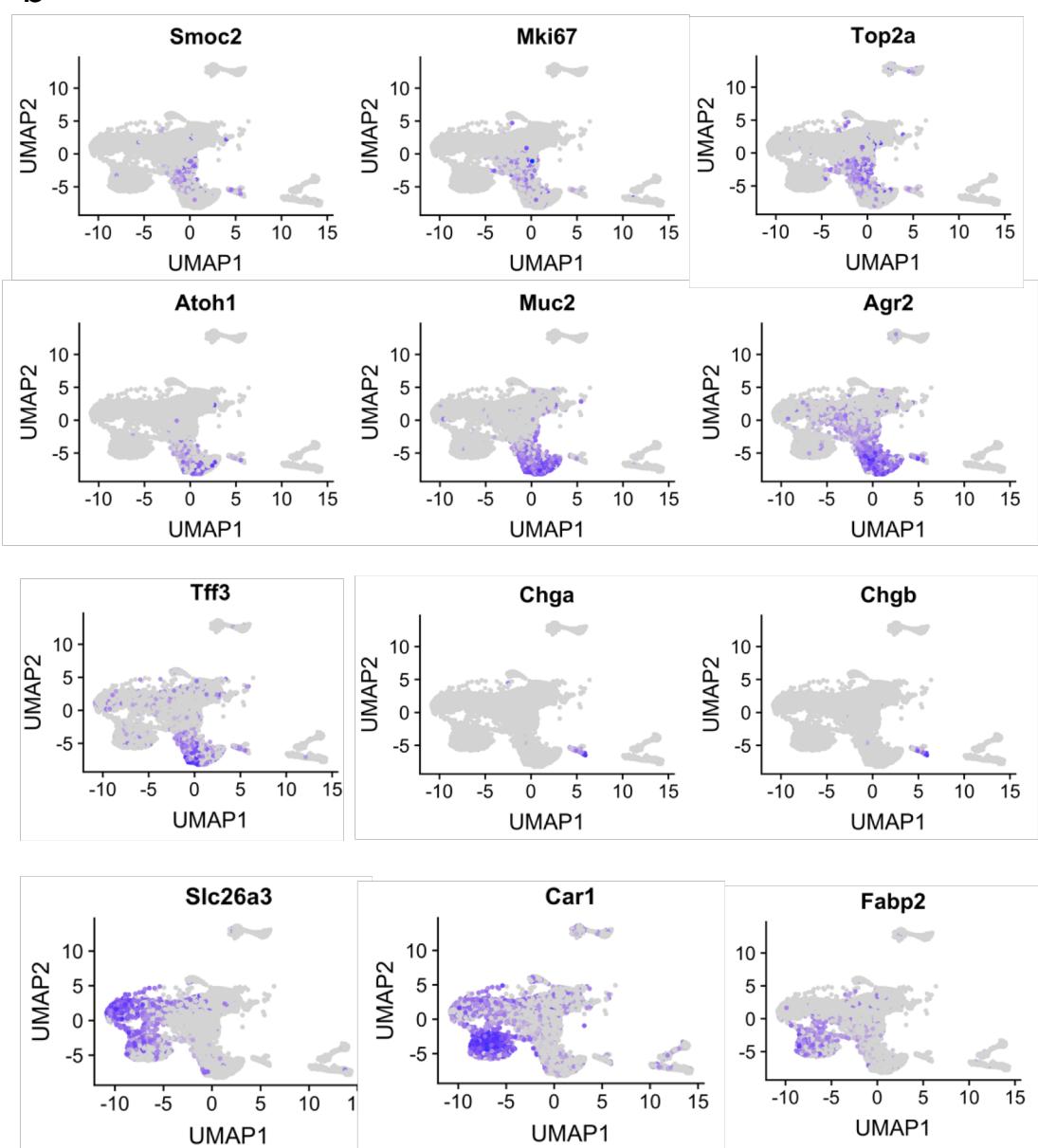
Supplementary Figure 1



Supplementary Figure 2

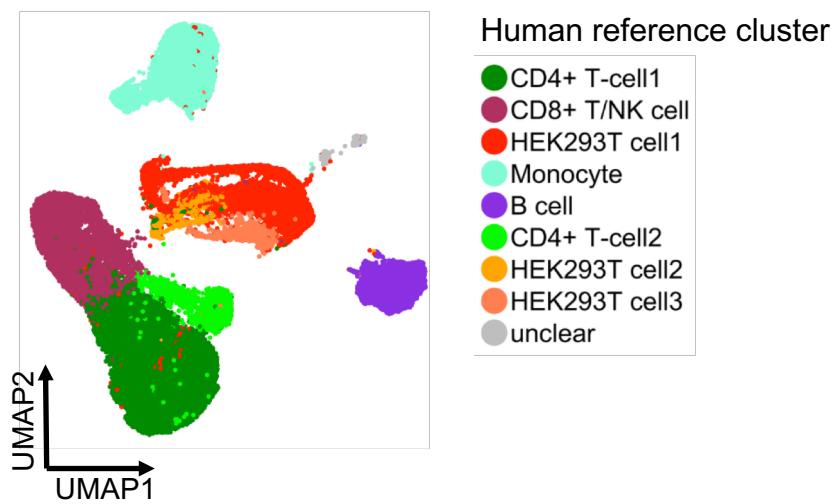


Supplementary Figure 3

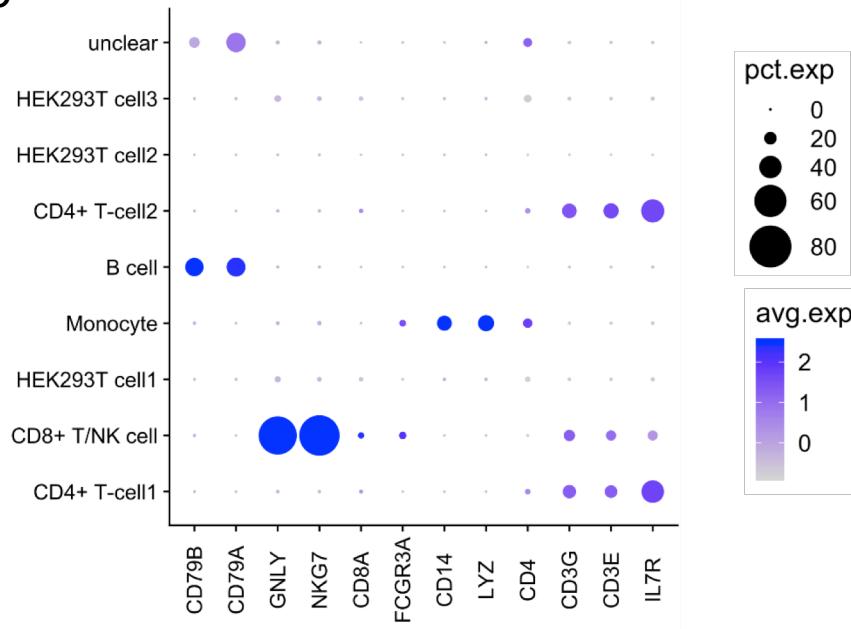
a**b**

Supplementary Figure 4

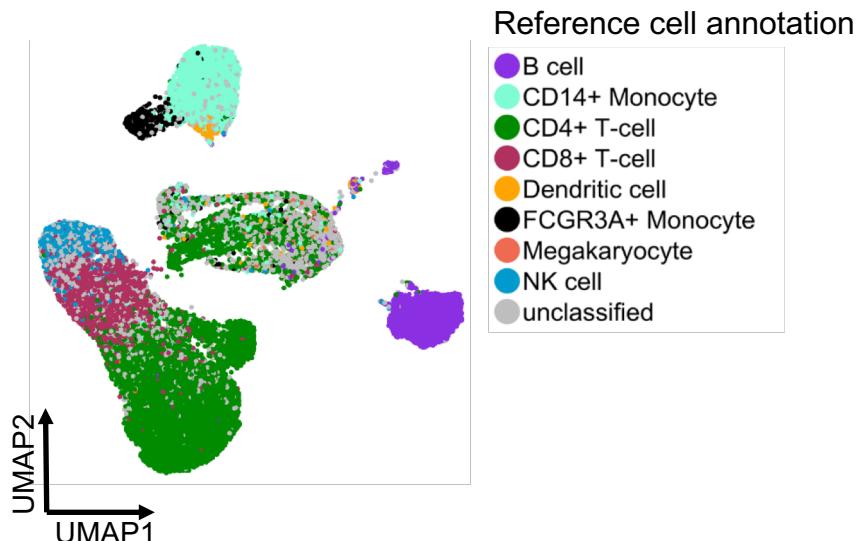
a



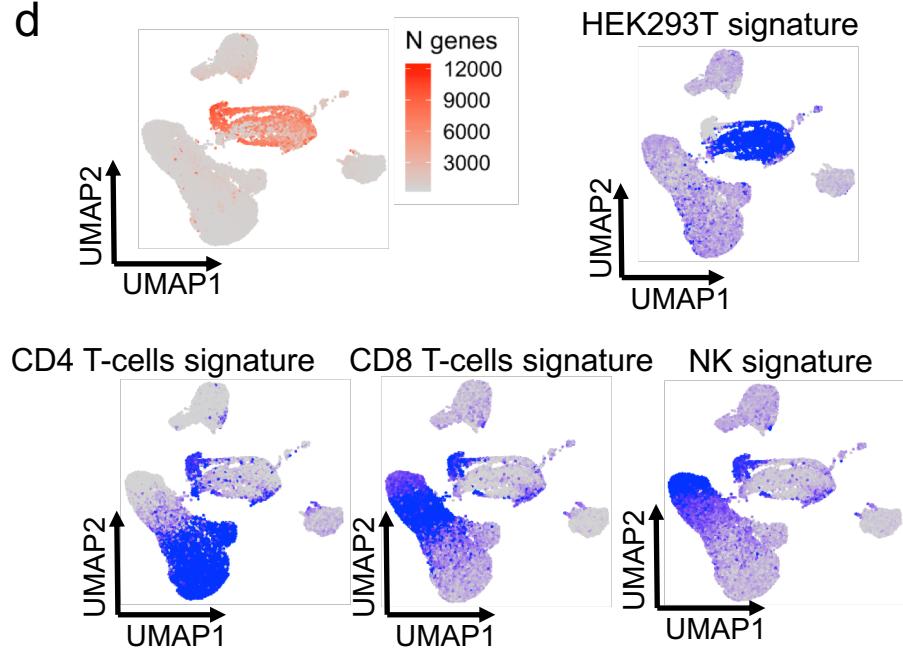
b



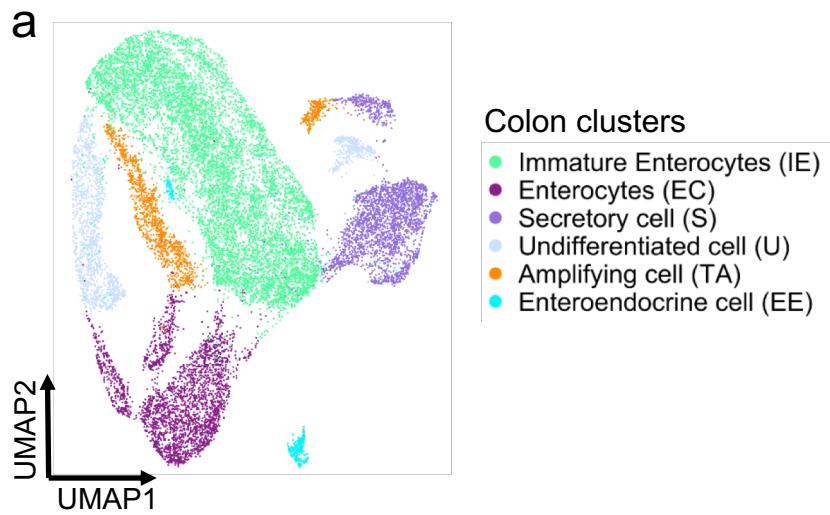
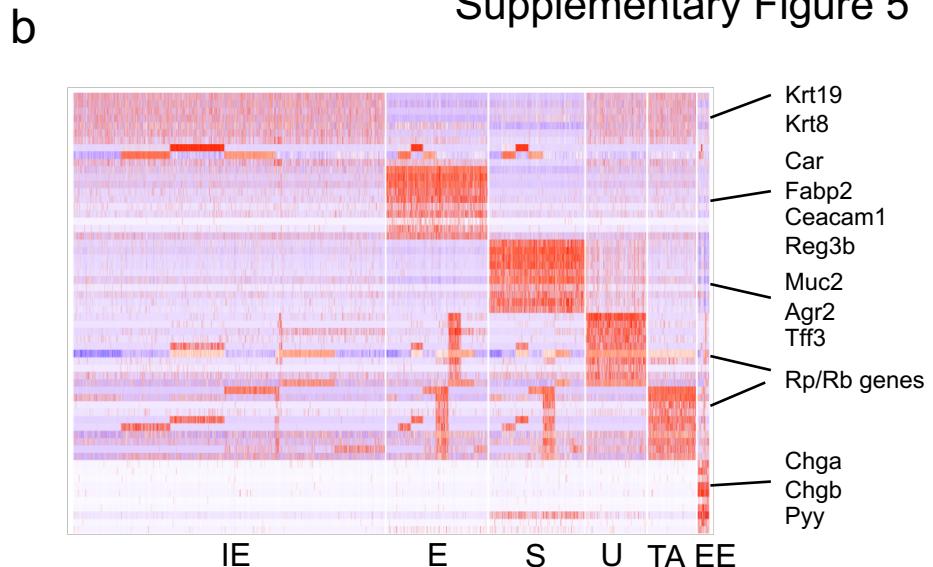
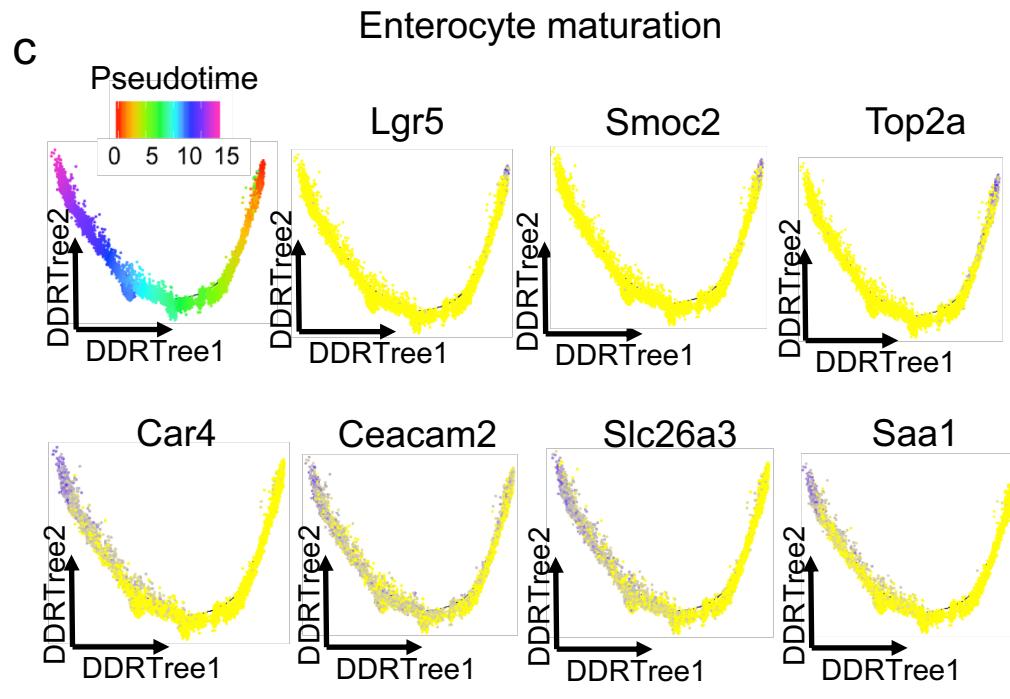
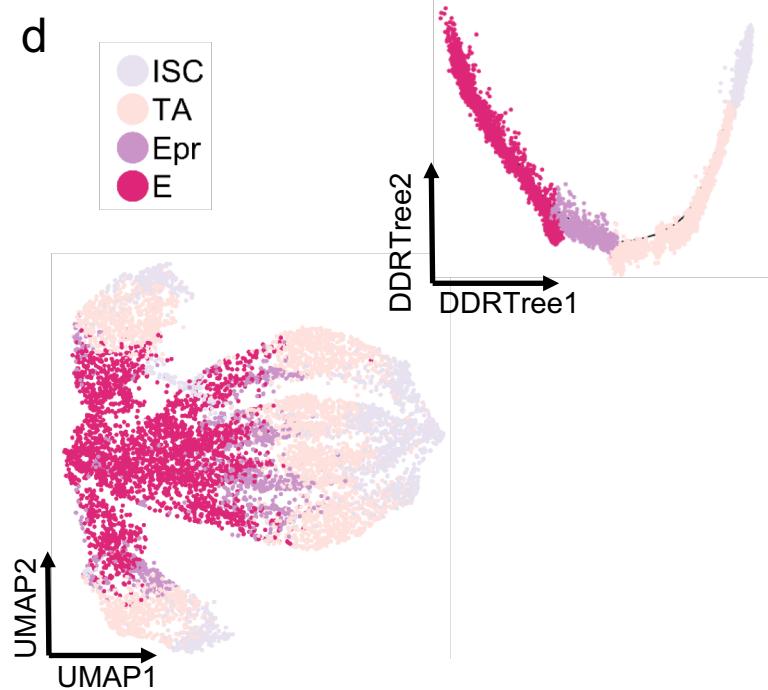
c



d

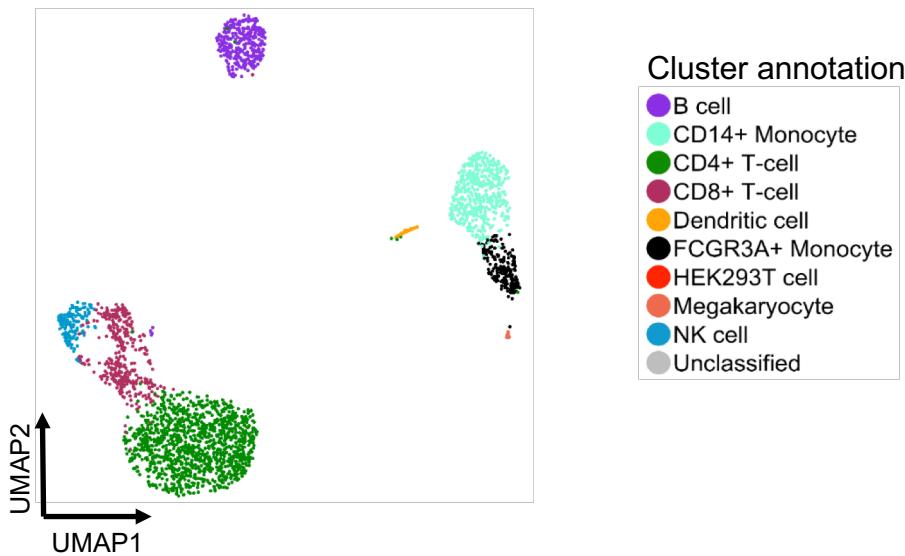
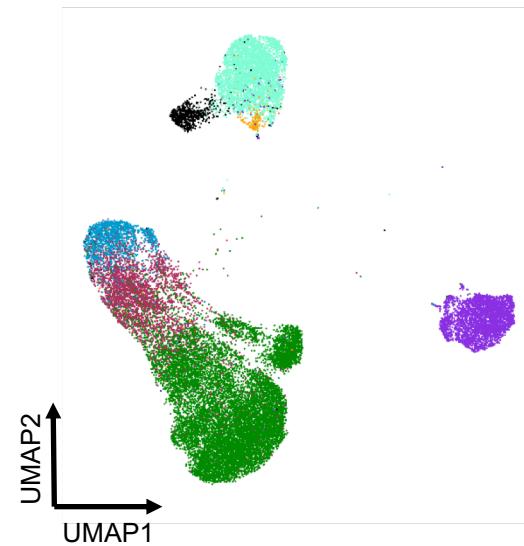


Supplementary Figure 5

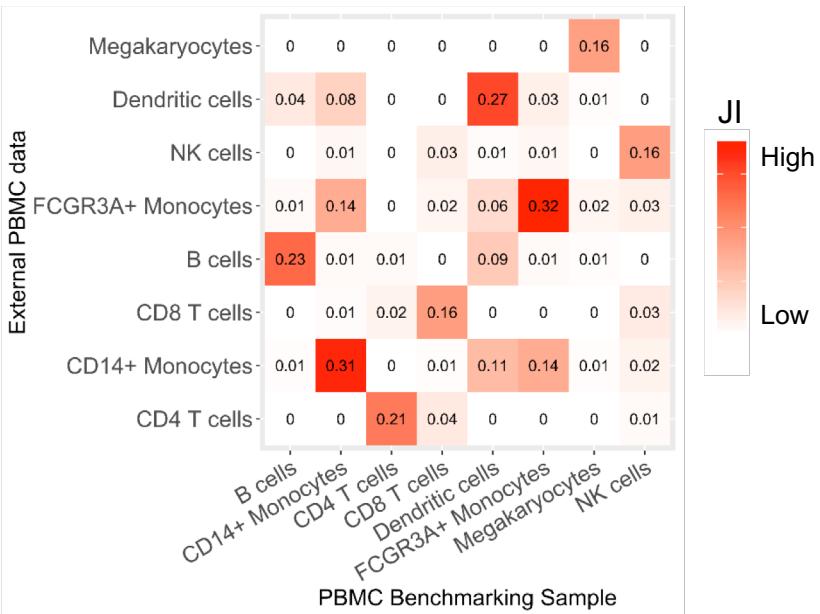


Supplementary Figure 6

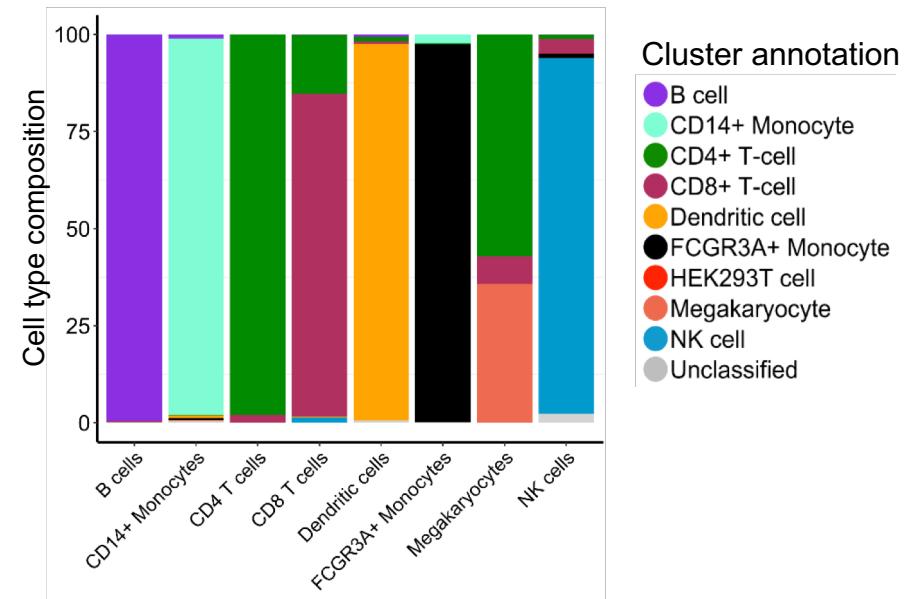
a



b

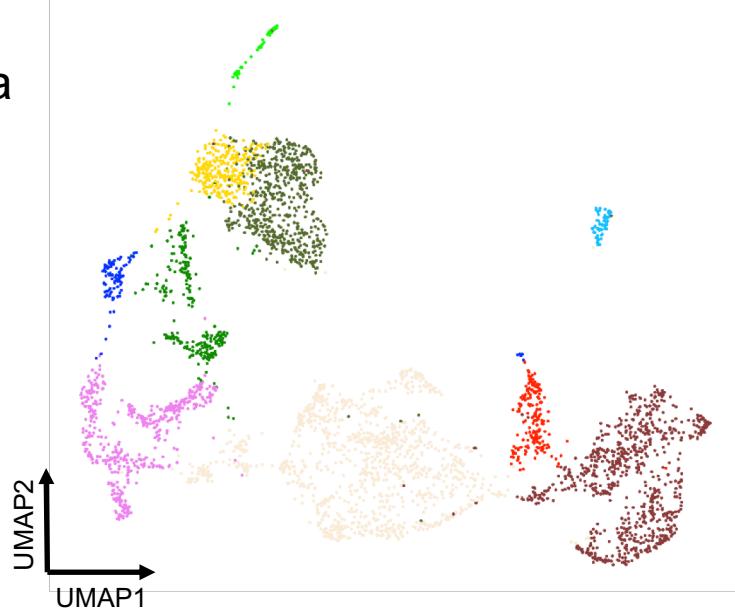
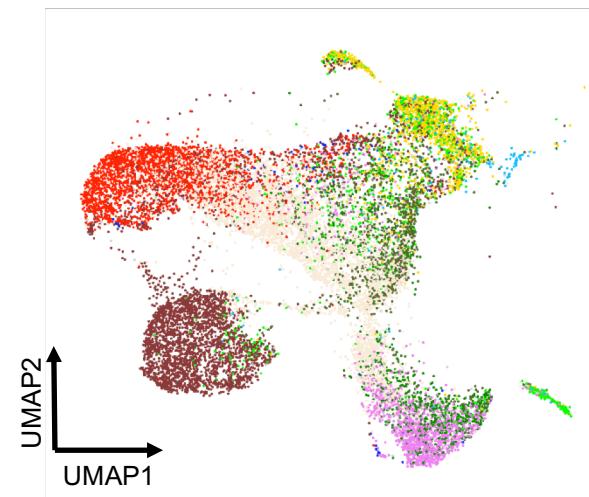


c

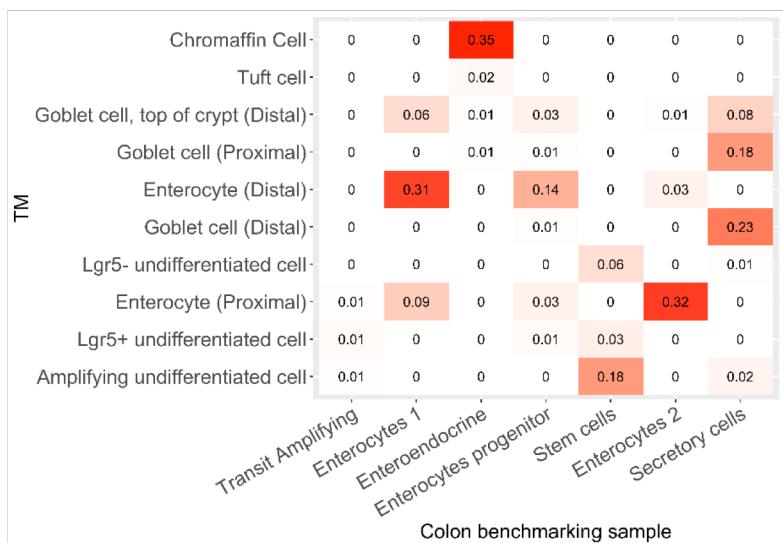


Supplementary Figure 7

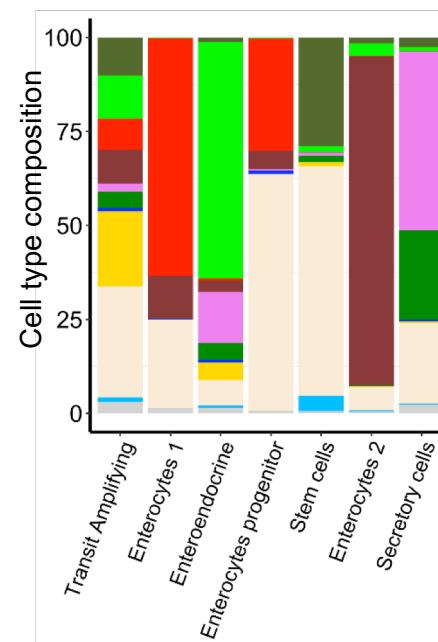
a



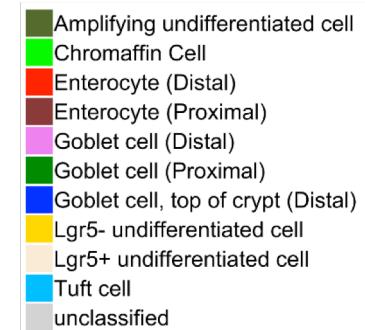
b



c

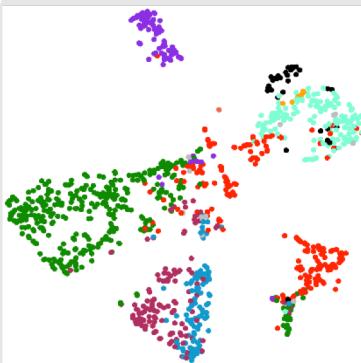


TM cluster annotation

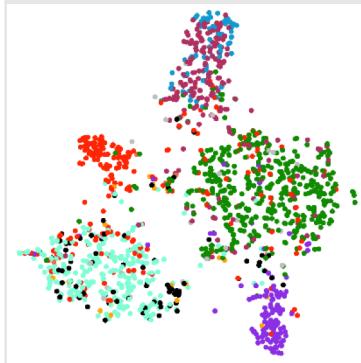


Supplementary Figure 8

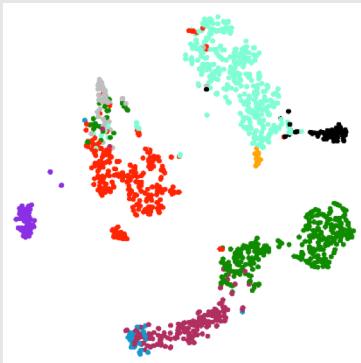
CEL-Seq2



MARS-Seq

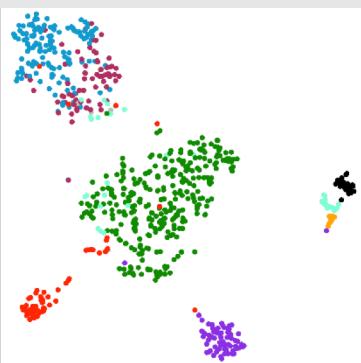


Quartz-Seq2

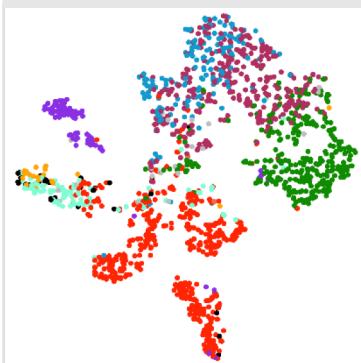


gmcSCRB-seq

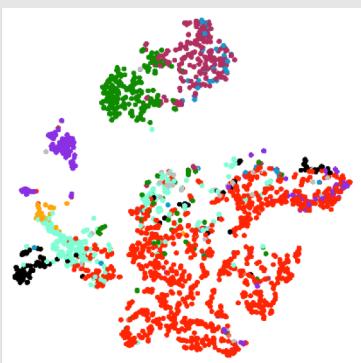
Smart-seq2



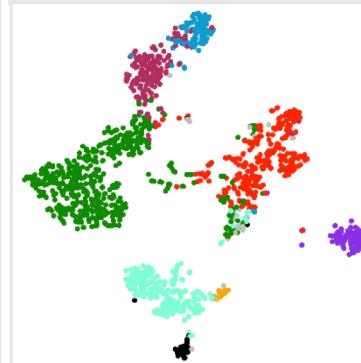
C1HT-Small



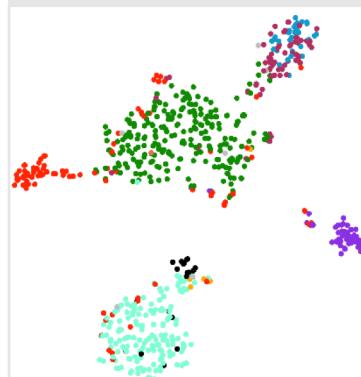
C1HT-Medium



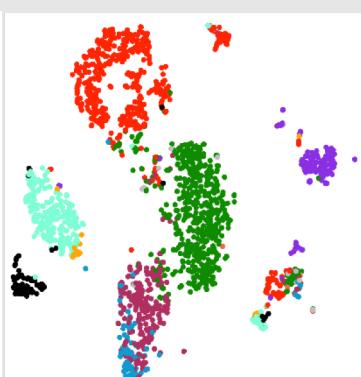
Chromium



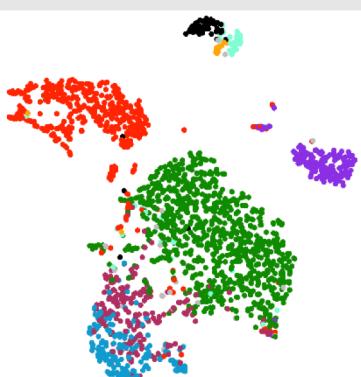
InDrop



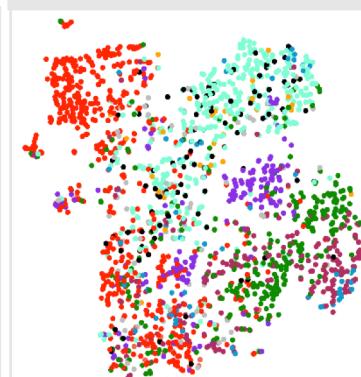
ddSEQ



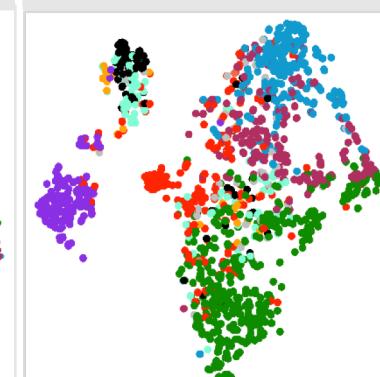
Drop-seq



ICELL8



Chromium(sn)



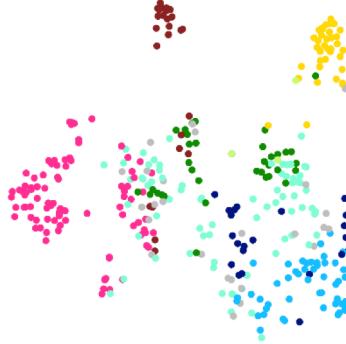
Cell type

- B cell
- CD14+ Monocyte
- CD4+ T-cell
- CD8+ T-cell
- Dendritic cell
- FCGR3A+ Monocyte
- HEK293T cell
- Megakaryocyte
- NK cell
- Unclassified

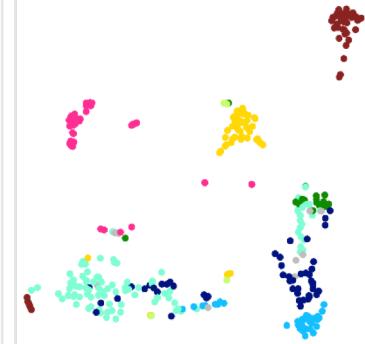
Supplementary
Figure 9

CEL-Seq2

MARS-Seq

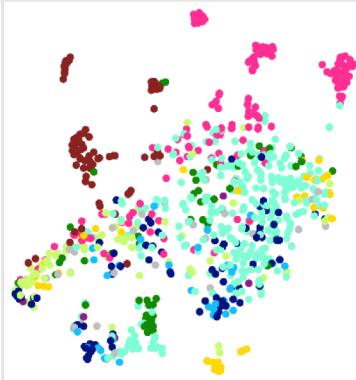


Quartz-Seq2



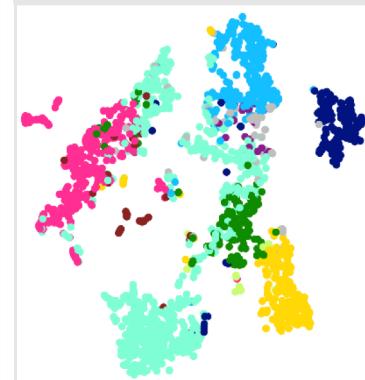
Smart-seq2

C1HT-Small

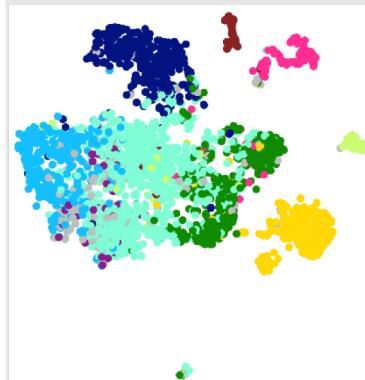


C1HT-Medium

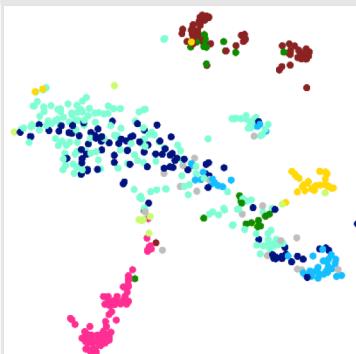
Chromium



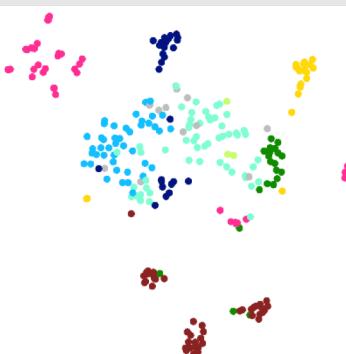
Chromium(sn)



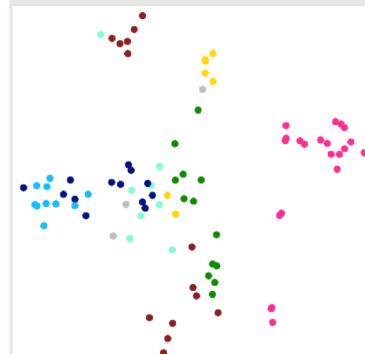
ddSEQ



Drop-seq



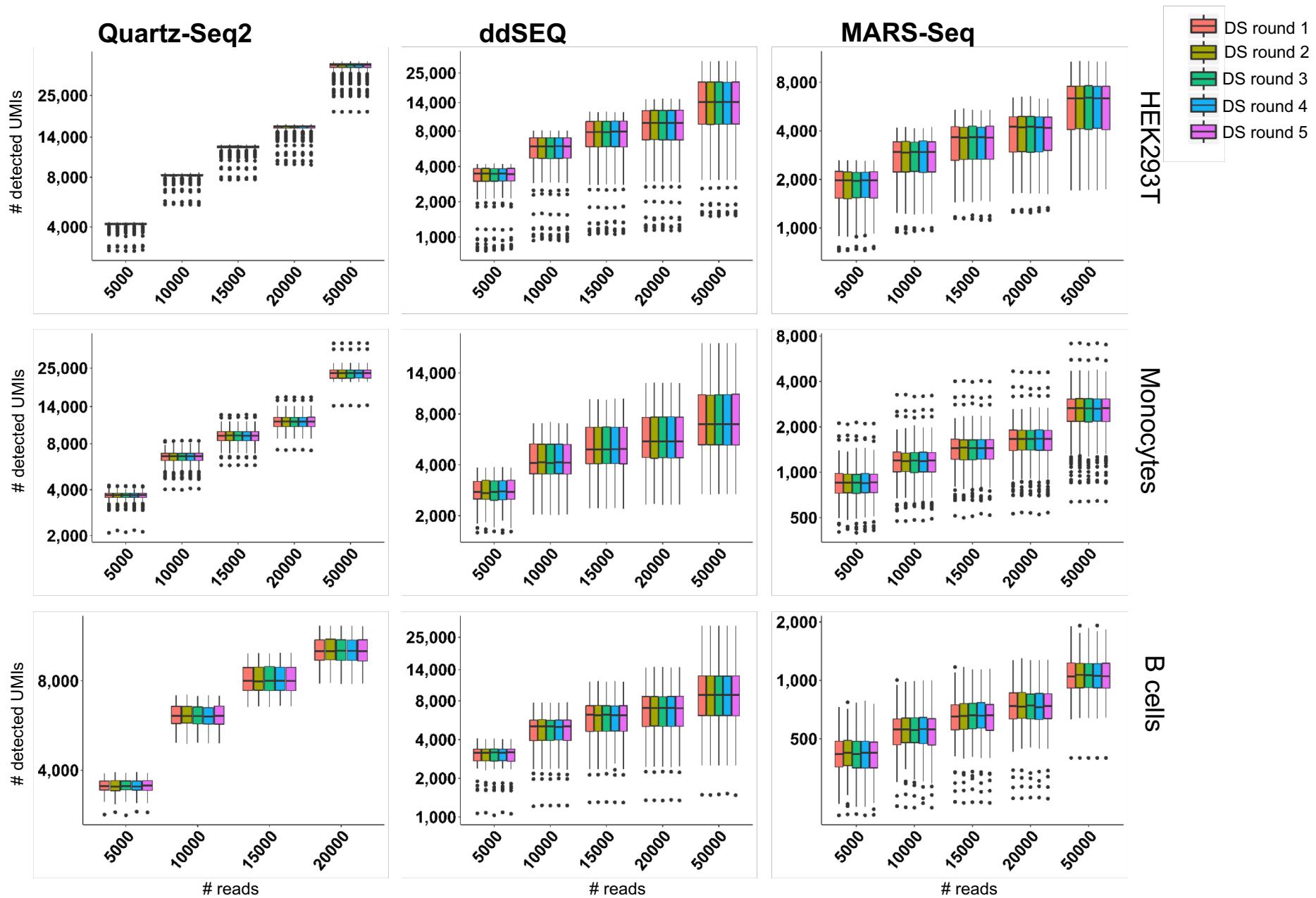
inDrop



Cell type

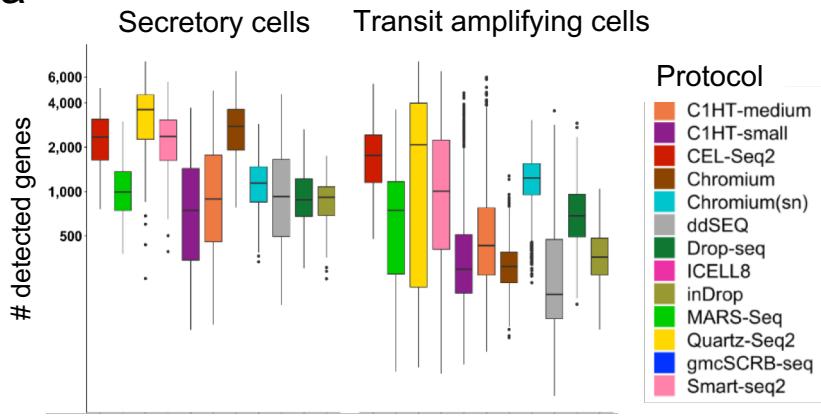
- Enterocyte 1
- Enterocyte 2
- Enteroendocrine
- Fibroblast
- Immune cell
- Secretory cell
- Stem cell
- Transit Amplifying
- Unclassified

Supplementary Figure 10

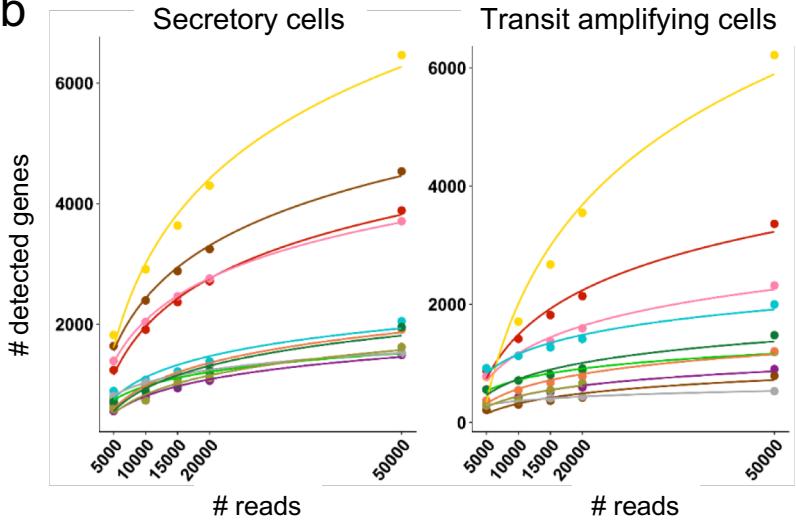


Supplementary Figure 11

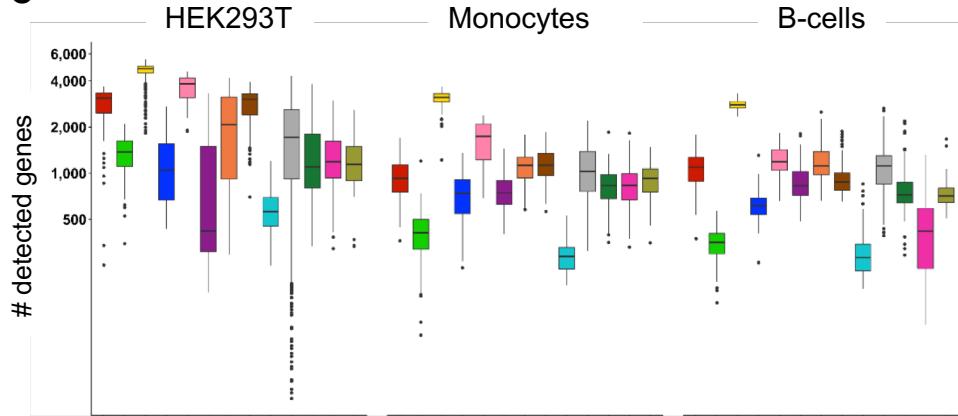
a



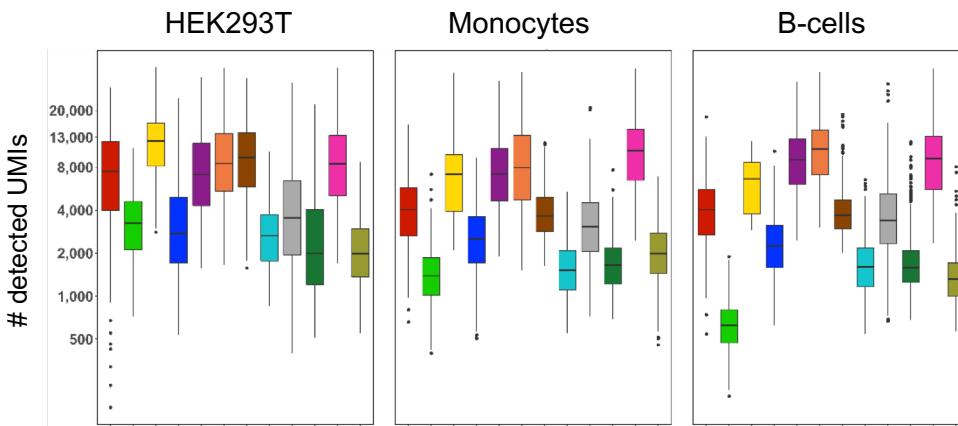
b



c

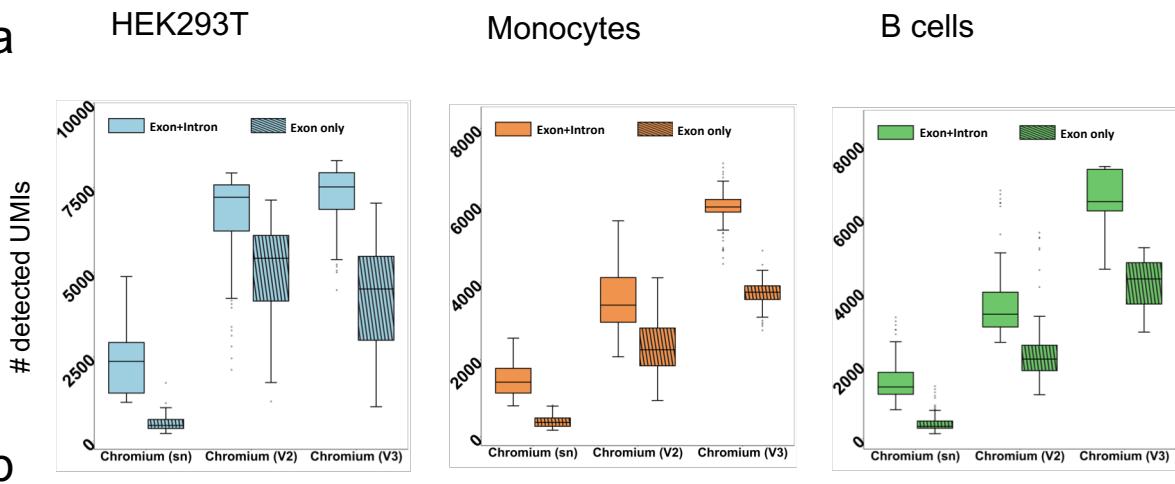


d

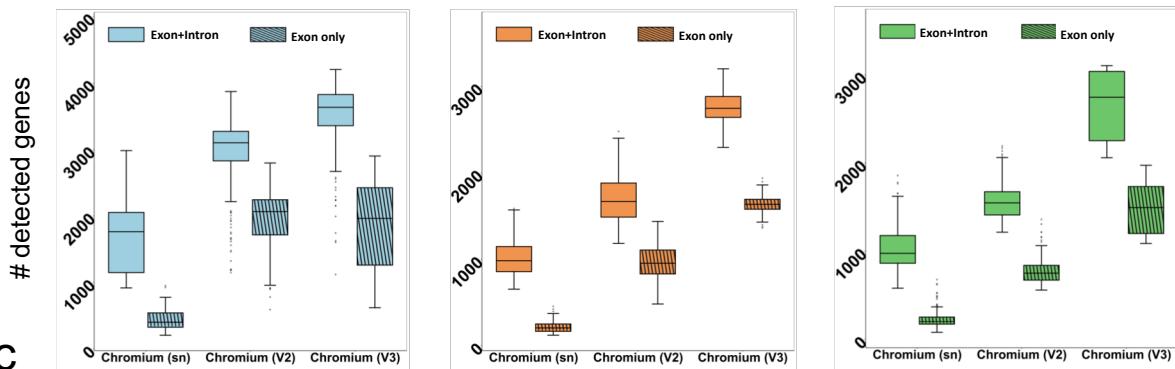


Supplementary Figure 12

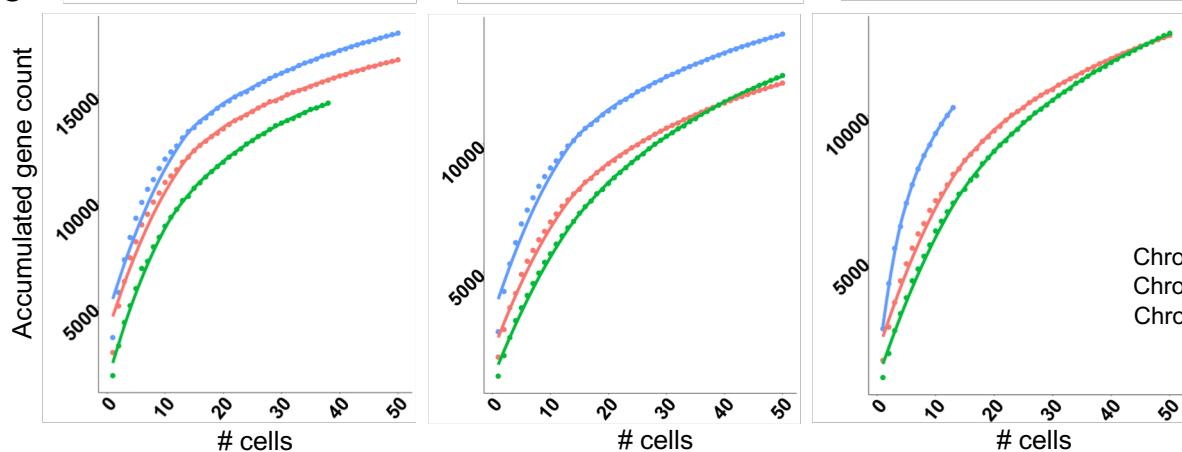
a



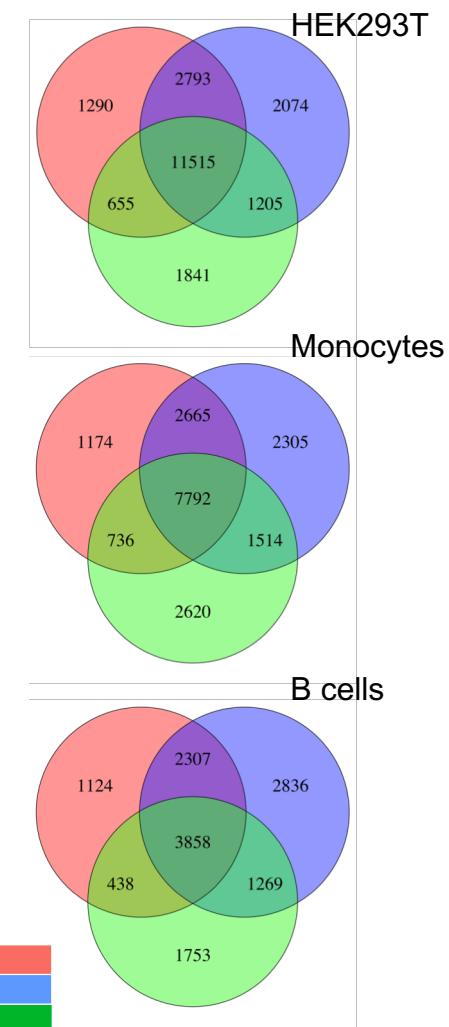
b



c



d

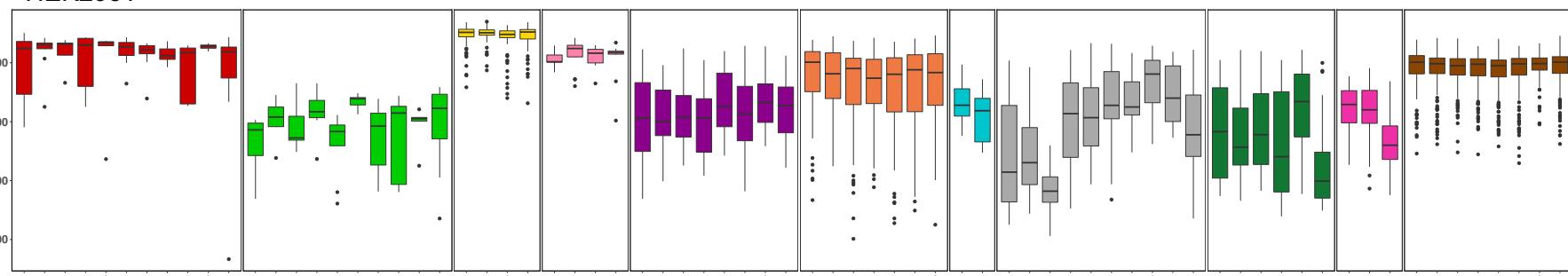


Supplementary Figure 13

a

HEK293T

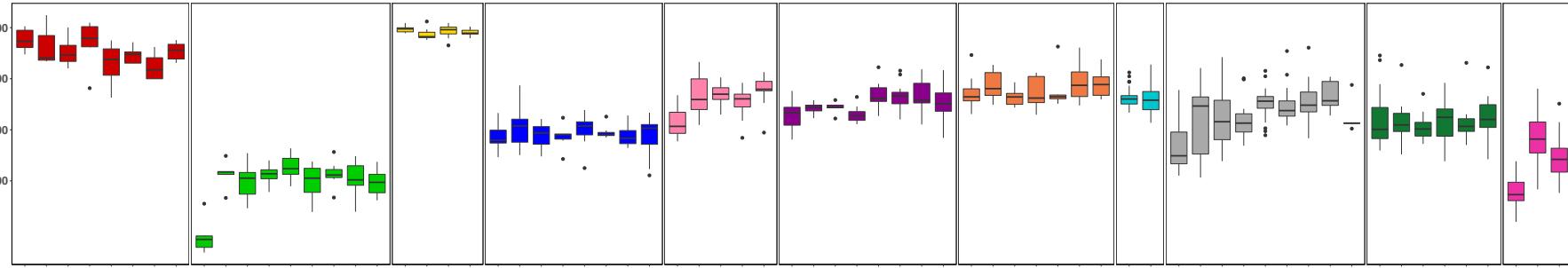
detected genes



b

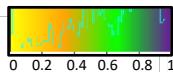
B cells

detected genes



c

HEK293T



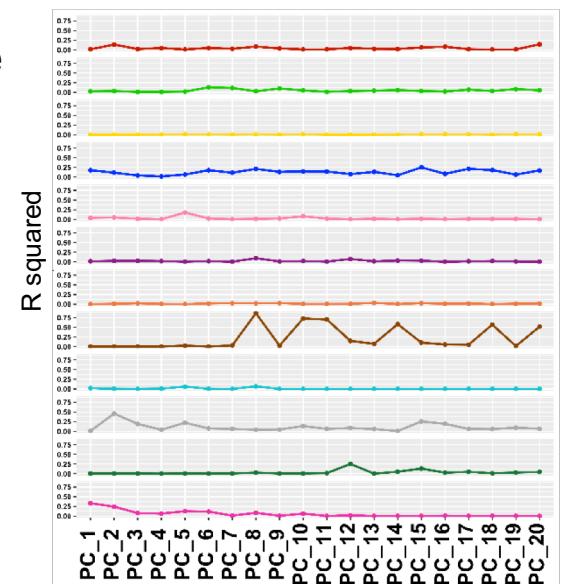
d

B cells

Protocol

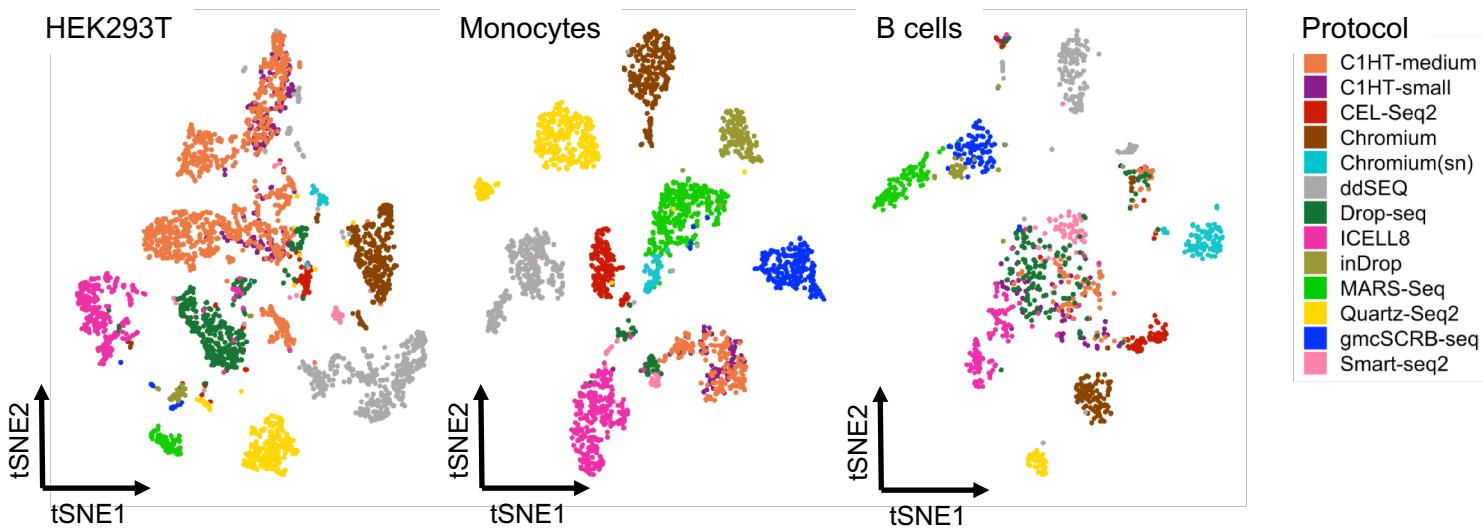
- C1HT-medium
- C1HT-small
- CEL-Seq2
- Chromium
- Chromium(sn)
- ddSEQ
- Drop-Seq
- ICELL8
- inDrop
- MARS-Seq
- Quartz-Seq2
- mcSCRB-Seq
- Smart-Seq2

e

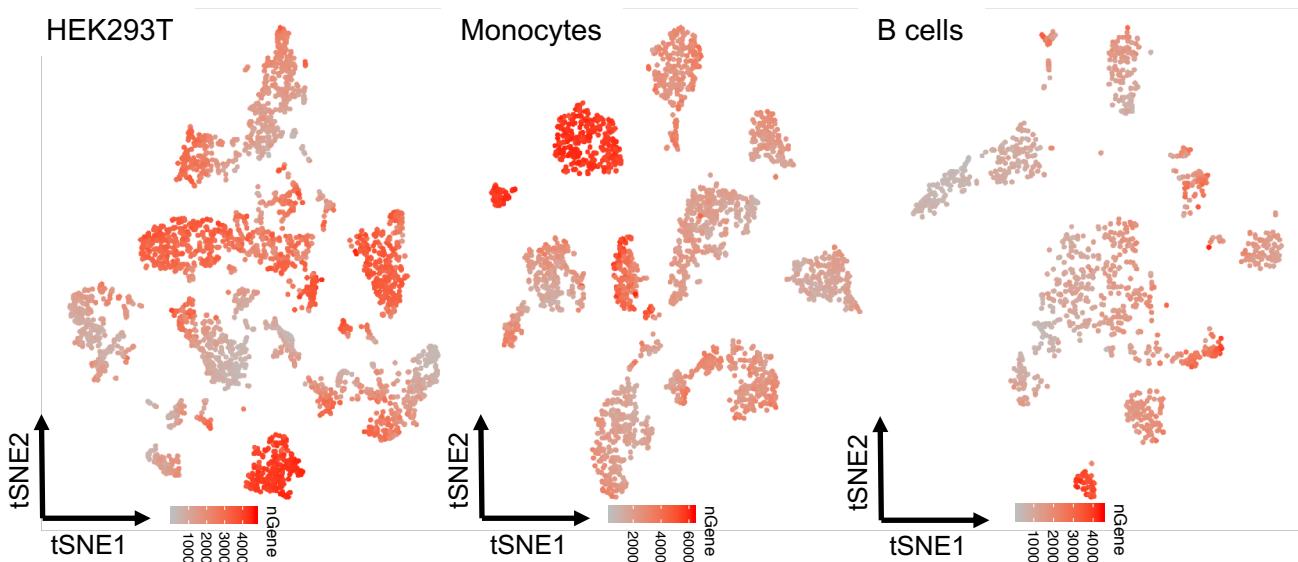


Supplementary Figure 14

a

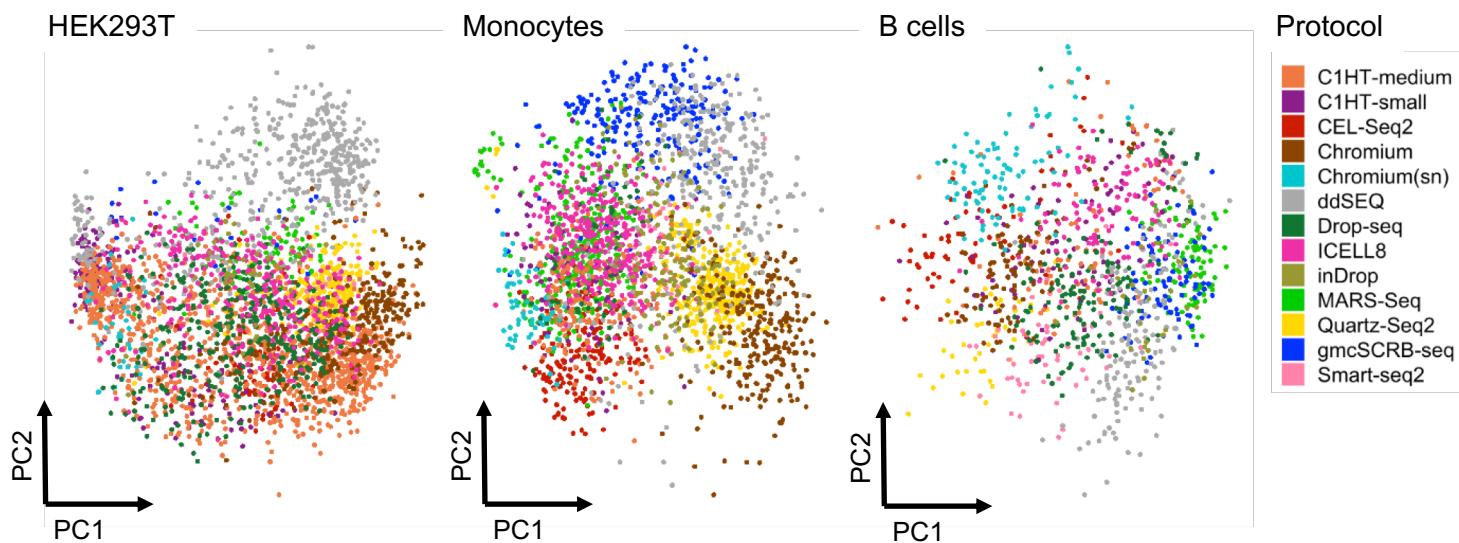


b

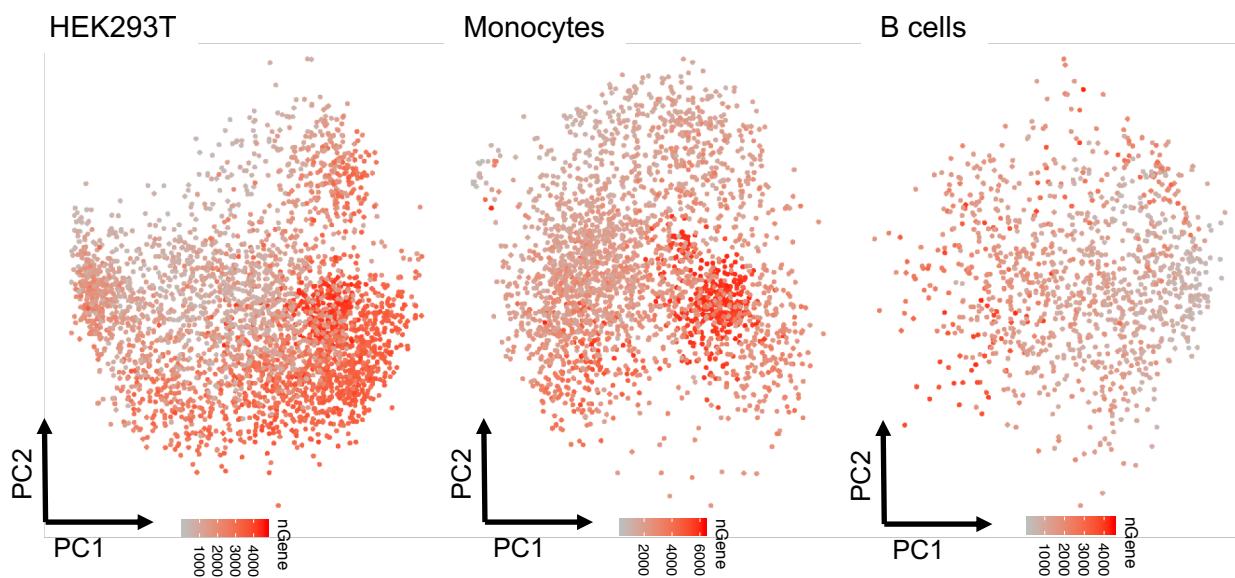


Supplementary Figure 15

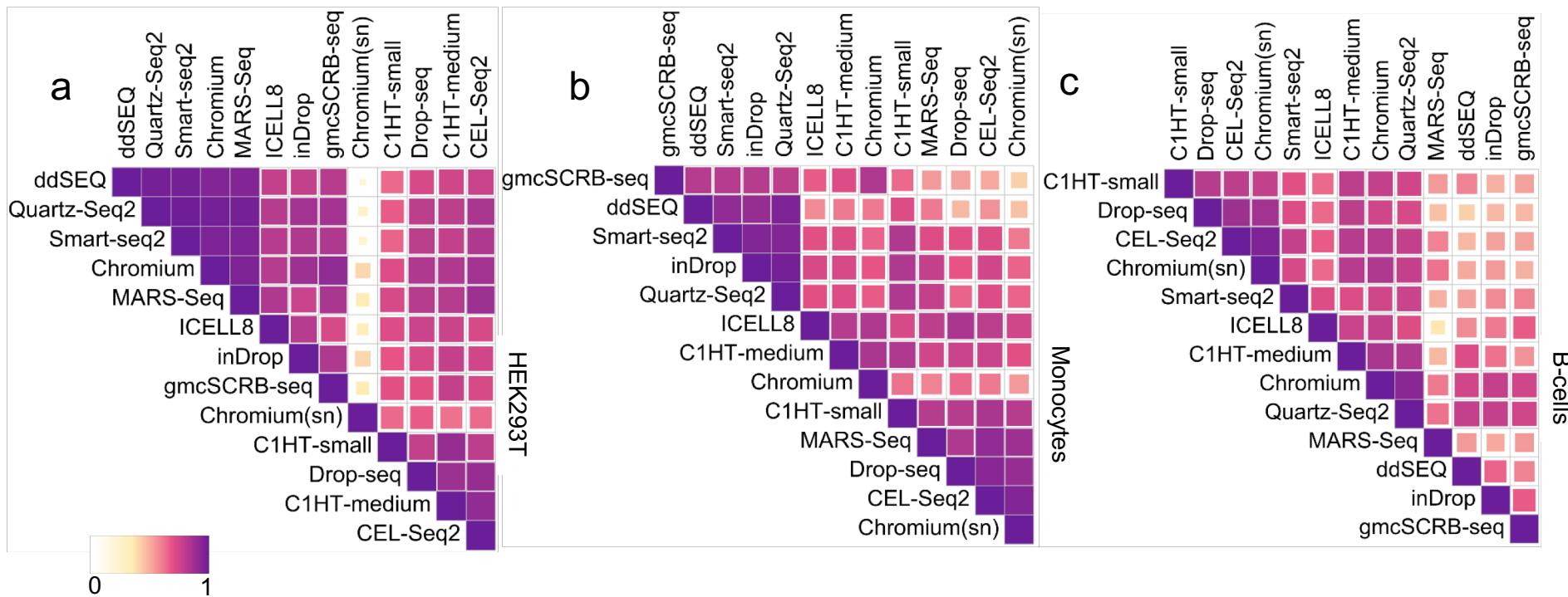
a



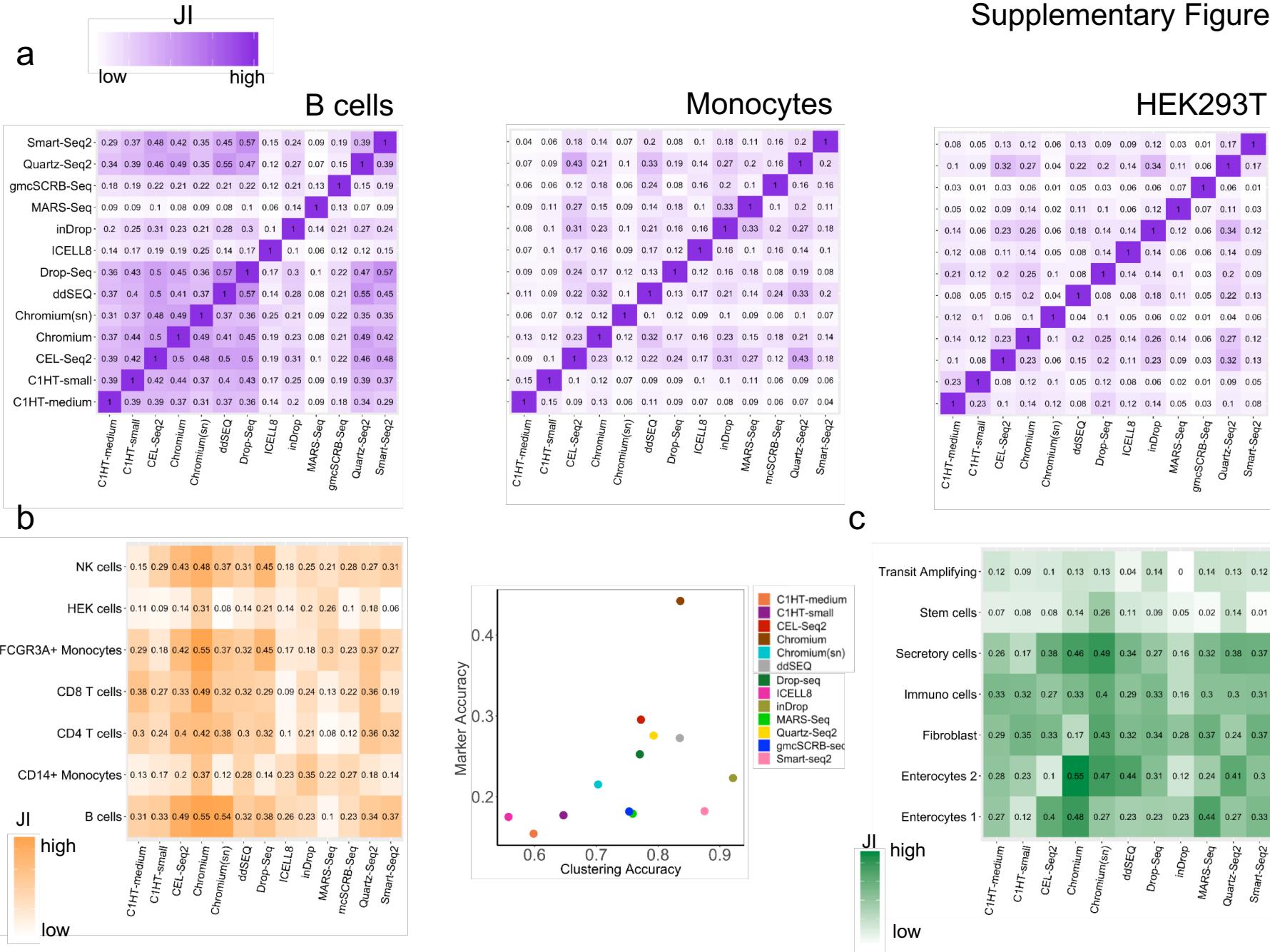
b



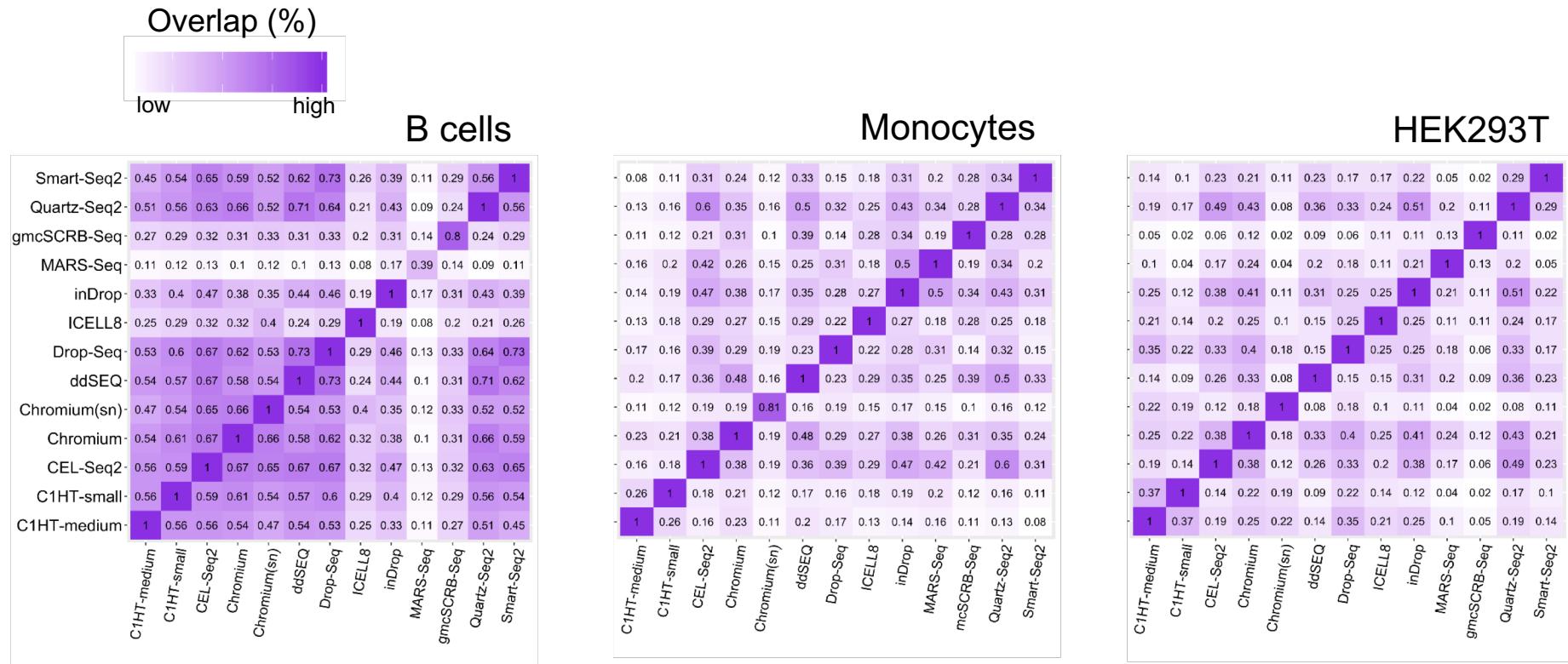
Supplementary Figure 16



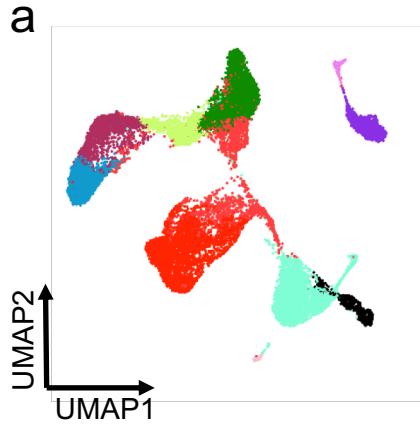
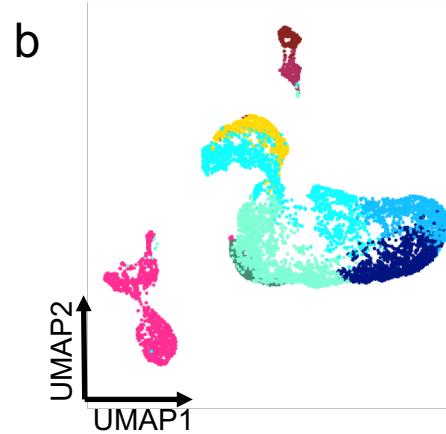
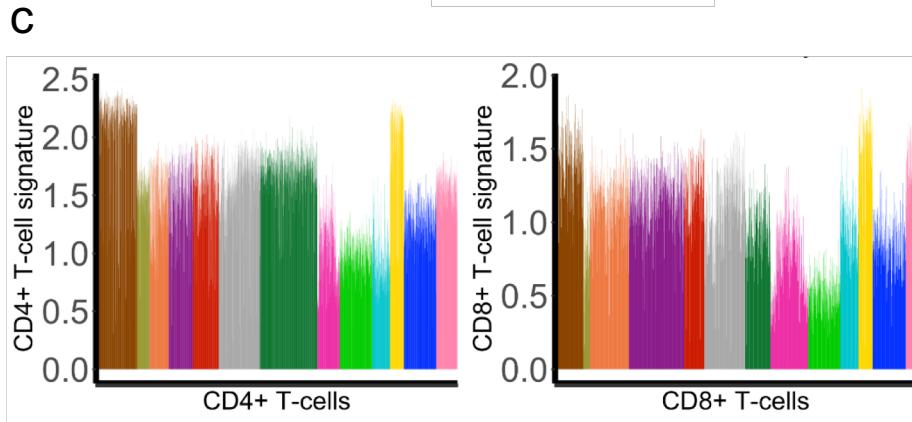
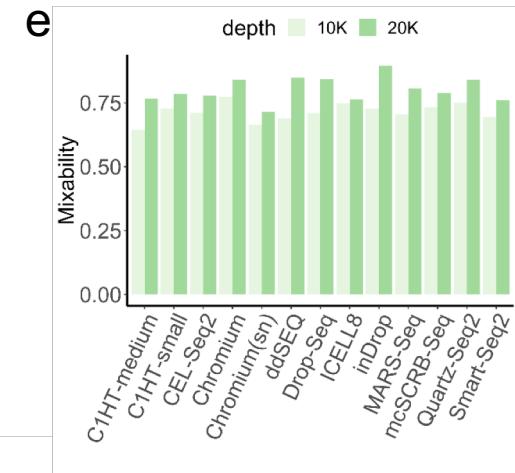
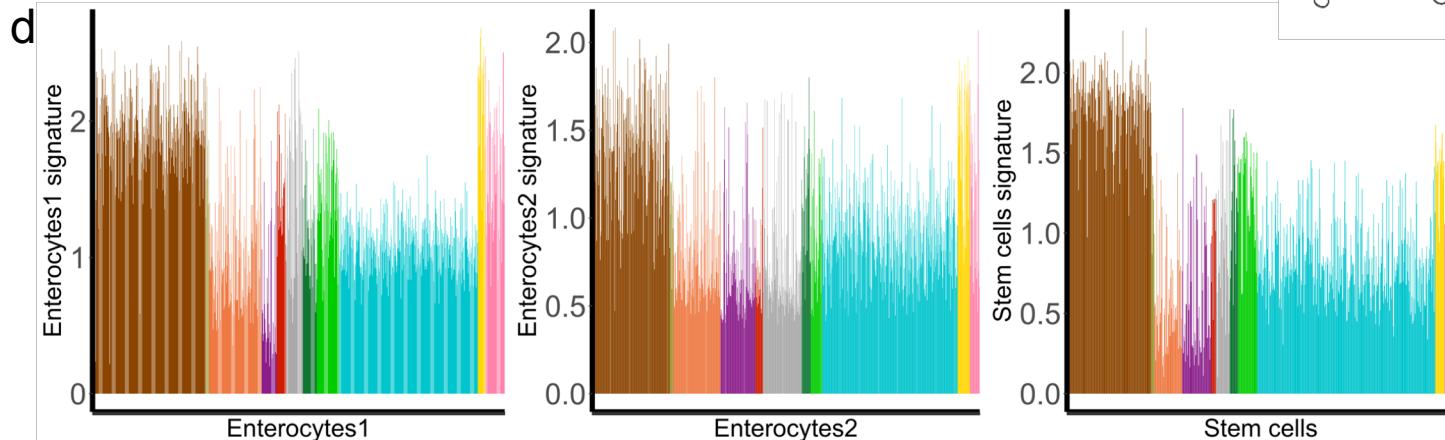
Supplementary Figure 17



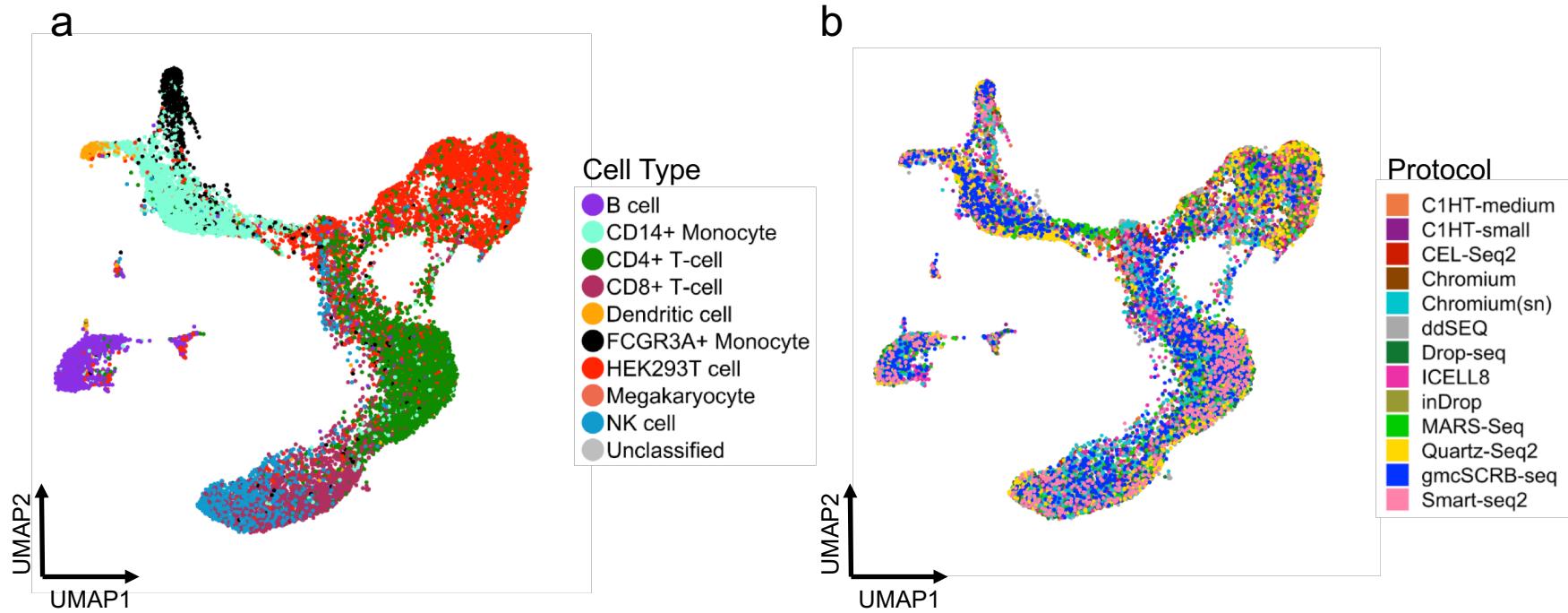
Supplementary Figure 18



Supplementary Figure 19

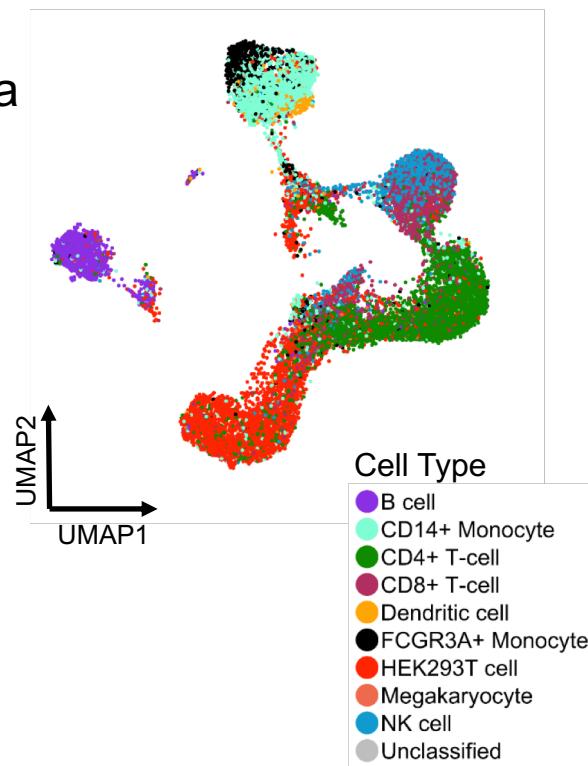
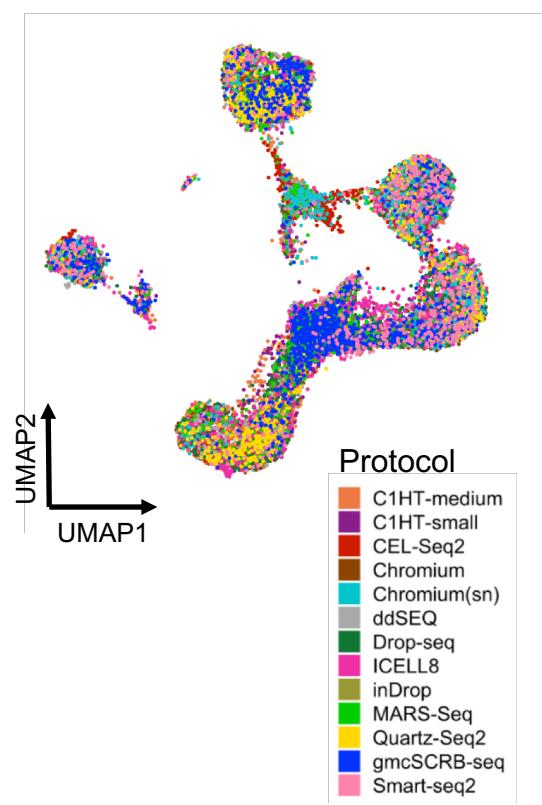


Supplementary Figure 20

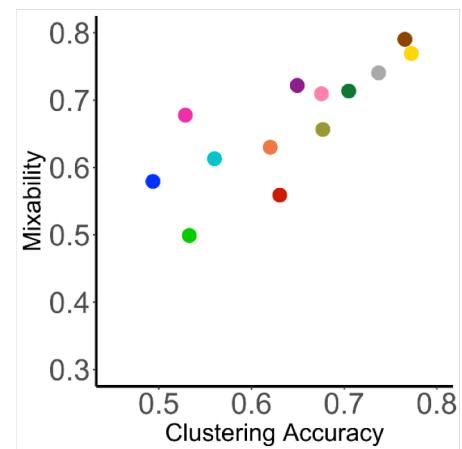


Supplementary Figure 21

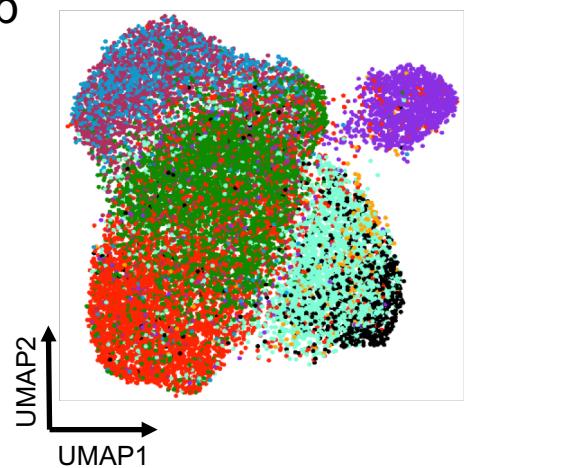
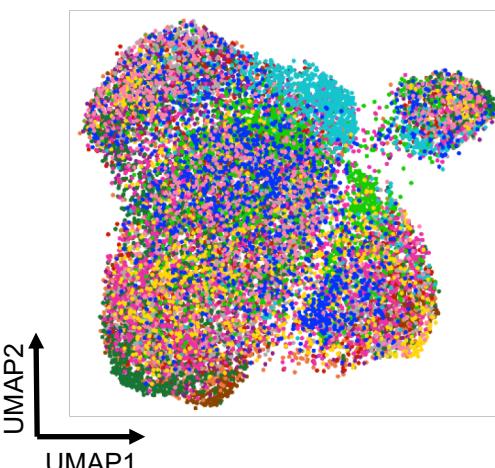
a



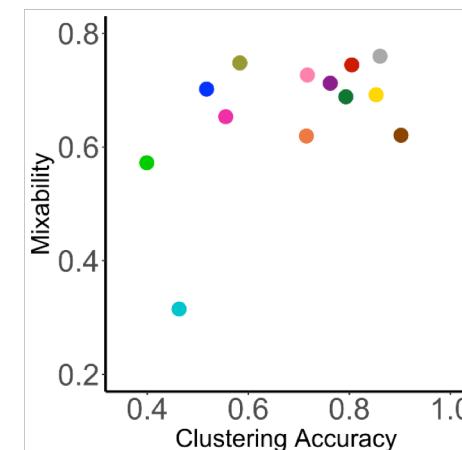
c



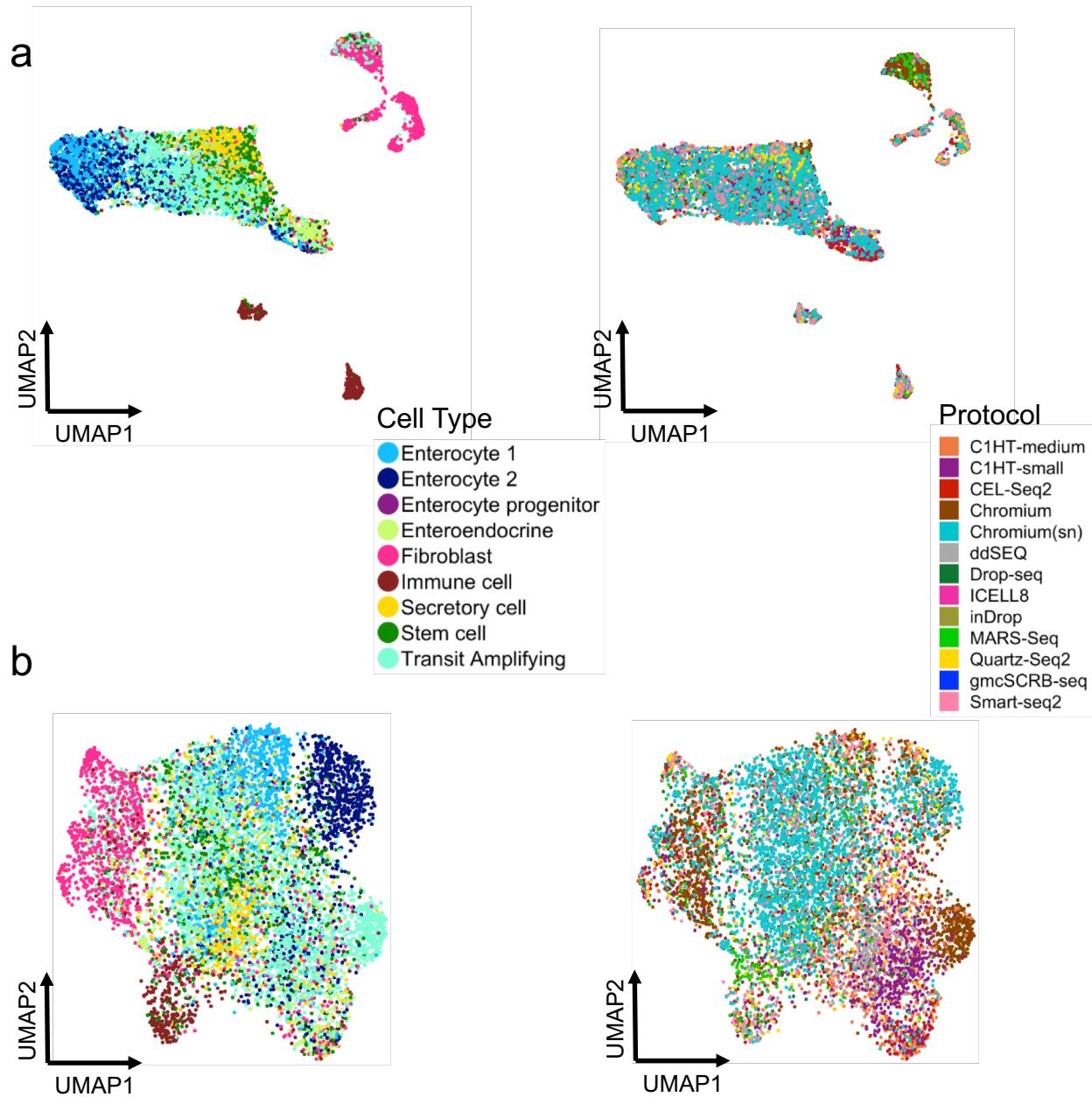
b

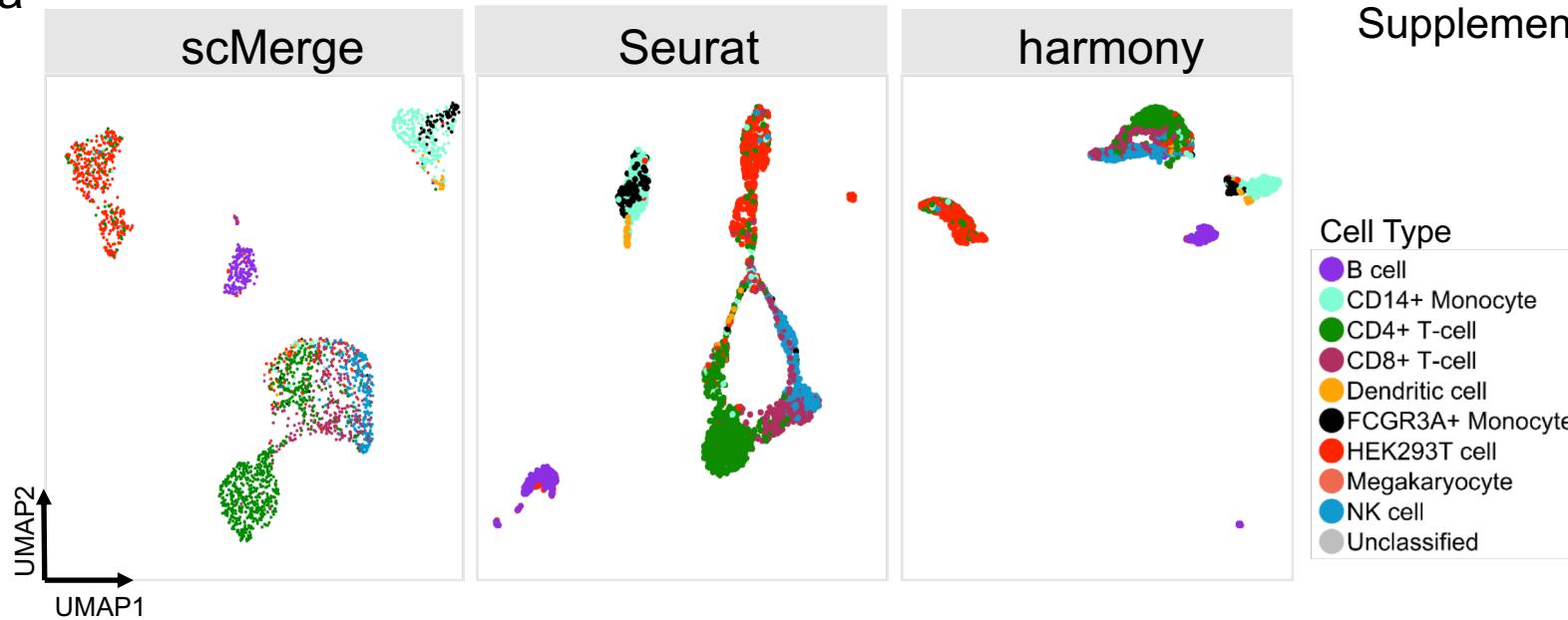
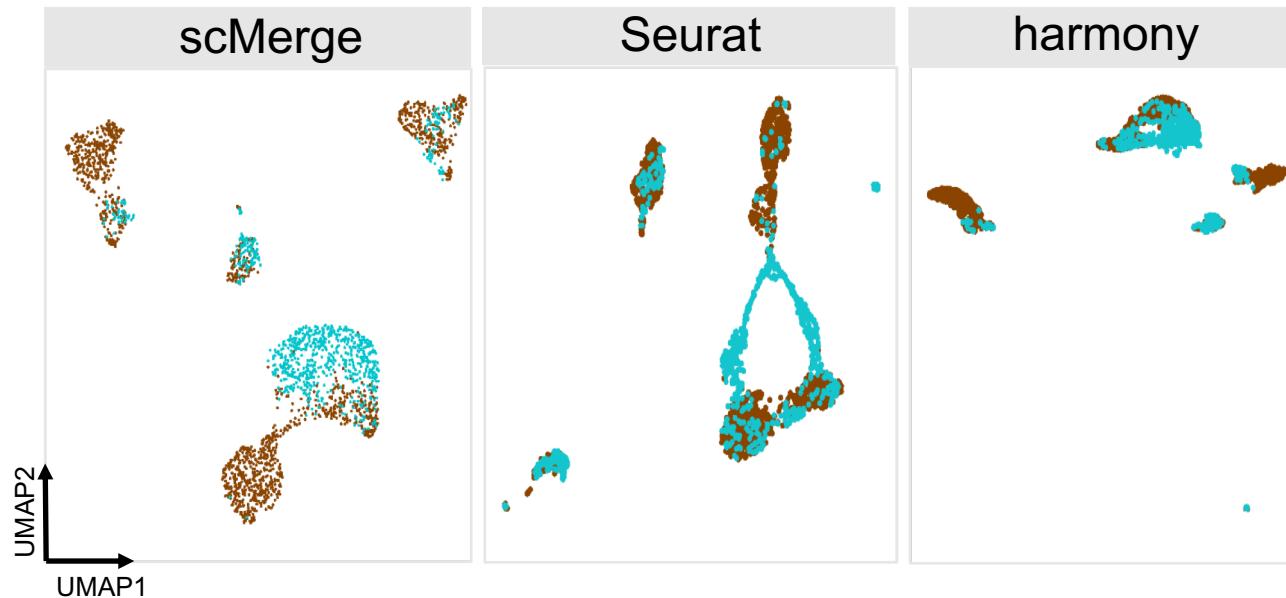
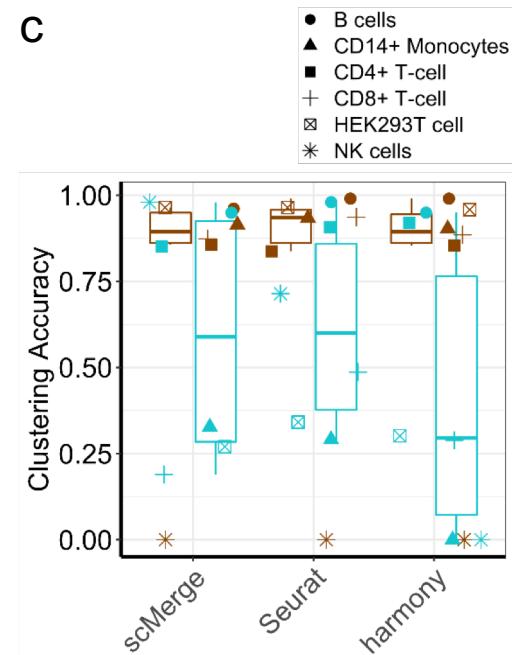


d



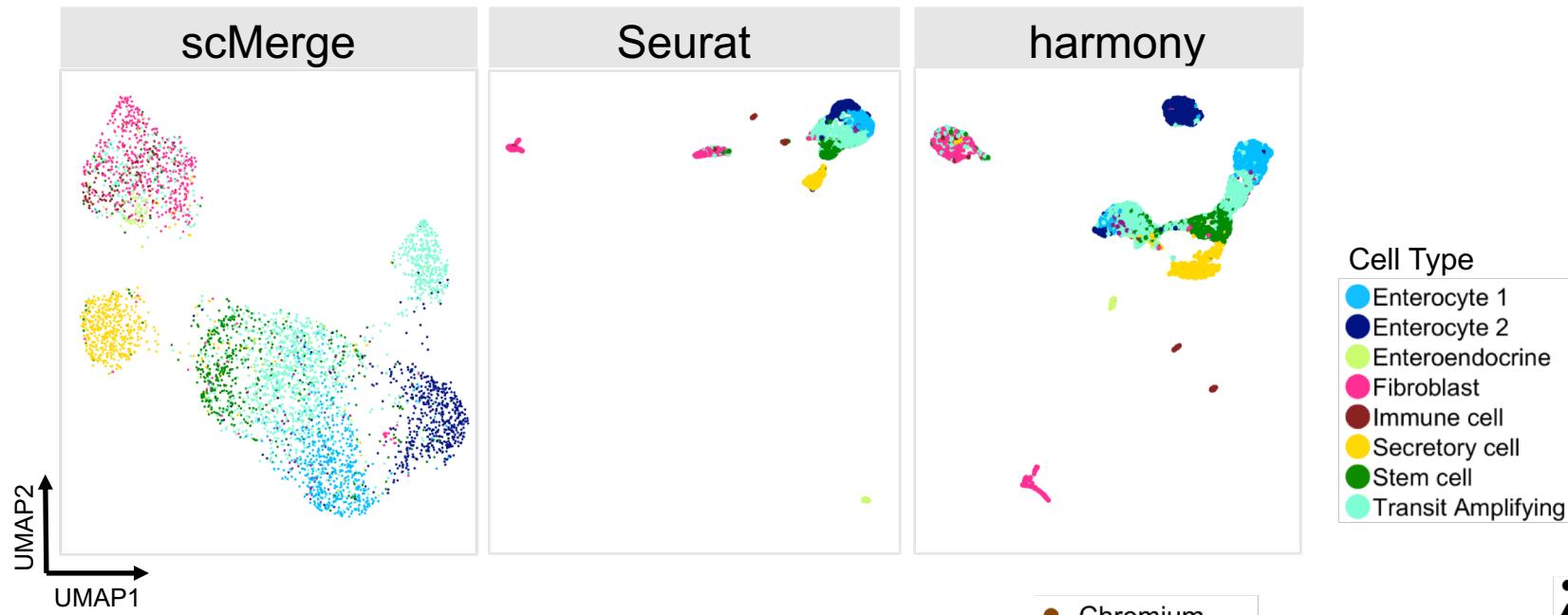
Supplementary Figure 22



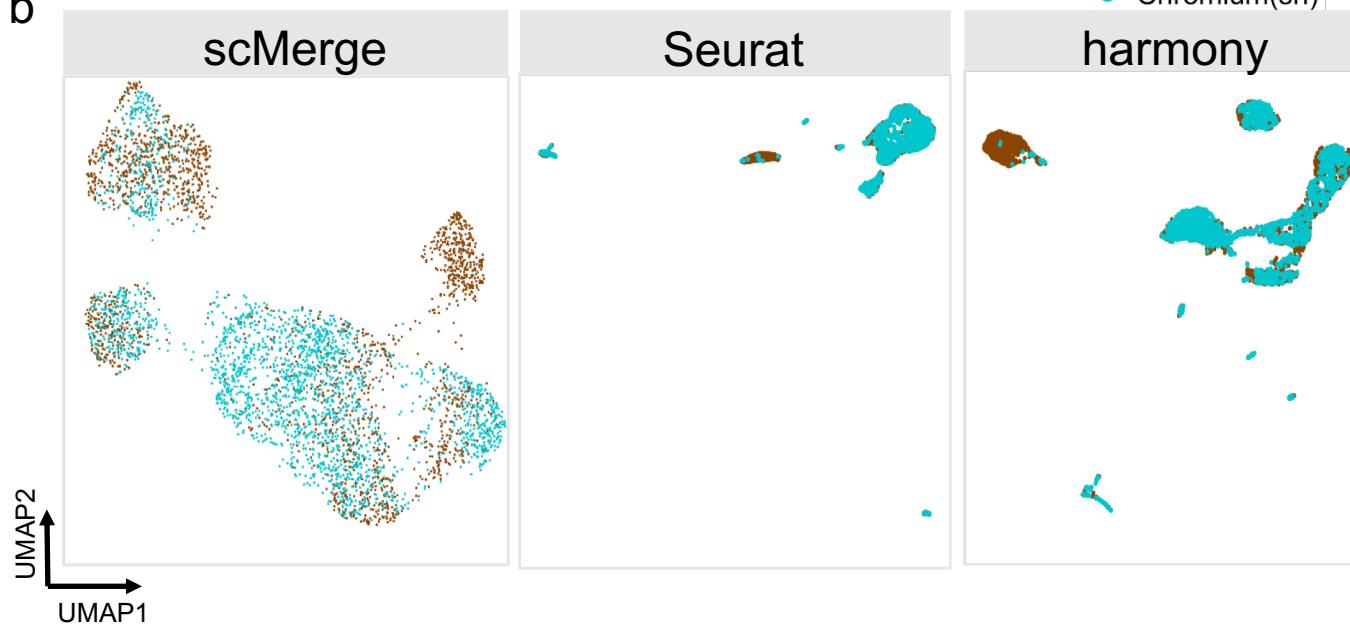
a**b****c**

a

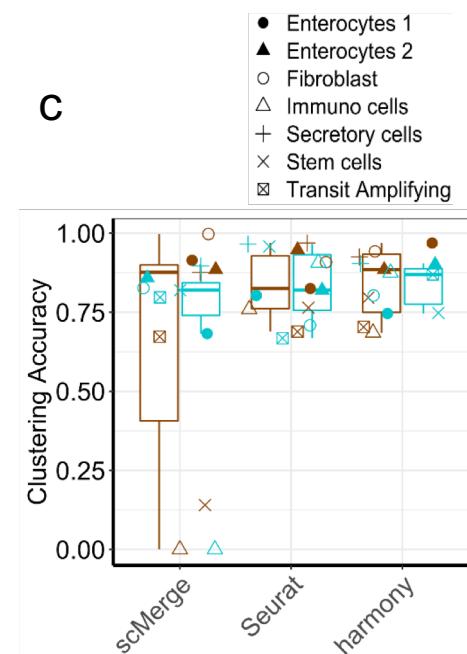
Supplementary Figure 24



b

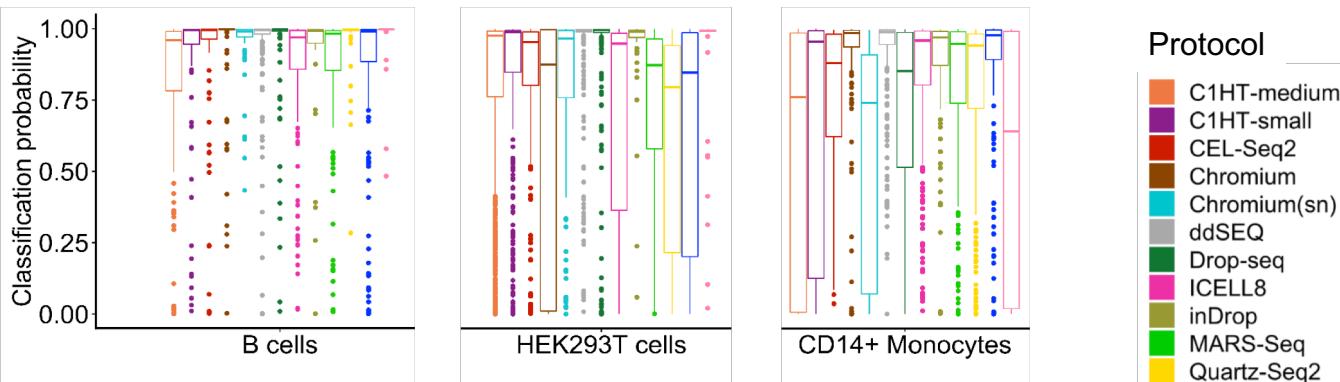


c

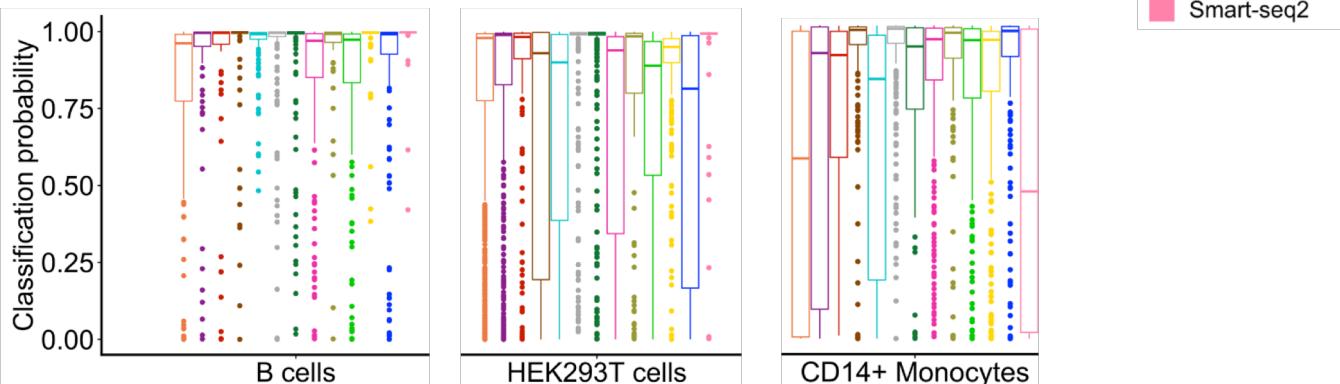


Supplementary Figure 25

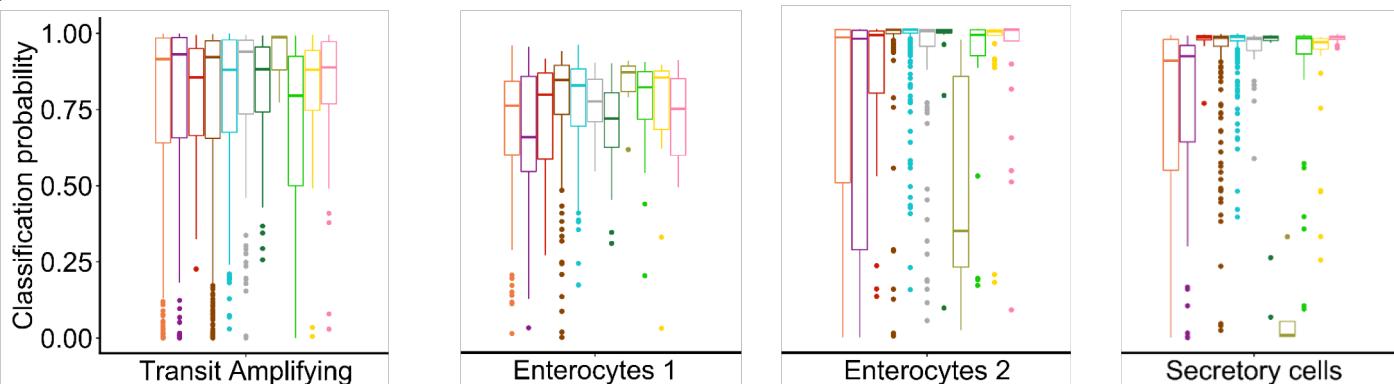
a



b

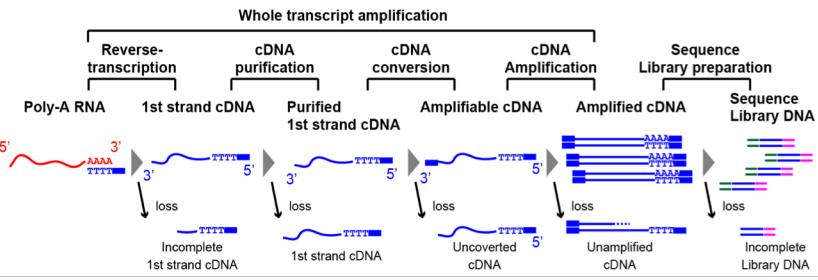


C

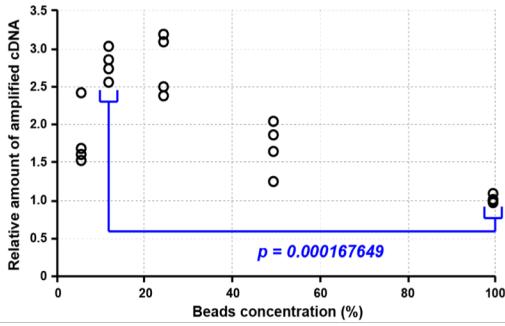


Supplementary Figure 26

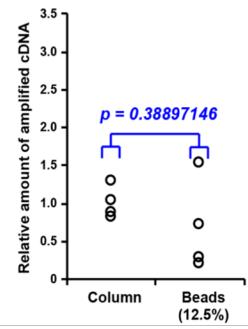
a



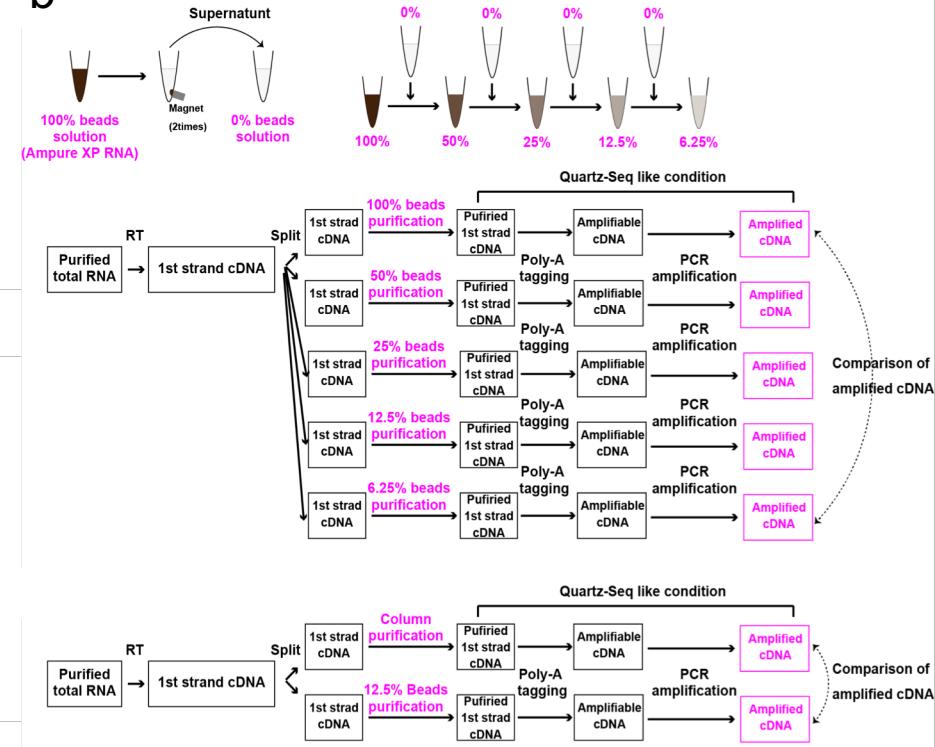
c



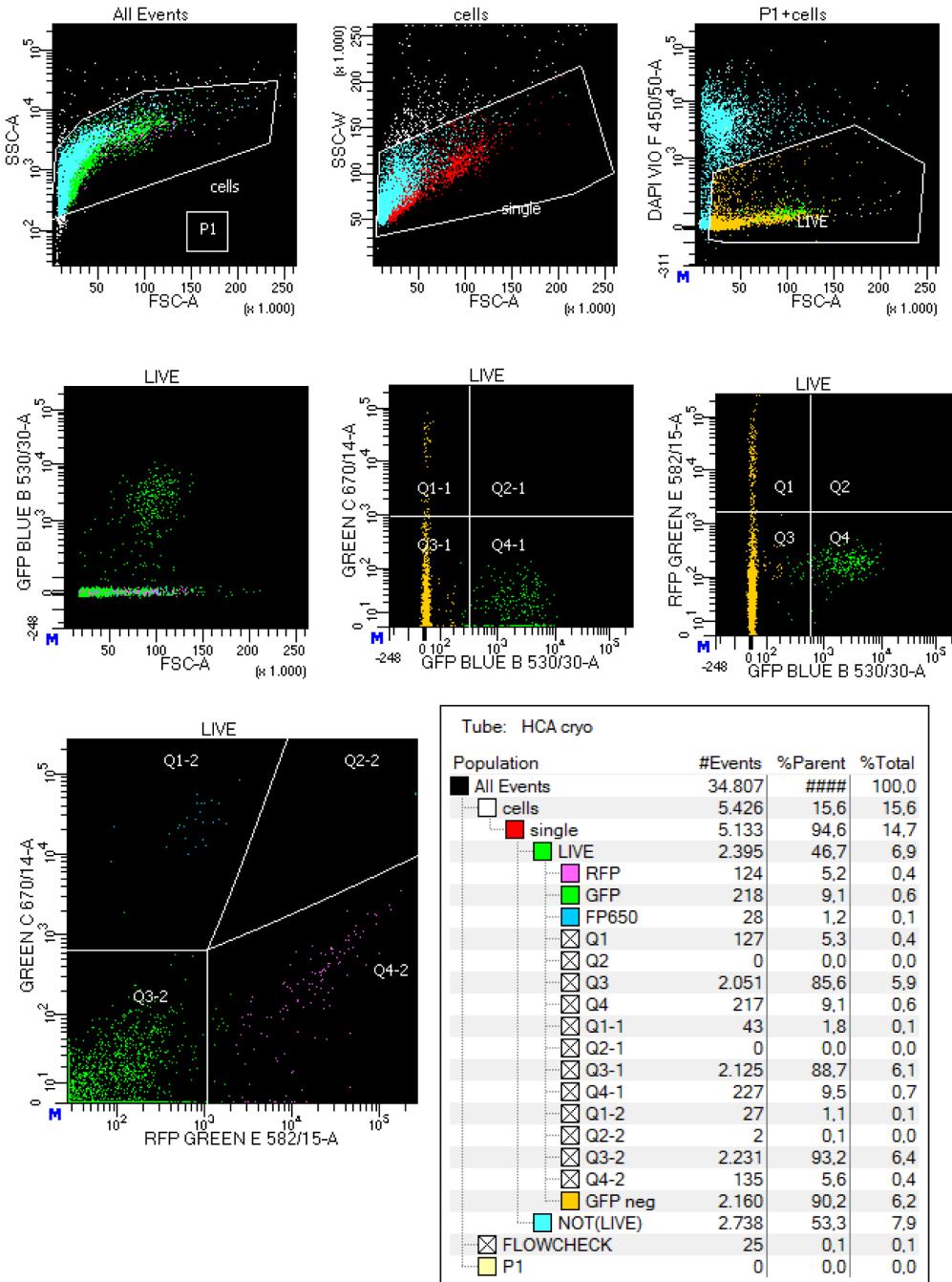
d



b

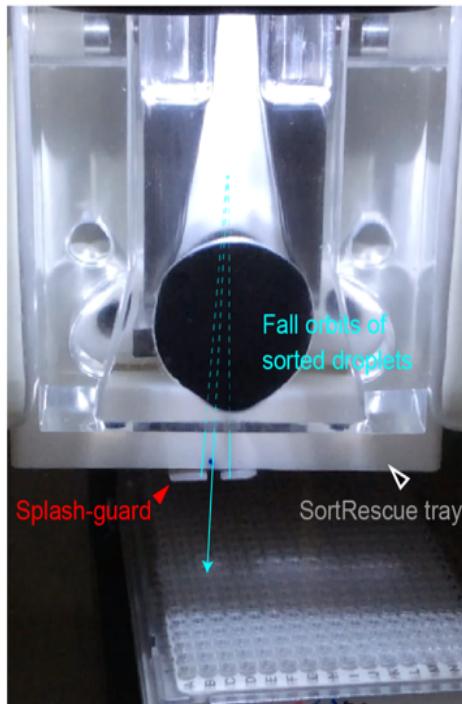


Supplementary Figure 27



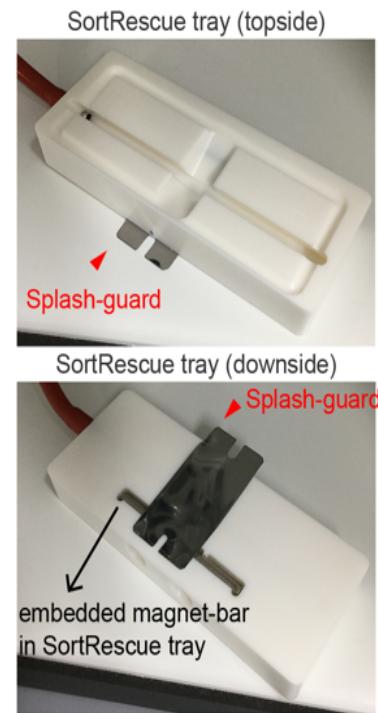
Supplementary Figure 28

a

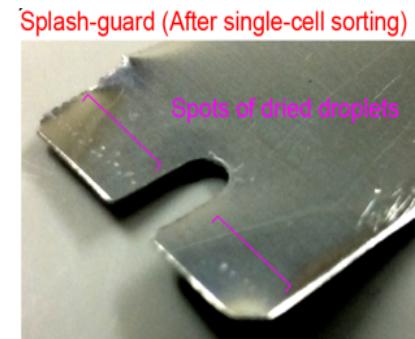


b

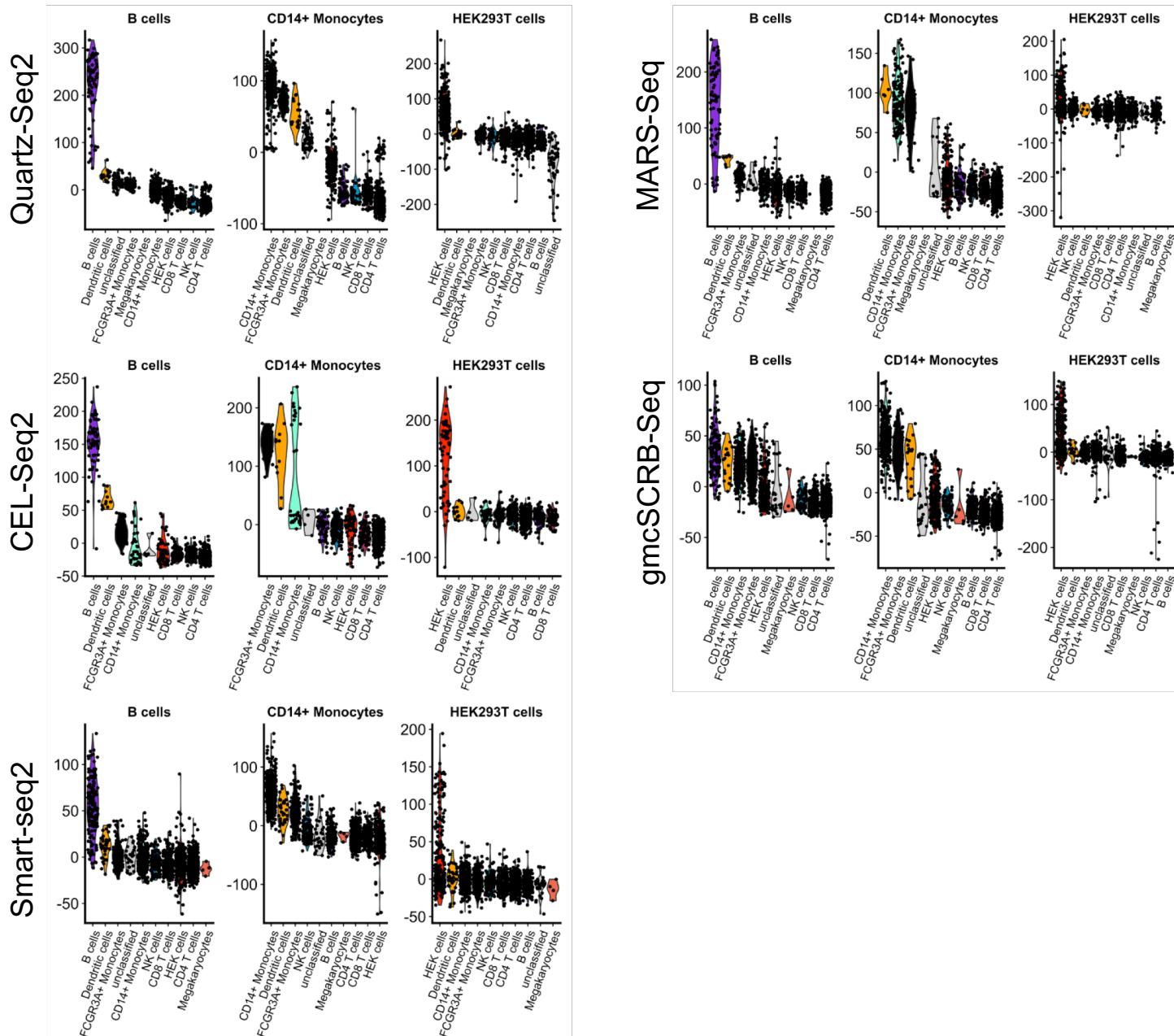
c



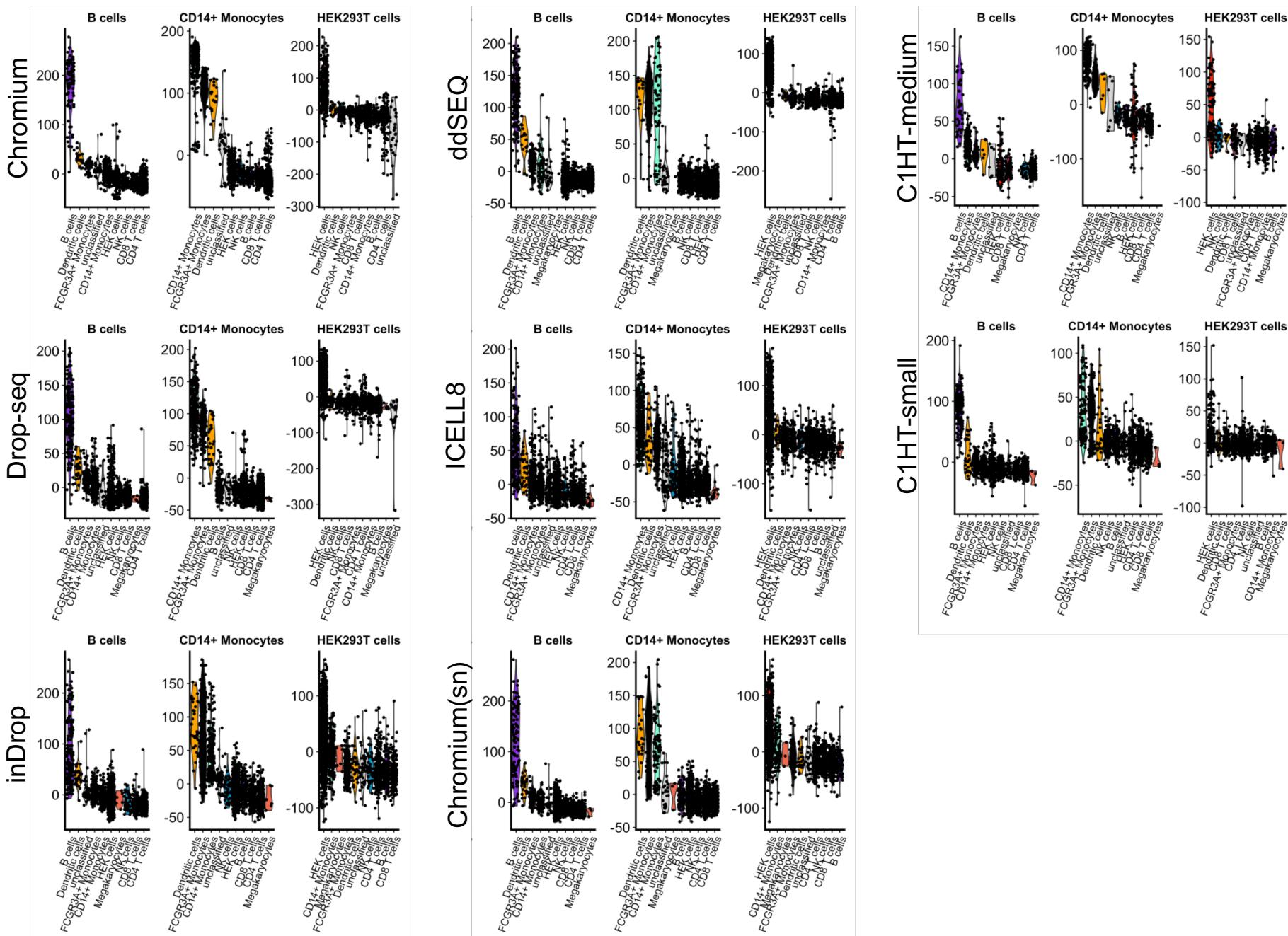
d



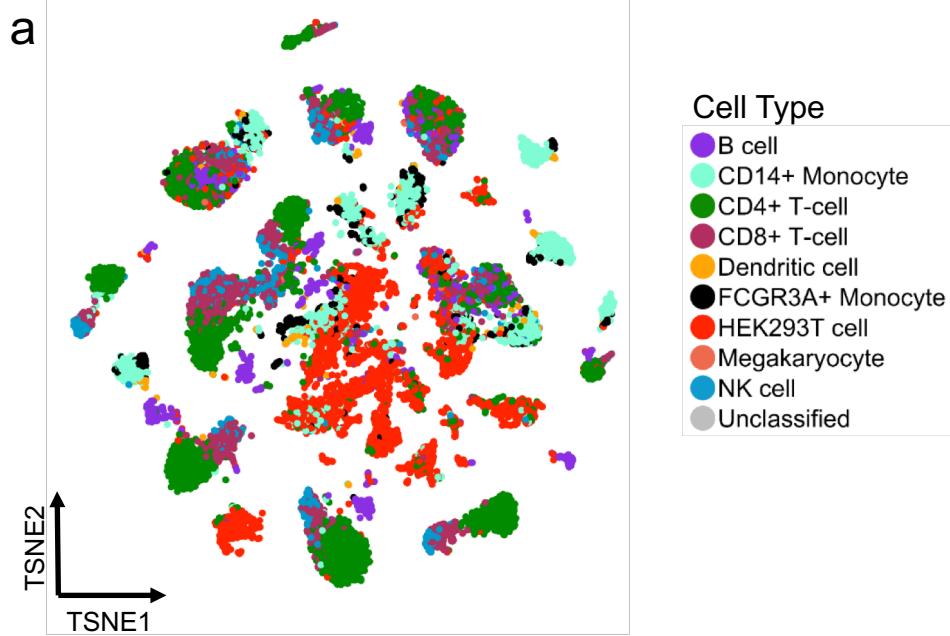
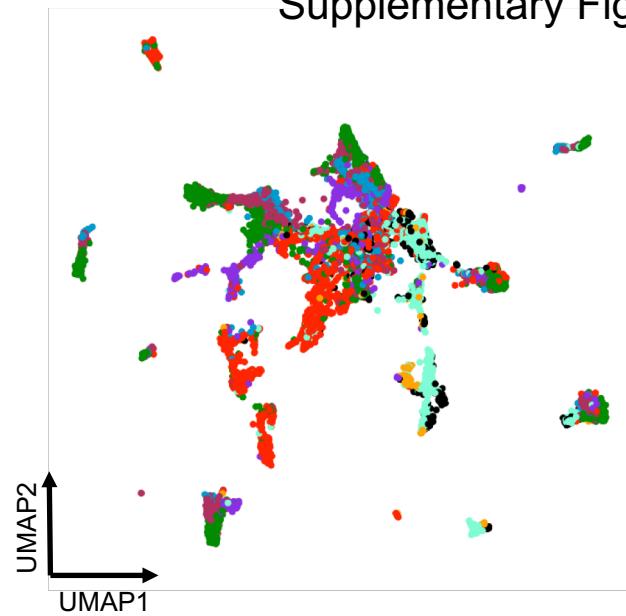
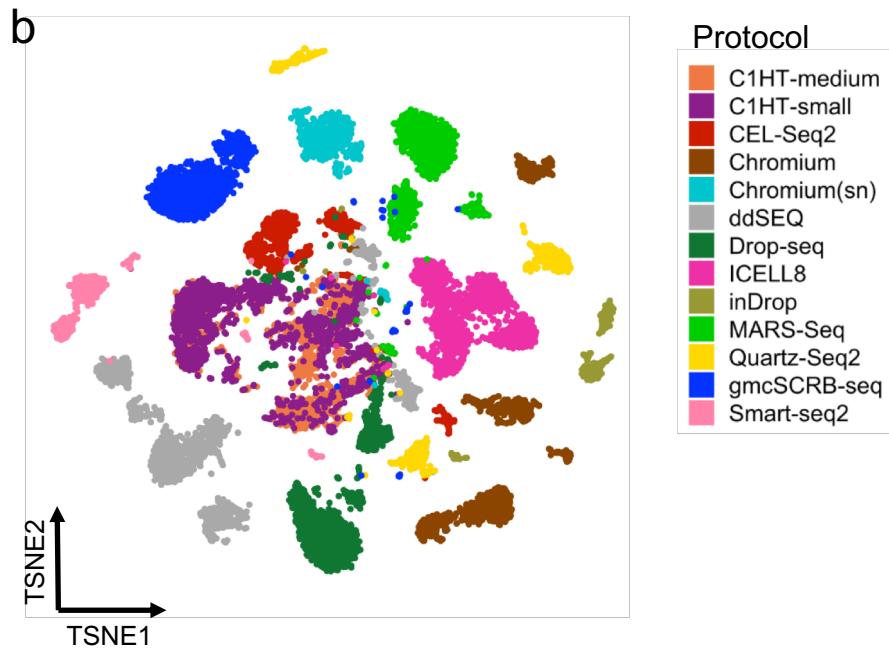
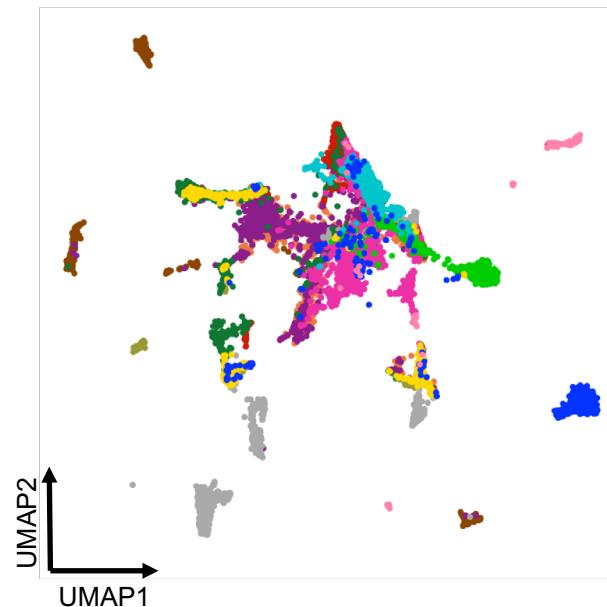
Supplementary Figure 29



Supplementary Figure 30

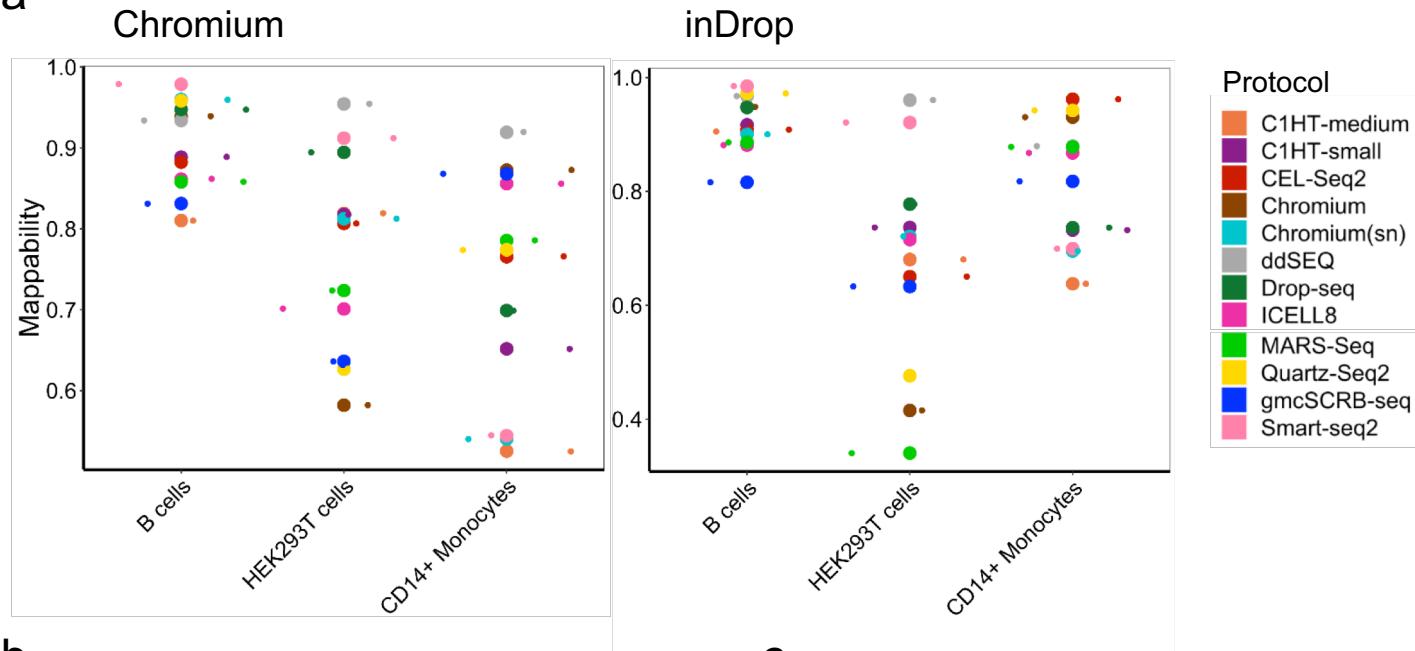


Supplementary Figure 31

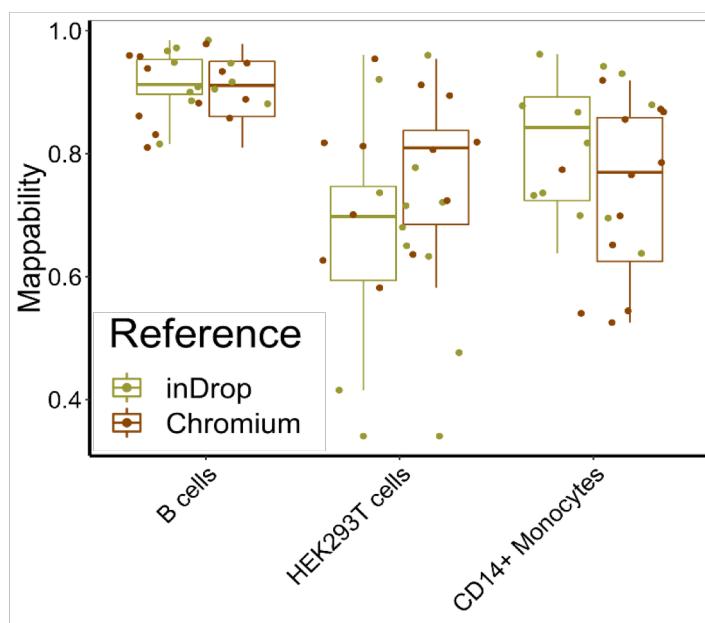


Supplementary Figure 32

a



b



c

