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 59 

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the 60 

transcriptome of individual cells in a sample. The latest protocols are scalable to thousands of 61 

cells and are being used to compile cell atlases of tissues, organs and organisms. However, the 62 

protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, 63 

and their relative advantages for different applications are unclear. Here, we generated 64 

benchmark datasets to systematically evaluate protocols in terms of their power to 65 

comprehensively describe cell types and states. We performed a multi-center study comparing 66 

13 commonly used single-cell and single-nucleus RNA-seq protocols applied to a 67 

heterogeneous reference sample resource. Comparative analysis revealed marked differences in 68 

protocol performance. The protocols differed in library complexity and their ability to detect 69 

cell type marker, impacting on their predictive value and suitability for integration into 70 

reference cell atlases.  These results provide guidance both for individual researchers and for 71 

consortia projects such as the Human Cell Atlas. 72 

  73 

  74 

  75 



 76 

Single-cell genomics provides an unprecedented view of the cellular makeup of complex and 77 

dynamic systems. Single-cell transcriptomics approaches in particular have led the 78 

technological advances that allow unbiased charting of cell phenotypes1. The latest 79 

improvements in scRNA-seq allow these technologies to scale to thousands of cells per 80 

experiment, providing comprehensive profiling of tissue composition2,3. This has led to the 81 

identification of novel cell types4–6 and the fine-grained description of cell plasticity in dynamic 82 

systems, such as development7,8. Recent large-scale efforts, such as the Human Cell Atlas 83 

(HCA) project9, are attempting to produce cellular maps of entire cell lineages, organs, and 84 

organisms10,11 by conducting phenotyping at the single-cell level. The HCA project aims to 85 

advance our understanding of tissue function and to serve as a reference for defining variation in 86 

human health and disease. In addition to methods that capture the spatial organization of 87 

tissues12,13,  the main approach it is using is scRNA-seq analysis of dissociated cells. Therefore, 88 

tissues are disaggregated and individual cells captured by cell sorting or using microfluidic 89 

systems1. In sequential processing steps, cells are lysed, the RNA is reverse transcribed to 90 

cDNA, amplified, and processed to sequencing-ready libraries.  91 

 92 

Continuous technological development has improved the scale, accuracy and sensitivity 93 

of scRNA-seq methods, and now allows us to create tailored experimental designs by selecting 94 

from a plethora of different scRNA-seq protocols. However, there are marked differences 95 

between these methods, and it is not clear which protocols are best for different applications. 96 

For large-scale consortium projects, experience has shown that neglecting benchmarking, 97 

standardization and quality control at the beginning can lead to major problems later on in the 98 

analysis of the results14. Thus, success depends critically on implementing a high, common 99 

standard. A comprehensive comparison of available scRNA-seq protocols will benefit both 100 

large- and small-scale applications of scRNA-seq. 101 

 102 



The available scRNA-seq protocols vary in the efficiency of RNA molecule capture, 103 

which results in differences in sequencing library complexity and in the sensitivity of the 104 

method to identify transcripts and genes15–17. There has been no systematic testing of how their 105 

performance varies between cell types, and how this affects the resolution of cell phenotyping in 106 

complex samples. In this paper, we extend previous efforts to compare the molecule capture 107 

efficiency of scRNA-seq protocols15,16 by systematically evaluating the capability of these 108 

techniques to describe tissue complexity and their suitability for creating a cell atlas. We 109 

performed a multi-center benchmarking study to compare scRNA-seq protocols using a unified 110 

reference sample resource. Our reference sample contained: i) a high degree of cell type 111 

heterogeneity with various frequencies, ii) closely related subpopulations with subtle differences 112 

in gene expression, iii) a defined cell composition with trackable markers, and iv) cells from 113 

different species. By analyzing human peripheral blood and mouse colon tissue, we have 114 

covered a broad range of cell types and states from cells in suspension and solid tissues, in order 115 

to represent common scenarios in cell atlas projects. We have also added spike-in cell lines to 116 

allow us to assess batch effects, and have combined different species to pool samples into a 117 

single reference. We performed a comprehensive comparative analysis of 13 different scRNA-118 

seq protocols, representing the most commonly used methods. We applied a wide range of 119 

different quality control metrics to evaluate datasets from different perspectives, and to test their 120 

suitability for producing a reproducible, integrative and predictive reference cell atlas. 121 

We observed striking differences between protocols in converting RNA molecules into 122 

sequencing libraries. Varying library complexities affected the protocol’s power to quantify 123 

gene expression levels and to identify cell type markers, a trend consistently observed across 124 

cell and tissue types. This critically impacted on the resolution of tissue profiles and the 125 

predictive value of the datasets. Protocols further differed in their capacity to be integrated into 126 

reference tissue atlases and, thus, their suitability for consortia-driven projects with flexible 127 

production designs.       128 

 129 

 130 



Results 131 

 132 

Reference sample and experimental design. 133 

We benchmarked current scRNA-seq protocols to inform the methodology selection process of 134 

cell atlas projects. Ideally, methods should a) be accurate and free of technical biases, b) be 135 

applicable across distinct cell properties, c) fully disclose tissue heterogeneity, including subtle 136 

differences in cell states, d) produce reproducible expression profiles, e) comprehensively detect 137 

population markers, f) be integratable with other methods, and g) have predictive value with 138 

cells mapping confidently to a reference atlas. 139 

For a systematic comparison of protocols, we designed a reference sample containing human 140 

peripheral blood mononuclear cells (PBMC) and mouse colon, which are tissue types with 141 

highly heterogeneous cell populations, as determined by previous single-cell sequencing 142 

studies18,19. In addition to the well-defined cell types, the tissues contain cells in transition states 143 

(e.g. colon transit amplifying or enterocyte progenitor cells) that show transcriptional 144 

differences during their differentiation trajectory20. The reference sample also included a wide 145 

range of cell sizes (e.g. B-cells: ~7 µm; HEK293: ~15 µm) and RNA content, which are key 146 

parameters that affect performance in cell capture and library preparation. Interrogating tissues 147 

from different species allowed us to pool a large variety of cell types in a single reference 148 

sample in order to maximize complexity while minimizing variability introduced during sample 149 

preparation. In addition to the intra-tissue complexity, the fluorescence-labeled spiked-in cell 150 

lines allowed us to monitor cell type composition during sample processing, and to identify 151 

batch effects and biases introduced during cell capture and library preparation.  152 

Specifically, the reference sample contained (estimated % viable cells): PBMC (60%, human), 153 

colon (30%, mouse), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP 154 

labelled mouse cells) and MDCK (1%, TurboFP650 labelled dog cells) (Figure 1). To reduce 155 

variability due to technical effects during library preparation, the reference sample was prepared 156 

in a single batch, distributed into aliquots of 250,000 cells, and cryopreserved. We have 157 

previously shown that cryopreservation is suitable for single-cell transcriptomics studies of 158 



these tissue types21. For cell capture and library preparation, the thawed samples underwent 159 

FACS separation to remove damaged cells and physical doublets (see below for detailed 160 

analysis of cell viability sorting). 161 

  162 

A reference dataset for benchmarking experimental and computational protocols. 163 

To obtain sufficient sensitivity to capture low-frequency cell types and subtle differences in cell 164 

state, we profiled ~3,000 cells with each scRNA-seq protocol. In total, we produced datasets for 165 

5 microtiter plate-based methods and 7 microfluidics systems, including cell-capture 166 

technologies based on droplets (4), nanowells (1) and integrated fluidic circuits (IFC), to capture 167 

small (1) and medium (1) sized cells (Figure 1 and Supplementary Table 1). We also included 168 

experiments to produce single-nucleus RNA sequencing (snRNA-seq) libraries (1), and an 169 

experimental variant that profiled >50,000 cells to produce a reference of our complex sample. 170 

The unified sample resource and standardized sample preparation (Online Methods) were 171 

designed to largely eliminate sampling effects, and allow the systematic comparison of scRNA-172 

seq protocol performance. 173 

To compare the different protocols, and to create a resource for the benchmarking and 174 

development of computational tools (e.g. batch effect correction, data integration and 175 

annotation), all datasets were processed in a uniform manner. Therefore, we designed a 176 

streamlined primary data processing pipeline tailored to the peculiarities of the reference sample 177 

(Online Methods). Briefly, raw sequencing reads were mapped to a joint human, mouse and 178 

canine reference genome and separately to their respective references to produce gene count 179 

matrices for subsequent analysis (GSE133549). Overall, we detected human, mouse and canine 180 

cell numbers consistent with the composition design of the reference sample (Figure 1). 181 

However, some protocols varied markedly from the expected frequencies in human (34-95%), 182 

mouse (4-66%) and canine (0-9%) cells. Although the reference sample was prepared in a 183 

standardized way, we cannot entirely exclude the introduction of composition variability during 184 

sample handling. Thus, the subsequent evaluation of protocol performance was performed on 185 

cell types and states common to all protocols. 186 



Notably, we observed a higher fraction of mouse colon cells in unsorted (Chromium) and the 187 

single-nucleus sequencing dataset (Chromium (sn)). This likely results from damaging the more 188 

fragile colon cells during sample preparation, resulting in proportionally fewer colon cells when 189 

selecting for cell viability. To test if this composition bias in scRNA-seq can be avoided by 190 

skipping viability selection, we generated matched datasets selecting or not for intact cells. 191 

After quality control the detection of mouse colon cells increased proportionally without 192 

viability selection (51% vs 19%), with good-quality cells showing comparable library 193 

complexity in both libraries (e.g. numbers of detected genes; Supplementary Figs. 1 and 2). 194 

However, considerably more cells were removed during quality filtering (44% vs 15%), and this 195 

is a source of unwanted sequencing costs that must be taken into account, especially for tissues 196 

with high cell damage. Consequently, replacing viability staining with thorough in silico quality 197 

filtering in cell atlas experiments might better conserve the composition of the original tissue, 198 

but result in higher sequencing costs. 199 

The canine cells, spiked-in at a low concentration, were detected by all protocols (1-9%) except 200 

gmcSCRB-seq. Furthermore, the different methods showed notable differences in mapping 201 

statistics between different genomic locations (Figure 1). As expected, due to the presence of 202 

unprocessed RNA in the nucleus, the snRNA-seq experiment detected the highest proportion of 203 

introns, although scRNA-seq protocols also showed high frequencies of intronic and intergenic 204 

mappings. The increased detection of unprocessed transcripts in CEL-seq2 may be due to a 205 

freezing step (-80ºC) after cell isolation and subsequent denaturation at high temperatures 206 

(95ºC), which could favor the accessibility of nuclear and chromatin-bound RNA molecules. 207 

  208 

Molecule capture efficiency and library complexity 209 

We produced reference datasets by analyzing 30,807 human and 19,749 mouse cells 210 

(Chromium V2; Figure 2a-c). The higher cell number allowed us to annotate the major cell 211 

types in our reference sample, and to extract population-specific markers (Supplementary 212 

Table 2). Noteworthy, the reference samples solely provided the basis to assign cell identities 213 

and gene marker sets and was not utilized to quantify the methods’ performance. This strategy 214 



ensured that the choice of technology for deriving the reference does not influence downstream 215 

analyses. Cell clustering and reference-based cell annotation showed high agreement (average 216 

83%; Supplementary Table 3), and only cells with consistent annotations were used 217 

subsequently for comparative analysis at cell type level. The PBMCs (human) and colon cells 218 

(mouse) represented two largely different scenarios. While the differentiated PBMCs clearly 219 

separated into subpopulations (e.g. T/B-cells, monocytes, Figure 2b and Supplementary Fig. 220 

3a, 4a-d), colon cells were ordered as a continuum of cell states that differentiate from intestinal 221 

stem cells into the main functional units of the colon (i.e. absorptive enterocytes and secretory 222 

cells, Figure 2c and Supplementary Figs. 3b, 5a-d). Notably, the subpopulation structure of 223 

our references was largely consistent with that of published datasets for human PBMC18 and 224 

mouse colon22 (Supplementary Figs. 6 and 7). After identifying major subpopulations and their 225 

respective markers in our reference sample, we clustered the cells of each sc/snRNA-seq 226 

protocol and annotated cell types using matchSCore2 (Online Methods). This algorithm allows 227 

a gene marker-based projection of single cells (cell-by-cell) onto a reference sample and, thus, 228 

the identification of cell types in our datasets (Supplementary Fig. 8 and 9). 229 

To compare the efficiency of mRNA capture between protocols we downsampled the 230 

sequencing reads per cell to a common depth and step-wise reduced fractions. Stochasticity 231 

introduced during downsampling did not affect the reproducibility of the results 232 

(Supplementary Fig. 10). Library complexity was determined separately for largely 233 

homogenous cell types with markedly different cell properties and function, namely human 234 

HEK293T cells, monocytes and B-cells (Figure 2d,e), and mouse colon secretory and transit-235 

amplifying (TA) cells (Supplementary Fig. 11a,b). We observed large differences in the 236 

number of detected genes and molecules between the protocols, with consistent trends across 237 

cell types and gene quantification strategies (Supplementary Fig. 11c,d). Notably, some 238 

protocols, such as Smart-seq2 and Chromium V2, performed better with higher RNA quantities 239 

(HEK293T) compared to lower starting amounts (monocytes and B-cells), suggesting an input-240 

sensitive optimum. Considering the different assay versions and application types of the 241 

Chromium system, a dedicated analysis showed increased detection of molecules and genes 242 



from nuclei to intact cells and towards the latest protocol versions (Supplementary Fig. 12). 243 

Consistent with the variable library complexity, the protocols presented large differences in 244 

drop-out probabilities (Figure 2f), with Quartz-seq2, Chromium V2 and CEL-seq2 showing 245 

consistently lower probability. Note that, despite the considerable differences between 246 

protocols, we observed a generally high technical reproducibility within the methods 247 

(Supplementary Fig. 13). 248 

 249 

Technical effects and information content. 250 

We further assessed the magnitude of technical biases, and the protocols’ ability to describe cell 251 

populations. To quantify the technical variation within and across protocols, we selected highly 252 

variable genes (HVG) across all datasets, and plotted the variation in the main principle 253 

components (PC; Figure 3a). Using the downsampled data for HEK293T cells, monocytes and 254 

B-cells, we observed strong protocol-specific profiles, with the main source of variability being 255 

the number of genes detected per cell (Figure 3b). Data from snRNA-seq did not show notable 256 

outliers, indicating conserved representation of the transcriptome between the cytoplasm and 257 

nucleus. To quantify the protocol-related variance, we identified the PCs that correlated with the 258 

protocols’ covariates in a linear model23. Indeed, the variance in the data was mainly explained 259 

by the protocols (HEK293T= 37.3%, Monocytes= 52.8% and B-cells=36.2%), a value that was 260 

reduced in HEK293T and monocytes when considering snRNA-seq as specific covariate 261 

(HEK293T= 9.7%, Monocytes= 22.2% and B-cells= 48.3%; Online Methods). The technical 262 

effects were also visible when using t-distributed stochastic neighbor embedding (tSNE) as non-263 

linear dimensionality reduction method (Supplementary Fig. 14). By contrast, the methods 264 

largely mixed when the analysis was restricted to cell type-specific marker genes, suggesting a 265 

conserved cell identity profile across techniques (Supplementary Fig. 15). 266 

Next, we quantified the similarities in information content of the protocols. Again, we used the 267 

downsampled datasets and commonly expressed genes and calculated the correlation between 268 

methods in average transcript counts across multiple cells, thus compensating for the sparsity of 269 

single-cell transcriptome data. For the three human cell types, we observed a broad spectrum of 270 



correlation between technologies, with generally lower correlation for smaller cell types (Figure 271 

3c). While the transcriptome representation was generally conserved (Figure 3a), the snRNA-272 

seq protocol resulted in a notable outlier when correlating the expression levels of common 273 

genes between protocols, possibly driven by decreased correlation of immature transcripts. 274 

Restricting the correlation analysis to population-specific marker genes, we observed less 275 

variation between protocols (Pearson’s r, 0.5-0.7), which underlines that the expression of these 276 

markers is largely conserved between the methods (Supplementary Fig. 16). 277 

To further test the suitability of protocols to describe cell types, we determined their sensitivity 278 

to detect population specific expression signatures, and found that they had remarkably variable 279 

power to detect marker genes. Specifically, population markers were detected with different 280 

accuracies (Supplementary Fig. 17 and 18), and the detection level varied substantially 281 

(Figure 3d,e and Supplementary Table 4). Quartz-seq2 and Smart-seq2 showed high 282 

expression levels for all cell type signatures, indicating that they have higher power for cell type 283 

identification. Since marker genes are particularly important for data interpretation (e.g. 284 

annotation), low marker detection levels could severely limit the interpretation of poorly 285 

explored tissues, or when trying to identify subtle differences between subpopulations. SnRNA-286 

seq showed generally lower marker detection levels. However, gene markers were selected from 287 

intact cell experiments, which could lead to underestimating the performance of snRNA-seq to 288 

identify cell-type specific signatures in this analysis approach. 289 

The protocols also detected vastly different total numbers of genes when accumulating 290 

transcript information over multiple cells, with strong positive outliers observed for the smaller 291 

cell types (Figure 3f). In particular, CEL-seq2 and Quartz-seq2 identified many more genes 292 

than other methods. Intriguingly, CEL-seq2 outperformed all other methods by detecting many 293 

weakly expressed genes; genes detected specifically by CEL-seq2 had significantly lower 294 

expression than the common genes detected by Quartz-seq2 (p<2.2e-16). The greater sensitivity 295 

to weakly expressed genes makes this protocol particularly suitable for describing cell 296 

populations in detail, an important prerequisite for creating a comprehensive cell atlas and 297 

functional interpretation. 298 



Surprisingly, considering the increased library complexity of single-cell compared to single-299 

nucleus RNA-seq, the latter protocol identified a similar number of genes when combining 300 

information across multiple cells and suggesting overall similar transcriptome complexity of the 301 

two compartments (Supplementary Fig. 12). ScRNA-seq detected additional genes enriched in 302 

biological processes such as organelle function, including many mitochondrial genes that were 303 

largely absent in the snRNA-seq datasets (Supplementary Table 5). 304 

To further illustrate the power of the different protocols to chart the heterogeneity of complex 305 

samples, we clustered and plotted downsampled datasets in two-dimensional space (Figure 4a) 306 

and then calculated the cluster accuracy and Average Silhouette Width (ASW24, Figure 4b), a 307 

commonly used measure for assessing the quality of data partitioning into communities. 308 

Consistent with the assumption that library complexity and sensitive marker detection provides 309 

greater power to describe complexity, methods that performed well for these two attributes 310 

showed better separation of subpopulations, greater ASW and cluster accuracy. This is 311 

illustrated in the monocytes, for which accurate clustering protocols separated the major 312 

subpopulations (CD14+ and FCGR3A+), while methods with low ASW did not distinguish 313 

between them. Similarly, several methods were able to distinguish between CD8+ and NK cells, 314 

while others were not. 315 

 316 

Joint analysis across datasets 317 

A common scenario for cell atlas projects is that data are produced at different sites using 318 

different scRNA-seq protocols. However, the final atlas is created from a combination of 319 

datasets, which requires that the technologies used are compatible. To assess how suitable it is 320 

to combine the results from our protocols into a joint analysis, we used downsampled human 321 

and mouse datasets to produce a joint quantification matrix for all techniques25. Importantly, 322 

single cells grouped themselves by cell type, suggesting that cell phenotypes are the main driver 323 

of heterogeneity in the joint datasets (Figure 5a-d and Supplementary Fig. 19a,b and 20). 324 

Indeed, the combined data showed a clear separation of cell states (e.g. T-cell and enterocyte 325 

subpopulations) and rarer cell types, such as dendritic cells. However, within these populations, 326 



differences between the protocols pointed to the presence of technical effects that could not be 327 

entirely removed with downsampling to equal read depth and different merging tools (Figure 328 

5e-f and Supplementary Fig. 19c,d, 21a,b and 22a,b). To formally assess the capacity of the 329 

methods to be joined, we calculated the degree to which technologies mix in the merged 330 

datasets (Figure 5g,h and Supplementary Figs. 21c,d and 22c,d). The protocols’ suitability to 331 

be combined (mixability) was directly correlated with their power to discriminate between cell 332 

types (clustering accuracy). Thus, well-performing protocols result in high-resolution cellular 333 

maps and are suitable for consortium-driven projects that include different data sources. When 334 

integrating further downsampled datasets, we observed a drop in mixing ability 335 

(Supplementary Fig. 19e). Consequently, quality standard guidelines for consortia might 336 

define minimum coverage thresholds to ensure the subsequent option of data integration. A 337 

separate analysis of the single-nucleus and single-cell Chromium datasets resulted in well-338 

integrated profiles, further supporting the potential to integrate cell atlases from cells and nuclei 339 

(Supplementary Fig. 23 and 24). 340 

Cell atlas datasets will serve as a reference for annotating cell types and states in future 341 

experiments. Therefore, we assessed cells’ ability to be projected onto our reference sample 342 

(Figure 2b,c). We used the population signature model defined by matchSCore2 and evaluated 343 

the protocols based on their cell-by-cell mapping probability, which reflects the confidence of 344 

cell annotation (Supplementary Fig. 25a-c). Although there were some differences in the 345 

protocols’ projection probabilities and a potential bias due to the selection of the reference 346 

protocol, a confident annotation was observed for most cells with inDrop and ddSEQ reporting 347 

the highest probabilities. Notably, high probability scores were also observed in further 348 

downsampled datasets (Supplementary Fig. 25b). This has practical consequences, as data 349 

derived from less well performing methods (from a cell atlas perspective) or from poorly 350 

sequenced experiments could be identifiable and thus suitable for specific analysis types, such 351 

as tissue composition profiling.  352 

 353 

 354 



Discussion 355 

  356 

Systematic benchmarking of available technologies is a crucial prerequisite for large-scale 357 

projects. Here, we evaluated scRNA-seq protocols for their power to produce a cellular map of 358 

complex tissues. Our reference sample simulated common scenarios in cell atlas projects, 359 

including differentiated cell types and dynamic cell states. We defined the strengths and 360 

weaknesses of key features that are relevant for cell atlas studies, such as comprehensiveness, 361 

integratability, and predictive value. The methods revealed a broad spectrum of performance, 362 

which should be considered when defining guidelines and standards for international consortia 363 

(Figure 6).  364 

 365 

We expect that our results will guide informed decision-making processes for designing 366 

sc/snRNAseq studies. There are several features to consider when selecting protocols to produce 367 

a reproducible, integrative, and predictive reference cell atlas. At a given sequencing depth, the 368 

number and complexity of detected RNA molecules defines the power to describe cell 369 

phenotypes and infer their function. There are also additional essential features for cell atlas 370 

projects and their interpretation, such as population marker identification. Improved versions of 371 

plate-based methods, including Quartz-seq2, CEL-seq2, and Smart-seq2 generate such high-372 

resolution transcriptome profiles. Also, microfluidic systems showed excellent performance in 373 

our comparison, particularly the Chromium system. While the scale of plate-based experiments 374 

is limited by the lower throughput of their individual processing units, microfluidic systems, 375 

especially droplet-based methods, can be easily applied to thousands of cells simultaneously. 376 

Protocol modification scales up throughput even further, and allows more cost-effective 377 

experiments26–29. Generally, late multiplexing methods, such as Smart-seq2, are more costly, but 378 

costs can be reduced by minituarization30 and using non-commercial enzymes31. Custom 379 

droplet-based protocols have lower costs than their commercialized counterparts, but the 380 

optimized chemistry in commercial systems resulted in improved performance in this 381 

comparison. Nevertheless, existing platforms are undergoing continued development in both the 382 



private (Supplementary Fig. 12) and academic sector, so updated protocol versions promise to 383 

improve performance further. For consortium-driven projects, it is important to consider the 384 

integratability of data. We have shown that several protocols, including those with reduced 385 

library complexity and snRNA-seq, were readily integratable with other methods. 386 

 387 

The use of PBMCs is ideal for multi-centre benchmarking efforts; blood cells are easy to isolate 388 

and show a high recovery rate after freezing. We also included mouse colon, a solid tissue 389 

requiring dissociation before scRNA-seq. Tissue digestion and cryopreservation of colon cells 390 

present additional challenges (e.g., increased rate of damaged cells), which we addressed by 391 

focusing on commonly detected cell types. Although we observed differences in the frequencies 392 

of cells from mouse and human, the composition of cell subtypes within tissues was conserved, 393 

reassuring the consistent capture of major cell types across all methods. Accordingly, 394 

subsequent analyses could be stratified by cell type, avoiding the need for a ground truth in 395 

sample composition. Further, viability sorting with minimal mechanic forces (low speed and 396 

wide nozzle size) was applied to remove damaged cells and to benchmark protocols with high-397 

quality samples. This work standardized sample processing in order to limit technical variance 398 

to the library preparation steps, a crucial requisite for the multi-center benchmarking design. 399 

Nevertheless, on-site differences introduced during sample thawing or viability sorting could 400 

not entirely be excluded. However, our analysis also showed that viable cells selected by sorting 401 

or through thorough data quality control generate highly similar library complexity, suggesting 402 

potential differences in sample processing to have minor impacts on the data quality and 403 

supporting the robustness our results. Processing time presents another variable related to 404 

sample and data quality. While cells are directly sorted into their respective reaction volumes 405 

for plate-based methods, processing times can vary between microfluidic systems. However, 406 

this was considered as inherent feature of the protocols’ library preparation workflow which 407 

contributes to the overall performance.    408 

 409 



Across sample origins and cell types, all tested features pointed to consistent protocol 410 

performance. In addition to the differences in protocol performance, it was the cells’ RNA 411 

content and complexity that dominated the molecule and gene detection rates, which we have 412 

seen through the stratified analysis of vastly different cells types. As such, we expect the 413 

conclusions to be valid beyond the here tested human and mouse tissues. 414 

Several additional steps are crucial for the success of single-cell projects, especially sample 415 

preparation. Optimizing sample procurement and tissue processing conditions is of crucial 416 

importance to avoid composition biases and gene expression artifacts32–35 that could limit the 417 

value of a cell atlas. Therefore, dedicated studies are required to define optimal conditions for 418 

tissue and organ preparation in healthy and disease contexts.  419 

 420 

From a technical perspective, multiple steps of a protocol are critical for generating complex 421 

sequencing libraries. All sc/snRNA-seq methods require multi-step whole-transcriptome 422 

amplification, including reverse-transcription (RT), conversion to amplifiable cDNA, and 423 

amplification1. Theoretically, the multiplicative reaction-efficiency of respective steps 424 

determines a method’s power to detect RNA molecules, and in this sense Quartz-Seq2 was 425 

particularly efficient. We specifically tested for potential advantages of the Quartz-seq2 column- 426 

over bead-based purification, but did not detect differences in cDNA yield (Supplementary 427 

Fig. 26). However, we observed that bead concentration critically affected the yield of amplified 428 

cDNA. Moreover, performance was more stable for purification with columns compared to 429 

beads, which should be taken into account when implementing existing or developing novel 430 

sc/snRNA-seq methods. 431 

 432 

A further essential step towards complex libraries is the conversion of first-strand cDNA to 433 

amplifiable cDNA. Three main strategies are used for this conversion, a) template-switching, b) 434 

RNaseH-DNA polymerase I mediated second-strand synthesis for in vitro transcription, and c) 435 

poly-A tagging1. Improvement of the three strategies led to better quantitative performance of 436 

scRNA-seq36–39. For Quartz-Seq237, improved poly-A tagging was most important to increase 437 



the amplified cDNA yield compared to Quartz-Seq40, and probably explains the excellent result 438 

in this benchmarking exercise. However, optimization of the cDNA conversion still has 439 

potential to improve scRNA-seq methods. 440 

 441 

Within the cDNA amplification step, increased PCR cycle numbers lead to PCR biases within 442 

the sequencing libraries. Early pooling increases the amount of cDNA molecules in the 443 

amplification step and reduces PCR bias. This especially favors early pooling methods at low 444 

sequencing depth (as performed in this work), as previously shown for bulk RNA-seq41. 445 

Similarly, in vitro transcription linearly amplifies cDNA with less biases than PCR-based 446 

methods, and partly explains the good performance of CEL-seq2. Further, early multiplexing of 447 

different cell numbers leads to different PCR cycle requirements (Quartz-Seq2: 768 cells and 10 448 

cycles vs gmcSCRB-seq: 96 cells and 19 cycles, using the same DNA polymerase for 449 

amplification). The number of cells per amplification pool depends on the amount of 450 

amplifiable cDNA, implying that the good performance of Quartz-Seq2 was mainly due to 451 

efficient conversion of amplifiable cDNA from RNA with poly-A tagging. 452 

 453 

It is equally important to benchmark computational pipelines for data analysis and 454 

interpretation23,42–44. We envision that the datasets provided by our study will serve as a valuable 455 

resource for the single-cell community to develop and evaluate novel strategies towards an 456 

informative and interpretable cell atlas. Moreover, the multi-center benchmarking framework 457 

presented here can readily be transferred to other organs where common tissue/cell types are 458 

analyzed using different scRNA-seq protocols (e.g. brain atlas projects).  459 

 460 
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  605 



Online Methods  606 

 607 

Ethical Statement 608 

This study was approved by the Parc de Salut MAR Research Ethics Committee (reference 609 

number: 2017/7585/I) to Dr. Holger Heyn. We adhered to ethical and legal protection guidelines 610 

for human subjects, including informed consent. 611 

 612 

Reference sample 613 

 614 

Cell Lines 615 

NIH3T3-GFP, MDCK-TurboFP650 and HEK293-RFP were cultured at 37ºC in an atmosphere 616 

of 5% (v/v) carbon dioxide in Dulbecco’s Modified Eagle’s Medium, supplemented with 10% 617 

(w/v) fetal bovine serum, 100 U penicillin, and 100 µg/L streptomycin (Invitrogen). On the 618 

reference sample preparation day, the culture medium was removed and the cells washed with 619 

1X PBS. Afterwards, cells were trypsinized (trypsin 100X), pelleted at 800 x g for 5min, 620 

washed in 1X PBS, re-suspended in PBS-EDTA (2mM) and stored on ice. 621 

 622 

Mouse Colon Tissue 623 

The colon from eleven mice (7xLGR5/GFP and 4WT) was dissected and removed. For single-624 

cell separation the colons were treated separately. The colon was sliced, opened and washed 625 

twice in cold 1X HBSS. It was then placed on a petri plate on ice and minced with razor blades 626 

until disintegration. The minced tissue was transferred to a 15 ml tube containing 5 ml of 1X 627 

HBSS and 83 µl of collagenase IV (final concentration 166 U/ml). The solution was incubated 628 

for 15 min at 37ºC (vortexed for 10 sec every 5 min). To inactivate the collagenase IV, 1 ml of 629 

FBS was added and vortexed for 10 seconds. The solution was filtered through a 70 µm nylon 630 

mesh (changed when clogged). Finally, all samples were combined, cells pelleted for 5 min at 631 



400 g at 4ºC. The supernatant was removed, and the cells resuspended in 20 ml of 1X HBSS 632 

and stored on ice.  633 

 634 

Isolation of peripheral blood mononuclear cells (PBMC) 635 

Whole blood was obtained from four donors (two female, two male). The extracted blood was 636 

collected in Heparin tubes (GP supplies) and processed immediately. For each donor, PBMCs 637 

were isolated according to the manufacturer’s instructions for FICOLL extraction (pluriSelect). 638 

Briefly, blood from two Heparin tubes (approximately 8 ml) was combined, diluted in 1X PBS 639 

and carefully added to a 50 ml tube containing 15 ml FICOLL. The tubes were centrifuged for 640 

30 min at 500 g (minimum acceleration and deceleration). The interphase was carefully 641 

collected and diluted with 1X PBS + EDTA (2mM). Following a second centrifugation, the 642 

supernatant was discarded and the pellet resuspended in 2 ml of 1X PBS + EDTA (2mM) and 643 

stored on ice.  644 

 645 

Preparation of the reference sample 646 

Cell counting was performed using an automated cell counter (TC20™ Automated Cell 647 

Counter, Bio-Rad Laboratories). The reference sample was calculated to include human PBMC 648 

(60%), mouse colon (30%), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP 649 

labelled mouse cells) and MDCK (1%, TurboFP650 labelled dog cells). To adjust for cell 650 

integrity loss during sample processing, we measured the viability during cell counting, and 651 

accounted for an expected viability loss after cryopreservation (10% for cell lines and PBMC; 652 

50% for colon21). All single cell solutions were combined in the proportions mentioned above 653 

and diluted to 250,000 viable cells per 0.5 ml. For cryopreservation, 0.5 ml of cell suspension 654 

was aliquoted into cryotubes and gently mixed with a freezing solution (final concentration 10% 655 

DMSO; 10% heat-inactivated FBS). Cells were then frozen by gradually decreasing the 656 

temperature (1ºC/min) to –80ºC (cryopreserved), and stored in liquid nitrogen. MARS-Seq and 657 

Smart-Seq2 experiments were performed to validate sample quality and composition before 658 

distributing aliquots to the partners.   659 



 660 

Sample processing  661 

Samples were stored at -80ºC upon arrival. Before processing, samples were de-frozen in a 662 

water bath (37ºC) with continuous agitation until the material was almost thawed. The entire 663 

volume was transferred to a 15 ml Falcon using a 1000 ul tip (wide-bored or cut tip) without 664 

mixing by pipetting. 1000 ul of pre-warmed (37ºC) Hibernate-A were added drop-wise while 665 

gently swirling the sample. Sample was rested for 1 min. An additional 2000 ul of pre-warmed 666 

(37ºC) Hibernate-A were added drop-wise while gently swirling the sample. Sample was rested 667 

for 1 min. Another 2000 ul of pre-warmed (37ºC) Hibernate-A were added drop-wise while 668 

gently swirling the sample. Sample was rested for 1 min. Then, 3000 ul of pre-warmed (37ºC) 669 

Hibernate-A were added drop-wise and the Falcon inverted 6 times. Sample was rested for 1 670 

min. An additional 5000 ul of pre-warmed (37ºC) Hibernate-A were added drop-wise and the 671 

Falcon inverted 6 times. Sample was rested for 1 min. The sample was centrifuged at 400 x g 672 

for 5 min at 4ºC (pellet clearly visible). The supernatant was removed until 500 ul remained in 673 

the tube. The pellet was resuspended by gentle pipetting. 3500 ul of 1X PBS + 2mM EDTA 674 

were added and the sample stored on ice until processing. Before FACS isolation, cells were 675 

filtered through a nylon mesh and 3 ul of DAPI were added before gentle mixing. During FACS 676 

isolation, DAPI-positive cells were excluded to remove dead and damaged cells. Further, the 677 

exclusion of GFP-positive cells simulated the removal of a cell type from a complex sample. 678 

Supplementary Fig. 27 shows representative FACS plots and gating strategies.   679 

 680 

Single-cell RNA sequencing library preparation 681 

For a detailed sample processing description see Supplementary Notes.  682 

 683 

Data analysis 684 

For Primary data preprocessing, Clustering, Sample deconvolution and annotation and 685 



Reference datasets see Supplementary Notes.  686 

 687 

MatchSCore2 688 

To systematically assign cell identities to unannotated cells coming from different protocols, we 689 

used matchSCore2, a mathematical framework for classifying cell types based on reference data 690 

(https://github.com/elimereu/matchSCore2). The reference data consists of a matrix of gene 691 

expression counts in individual cells whose identity is known. The main steps of the 692 

matchSCore2 annotation are the following: 693 

 694 

1. Normalization of the reference data 695 

Gene expression counts are log-normalized for each cell using the natural logarithm of 696 

1 + counts per 10,000. Genes are then scaled and centered using the ScaleData function 697 

in the Seurat package.  698 

 699 

2. Definition of signatures and their relative scores 700 

For each of the cell types in the reference data, positive markers were computed using 701 

the Wilcoxon Rank sum test. The top 100 ranked markers in each cell type were used as 702 

the signature for that type. To each cell, we assigned a vector x=(x1,..,xn) of signature 703 

scores, where n is the number of cell types in the reference data. The i-th signature score 704 

for the k-th cell is computed as follows:  705 

Scorek = ∑ ௃	௜௡	௝௞௝ݖ  706 

where J is the set of genes in signature i, and zjk represents the z-score of gene j in the k-707 

th cell. 708 

 709 

3. Training of the probabilistic model on the reference data. 710 

We proposed a supervised multinomial logistic regression model, which uses the 711 

enrichment of the signature of each reference cell type in each cell to assign identity to 712 



that cell. In other words, for each cell k and signature i, we calculate the i-th cell type 713 

signature score Xi in the k-th cell as described in point 2. The distribution of the 714 

signature scores is preserved, independent of which protocol is used (Supplementary 715 

Fig. 28 and 29). More specifically, we defined the variables X1,…,Xn, where Xi is the 716 

vector in which the scores for signature i of all cells are contained. Then we used Xi as 717 

the predictors of a multinomial logistic regression.  718 

The model assumes that the number of cells from each type in the training reference 719 

data T1, T2, … ,Tn, are random variables and that the variable T=(T1, T2, … ,Tn) follows a 720 

multinomial distribution M(N, π=(π1,…, πn)), where πi is the proportion of the i-th cell 721 

type and N is the total number of cells.  722 

 723 

To test the performance of the model, training and test sets were created by 724 

subsampling the reference into two datasets, maintaining the original proportions of cell 725 

types in both sets. The model was trained by using the multinom function from the nnet 726 

R package (decay=1e-04, maxit=500). To improve the convergence of the model 727 

function, Xi variables were scaled to the interval [0,1].  728 

 729 

Cell Classification 730 

For each cell, model predictions consisted of a set of probability values per identity class, and 731 

the highest probability was used to annotate the cell if it was >0.5; otherwise the cell resulted 732 

unclassified. 733 

 734 

Model accuracy  735 

To evaluate the fitted model using our reference datasets, we assessed the prediction accuracy in 736 

the test set, which was around 0.9 for human and 0.85 for mouse reference. We further assessed 737 

matchSCore2 classifications in datasets from other sequencing methods by looking at the 738 

agreement between clusters and classification. Notably, the resulting average agreement was of 739 



80% (range: from 58% in gmcSCRB-seq to 92% in Quartz-Seq2), while the rate of unclassified 740 

cells was less than 2%.  741 

 742 

Downsampling 743 

To decide on a common downsampling threshold for sequencing depth per cell, we inspected 744 

the distribution of the total number of reads per cell for each technique, and chose the lowest 745 

first quartile (fixed to 20,000 reads/cell). We then performed stepwise downsampling (25%, 746 

50% and 75%) using the zUMIs downsampling function. We omitted cells that did not achieve 747 

the required minimum depth (Supplementary Table 6). Notably, stochasticity introduced 748 

during downsampling did not affect the results of this study, as exemplified by the consistent 749 

numbers of detected molecules across different downsampling iterations (Supplementary Fig. 750 

10).    751 

 752 

Estimation of dropout probabilities 753 

We investigated the impact of dropout events in HEK293T, monocytes and B-cells extracted for 754 

each technique on downsampled data (20,000 reads/cell). For datasets with >50 cells from the 755 

selected populations, we randomly sampled 50 cells to eliminate the effect of differing cell 756 

number. The dropout probability was computed using SCDE R package45. SCDE models the 757 

measurements of each cell as a mixture of a negative binomial process to account for the 758 

correlation between amplification and detection of a transcript and its abundance, and a Poisson 759 

process to account for the background signal. We then used estimated individual error models 760 

for each cell as a function of expression magnitude to compute dropout probabilities using 761 

SCDE’s scde.failure.probability function. Next, we calculated the average estimated dropout 762 

probability for each cell type and technique. To integrate dropout measures into the final 763 

benchmarking score, we calculated the Area Under the Curve (AUC) of the expression prior and 764 

failure probabilities (Figure 2f and Supplementary Table 7). We expected that protocols that 765 

result in fewer dropouts would have lower AUC. 766 

 767 



Quantification of variance introduced by batches 768 

In order to quantify the amount of variance that is introduced by batches (protocols, processing 769 

units or experiments), we used the top 20 PCs and the standard deviation of each PC, previously 770 

calculated on HVG. Next, using pcRegression function of kBET R package23, we regressed the 771 

batch covariate (protocols/processing units/experiments as categories defined in the kBET 772 

model) and each PC to get the coefficient of determination as an approximation of the variance 773 

explained by batches and the proportions of explained variance in each PC. We either reported 774 

the percentage of the variance that is significantly correlating with batch in first 20 PCs, or R-775 

squared measures of the model for each PC. 776 

 777 

Cumulative number of genes 778 

The cumulative number of detected genes in downsampled data was calculated separately for 779 

each cell type. For cell types with >50 cells annotated, we randomly selected 50 cells and 780 

calculated the average number of detected genes per cell after 50 permutations over n sampled 781 

cells, where n is an increasing sequence of integers from 1 to 50. 782 

 783 

GO enrichment analysis 784 

In order to compare functional gene sets between single-cell and single-nucleus datasets, we 785 

performed GO enrichment analysis on the set of protocol-specific genes using simpleGO 786 

(https://github.com/iaconogi/simpleGO). For each cell type (HEK293T, monocytes, B-cells), we 787 

selected two gene sets extracted from the cumulated genes and using the maximum number of 788 

detected cells common to all three Chromium versions: i) Genes that were uniquely detected in 789 

the intersection of Chromium (V2) and (V3), but not in Chromium (sn) and ii) genes that were 790 

uniquely identified with Chromium (sn). For each of the gene sets we identified the union over 791 

cell types before applying simpleGO. 792 

 793 

Correlation analysis.  794 



Pearson correlations across protocols were computed independently for B-cells, Monocytes and 795 

HEK293T cells. For each cell type, cells were downsampled to the maximum common number 796 

of cells across all protocols. Gene counts of commonly expressed genes (from datasets 797 

downsampled to 20K reads) were averaged across cells before computing their Pearson’s 798 

correlations. The corplot library was then used to plot resulting correlations. Protocols were 799 

ordered by agglomerative hierarchical clustering. 800 

 801 

Silhouette scores 802 

To measure the strength of the clusters, we calculated the Average Silhouette Width (ASW)24. 803 

The downsampled data (20,000 reads/cell) were clustered by Seurat46, using graph based 804 

clustering with the first 8 principle components and resolution of 0.6. We then computed an 805 

average Silhouette width for the clusters using a Euclidean distance matrix (based on principle 806 

components 1 to 8). We report the average Silhouette width for each technique separately. 807 

 808 

Dataset merging 809 

Dataset integration across protocols is challenging and we applied different tools to assess the 810 

integratability of the sc/snRNA-seq methods, while conserving biological variability. To 811 

integrate datasets, we used Seurat46, harmony47 and scMerge25, evaluated the results separately 812 

and averaged the integration capacity of the protocols into a joint score. We combined 813 

downsampled count matrices using the sce_cbind function in scMerge, which includes the union 814 

of genes from different batches. While both harmony and Seurat integration apply similar 815 

preprocessing steps (log-normalization, scaling and highly variable genes identification) as 816 

implemented in the Seurat tool, scMerge uses a set of genes with stable expression levels across 817 

different cell types and then creates pseudo-replicates across datasets, allowing the estimation 818 

and correction for undesired sources of variability. However, for all three alignment methods, 819 

Seurat was applied to perform clustering and UMAP after the protocol correction, in order to 820 

minimize the variability related to the downstream analysis. The clustering accuracy metric was 821 

used together with the mixability score to quantify the success of the integration. Omitting the 822 



cell integration step before visualizing the datasets together in a single tSNE/UMAP resulted in 823 

a protocol-specific distribution with cell types scattered to multiple clusters (Supplementary 824 

Fig. 30).  825 

  826 

Clustering accuracy 827 

To determine the clusterability of methods to identify cell types, we measured the probability of 828 

cells to be clustered with cells of the same type. Let ܥ௞ , ݇	 ∈ {1, … , ܰ} represent the cluster of 829 

cells corresponding to a unique cell type (based on the highest agreement between clusters and 830 

cell types), and ௝ܶ  , ݆	 ∈ {1, … , ܵ} the set of different cell types, where C⊆T. For each cell type 831 

Tj, we compute the proportion pjk of Tj cells that cluster in their correct cluster Ck. We define the 832 

cell-type separation accuracy as the average of these proportions. 833 

 834 

Mixability 835 

To account for the level of mixing of each technology, we used kBet23 to quantify batch effects 836 

by measuring the rejection rate of a Pearson’s χ2 test for random neighborhoods. To make a fair 837 

comparison, kBet was applied to the common cell types separately by subsampling batches to 838 

the minimum number of cells in each cell type. Due to the reduced number of cells, the option 839 

heuristic was set to ‘False’, and the testSize was increased to ensure a minimum number of 840 

cells. 841 

Mixability was calculated by averaging cell type specific rejection rates.  842 

 843 

Benchmarking score 844 

To create an overall benchmarking score with which to compare technologies, we considered 845 

six key metrics: gene detection, overall level of expression in transcriptional signatures, cluster 846 

accuracy, classification probability, cluster accuracy after integration, and mixability. Each 847 

metric was scaled to the interval [0,1], then in order to equalize the weight of each metric score, 848 

the harmonic mean across these metrics was calculated to obtain the final Benchmarking scores. 849 



Gene detection, overall expression in cell type signatures, and classification probabilities were 850 

computed separately for B-cells, HEK293T cells and monocytes, and then aggregated by the 851 

arithmetic mean across cell types. Notably, the choice of protocol to create the reference dataset 852 

(Chromium) for initial cell annotation had no impact on the outcome of the study 853 

(Supplementary Fig. 31).  854 

 855 

Data Availability 856 

All raw sequencing data and processed gene expression files are freely available through the 857 

Gene Expression Omnibus (GEO; GSE133549).  858 

 859 

Code availability 860 

All code for the analysis is provided as supplementary material. All code is also available under 861 

https://github.com/ati-lz/HCA_Benchmarking and https://github.com/elimereu/matchSCore2. 862 



Figure legends 863 

 864 

Figure 1. Overview of the experimental design and data processing. 865 

The reference sample consists of human PBMC (60%) and HEK293T (6%), mouse colon (30%) 866 

and NIH3T3 (3%) and dog MDCK (1%). The sample was prepared in one single batch, 867 

cryopreserved and sequenced by 13 different sc/snRNA-seq methods. Sequences were 868 

uniformly mapped to a joint human, mouse and canine reference and then separately to produce 869 

gene expression counts for each sequencing method.     870 

 871 

Figure 2. Comparison of 13 sc/snRNA-seq methods.  872 

a. Color legend of sc/snRNA-seq protocols. b. UMAP of 30,807 cells from the human reference 873 

sample (Chromium) colored by cell type annotation. c. UMAP of 19,749 cells from the mouse 874 

reference (Chromium) colored by cell type annotation. d. Boxplots displaying the minimum, 875 

1st, 2nd, 3rd quantiles and the maximum number of genes detected across protocols, in 876 

downsampled (20K) HEK293T cells, monocytes and B-cells. Cell identities were defined by 877 

combining the clustering of each dataset and cell projection onto the reference. e. Number of 878 

detected genes at step-wise downsampled sequencing depths. Points represent the average 879 

number of detected genes as a fraction of all cells of the corresponding cell type at the 880 

corresponding sequencing depth. f. Dropout probabilities as a function of expression magnitude, 881 

for each protocol and cell type, calculated on downsampled data (20K) for 50 randomly selected 882 

cells.  883 

 884 

Figure 3. Similarity measures of sc/snRNA sequencing methods. 885 

a,b. PCA analysis on downsampled data (20K) using highly variable genes between protocols, 886 

separated into HEK293T cells, monocytes and B-cells, and color-coded by protocol (a) and 887 

number of detected genes per cell (b). c. Pearson correlation plots across protocols using 888 

expression of common genes. For a fair comparison, cells were downsampled to the same 889 

number for each method (B cells=32, Monocytes = 57, HEK293T= 55). Protocols are ordered 890 



by agglomerative hierarchical clustering. d. Average log expression values of cell-type-specific 891 

reference markers for downsampled (20K) HEK293T cells, monocytes, and B-cells. e. Log 892 

expression values of reference markers on downsampled data (20K) for HEK293T cells, 893 

monocytes and B-cells (maximum 50 random cells per technique). f. Cumulative gene counts 894 

per protocol as the average of 100 randomly sampled HEK293T cells, monocytes and B-cells 895 

separately on downsampled data (20K). 896 

 897 

Figure 4. Clustering analysis of 13 sc/snRNA-seq methods on downsampled datasets 898 

(20K). a. T-SNE visualizations of unsupervised clustering in human samples from 13 different 899 

methods. Each dataset was analyzed separately after downsampling to 20K reads per cell. Cells 900 

are colored by cell type inferred by matchSCore2 before downsampling. Cells that did not 901 

achieve a probability score of 0.5 for any cell type were considered unclassified. b. Clustering 902 

accuracy and Average Silhouette Width for clusters in each protocol. 903 

 904 

Figure 5. Integration of sc/snRNA-seq methods. UMAP visualization of cells after integrating 905 

technologies for 18,034 human (a,b) and 7,902 mouse (c,d) cells. Cells are colored by cell type 906 

(a,c) and sc/snRNA-seq protocol (b,d). e,f. Barplots showing normalized and method-corrected 907 

(integrated) expression scores of cell-type-specific signatures for human HEK293T cells, 908 

monocytes, B-cells (e) and mouse secretory and transit-amplifying cells (f). Bars represent cells 909 

and colors methods. g,h. Evaluation of method integratability in human (g) and mouse (h). 910 

Protocols are compared according to their ability to group cell types into clusters (after 911 

integration) and mix with other technologies within the same clusters. Points are colored by 912 

sequencing method. 913 

 914 

Figure 6. Benchmarking summary of 13 sc/snRNA-seq methods. Methods are scored by key 915 

analytical metrics, characterizing protocols according to their ability to recapitulate the original 916 

structure of complex tissues, and their suitability for cell atlas projects. The methods are ordered 917 



by their overall benchmarking score, which is computed by averaging the scores across metrics 918 

assessed from the human datasets. 919 
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Supplementary Figure 15
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