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ED SUM: A multicenter study compares 13 commonly used single-cell RNA-seq

protocols.
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Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the
transcriptome of individual cells in a sample. The latest protocols are scalable to thousands of
cells and are being used to compile cell atlases of tissues, organs and organisms. However, the
protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs,
and their relative advantages for different applications are unclear. Here, we generated
benchmark datasets to systematically evaluate protocols in terms of their power to
comprehensively describe cell types and states. We performed a multi-center study comparing
13 commonly used single-cell and single-nucleus RNA-seq protocols applied to a
heterogeneous reference sample resource. Comparative analysis revealed marked differences in
protocol performance. The protocols differed in library complexity and their ability to detect
cell type marker, impacting on their predictive value and suitability for integration into
reference cell atlases. These results provide guidance both for individual researchers and for

consortia projects such as the Human Cell Atlas.
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Single-cell genomics provides an unprecedented view of the cellular makeup of complex and
dynamic systems. Single-cell transcriptomics approaches in particular have led the
technological advances that allow unbiased charting of cell phenotypes'. The latest
improvements in SCRNA-seq allow these technologies to scale to thousands of cells per
experiment, providing comprehensive profiling of tissue composition**. This has led to the
identification of novel cell types*® and the fine-grained description of cell plasticity in dynamic
systems, such as development”®. Recent large-scale efforts, such as the Human Cell Atlas
(HCA) project’, are attempting to produce cellular maps of entire cell lineages, organs, and
organisms'®'" by conducting phenotyping at the single-cell level. The HCA project aims to
advance our understanding of tissue function and to serve as a reference for defining variation in
human health and disease. In addition to methods that capture the spatial organization of

: 12,1
tissues'>"?

, the main approach it is using is sScCRNA-seq analysis of dissociated cells. Therefore,
tissues are disaggregated and individual cells captured by cell sorting or using microfluidic

systems'. In sequential processing steps, cells are lysed, the RNA is reverse transcribed to

cDNA, amplified, and processed to sequencing-ready libraries.

Continuous technological development has improved the scale, accuracy and sensitivity
of scRNA-seq methods, and now allows us to create tailored experimental designs by selecting
from a plethora of different scRNA-seq protocols. However, there are marked differences
between these methods, and it is not clear which protocols are best for different applications.
For large-scale consortium projects, experience has shown that neglecting benchmarking,
standardization and quality control at the beginning can lead to major problems later on in the
analysis of the results'*. Thus, success depends critically on implementing a high, common
standard. A comprehensive comparison of available scRNA-seq protocols will benefit both

large- and small-scale applications of scRNA-seq.
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The available scRNA-seq protocols vary in the efficiency of RNA molecule capture,
which results in differences in sequencing library complexity and in the sensitivity of the
method to identify transcripts and genes'’'”. There has been no systematic testing of how their
performance varies between cell types, and how this affects the resolution of cell phenotyping in
complex samples. In this paper, we extend previous efforts to compare the molecule capture
efficiency of scRNA-seq protocols'>'® by systematically evaluating the capability of these
techniques to describe tissue complexity and their suitability for creating a cell atlas. We
performed a multi-center benchmarking study to compare scRNA-seq protocols using a unified
reference sample resource. Our reference sample contained: 1) a high degree of cell type
heterogeneity with various frequencies, ii) closely related subpopulations with subtle differences
in gene expression, iii) a defined cell composition with trackable markers, and iv) cells from
different species. By analyzing human peripheral blood and mouse colon tissue, we have
covered a broad range of cell types and states from cells in suspension and solid tissues, in order
to represent common scenarios in cell atlas projects. We have also added spike-in cell lines to
allow us to assess batch effects, and have combined different species to pool samples into a
single reference. We performed a comprehensive comparative analysis of 13 different sScRNA-
seq protocols, representing the most commonly used methods. We applied a wide range of
different quality control metrics to evaluate datasets from different perspectives, and to test their
suitability for producing a reproducible, integrative and predictive reference cell atlas.

We observed striking differences between protocols in converting RNA molecules into
sequencing libraries. Varying library complexities affected the protocol’s power to quantify
gene expression levels and to identify cell type markers, a trend consistently observed across
cell and tissue types. This critically impacted on the resolution of tissue profiles and the
predictive value of the datasets. Protocols further differed in their capacity to be integrated into
reference tissue atlases and, thus, their suitability for consortia-driven projects with flexible

production designs.
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Results

Reference sample and experimental design.

We benchmarked current scRNA-seq protocols to inform the methodology selection process of
cell atlas projects. Ideally, methods should a) be accurate and free of technical biases, b) be
applicable across distinct cell properties, c) fully disclose tissue heterogeneity, including subtle
differences in cell states, d) produce reproducible expression profiles, e) comprehensively detect
population markers, f) be integratable with other methods, and g) have predictive value with
cells mapping confidently to a reference atlas.

For a systematic comparison of protocols, we designed a reference sample containing human
peripheral blood mononuclear cells (PBMC) and mouse colon, which are tissue types with
highly heterogeneous cell populations, as determined by previous single-cell sequencing
studies'™". In addition to the well-defined cell types, the tissues contain cells in transition states
(e.g. colon transit amplifying or enterocyte progenitor cells) that show transcriptional
differences during their differentiation trajectory™. The reference sample also included a wide
range of cell sizes (e.g. B-cells: ~7 um; HEK293: ~15 pm) and RNA content, which are key
parameters that affect performance in cell capture and library preparation. Interrogating tissues
from different species allowed us to pool a large variety of cell types in a single reference
sample in order to maximize complexity while minimizing variability introduced during sample
preparation. In addition to the intra-tissue complexity, the fluorescence-labeled spiked-in cell
lines allowed us to monitor cell type composition during sample processing, and to identify
batch effects and biases introduced during cell capture and library preparation.

Specifically, the reference sample contained (estimated % viable cells): PBMC (60%, human),
colon (30%, mouse), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP
labelled mouse cells) and MDCK (1%, TurboFP650 labelled dog cells) (Figure 1). To reduce
variability due to technical effects during library preparation, the reference sample was prepared
in a single batch, distributed into aliquots of 250,000 cells, and cryopreserved. We have

previously shown that cryopreservation is suitable for single-cell transcriptomics studies of
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these tissue types” . For cell capture and library preparation, the thawed samples underwent
FACS separation to remove damaged cells and physical doublets (see below for detailed

analysis of cell viability sorting).

A reference dataset for benchmarking experimental and computational protocols.

To obtain sufficient sensitivity to capture low-frequency cell types and subtle differences in cell
state, we profiled ~3,000 cells with each scRNA-seq protocol. In total, we produced datasets for
5 microtiter plate-based methods and 7 microfluidics systems, including cell-capture
technologies based on droplets (4), nanowells (1) and integrated fluidic circuits (IFC), to capture
small (1) and medium (1) sized cells (Figure 1 and Supplementary Table 1). We also included
experiments to produce single-nucleus RNA sequencing (snRNA-seq) libraries (1), and an
experimental variant that profiled >50,000 cells to produce a reference of our complex sample.
The unified sample resource and standardized sample preparation (Online M ethods) were
designed to largely eliminate sampling effects, and allow the systematic comparison of scRNA-
seq protocol performance.

To compare the different protocols, and to create a resource for the benchmarking and
development of computational tools (e.g. batch effect correction, data integration and
annotation), all datasets were processed in a uniform manner. Therefore, we designed a
streamlined primary data processing pipeline tailored to the peculiarities of the reference sample
(Online M ethods). Briefly, raw sequencing reads were mapped to a joint human, mouse and
canine reference genome and separately to their respective references to produce gene count
matrices for subsequent analysis (GSE133549). Overall, we detected human, mouse and canine
cell numbers consistent with the composition design of the reference sample (Figure 1).
However, some protocols varied markedly from the expected frequencies in human (34-95%),
mouse (4-66%) and canine (0-9%) cells. Although the reference sample was prepared in a
standardized way, we cannot entirely exclude the introduction of composition variability during
sample handling. Thus, the subsequent evaluation of protocol performance was performed on

cell types and states common to all protocols.
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Notably, we observed a higher fraction of mouse colon cells in unsorted (Chromium) and the
single-nucleus sequencing dataset (Chromium (sn)). This likely results from damaging the more
fragile colon cells during sample preparation, resulting in proportionally fewer colon cells when
selecting for cell viability. To test if this composition bias in scRNA-seq can be avoided by
skipping viability selection, we generated matched datasets selecting or not for intact cells.
After quality control the detection of mouse colon cells increased proportionally without
viability selection (51% vs 19%), with good-quality cells showing comparable library
complexity in both libraries (e.g. numbers of detected genes; Supplementary Figs. 1 and 2).
However, considerably more cells were removed during quality filtering (44% vs 15%), and this
is a source of unwanted sequencing costs that must be taken into account, especially for tissues
with high cell damage. Consequently, replacing viability staining with thorough in silico quality
filtering in cell atlas experiments might better conserve the composition of the original tissue,
but result in higher sequencing costs.

The canine cells, spiked-in at a low concentration, were detected by all protocols (1-9%) except
gmcSCRB-seq. Furthermore, the different methods showed notable differences in mapping
statistics between different genomic locations (Figure 1). As expected, due to the presence of
unprocessed RNA in the nucleus, the snRNA-seq experiment detected the highest proportion of
introns, although scRNA-seq protocols also showed high frequencies of intronic and intergenic
mappings. The increased detection of unprocessed transcripts in CEL-seq2 may be due to a
freezing step (-80°C) after cell isolation and subsequent denaturation at high temperatures

(95°C), which could favor the accessibility of nuclear and chromatin-bound RNA molecules.

M olecule captur e efficiency and library complexity

We produced reference datasets by analyzing 30,807 human and 19,749 mouse cells
(Chromium V2; Figure 2a-c). The higher cell number allowed us to annotate the major cell
types in our reference sample, and to extract population-specific markers (Supplementary
Table 2). Noteworthy, the reference samples solely provided the basis to assign cell identities

and gene marker sets and was not utilized to quantify the methods’ performance. This strategy
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ensured that the choice of technology for deriving the reference does not influence downstream
analyses. Cell clustering and reference-based cell annotation showed high agreement (average
83%; Supplementary Table 3), and only cells with consistent annotations were used
subsequently for comparative analysis at cell type level. The PBMCs (human) and colon cells
(mouse) represented two largely different scenarios. While the differentiated PBMCs clearly
separated into subpopulations (e.g. T/B-cells, monocytes, Figure 2b and Supplementary Fig.
3a, 4a-d), colon cells were ordered as a continuum of cell states that differentiate from intestinal
stem cells into the main functional units of the colon (i.e. absorptive enterocytes and secretory
cells, Figure 2c and Supplementary Figs. 3b, 5a-d). Notably, the subpopulation structure of
our references was largely consistent with that of published datasets for human PBMC'® and
mouse colon® (Supplementary Figs. 6 and 7). After identifying major subpopulations and their
respective markers in our reference sample, we clustered the cells of each sc/snRNA-seq
protocol and annotated cell types using matchSCore2 (Online Methods). This algorithm allows
a gene marker-based projection of single cells (cell-by-cell) onto a reference sample and, thus,
the identification of cell types in our datasets (Supplementary Fig. 8 and 9).

To compare the efficiency of mRNA capture between protocols we downsampled the
sequencing reads per cell to a common depth and step-wise reduced fractions. Stochasticity
introduced during downsampling did not affect the reproducibility of the results
(Supplementary Fig. 10). Library complexity was determined separately for largely
homogenous cell types with markedly different cell properties and function, namely human
HEK293T cells, monocytes and B-cells (Figure 2d,e), and mouse colon secretory and transit-
amplifying (TA) cells (Supplementary Fig. 11a,b). We observed large differences in the
number of detected genes and molecules between the protocols, with consistent trends across
cell types and gene quantification strategies (Supplementary Fig. 11c,d). Notably, some
protocols, such as Smart-seq2 and Chromium V2, performed better with higher RNA quantities
(HEK293T) compared to lower starting amounts (monocytes and B-cells), suggesting an input-
sensitive optimum. Considering the different assay versions and application types of the

Chromium system, a dedicated analysis showed increased detection of molecules and genes
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from nuclei to intact cells and towards the latest protocol versions (Supplementary Fig. 12).
Consistent with the variable library complexity, the protocols presented large differences in
drop-out probabilities (Figur e 2f), with Quartz-seq2, Chromium V2 and CEL-seq2 showing
consistently lower probability. Note that, despite the considerable differences between
protocols, we observed a generally high technical reproducibility within the methods

(Supplementary Fig. 13).

Technical effects and information content.

We further assessed the magnitude of technical biases, and the protocols’ ability to describe cell
populations. To quantify the technical variation within and across protocols, we selected highly
variable genes (HVG) across all datasets, and plotted the variation in the main principle
components (PC; Figure 3a). Using the downsampled data for HEK293T cells, monocytes and
B-cells, we observed strong protocol-specific profiles, with the main source of variability being
the number of genes detected per cell (Figure 3b). Data from snRNA-seq did not show notable
outliers, indicating conserved representation of the transcriptome between the cytoplasm and
nucleus. To quantify the protocol-related variance, we identified the PCs that correlated with the
protocols’ covariates in a linear model®. Indeed, the variance in the data was mainly explained
by the protocols (HEK293T= 37.3%, Monocytes= 52.8% and B-cells=36.2%), a value that was
reduced in HEK293T and monocytes when considering snRNA-seq as specific covariate
(HEK293T= 9.7%, Monocytes= 22.2% and B-cells= 48.3%; Online M ethods). The technical
effects were also visible when using t-distributed stochastic neighbor embedding (tSNE) as non-
linear dimensionality reduction method (Supplementary Fig. 14). By contrast, the methods
largely mixed when the analysis was restricted to cell type-specific marker genes, suggesting a
conserved cell identity profile across techniques (Supplementary Fig. 15).

Next, we quantified the similarities in information content of the protocols. Again, we used the
downsampled datasets and commonly expressed genes and calculated the correlation between
methods in average transcript counts across multiple cells, thus compensating for the sparsity of

single-cell transcriptome data. For the three human cell types, we observed a broad spectrum of
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correlation between technologies, with generally lower correlation for smaller cell types (Figure
3c). While the transcriptome representation was generally conserved (Figur e 3a), the snRNA-
seq protocol resulted in a notable outlier when correlating the expression levels of common
genes between protocols, possibly driven by decreased correlation of immature transcripts.
Restricting the correlation analysis to population-specific marker genes, we observed less
variation between protocols (Pearson’s r, 0.5-0.7), which underlines that the expression of these
markers is largely conserved between the methods (Supplementary Fig. 16).

To further test the suitability of protocols to describe cell types, we determined their sensitivity
to detect population specific expression signatures, and found that they had remarkably variable
power to detect marker genes. Specifically, population markers were detected with different
accuracies (Supplementary Fig. 17 and 18), and the detection level varied substantially
(Figure 3d,e and Supplementary Table 4). Quartz-seq2 and Smart-seq2 showed high
expression levels for all cell type signatures, indicating that they have higher power for cell type
identification. Since marker genes are particularly important for data interpretation (e.g.
annotation), low marker detection levels could severely limit the interpretation of poorly
explored tissues, or when trying to identify subtle differences between subpopulations. SnRNA-
seq showed generally lower marker detection levels. However, gene markers were selected from
intact cell experiments, which could lead to underestimating the performance of snRNA-seq to
identify cell-type specific signatures in this analysis approach.

The protocols also detected vastly different total numbers of genes when accumulating
transcript information over multiple cells, with strong positive outliers observed for the smaller
cell types (Figure 3f). In particular, CEL-seq2 and Quartz-seq?2 identified many more genes
than other methods. Intriguingly, CEL-seq2 outperformed all other methods by detecting many
weakly expressed genes; genes detected specifically by CEL-seq2 had significantly lower
expression than the common genes detected by Quartz-seq2 (p<2.2e-16). The greater sensitivity
to weakly expressed genes makes this protocol particularly suitable for describing cell
populations in detail, an important prerequisite for creating a comprehensive cell atlas and

functional interpretation.
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Surprisingly, considering the increased library complexity of single-cell compared to single-
nucleus RNA-seq, the latter protocol identified a similar number of genes when combining
information across multiple cells and suggesting overall similar transcriptome complexity of the
two compartments (Supplementary Fig. 12). SCRNA-seq detected additional genes enriched in
biological processes such as organelle function, including many mitochondrial genes that were
largely absent in the snRNA-seq datasets (Supplementary Table 5).

To further illustrate the power of the different protocols to chart the heterogeneity of complex
samples, we clustered and plotted downsampled datasets in two-dimensional space (Figure 4a)
and then calculated the cluster accuracy and Average Silhouette Width (ASW*, Figure 4b), a
commonly used measure for assessing the quality of data partitioning into communities.
Consistent with the assumption that library complexity and sensitive marker detection provides
greater power to describe complexity, methods that performed well for these two attributes
showed better separation of subpopulations, greater ASW and cluster accuracy. This is
illustrated in the monocytes, for which accurate clustering protocols separated the major
subpopulations (CD14+ and FCGR3A+), while methods with low ASW did not distinguish
between them. Similarly, several methods were able to distinguish between CD8+ and NK cells,

while others were not.

Joint analysis acr oss datasets

A common scenario for cell atlas projects is that data are produced at different sites using
different scRNA-seq protocols. However, the final atlas is created from a combination of
datasets, which requires that the technologies used are compatible. To assess how suitable it is
to combine the results from our protocols into a joint analysis, we used downsampled human
and mouse datasets to produce a joint quantification matrix for all techniques®. Importantly,
single cells grouped themselves by cell type, suggesting that cell phenotypes are the main driver
of heterogeneity in the joint datasets (Figure 5a-d and Supplementary Fig. 19a,b and 20).
Indeed, the combined data showed a clear separation of cell states (e.g. T-cell and enterocyte

subpopulations) and rarer cell types, such as dendritic cells. However, within these populations,
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differences between the protocols pointed to the presence of technical effects that could not be
entirely removed with downsampling to equal read depth and different merging tools (Figure
5e-f and Supplementary Fig. 19c,d, 21a,b and 22a,b). To formally assess the capacity of the
methods to be joined, we calculated the degree to which technologies mix in the merged
datasets (Figure 5g,h and Supplementary Figs. 21c,d and 22c,d). The protocols’ suitability to
be combined (mixability) was directly correlated with their power to discriminate between cell
types (clustering accuracy). Thus, well-performing protocols result in high-resolution cellular
maps and are suitable for consortium-driven projects that include different data sources. When
integrating further downsampled datasets, we observed a drop in mixing ability
(Supplementary Fig. 19e). Consequently, quality standard guidelines for consortia might
define minimum coverage thresholds to ensure the subsequent option of data integration. A
separate analysis of the single-nucleus and single-cell Chromium datasets resulted in well-
integrated profiles, further supporting the potential to integrate cell atlases from cells and nuclei
(Supplementary Fig. 23 and 24).

Cell atlas datasets will serve as a reference for annotating cell types and states in future
experiments. Therefore, we assessed cells’ ability to be projected onto our reference sample
(Figure 2b,c). We used the population signature model defined by matchSCore2 and evaluated
the protocols based on their cell-by-cell mapping probability, which reflects the confidence of
cell annotation (Supplementary Fig. 25a-c). Although there were some differences in the
protocols’ projection probabilities and a potential bias due to the selection of the reference
protocol, a confident annotation was observed for most cells with inDrop and ddSEQ reporting
the highest probabilities. Notably, high probability scores were also observed in further
downsampled datasets (Supplementary Fig. 25b). This has practical consequences, as data
derived from less well performing methods (from a cell atlas perspective) or from poorly
sequenced experiments could be identifiable and thus suitable for specific analysis types, such

as tissue composition profiling.
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Discussion

Systematic benchmarking of available technologies is a crucial prerequisite for large-scale
projects. Here, we evaluated scRNA-seq protocols for their power to produce a cellular map of
complex tissues. Our reference sample simulated common scenarios in cell atlas projects,
including differentiated cell types and dynamic cell states. We defined the strengths and
weaknesses of key features that are relevant for cell atlas studies, such as comprehensiveness,
integratability, and predictive value. The methods revealed a broad spectrum of performance,
which should be considered when defining guidelines and standards for international consortia

(Figure 6).

We expect that our results will guide informed decision-making processes for designing
sc/snRNAseq studies. There are several features to consider when selecting protocols to produce
a reproducible, integrative, and predictive reference cell atlas. At a given sequencing depth, the
number and complexity of detected RNA molecules defines the power to describe cell
phenotypes and infer their function. There are also additional essential features for cell atlas
projects and their interpretation, such as population marker identification. Improved versions of
plate-based methods, including Quartz-seq2, CEL-seq2, and Smart-seq2 generate such high-
resolution transcriptome profiles. Also, microfluidic systems showed excellent performance in
our comparison, particularly the Chromium system. While the scale of plate-based experiments
is limited by the lower throughput of their individual processing units, microfluidic systems,
especially droplet-based methods, can be easily applied to thousands of cells simultaneously.
Protocol modification scales up throughput even further, and allows more cost-effective
experiments”® . Generally, late multiplexing methods, such as Smart-seq2, are more costly, but
costs can be reduced by minituarization®” and using non-commercial enzymes®'. Custom
droplet-based protocols have lower costs than their commercialized counterparts, but the
optimized chemistry in commercial systems resulted in improved performance in this

comparison. Nevertheless, existing platforms are undergoing continued development in both the
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private (Supplementary Fig. 12) and academic sector, so updated protocol versions promise to
improve performance further. For consortium-driven projects, it is important to consider the
integratability of data. We have shown that several protocols, including those with reduced

library complexity and snRNA-seq, were readily integratable with other methods.

The use of PBMC:s is ideal for multi-centre benchmarking efforts; blood cells are easy to isolate
and show a high recovery rate after freezing. We also included mouse colon, a solid tissue
requiring dissociation before sScRNA-seq. Tissue digestion and cryopreservation of colon cells
present additional challenges (e.g., increased rate of damaged cells), which we addressed by
focusing on commonly detected cell types. Although we observed differences in the frequencies
of cells from mouse and human, the composition of cell subtypes within tissues was conserved,
reassuring the consistent capture of major cell types across all methods. Accordingly,
subsequent analyses could be stratified by cell type, avoiding the need for a ground truth in
sample composition. Further, viability sorting with minimal mechanic forces (low speed and
wide nozzle size) was applied to remove damaged cells and to benchmark protocols with high-
quality samples. This work standardized sample processing in order to limit technical variance
to the library preparation steps, a crucial requisite for the multi-center benchmarking design.
Nevertheless, on-site differences introduced during sample thawing or viability sorting could
not entirely be excluded. However, our analysis also showed that viable cells selected by sorting
or through thorough data quality control generate highly similar library complexity, suggesting
potential differences in sample processing to have minor impacts on the data quality and
supporting the robustness our results. Processing time presents another variable related to
sample and data quality. While cells are directly sorted into their respective reaction volumes
for plate-based methods, processing times can vary between microfluidic systems. However,
this was considered as inherent feature of the protocols’ library preparation workflow which

contributes to the overall performance.



410  Across sample origins and cell types, all tested features pointed to consistent protocol

411  performance. In addition to the differences in protocol performance, it was the cells” RNA
412  content and complexity that dominated the molecule and gene detection rates, which we have
413  seen through the stratified analysis of vastly different cells types. As such, we expect the

414  conclusions to be valid beyond the here tested human and mouse tissues.

415  Several additional steps are crucial for the success of single-cell projects, especially sample
416  preparation. Optimizing sample procurement and tissue processing conditions is of crucial

32735 that could limit the

417  importance to avoid composition biases and gene expression artifacts
418  value of a cell atlas. Therefore, dedicated studies are required to define optimal conditions for
419  tissue and organ preparation in healthy and disease contexts.

420

421  From a technical perspective, multiple steps of a protocol are critical for generating complex
422  sequencing libraries. All sc/snRNA-seq methods require multi-step whole-transcriptome

423  amplification, including reverse-transcription (RT), conversion to amplifiable cDNA, and

424 amplification'. Theoretically, the multiplicative reaction-efficiency of respective steps

425  determines a method’s power to detect RNA molecules, and in this sense Quartz-Seq2 was

426  particularly efficient. We specifically tested for potential advantages of the Quartz-seq2 column-
427  over bead-based purification, but did not detect differences in cDNA yield (Supplementary
428  Fig. 26). However, we observed that bead concentration critically affected the yield of amplified
429  cDNA. Moreover, performance was more stable for purification with columns compared to

430  beads, which should be taken into account when implementing existing or developing novel
431  sc/snRNA-seq methods.

432

433 A further essential step towards complex libraries is the conversion of first-strand cDNA to

434  amplifiable cDNA. Three main strategies are used for this conversion, a) template-switching, b)
435  RNaseH-DNA polymerase | mediated second-strand synthesis for in vitro transcription, and c)

436  poly-A tagging'. Improvement of the three strategies led to better quantitative performance of

437  scRNA-seq’® ™. For Quartz-Seq2®’, improved poly-A tagging was most important to increase
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the amplified cDNA yield compared to Quartz-Seq*, and probably explains the excellent result
in this benchmarking exercise. However, optimization of the cDNA conversion still has

potential to improve scRNA-seq methods.

Within the cDNA amplification step, increased PCR cycle numbers lead to PCR biases within
the sequencing libraries. Early pooling increases the amount of cDNA molecules in the
amplification step and reduces PCR bias. This especially favors early pooling methods at low
sequencing depth (as performed in this work), as previously shown for bulk RNA-seq*'.
Similarly, in vitro transcription linearly amplifies cDNA with less biases than PCR-based
methods, and partly explains the good performance of CEL-seq2. Further, early multiplexing of
different cell numbers leads to different PCR cycle requirements (Quartz-Seq2: 768 cells and 10
cycles vs gmcSCRB-seq: 96 cells and 19 cycles, using the same DNA polymerase for
amplification). The number of cells per amplification pool depends on the amount of
amplifiable cDNA, implying that the good performance of Quartz-Seq2 was mainly due to

efficient conversion of amplifiable cDNA from RNA with poly-A tagging.

It is equally important to benchmark computational pipelines for data analysis and
interpretation™***. We envision that the datasets provided by our study will serve as a valuable
resource for the single-cell community to develop and evaluate novel strategies towards an
informative and interpretable cell atlas. Moreover, the multi-center benchmarking framework
presented here can readily be transferred to other organs where common tissue/cell types are

analyzed using different sScRNA-seq protocols (e.g. brain atlas projects).
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Online Methods

Ethical Statement
This study was approved by the Parc de Salut MAR Research Ethics Committee (reference
number: 2017/7585/T) to Dr. Holger Heyn. We adhered to ethical and legal protection guidelines

for human subjects, including informed consent.

Reference sample

Cell Lines

NIH3T3-GFP, MDCK-TurboFP650 and HEK293-RFP were cultured at 37°C in an atmosphere
of 5% (v/v) carbon dioxide in Dulbecco’s Modified Eagle’s Medium, supplemented with 10%
(w/v) fetal bovine serum, 100 U penicillin, and 100 pg/L streptomycin (Invitrogen). On the
reference sample preparation day, the culture medium was removed and the cells washed with
1X PBS. Afterwards, cells were trypsinized (trypsin 100X), pelleted at 800 x g for Smin,

washed in 1X PBS, re-suspended in PBS-EDTA (2mM) and stored on ice.

Mouse Colon Tissue

The colon from eleven mice (7xLGR5/GFP and 4WT) was dissected and removed. For single-
cell separation the colons were treated separately. The colon was sliced, opened and washed
twice in cold 1X HBSS. It was then placed on a petri plate on ice and minced with razor blades
until disintegration. The minced tissue was transferred to a 15 ml tube containing 5 ml of 1X
HBSS and 83 pl of collagenase I'V (final concentration 166 U/ml). The solution was incubated
for 15 min at 37°C (vortexed for 10 sec every 5 min). To inactivate the collagenase IV, 1 ml of
FBS was added and vortexed for 10 seconds. The solution was filtered through a 70 pm nylon

mesh (changed when clogged). Finally, all samples were combined, cells pelleted for 5 min at
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400 g at 4°C. The supernatant was removed, and the cells resuspended in 20 ml of 1X HBSS

and stored on ice.

I solation of peripheral blood mononuclear cells (PBMC)

Whole blood was obtained from four donors (two female, two male). The extracted blood was
collected in Heparin tubes (GP supplies) and processed immediately. For each donor, PBMCs
were isolated according to the manufacturer’s instructions for FICOLL extraction (pluriSelect).
Briefly, blood from two Heparin tubes (approximately 8 ml) was combined, diluted in 1X PBS
and carefully added to a 50 ml tube containing 15 ml FICOLL. The tubes were centrifuged for
30 min at 500 g (minimum acceleration and deceleration). The interphase was carefully
collected and diluted with 1X PBS + EDTA (2mM). Following a second centrifugation, the
supernatant was discarded and the pellet resuspended in 2 ml of 1X PBS + EDTA (2mM) and

stored on ice.

Preparation of thereference sample

Cell counting was performed using an automated cell counter (TC20™ Automated Cell
Counter, Bio-Rad Laboratories). The reference sample was calculated to include human PBMC
(60%), mouse colon (30%), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP
labelled mouse cells) and MDCK (1%, TurboFP650 labelled dog cells). To adjust for cell
integrity loss during sample processing, we measured the viability during cell counting, and
accounted for an expected viability loss after cryopreservation (10% for cell lines and PBMC;
50% for colon"). All single cell solutions were combined in the proportions mentioned above
and diluted to 250,000 viable cells per 0.5 ml. For cryopreservation, 0.5 ml of cell suspension
was aliquoted into cryotubes and gently mixed with a freezing solution (final concentration 10%
DMSO; 10% heat-inactivated FBS). Cells were then frozen by gradually decreasing the
temperature (1°C/min) to —80°C (cryopreserved), and stored in liquid nitrogen. MARS-Seq and
Smart-Seq?2 experiments were performed to validate sample quality and composition before

distributing aliquots to the partners.
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Sample processing

Samples were stored at -80°C upon arrival. Before processing, samples were de-frozen in a
water bath (37°C) with continuous agitation until the material was almost thawed. The entire
volume was transferred to a 15 ml Falcon using a 1000 ul tip (wide-bored or cut tip) without
mixing by pipetting. 1000 ul of pre-warmed (37°C) Hibernate-A were added drop-wise while
gently swirling the sample. Sample was rested for 1 min. An additional 2000 ul of pre-warmed
(37°C) Hibernate-A were added drop-wise while gently swirling the sample. Sample was rested
for 1 min. Another 2000 ul of pre-warmed (37°C) Hibernate-A were added drop-wise while
gently swirling the sample. Sample was rested for 1 min. Then, 3000 ul of pre-warmed (37°C)
Hibernate-A were added drop-wise and the Falcon inverted 6 times. Sample was rested for 1
min. An additional 5000 ul of pre-warmed (37°C) Hibernate-A were added drop-wise and the
Falcon inverted 6 times. Sample was rested for 1 min. The sample was centrifuged at 400 x g
for 5 min at 4°C (pellet clearly visible). The supernatant was removed until 500 ul remained in
the tube. The pellet was resuspended by gentle pipetting. 3500 ul of 1X PBS + 2mM EDTA
were added and the sample stored on ice until processing. Before FACS isolation, cells were
filtered through a nylon mesh and 3 ul of DAPI were added before gentle mixing. During FACS
isolation, DAPI-positive cells were excluded to remove dead and damaged cells. Further, the
exclusion of GFP-positive cells simulated the removal of a cell type from a complex sample.

Supplementary Fig. 27 shows representative FACS plots and gating strategies.

Single-cell RNA sequencing library preparation

For a detailed sample processing description see Supplementary Notes.

Data analysis

For Primary data preprocessing, Clustering, Sample deconvolution and annotation and
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Reference datasets see Supplementary Notes.

MatchSCore2

To systematically assign cell identities to unannotated cells coming from different protocols, we
used matchSCore2, a mathematical framework for classifying cell types based on reference data
(https://github.com/elimereu/matchSCore2). The reference data consists of a matrix of gene
expression counts in individual cells whose identity is known. The main steps of the

matchSCore2 annotation are the following:

1. Normalization of the reference data
Gene expression counts are log-normalized for each cell using the natural logarithm of
1 + counts per 10,000. Genes are then scaled and centered using the ScaleData function

in the Seurat package.

2. Definition of signatures and their relative scores

For each of the cell types in the reference data, positive markers were computed using
the Wilcoxon Rank sum test. The top 100 ranked markers in each cell type were used as
the signature for that type. To each cell, we assigned a vector x=(x,..,X,) of signature
scores, where n is the number of cell types in the reference data. The i-th signature score
for the k-th cell is computed as follows:

Scorex = X in J Zjk

where J is the set of genes in signature i, and zj represents the z-score of gene j in the k-

th cell.

3. Training of the probabilistic model on the reference data.
We proposed a supervised multinomial logistic regression model, which uses the

enrichment of the signature of each reference cell type in each cell to assign identity to



713 that cell. In other words, for each cell k and signature i, we calculate the i-th cell type

714 signature score X; in the k-th cell as described in point 2. The distribution of the

715 signature scores is preserved, independent of which protocol is used (Supplementary
716 Fig. 28 and 29). More specifically, we defined the variables X, _X,, where X; is the
717 vector in which the scores for signature i of all cells are contained. Then we used X as
718 the predictors of a multinomial logistic regression.

719 The model assumes that the number of cells from each type in the training reference
720 data Ty T,, . T,, are random variables and that the variable T=(T; T, T,) follows a
721 multinomial distribution M(N, n=(m;  m,)), where T is the proportion of the i-th cell
722 type and N is the total number of cells.

723

724 To test the performance of the model, training and test sets were created by

725 subsampling the reference into two datasets, maintaining the original proportions of cell
726 types in both sets. The model was trained by using the multinom function from the nnet
727 R package (decay=1e-04, maxit=500). To improve the convergence of the model

728 function, X; variables were scaled to the interval [0,1].

729

730  Cell Classification

731  For each cell, model predictions consisted of a set of probability values per identity class, and
732 the highest probability was used to annotate the cell if it was >0.5; otherwise the cell resulted
733 unclassified.

734

735  Mode accuracy

736  To evaluate the fitted model using our reference datasets, we assessed the prediction accuracy in
737  the test set, which was around 0.9 for human and 0.85 for mouse reference. We further assessed
738  matchSCore2 classifications in datasets from other sequencing methods by looking at the

739  agreement between clusters and classification. Notably, the resulting average agreement was of
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80% (range: from 58% in gmcSCRB-seq to 92% in Quartz-Seq2), while the rate of unclassified

cells was less than 2%.

Downsampling

To decide on a common downsampling threshold for sequencing depth per cell, we inspected
the distribution of the total number of reads per cell for each technique, and chose the lowest
first quartile (fixed to 20,000 reads/cell). We then performed stepwise downsampling (25%,
50% and 75%) using the zUMIs downsampling function. We omitted cells that did not achieve
the required minimum depth (Supplementary Table 6). Notably, stochasticity introduced
during downsampling did not affect the results of this study, as exemplified by the consistent
numbers of detected molecules across different downsampling iterations (Supplementary Fig.

10).

Estimation of dropout probabilities

We investigated the impact of dropout events in HEK293T, monocytes and B-cells extracted for
each technique on downsampled data (20,000 reads/cell). For datasets with >50 cells from the
selected populations, we randomly sampled 50 cells to eliminate the effect of differing cell
number. The dropout probability was computed using SCDE R package®. SCDE models the
measurements of each cell as a mixture of a negative binomial process to account for the
correlation between amplification and detection of a transcript and its abundance, and a Poisson
process to account for the background signal. We then used estimated individual error models
for each cell as a function of expression magnitude to compute dropout probabilities using
SCDE’s scde.failure.probability function. Next, we calculated the average estimated dropout
probability for each cell type and technique. To integrate dropout measures into the final
benchmarking score, we calculated the Area Under the Curve (AUC) of the expression prior and
failure probabilities (Figure 2f and Supplementary Table 7). We expected that protocols that

result in fewer dropouts would have lower AUC.
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Quantification of variance introduced by batches

In order to quantify the amount of variance that is introduced by batches (protocols, processing
units or experiments), we used the top 20 PCs and the standard deviation of each PC, previously
calculated on HVG. Next, using pcRegression function of kBET R package™, we regressed the
batch covariate (protocols/processing units/experiments as categories defined in the kBET
model) and each PC to get the coefficient of determination as an approximation of the variance
explained by batches and the proportions of explained variance in each PC. We either reported
the percentage of the variance that is significantly correlating with batch in first 20 PCs, or R-

squared measures of the model for each PC.

Cumulative number of genes

The cumulative number of detected genes in downsampled data was calculated separately for
each cell type. For cell types with >50 cells annotated, we randomly selected 50 cells and
calculated the average number of detected genes per cell after 50 permutations over n sampled

cells, where n is an increasing sequence of integers from 1 to 50.

GO enrichment analysis

In order to compare functional gene sets between single-cell and single-nucleus datasets, we
performed GO enrichment analysis on the set of protocol-specific genes using simpleGO
(https://github.com/iaconogi/simpleGO). For each cell type (HEK293T, monocytes, B-cells), we
selected two gene sets extracted from the cumulated genes and using the maximum number of
detected cells common to all three Chromium versions: i) Genes that were uniquely detected in
the intersection of Chromium (V2) and (V3), but not in Chromium (sn) and ii) genes that were
uniquely identified with Chromium (sn). For each of the gene sets we identified the union over

cell types before applying simpleGO.

Correlation analysis.



795  Pearson correlations across protocols were computed independently for B-cells, Monocytes and
796  HEK293T cells. For each cell type, cells were downsampled to the maximum common number
797  of cells across all protocols. Gene counts of commonly expressed genes (from datasets

798  downsampled to 20K reads) were averaged across cells before computing their Pearson’s

799  correlations. The corplot library was then used to plot resulting correlations. Protocols were
800  ordered by agglomerative hierarchical clustering.

801

802  Silhouette scores

803  To measure the strength of the clusters, we calculated the Average Silhouette Width (ASW)*.
804  The downsampled data (20,000 reads/cell) were clustered by Seurat™, using graph based

805  clustering with the first 8 principle components and resolution of 0.6. We then computed an
806  average Silhouette width for the clusters using a Euclidean distance matrix (based on principle
807  components 1 to 8). We report the average Silhouette width for each technique separately.

808

809 Dataset merging

810  Dataset integration across protocols is challenging and we applied different tools to assess the
811  integratability of the sc/snRNA-seq methods, while conserving biological variability. To

812 integrate datasets, we used Seurat*’, harmony*” and scMerge®, evaluated the results separately
813  and averaged the integration capacity of the protocols into a joint score. We combined

814  downsampled count matrices using the sce cbind function in scMerge, which includes the union
815  of genes from different batches. While both harmony and Seurat integration apply similar

816  preprocessing steps (log-normalization, scaling and highly variable genes identification) as

817  implemented in the Seurat tool, scMerge uses a set of genes with stable expression levels across
818  different cell types and then creates pseudo-replicates across datasets, allowing the estimation
819  and correction for undesired sources of variability. However, for all three alignment methods,
820  Seurat was applied to perform clustering and UMAP after the protocol correction, in order to
821  minimize the variability related to the downstream analysis. The clustering accuracy metric was

822  used together with the mixability score to quantify the success of the integration. Omitting the
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cell integration step before visualizing the datasets together in a single tSNE/UMAP resulted in
a protocol-specific distribution with cell types scattered to multiple clusters (Supplementary

Fig. 30).

Clustering accuracy

To determine the clusterability of methods to identify cell types, we measured the probability of
cells to be clustered with cells of the same type. Let C; , k € {1, ..., N} represent the cluster of
cells corresponding to a unique cell type (based on the highest agreement between clusters and

cell types), and T; , j € {1, ..., S} the set of different cell types, where C=T. For each cell type

T;, we compute the proportion pj of Tjcells that cluster in their correct cluster C,. We define the

cell-type separation accuracy as the average of these proportions.

Mixability

To account for the level of mixing of each technology, we used kBet™ to quantify batch effects
by measuring the rejection rate of a Pearson’s ” test for random neighborhoods. To make a fair
comparison, kBet was applied to the common cell types separately by subsampling batches to
the minimum number of cells in each cell type. Due to the reduced number of cells, the option
heuristic was set to ‘False’, and the testSize was increased to ensure a minimum number of
cells.

Mixability was calculated by averaging cell type specific rejection rates.

Benchmarking score

To create an overall benchmarking score with which to compare technologies, we considered
six key metrics: gene detection, overall level of expression in transcriptional signatures, cluster
accuracy, classification probability, cluster accuracy after integration, and mixability. Each
metric was scaled to the interval [0,1], then in order to equalize the weight of each metric score,

the harmonic mean across these metrics was calculated to obtain the final Benchmarking scores.
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Gene detection, overall expression in cell type signatures, and classification probabilities were
computed separately for B-cells, HEK293T cells and monocytes, and then aggregated by the
arithmetic mean across cell types. Notably, the choice of protocol to create the reference dataset
(Chromium) for initial cell annotation had no impact on the outcome of the study

(Supplementary Fig. 31).

Data Availability
All raw sequencing data and processed gene expression files are freely available through the

Gene Expression Omnibus (GEO; GSE133549).

Code availability
All code for the analysis is provided as supplementary material. All code is also available under

https://github.com/ati-lzZHCA Benchmarking and https://github.com/elimereu/matchSCore2.
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Figure 1. Overview of the experimental design and data processing.

The reference sample consists of human PBMC (60%) and HEK293T (6%), mouse colon (30%)
and NIH3T3 (3%) and dog MDCK (1%). The sample was prepared in one single batch,
cryopreserved and sequenced by 13 different sc/snRNA-seq methods. Sequences were
uniformly mapped to a joint human, mouse and canine reference and then separately to produce

gene expression counts for each sequencing method.

Figure 2. Comparison of 13 sc/snRNA-seq methods.

a. Color legend of sc/snRNA-seq protocols. b. UMAP of 30,807 cells from the human reference
sample (Chromium) colored by cell type annotation. . UMAP of 19,749 cells from the mouse
reference (Chromium) colored by cell type annotation. d. Boxplots displaying the minimum,
Ist, 2nd, 3rd quantiles and the maximum number of genes detected across protocols, in
downsampled (20K) HEK293T cells, monocytes and B-cells. Cell identities were defined by
combining the clustering of each dataset and cell projection onto the reference. € Number of
detected genes at step-wise downsampled sequencing depths. Points represent the average
number of detected genes as a fraction of all cells of the corresponding cell type at the
corresponding sequencing depth. f. Dropout probabilities as a function of expression magnitude,
for each protocol and cell type, calculated on downsampled data (20K) for 50 randomly selected

cells.

Figure 3. Similarity measures of sc/snRNA sequencing methods.

a,b. PCA analysis on downsampled data (20K) using highly variable genes between protocols,
separated into HEK293T cells, monocytes and B-cells, and color-coded by protocol (a) and
number of detected genes per cell (b). ¢. Pearson correlation plots across protocols using
expression of common genes. For a fair comparison, cells were downsampled to the same

number for each method (B cells=32, Monocytes = 57, HEK293T= 55). Protocols are ordered
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by agglomerative hierarchical clustering. d. Average log expression values of cell-type-specific
reference markers for downsampled (20K) HEK293T cells, monocytes, and B-cells. e. Log
expression values of reference markers on downsampled data (20K) for HEK293T cells,
monocytes and B-cells (maximum 50 random cells per technique). f. Cumulative gene counts
per protocol as the average of 100 randomly sampled HEK293T cells, monocytes and B-cells

separately on downsampled data (20K).

Figure 4. Clustering analysis of 13 sc/snRNA-seq methods on downsampled datasets
(20K). a. T-SNE visualizations of unsupervised clustering in human samples from 13 different
methods. Each dataset was analyzed separately after downsampling to 20K reads per cell. Cells
are colored by cell type inferred by matchSCore2 before downsampling. Cells that did not
achieve a probability score of 0.5 for any cell type were considered unclassified. b. Clustering

accuracy and Average Silhouette Width for clusters in each protocol.

Figure 5. Integration of sc/snRNA-seq methods. UMAP visualization of cells after integrating
technologies for 18,034 human (a,b) and 7,902 mouse (c,d) cells. Cells are colored by cell type
(a,c) and sc/snRNA-seq protocol (b,d). e,f. Barplots showing normalized and method-corrected
(integrated) expression scores of cell-type-specific signatures for human HEK293T cells,
monocytes, B-cells (€) and mouse secretory and transit-amplifying cells (f). Bars represent cells
and colors methods. g,h. Evaluation of method integratability in human (g) and mouse (h).
Protocols are compared according to their ability to group cell types into clusters (after
integration) and mix with other technologies within the same clusters. Points are colored by

sequencing method.

Figure 6. Benchmarking summary of 13 sc/snRNA-seq methods. Methods are scored by key
analytical metrics, characterizing protocols according to their ability to recapitulate the original

structure of complex tissues, and their suitability for cell atlas projects. The methods are ordered



918 by their overall benchmarking score, which is computed by averaging the scores across metrics

919 assessed from the human datasets.
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Supplementary Figure 6
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