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Large-scale association analyses identify host
factors influencing human gut microbiome
composition

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed
genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed
high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association
study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant
(P <5 x1078) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association
study signal: P=1.28 x 10-2°), and it showed an age-dependent association with Bifidobacterium abundance. Other associa-
tions were suggestive (1.95 x 10~"° < P < 5 x 10~%) but enriched for taxa showing high heritability and for genes expressed in the
intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait
loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative

colitis and rheumatoid arthritis.

ont. In recent years, many studies have highlighted the link

between its perturbations and immune, metabolic, neurologic
and psychiatric traits, drug metabolism and cancer'. Environmental
factors, like diet and medication, play a substantial role in shap-
ing the gut microbiome composition®™, although twin, family and
population-based studies have shown that the genetic component
also plays a role in determining gut microbiota composition, and a
proportion of bacterial taxa are heritable>*.

Several studies’ have investigated the effect of genetics on
microbiome composition through genome-wide association stud-
ies (GWAS) and identified dozens of associated loci. However, little
replication across these studies has been observed so far'®'. This
may be due to a number of factors. First, methodological differ-
ences in the collection, processing and annotation of stool micro-
biota are known to have strong effects on the microbiome profiles
obtained'””"* and can generate heterogeneity and a lack of reproduc-
ibility across studies. Second, most association signals are rather
weak, which suggests that existing studies of 1,000-2,000 samples’™
are underpowered. Finally, some of the GWAS signals related to
microbiome compositions may be population specific, that is, they
may represent bona fide population differences in genetic structure
and/or environment.

To address these challenges and obtain valuable insights into the
relationship between host genetics and microbiota composition,
we set up the international consortium MiBioGen''. In this study,
we coordinated 16S ribosomal RNA (rRNA) gene sequencing pro-
files and genotyping data from 18,340 participants from 24 cohorts
from the United States, Canada, Israel, South Korea, Germany,
Denmark, the Netherlands, Belgium, Sweden, Finland and the
United Kingdom. We performed a large-scale, multiancestry,
genome-wide meta-analysis of the associations between autosomal
human genetic variants and the gut microbiome. We explored the
variation of microbiome composition across different populations
and investigated the effects of differences in methodology on the
microbiome data. Through the implementation of a standardized
pipeline, we then performed microbiome trait loci (mbTL) mapping

| he gut microbiome is an integral part of the human holobi-

to identify genetic loci that affect the relative abundance (microbi-
ome quantitative trait loci, or mbQTLs) or presence (microbiome
binary trait loci, or mbBTLs) of microbial taxa. Finally, we focused
on the biological interpretation of GWAS findings through gene-set
enrichment analysis (GSEA), phenome-wide association studies
(PheWAS) and Mendelian randomization (MR) approaches.

Results

Landscape of microbiome composition across cohorts. Our study
included cohorts that were heterogeneous in terms of ancestry, age,
male/female ratio and microbiome analysis methodology. Twenty
cohorts included samples of single ancestry, namely European
(16 cohorts; n=13,266), Middle Eastern (1 cohort; n=481), East
Asian (1 cohort; n=2811), American Hispanic/Latin (1 cohort;
n=1,097) and African American (1 cohort; n=114), whereas
four cohorts included samples from multiple ancestries (n=2,571;
Supplementary Note and Supplementary Tables 1 and 2).

Twenty-two cohorts comprised adult or adolescent individuals
(n=16,632), and two cohorts consisted of children (n=1,708). The
microbial composition was profiled by targeting three distinct vari-
able regions of the 16S rRNA gene: V4 (10,413 samples; 13 cohorts),
V3-V4 (4,211 samples; 6 cohorts) and V1-V2 (3,716 samples, 5
cohorts; Fig. 1a). To account for differences in sequencing depth,
all datasets were rarefied to 10,000 reads per sample. Next, we per-
formed taxonomic classification using direct taxonomic binning
instead of operational taxonomic unit (OTU) clustering methods
(Methods)'*>°,

In general, cohorts varied in their microbiome structure at mul-
tiple taxonomic levels (Fig. 1b-g). This variation may largely be
driven by the heterogeneity between populations and differences
in technical protocols (Supplementary Tables 1-3). Combining all
samples (n=18,340) resulted in a total richness of 385 genus-level
taxonomic groups that had a relative abundance higher than 0.1%
in at least one cohort. This observed total richness appeared to
be below the estimated saturation level (Fig. 1b), suggesting that
a further increase in sample size and a higher sequencing depth
are needed to capture the total gut microbial diversity (Fig. 1d).

A full list of authors and affiliations appears at the end of the paper.
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Fig. 1| Diversity of microbiome composition across the MiBioGen cohorts. a,

Sample size, ancestry, genotyping array and 16S rRNA gene profiling

method. The SHIP/SHIP-TREND and GEM_v12/GEM_v24/GEM_ICHIP subcohorts were combined in SHIP and GEM, respectively (Methods; see
Supplementary Note for cohort abbreviations), resulting in a total of 21 cohorts. b, Total richness (number of genera with mean abundance over 0.1%,
that is, 10 reads of 10,000 rarefied reads) by number of cohorts investigated. €, Number of core genera (genera present in >95% of samples from each

cohort) by number of cohorts investigated. d, Pearson correlation of cohort sa

mple size with total number of genera. Confidence bands represents the

standard error (s.e.) of the regression line. e, Unweighted mean relative abundance of core genera across the entire MiBioGen dataset. f, Per-sample
richness across the 21 cohorts. g, Diversity (Shannon index) across the 21 cohorts, with the DanFund and PNP cohorts presenting higher and lower
diversity in relation to the other cohorts. In f and g, asterisks indicate cohorts that differed significantly from all the others (pairwise Wilcoxon rank-sum

test; false discovery rate < 0.05). For all box plots (b, € and e), the central line,
times the IQR, respectively.

As expected, the core microbiota (the number of bacterial taxa
present in over 95% of individuals) decreased with the inclusion
of additional cohorts (Fig. 1c and Methods). The core microbiota
comprises nine genera, of which seven were previously identified
as such’, and the genera Ruminococcus and Lachnoclostridium
(Fig. le). Of these nine genera, the most abundant genus was
Bacteroides (18.65% (standard deviation (SD): 8.65%)), followed by
Faecalibacterium (6.19% (SD: 2.35%)), Blautia (3.36% (SD: 2.84%))
and Alistipes (3.05% (SD: 1.47%)). Among the European cohorts
that compose the largest genetically and environmentally homoge-
neous cluster, the core microbiota also included Ruminiclostridium,
Fusicatenibacter, Butyricicoccus and Eubacterium, genera that typi-
cally produce short-chain fatty acids".

The DNA extraction method was the principal contributor to
heterogeneity, with a nonredundant effect size of 29% on the micro-
biome variation (measured as average genus abundance per cohort;
stepwise distance-based redundancy analysis adjusted R squared
(R*adjpyyex) =0.27, adjusted P value (P,y) =7 X 10~% Supplementary
Table 4). Richness and Shannon diversity also differed significantly
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box and whiskers represent the median, interquartile range (IQR) and 1.5

across cohorts. The cohorts with the lowest richness (HCHS/SOL)
and highest diversity (DanFund) used specific DNA extraction kits
that were not used by other studies, possibly contributing to their
outlying alpha diversities (Fig. 1f,g and Supplementary Table 3).
Opverall, the 16S rRNA domain sequence and the DNA extraction
methods used, together with cohort ancestry, accounted for 32.74%
of richness variance.

Given the high heterogeneity of microbial composition across
cohorts, we applied both per-cohort and whole-study filters for taxa
inclusion in GWAS (Methods).

Heritability of microbial taxa and alpha diversity. We performed
estimation of heritability (H?) of gut microbiome composition based
on the two twin cohorts included in our study (Supplementary Table
5). The TwinsUK cohort, composed of 1,176 samples, including 169
monozygotic (MZ) and 419 dizygotic (DZ) twin pairs, was used to
estimate H? using the ACE (additive genetic variance (A)/shared envi-
ronmental factors (C)/non-shared factors plus error (E)) model. The
Netherlands Twin Registry (NTR) cohort (only MZ twins; n=312, 156
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Fig. 2 | Heritability of microbiome taxa and its concordance with mbQTL mapping. a, Microbial taxa that showed significant heritability in the TwinsUK
cohort (ACE model; nominal P< 0.05, no adjustment for multiple comparison). Taxa with at least one genome-wide significant (GWS) mbQTL hit are
marked in red. Only taxa present in more than 10% of pairs (>17 MZ pairs and >41DZ pairs) are shown. Circles and diamonds represent heritability values.
Error bars represent 95% Cls. b, Correlation of MZ ICC between TwinsUK and NTR cohort. Only taxa with significant heritability (ACE model P < 0.05) that
were present in both TwinsUK and NTR are shown. Red and blue dots indicate bacterial taxa with and without GWS mbQTLs (P <5x1078), respectively.
Segments represent 95% Cls. ¢, Correlation between heritability significance (—log,, P, TwinsUK) and the number of loci associated with microbial taxon
at relaxed threshold (P, ,qr. <1x107°). Taxa with at least one GWS-associated locus are marked in red. Error bars represent 95% Cls.

pairs) was used to replicate the MZ intraclass correlation coefficient
(ICC). None of the alpha diversity metrics (Shannon, Simpson and
inverse Simpson) showed evidence for heritability (A <0.01, P=1).
Among the 159 bacterial taxa that were present in more than 10% of
twin pairs, 19 taxa showed evidence for heritability (P, < 0.05; Fig.
2a). The ICC showed concordance between TwinsUK and N'TR for
these 19 bacterial taxa (R=0.25, P=0.0018; Fig. 2b).

The SNP-based heritability calculated from mbQTL sum-
mary statistics using linkage disequilibrium (LD) score regression
showed two bacterial taxa, genus Ruminiclostridium 9 and fam-
ily Peptostreptococcaeae, passing the significance threshold given
the number of 211 taxa tested (Z < 3.68; Supplementary Table 5).
The results of the SNP-based heritability and twin-based heritabil-
ity showed significant correlation across the tested taxa (R=0.244,
P=7.2x10"").

Thirty-one loci associated with gut microorganisms through
GWAS. First, we studied the genetic background of the alpha diver-
sity (Simpson, inverse Simpson and Shannon diversity indices).
We identified no significant hits in the meta-analysis of GWAS
(P>5x%107% Supplementary Table 6 and Supplementary Fig. 1), in
line with the observed lack of heritability for these indices.

Next, we used two separate GWAS meta-analysis approaches'*-*
to explore the effect of host genetics on the abundance levels
(mbQTL) or presence/absence (mbBTL) of bacterial taxa in the gut
microbiota (Methods).

Intotal, 18,340 samples and 211 taxa were included in the mbQTL
mapping analysis (Methods and Supplementary Table 3). We identi-
fied genetic variants that mapped to 20 distinct genetic loci associ-
ated with the abundance of 27 taxa (Fig. 3, Supplementary Figs. 2
and 3 and Supplementary Tables 7 and 8). MbBTL mapping covered
177 taxa, and 10 loci were found to be associated with presence/
absence of bacterial taxa (Fig. 3 and Supplementary Tables 7 and 9).
For one taxon, family Peptococcaceae, two independent mbBTLs
were detected (Fig. 3 and Supplementary Table 7). Two of 31 mbTLs
showed heterogeneity in mbTL effect sizes (Supplementary Note).

In both the mbQTL and mbBTL mapping, only 1 of 31 loci (LCT
locus: Bifidobacterium; P=8.63 X 107!) passed the strict correction
for the number of taxa tested (P<1.95 X 107! for 257 taxa included
in the analysis). However, the remaining loci included functionally
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relevant variants (that is, the FUT2 gene suggested by earlier stud-
ies’’) and, overall, showed concordance with the heritability of
microbial taxa. Seven of the nine taxa that showed the strongest
evidence for heritability in the TwinsUK cohort (P<0.01) also
have genome-wide significant mbTLs (Fig. 2b). For the taxa with
genome-wide significant mbTLs, the number of independent loci
associated with a relaxed threshold of 1x107° strongly correlated
with heritability significance (R=0.62, P=1.9%x107% Fig. 2¢c), sug-
gesting that more mbTLs would be identified for this group of bac-
teria using a larger sample size.

LCT mbQTL effect shows age and ancestry heterogeneity. The
strongest association signal was seen for variants located in a large
block of about 1.5Mb at 2q21.3, which includes the LCT gene and
12 other protein-coding genes. This locus has previously been asso-
ciated with the abundance of Bifidobacterium in Dutch’, UK® and
US?* cohorts. Previous studies have also shown a positive correla-
tion of Bifidobacterium abundance with the intake of milk prod-
ucts, but only in individuals homozygous for the low-function LCT
haplotype, thereby indicating that gene-diet interaction regulates
Bifidobacterium abundance’. In our study, the strongest association
was seen for rs182549 (P=1.28x107%), which is a perfect proxy
for the functional LCT variant rs4988235 (r*=0.996; D'=1 in
European populations). This association showed evidence for het-
erogeneity across cohorts (?=62.73%, Cochran’s Q P=1.4x107").
A leave-one-out strategy showed that the Copenhagen Prospective
Studies on Asthma in Childhood (COPSAC,,,) cohort, which
includes children with an age range of 4-6 years, contributed the
most to the detected heterogeneity (Fig. 4a,b and Supplementary
Table 2). When this study was excluded from the meta-analysis,
the heterogeneity was reduced (I*=51.9%, Cochran’s Q P=0.004).
A meta-regression analysis showed that linear effects of age and
ancestry accounted for 11.84% of this heterogeneity. Including qua-
dratic and cubic terms of age in the model explained 39.22% of the
heterogeneity, and the residual heterogeneity was low (Cochran’s Q
P=0.01; Fig. 4c).

Following these observations, we decided to investigate the effect
of age and ancestry in the multiancestry GEM cohort, compris-
ing 1,243 individuals with an age range between 6 and 35 years, of
which nearly half of the participants are 16 years or younger. Our
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Fig. 3 | Manhattan plot of the mbTL mapping meta-analysis results. MbQTLs are indicated by letters. MbBTLs are indicated by numbers. For mbQTLs,
the Spearman correlation test (two-sided) was used to identify loci that affect the covariate-adjusted abundance of bacterial taxa, excluding samples
with zero abundance. For mbQTLs, P values (two-sided) were calculated by logistic regression. Horizontal lines define nominal genome-wide significance

(P=5x%10"% red) and suggestive genome-wide (P=1x10"%; blue) thresholds.

analysis showed a significant SNP-age interaction on the level of
Bifidobacterium abundance (P <0.05; Methods). Individuals homo-
zygous for the NC_000002.11:2.136616754CC (rs182549) genotype
showed a higher abundance of the genus Bifidobacterium in the
adult group, but not in the younger group (Fig. 4d). The age-geno-
type interaction was significant in the GEM_v12 and GEM_ICHIP
subcohorts, both comprising mostly individuals of European ances-
try, while the GEM_v24 cohort is mainly composed of individuals of
different Israeli subancestries (Methods) who live in Israel, showed
neither an mbQTL effect (beta=—0.002 (95% confidence interval
(CI): —0.21, 0.21)) nor an interaction with age (P> 0.1). The lack of
an LCT mbQTL effect in adults was also observed in another Israeli
cohort in the study (Personalized Nutrition Project (PNP): 481
adults, beta=—-0.20 (95% CI: —0.61, 0.20)). Altogether, the cohorts
that reported the lowest LCT effect sizes were the two cohorts of
Israeli ancestry volunteered in Israel (GEM_v24 and PNP) and a
child cohort (COPSAC: beta=—0.18 (95% CI: —0.36, —0.01)).

mbTLs are enriched for genes related to metabolism. Several loci
detected at genome-wide significance level were enriched for genes
related to metabolism.

In the mbQTL analysis, the FUT2-FUT1 locus was associated
with the abundance of the Ruminococcus torques genus group,
a genus from the Lachnospiraceae family. The leading SNP
(rs35866622 for R. torques group; P=2.21 X 107*) is a proxy for the

NATURE GENETICS | VOL 53 | FEBRUARY 2021|156-165 | www.nature.com/naturegenetics

functional variant rs601338 (r*=0.8; D’ =0.9 in European popu-
lations) that introduces a stop codon in FUT2 (ref. **). Another
proxy of the functional FUT2 SNP, rs281377, showed an asso-
ciation with the Ruminococcus gnavus genus group in the binary
analysis; however, this signal was just above the genome-wide
significance threshold (P=5.79x107% Supplementary Table 9).
FUT2 encodes the enzyme alpha-1,2-fucosyltransferase, which
is responsible for the secretion of fucosylated mucus glycans in
the gastrointestinal mucosa*. Individuals homozygous for the
stop codon (rs601338*A/A, non-secretors) do not express ABO
antigens on the intestinal mucosa. We observed that the tagging
NC_000019.9:g.49218060C>T (rs35866622 non-secretor) allele
was associated with a reduced abundance of the R. torques group
and a decreased presence of the R. gnavus group. Ruminococcus
sp. are specialized in the degradation of complex carbohydrates®,
thereby supporting a link between genetic variation in the FUT2
gene, levels of mucus glycans and the abundance of this taxa.
When assessing the link between this variant and phenotypes in
the LifeLines-DEEP (LLD; n=_875) and Flemish Gut Flora Project
(FGFP; n=2,259) cohorts (Methods), the strongest correlation for
the R. torques group was seen with fruit intake (LLD: Spearman R
(Rs,) =—0.19, P,y =3.1x 1075 FGFP: Ry, =—0.10, P,;=1.4x107%
Supplementary Tables 10 and 11), in line with the association
of FUT2 with food preferences, as discussed in the results of the
PheWAS (see below).
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Fig. 4 | Association of the LCT locus (rs182549) with the genus Bifidobacterium. a, Forest plot of effect sizes of rs182549 and abundance of
Bifidobacterium. Effect sizes and 95% Cls are defined as circles and error bars. Effect sizes were calculated from Spearman correlation P values (Methods).
b, Meta-regression of the association of mean cohort age and mbQTL effect size. Confidence bands represent the s.e. of the meta-regression line.

¢, Meta-regression analysis of the effect of linear, squared and cubic terms of age on mbQTL effect size. Confidence bands represent the s.e. of the
meta-regression line. d, Age dependence of mbQTL effect size in the GEM cohort. Blue boxes include samples in the age range of 6-16 years. Red boxes
include samples with an age of >17 years. The C/C (rs182549) genotype is a proxy of the NC_000002.11:g.136608646 = (rs4988235) allele, which is
associated with functional recessive hypolactasia. The central line, box and whiskers represent the median, IQR and 1.5 times the IQR, respectively. Cohort

abbreviations are available in the Supplementary Note.

Several other suggestive mbQTLs can be linked to genes poten-
tially involved in host-microbiome cross-talk. One of them includes
three SNPs in 9921 (top SNP rs602075, P=3.57 X 107%) associated
with abundance of Allisonella. The 9921 locus includes the genes
PCSK5, RFK and GCNTI, of which RFK encodes the enzyme
that catalyzes the phosphorylation of riboflavin (vitamin B,) and
GCNT]1 encodes a glycosyltransferase involved in biosynthesis of
mucin. These products play major roles in the host-microbiota
interactions within the intestine, where they are used by bacteria
for their metabolism and involved in the regulation of the host
immune defense”. Another association signal, 10p13 (rs61841503,
P=9.8x107°), which affects the abundance of the heritable family
Peptostreptococcaceae, is located in the CUBN gene, the receptor
for the complexes of cobalamin (vitamin B,,) with gastric intrinsic
factor (the complex required for absorption of cobalamin). CUBN
is expressed in the kidneys and the intestinal epithelium and is asso-
ciated with B,,-deficient anemia and albuminuria®’. Cobalamin is
required for host-microbial interactions®, and supplementation
with cobalamin induced a substantial shift in the microbiota com-
position of an in vitro colon model”. These associations suggest that
some members of the gut microbiome community might be affected
by genetic variants that regulate the absorption and metabolism of
vitamins B, and B,.
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Among mbBTLs, the strongest evidence for association was seen
for a block of 10 SNPs (rs7574352, P=1.42 x 10~°) associated with the
family Peptococcaceae, a taxon negatively associated with stool levels
of the gut inflammation markers chromogranin A (LLD: Ry,=—0.31,
P,;=4.4X107"; Supplementary Table 10) and calprotectin (LLD:
Rg,=—0.11, P,;;=0.058) and with ulcerative colitis (FGFP: Ry,=—0.06,
P,;=0.09; Supplementary Table 11). The association block is located
in the intergenic region in the proximity (220kb apart) of IRF1, which
is involved in insulin resistance and susceptibility to type 2 diabetes™.

Other highlights of identified mbTLs are available in the
Supplementary Note.

GSEA, FUMA and PheWAS analysis. To explore the potential func-
tions of the identified mbTLs, we performed functional mapping
and annotation of genetic associations with the FUMA platform
(Methods)*', GSEA and PheWAS, followed by Bayesian colocaliza-
tion analysis and genetic correlation of Bifidobacterium abundance
to its PheWAS-related traits. FUMA of 20 mbQTLs returned 139
positional and eQTL genes. GSEA on these genes suggested an
enrichment for genes expressed in the small intestine (terminal
ileum) and brain (substantia nigra and putamen basal ganglia;
Supplementary Fig. 4). The positional candidates for mbBTLs did
not show any enrichment in GSEA analysis.
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rs11647069 family BacteroidalesS24.7group ID 11173 binary
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rs7574352 family Peptococcaceae ID 2024 binary
rs17066404 family Peptococcaceae ID 2024 binary
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Fig. 5 | Phenome-wide association study domain enrichment analysis. The analysis covered top SNPs from 30 mbTLs and 20 phenotype domains. Three
thresholds for multiple testing were used: 0.05, 8.06 x10-° (Bonferroni adjustment for number of phenotypes and genotypes studied) and 5x10-% (an
arbitrary genome-wide significance threshold). Only categories with at least one significant enrichment signal are shown.

To systematically assess the biological outcomes of the mbTLs,
we examined the 31 mbTLs in the summary statistics for 4,155 com-
plex traits and diseases using the GWASATLAS. Five of 31 leading
SNPs were associated with one or more phenotypes at P<5x107*
(Supplementary Table 12): rs182549 (LCT) and rs35866622 (FUT1/
FUT?2), followed by rs4428215 (FNDC3B), rs11647069 (PMFBPI)
and rs9474033 (PKHDI).

The variant showing the highest pleiotropy, rs182549 (LCT,
Bifidobacterium), was associated with multiple dietary and
metabolic phenotypes, and the causal involvement of the SNP
across pairs of traits was confirmed by colocalization testing (PP.
H4.abf>0.9) for 49 of 51 tested phenotypes. The NC_000002.11:
2.136616754 = (rs182549) allele, which predisposes individuals to
lactose intolerance, was negatively associated with obesity™ and
positively associated with type 2 diabetes mellitus diagnosis (odds
ratio (OR)=1.057 (95% CI: 1.031, 1.085), P=1.74x 10", fam-
ily history of type 2 diabetes mellitus (paternal: OR=1.054 (95%
CIL: 1.035, 1.073), P=1.41x1075% maternal: OR=1.035 (95% CL:
1.016, 1.053), P=0.0002; siblings: OR=1.03 (95% CI: 1.009, 1.052))
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and several nutritional phenotypes in the UK Biobank cohort®.
Moreover, the functional LCT SNP rs4988235 variant is associated
with 1,5-anhydroglucitol (P=4.23x107*)*, an indicator of glyce-
mic variability”. There was a nominally significant genetic corre-
lation (r,) of Bifidobacterium with raw vegetable intake (r,=0.36,
P=0.0016), but this correlation was not statistically significant after
correction for multiple testing.

NC_000019.9:g.49218060 = (rs35866622, FUTI/FUT2 locus)
was positively associated with fish intake and height. The secre-
tor allele was negatively associated with the risks of cholelithiasis
and Crohn’s disease, alcohol intake frequency, high cholesterol and
waist-to-hip ratio (adjusted for body mass index (BMI), with PP.H4.
abf>0.9).

Consistent with the single SNP analysis, gene-based PheWAS
also showed a strong link between the LCT locus and metabolic
traits (for example, P=5.7%x10~° for BMI), whereas several fac-
tors including nutritional (for example, P=1.26 X 10~* for oily fish
intake), immune-related (for example, P=1.73Xx 107" for mean
platelet volume), gastrointestinal (for example, P=28.77x 107" for
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cholelithiasis) and metabolic signals (for example, P=1.13X 107"
for high cholesterol) mapped to the FUT1/FUT2 locus (Fig. 5 and
Supplementary Table 13).

Finally, we performed a phenotype domain enrichment analysis
(Methods). We observed that top loci were enriched with signals
associated with the metabolic domain supported by four mbTLs,
followed by nutritional, cellular, immunological, psychiatric, oph-
thalmological, respiratory and reproductive traits and the activities
domain (Fig. 5 and Supplementary Table 14).

Mendelian randomization analysis. To identify the potential causal
links between gut microbial taxa and phenotypes, we performed
bidirectional two-sample MR analyses using the TwoSampleMR
package™. We focused on two groups of phenotypes: diseases (auto-
immune, cardiovascular, metabolic and psychiatric) and nutritional
phenotypes”-**. The complexity of the mechanisms by which host
genetics affect microbiome composition, and the limited impact
of genetic variants on microbial taxa variability, require caution
when performing and interpreting causality estimation using MR
analysis®. We therefore performed several sensitivity analyses and
excluded any results that showed evidence of being confounded by
pleiotropy (Methods). Only pairs supported by three or more SNPs
were considered. With these strict cutoffs, no evidence for causal
relationships between microbiome taxa and dietary preferences
was identified (Supplementary Tables 15 and 16). However, our
results suggest that a higher abundance of the class Actinobacteria
and its genus Bifidobacterium may have a protective effect on ulcer-
ative colitis (Actinobacteria: OR=0.56 (95% CI: 0.44-0.71) for
each SD increase in bacterial abundance, Benjamini-Hochberg
(BH)-adjusted P value for multiple testing Py, =8.8%107%
Bifidobacterium: OR=0.51 (95% CI: 0.39-0.71), Ppy,;=9.8X 1075
Fig. 6a,b). We also observed that higher abundance of the family
Oxalobacteraceae had a protective effect on rheumatoid arthritis
(OR=0.82 (95% CI: 0.74-0.91), Py, =0.028, Fig. 6¢).

Discussion

We report here on the relationship between host genetics and
gut microbiome composition in 18,340 individuals from 24
population-based cohorts of European, Hispanic, Middle Eastern,
Asian and African ancestries. We have estimated the heritability of
the human gut microbiome and the effect of host genetics on the
presence and abundance of individual microbial taxa. We stud-
ied the heterogeneity of the mbTL signals and characterized the
impact of technical and biological factors on their effect magnitude.
In addition, we explored the relevance of the identified mbTLs to
health-related traits using GSEA, PheWAS and MR approaches.
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Our large, multiancestry study allowed for an informative inves-
tigation of the human gut microbiome. However, there was large
heterogeneity in the data, which reflects biological differences
across the cohorts and methodological differences in the processing
of samples. Overall, seven different methods of fecal DNA extrac-
tion and three different 16S rRNA regions were used'>*. In addi-
tion, differences in the ancestries, ages and BMIs of the participants
led to a remarkable variation in microbiome richness, diversity and
composition across cohorts. Diet, medication and lifestyle, among
other factors>’, are known to influence the microbiome but were not
included in our analysis because these data were not available for all
cohorts. Large variation in the microbiome composition may have
reduced the power of our mbTL analysis (Supplementary Note).

We did not detect a host genetic effect on bacterial diver-
sity, in line with a lack of its detectable heritability. Thirty-one
taxon-specific mbTLs (20 mbQTLs and 11 mbBTLs) were iden-
tified at a P value<5x107%. Even with our large sample size, the
number of mbTLs identified is rather modest. Only the association
of the LCT locus with Bifidobacterium (P=1.28 X 107%°) passed the
conservative study-wide significance threshold of P>1.95x107".
However, we observed that heritable taxa tended to have more
genome-wide significant loci and suggestively associated loci, and
twin-based heritability was significantly correlated with SNP-based
heritability. Our results confirm that only a subset of gut bacteria is
heritable, and that the genetic architecture affecting the abundance
of heritable taxa is complex and polygenic.

The association between the LCT locus and the Bifidobacterium
genus was the strongest in our study. It has been shown that the
functional SNP in the LCT locus rs4988235 determines not only the
abundance of the Bifidobacterium genus but also the strength of the
association between this genus and milk/dairy consumption’. Here,
we showed the ancestry heterogeneity and age-dependent nature of
the LCT and Bifidobacterium association—the effect is weaker in
children and adolescents—consistent with existing knowledge on
lactose intolerance’>*. The strongest mbQTL effect was observed
in the Hispanic Community Health Study/Study of Latinos (HCHS/
SOL) cohort that comprises individuals of Hispanic/Latin American
ancestry and shows the highest prevalence of the lactose intolerant
NC_000002.11:¢.136616754CC (rs182549) genotype (683 of 1,097
individuals).

To explore the potential functional effects of mbTLs on
health-related traits, we used GSEA, PheWAS and MR approaches.
The GSEA indicated enrichment of mbQTLs for genes expressed
in the small intestine and brain. These results support the existence
of the gut-brain axis mediated by the microbiome and likely influ-
encing gastrointestinal, brain and mood disorders*’~*. In addition,
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the PheWAS analysis identified a significant overlap between the
genetic variants affecting gut microorganisms and a broad range of
host characteristics, including psychiatric, metabolic and immuno-
logical traits, and nutritional preferences, among other phenotype
groups (Supplementary Table 14). Moreover, genetic determinants
of bacterial abundance are involved in regulating host metabolism,
particularly obesity-related traits. Among the interesting bacteria,
earlier studies have linked the relative abundances of Ruminococcus™,
Lachnospiraceae® and Ruminococcaceae® to obesity. PheWAS analy-
sis also indicated that SNPs from the LCT and FUT?2 loci that associ-
ated with bacterial taxa are also associated with dietary preference
factors, including fish, cereal, bread, alcohol, vegetable and ground
coffee intake, along with other dietary phenotypes. Interestingly,
other genes found to be associated with mbTLs also included olfac-
tory receptors (ORIFI) and genes involved in the absorption and
metabolism of vitamins B, and B,, (RFK and CUBN).

Genetic anchors to microbiome variation also allow for estima-
tion of causal links with complex traits through MR approaches®~>°.
MR results indicate that Actinobacteria and Bifidobacterium might
have a protective effect in ulcerative colitis. Cross-sectional studies
have reported an increased abundance of Actinobacteria in healthy
individuals as compared to patients with inflammatory bowel dis-
ease’™”, although these results have not always been consistent™.
Bifidobacterium was also previously shown to have a beneficial
effect on ulcerative colitis in a clinical trial’*®. We also revealed
that abundance of the family Oxalobacteraceae in the gut microbi-
ome might be protective for rheumatoid arthritis; the abundance of
this family in lung showed a negative association with rheumatoid
arthritis previously®'. Protective effects of the bacterial taxa on these
diseases support the potential of microbiome-based therapy.

To our knowledge, we report the largest study to date investigat-
ing the genetics of the human microbiome across multiple ances-
tries. Microbiome heterogeneity and high interindividual variability
substantially reduces the statistical power of microbiome-wide
analyses: similar to earlier microbiome GWAS studies, we report a
limited number of associated loci. Nevertheless, our results point
to causal relationships between specific loci, bacterial taxa and
health-related traits. Heritability estimates suggest that these associ-
ations are likely part of a larger spectrum that is undetectable in the
current study sample size. This warrants future research that should
take advantage of larger sample sizes, harmonized protocols and
more advanced microbiome analysis methods, including metage-
nomics sequencing instead of 16S profiling and quantification of
bacterial cell counts. Given the essential role of the gut microbiome
in the metabolism of food and drugs, our results contribute to the
development of personalized nutrition and medication strategies
based on both host genomics and microbiome data.
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Methods

Data collection. A total of 24 cohorts, comprising 18,340 participants of
different ancestries and ages, participated in the microbiome GWAS analysis
(Supplementary Tables 1 and 2). The Supplementary Note provides detailed
descriptions of data collection for each cohort.

16S microbiome data processing. The rationale behind the selection of
the 16S rRNA processing pipeline was described previously'’. In short, the
divergence in the 16S rRNA gene domains between cohorts makes
OTU-level analysis impossible, while the use of a direct taxonomic classification
of the reads and an up-to-date reference database allowed us to achieve good
between-domain concordance of taxonomic composition and a higher
mapping rate.

The participating cohorts varied in their sample collection protocol, selection
of DNA purification kits used to extract DNA from fecal samples, the 16S domain
selected for PCR (Supplementary Table 1), read length and depth, post-sequencing

quality control (QC) and the software used to merge tags of paired-end sequencing.

After processing the QC-filtered merged reads, all cohorts implemented the
standardized 16S processing pipeline (https://github.com/alexa-kur/miQTL_
cookbook/) that uses SILVA (release 128)" as a reference database, with truncation
of the taxonomic resolution of the database to genus level.

Briefly, the procedure was as follows. First, all samples were rarefied to 10,000
reads using a predefined random seed to allow for rarefaction reproducibility.
Samples with fewer than 10,000 reads were discarded. Second, RDP classifier
(v.2.12)'° was used to bin the reads to a reference database. For each taxonomic
level, the posterior probability of 0.8 was used as a cutoff to bin each read to
the corresponding taxon. The posterior cutoff probability was traced for each
taxonomic level separately. For example, if the posterior probability passed the
cutoff on family level but not on genus level, the read was binned to taxonomy
on the family level (all corresponding upper taxonomic levels) and discarded on
the genus level. It was also assigned to a special NOTAX_genus’ pseudo-taxon to
maintain data compositionality.

To characterize the contribution of cohort-wise metadata (16S domain, DNA
extraction method, cohort ancestry, lysis temperature and type of lysis buffer)
to the microbiome composition, we used a distance-based redundancy analysis
test in which each cohort represented a sample and variables represented mean
abundances of genera in the corresponding cohort (taxa with prevalence below
20% were discarded). The association of metadata with richness was performed by
multivariate linear regression analysis.

The alpha diversity indices, including Shannon, Simpson and inverse Simpson
indices, were calculated on genus level with non-adjusted, non-transformed taxa
counts. For all other analyses, the taxonomic counts of non-zero samples were
natural log transformed and adjusted for potential covariate effects using linear
regression. The list of covariates used in the regression models varied between
cohorts, but always included sex, age, genetic principal components (PCs)
calculated on non-imputed genetic data (3 PCs for monoancesty cohorts, 10 PCs
for multiancestry cohorts and 5PCs for the HCHS/SOL cohort as a multiancestry
population of different, but closely related ancestries; see Supplementary Note for
cohort descriptions) and cohort-specific potential microbiome batch effects, if
applicable. Variables such as the length of time in non-frozen storage and the 16S
sequencing batch were also included. The residuals of the adjustment were then
scaled and centered (mean=0 and SD=1).

In the analysis of microbiome composition heterogeneity, the cohorts SHIP/
SHIP-TREND and GEM_HCE_v12/GEM_HCE_v24/GEM_HCE_ICHIP were
merged to SHIP and GEM, respectively, because they were analyzed with exactly
the same protocols in the same laboratories. In the microbiome-genetics analysis,
these five cohorts were included individually as they differed in the genotyping
arrays and/or general populations they represented.

For each cohort, only the taxa present in more than 10% of the samples were
included in the mbQTL mapping, whereas taxa present in more than 10% but less
than 90% of the samples were included in the mbBTL mapping (Supplementary
Table 3). Study-wide cutoffs for mbQTL mapping included an effective sample
size of at least 3,000 samples and presence in at least three cohorts. For mbBTLs, a
mean abundance higher than 1% in the taxon-positive samples was required. This
resulted in 211 taxa (131 genera, 35 families, 20 orders, 16 classes and 9 phyla) that
passed taxon inclusion cutoffs for mbQTL analysis and 177 taxa (108 genera, 34
families, 16 orders, 12 classes and 7 phyla) for mbBTL analysis.

Genetic data processing. Despite the difference in genotyping array platforms,
most cohorts used similar procedures for imputation and post-imputation filtering
steps. Twenty-three of 24 cohorts used the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html) for imputation, using the HRC 1.0
or 1.1 reference panel®. Due to restrictions in manipulating data, the PNP study
employed an in-house pipeline for imputation instead, using IMPUTE2 software
(v.2.3.2)°*** and the 1000G reference panel with addition of population-matched
genotypes of Jewish individuals®. The post-imputation cutoffs were the same for
PNP and the other cohorts.

Post-imputation VCFs were transformed into TriTyper format and filtered
using GenotypeHarmonizer software (v.1.4.20)*. The following cutoffs were

1,009 GWAS performed before the UK Biobank effort, all categorized under 27
phenotype domains. Next, we tested if any of these 27 domains were enriched by
the phenotypes associated with one of the SNPs of interest (using a liberal P-value
threshold of 0.05 for the SNP-phenotype association) as compared to the expected
distributions under the null hypothesis. To obtain the distributions under the

null hypothesis, we selected the best matching 1,000 SNPs for each top SNP using
SNPSNAP”, matched by allele frequency, gene density, number of LD pairs and
distance from the closest gene.

We then extracted corresponding results from the GWASATLAS for the
matched 30,000 SNPs (1,000 matching SNPs for each top mbTL SNP). The
enrichment of each domain was tested by comparing the proportions of observed
and expected significant results for the SNPs of interest using the ‘prop.test’
function in R. This resulted in one-sided P values and ORs. Seven domains (aging;
body structures; connective tissue; ear, nose and throat; infection; muscular;
and social interactions) that included fewer than 20 GWAS tables were excluded
from the enrichment tests, resulting in 20 domains. We used a conservative
Bonferroni-based P-value threshold of 8.06 X 10~° for the enrichment testing,
accounting for 20 domains and a total of 31 mbTL top SNPs derived from both the
mbQTL and mbBTL mapping. In addition, we performed gene-based PheWAS
lookups in the GWASATLAS for candidate genes of interest within 250 kb around
the association peaks, as defined by the FUMA algorithms.

The genetic correlation between Bifidobacterium and its PheWAS-related
traits (Supplementary Table 12) was estimated following an LD-score regression
approach®” using the ‘ldsc’ tool. For testing colocalization of the PheWAS signals,
we used the approximate Bayes factor approach as implemented by the ‘coloc.
abf” function from the ‘coloc’ library in R”, using genetic variants within +250kb
around the top signals.

Mendelian randomization analysis. MR analyses were performed in R using
TwoSampleMR package (v.0.5.5)*. Causality direction was tested between the
microbiome and two data types: (1) autoimmune, cardiovascular, metabolic
(including weight-related phenotypes) and psychological diseases (GWAS
summary statistics from MRBase*) known to be associated with microbiome
composition®>’~*»"” and (2) 42 nutritional phenotypes and alcohol intake
frequency from the UK Biobank round 2 (http://www.nealelab.is/uk-biobank/).

For MR analyses, the combined meta-analysis effects and s.e. values from
inverse-variance meta-analysis were used.

To test if a complex trait affected microbiome composition, we selected
independent genetic variants associated with complex traits at the genome-wide
significant level (P <5x 107%) and used these as instruments in our MR analyses.
For complex diseases, we transformed ORs and ClIs to effect sizes and s.e. values
using the built-in function of the TwoSampleMR package. To test if microbiome
changes were causally linked to complex traits, we first confined ourselves to
bacteria with genome-wide significant QTLs. For these, we selected all SNPs with a
less stringent cutoff of P<1X 10~° in our MR analyses as instruments. This strategy
was used to increase the number of SNPs available to perform sensitivity analyses,
as shown previously™. Independent SNPs were selected as instrumental variables
based on 1*<0.001 in 1000 G European data, within the TwoSampleMR package.
When no shared SNPs were available between exposure and outcome, proxies
from the 1000G European data (1> 0.8) were added. We kept only the results
based on at least three shared SNPs. MR causality tests were performed using the
Wald ratio, and Wald ratios were meta-analyzed using the IVW method™. We also
estimated the causality using additional methods: the weighted mode method”,
which provides an alternative approach to IVW; MR-Egger’®, which estimates the
degree of horizontal pleiotropy in the data; and MR PRESSO”’, which estimates
the pleiotropy and corrects for it by removing outliers from the IVW model.

We also assessed the heterogeneity of the results using Cochran’s Q statistic’
and using leave-one-out analyses™. We estimated instrument variable strengths
using F statistics: the amount of variance explained by instrument variables was
calculated for each exposure using the TwoSampleMR package (get_r_from_lor
function) for binary traits and phenotypic variation (PVE) as defined by Shim

et al.” for quantitative traits. F statistics were then calculated as %, where

r? is the variance explained, N is the sample size and k is the number of instrument
variables. We retained the results for the conventional threshold of F statistics
>10 (ref. 7).

After performing the MR tests, we excluded duplicated GWAS traits, as the
same phenotype is often studied in multiple GWAS. To remove the duplicates, we
kept the study with the largest sample size among all the tested GWAS studies for
each trait.

After excluding duplicates and tests performed with weak instruments (F
statistics < 10), we applied a BH correction for multiple testing to the results
obtained from the IVW MR test, and subsequently used a stringent filtering
procedure on the significant results to avoid false positives. Specifically, we
removed the MR results that were based on fewer than three SNPs and thus
could not be further investigated with sensitivity analyses. We also removed the
MR results that were not supported by other MR tests (weighted mode method
P>0.05, MR PRESSO P> 0.05) and those that showed substantial pleiotropy or
heterogeneity as estimated by MR-Egger (MR-Egger intercept P<0.05) or MR
PRESSO outliers-adjusted test (P> 0.05), as well as those where leave-one-out
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applied for inclusion: minor allele frequency > 0.05, pointwise imputation QC > 0.4
and SNP-wise call rate filtering > 0.95.

Heritability analysis. Heritability was calculated using data collected on 169 MZ
and 419 DZ pairs of twins from the TwinsUK cohort (total of 1,176 individuals).
Twin-based heritability was calculated by fitting an ACE model using the OpenMx
package (v.2.8.3), as previously described’. Before heritability estimation, the
taxonomic abundance was normalized using inverse rank-sum transformation.
Since the NTR cohort comprised only MZ twins, the between-cohort heritability
concordance was calculated as the correlation of ICC for MZ twins. The Pearson
correlation of ICC between the TwinsUK and NTR cohorts was used to estimate
the concordance. For mbQTLs, SNP-based heritability was calculated by LD score
regression using the ‘LDSC’ tool®”.

Microbiome GWAS analysis. The modified version of the eQTL mapping pipeline
(https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline/)
was used to perform mbQTL mapping'®.

The microbiome GWAS was performed in three ways. First, we performed
GWAS on three microbiome alpha diversity metrics (Shannon, Simpson and
Inverse Simpson), using the Spearman correlation between SNP dosages and alpha
diversity metrics after adjustment for age, sex, technical covariates and genetic PCs.

Second, we used the Spearman correlation to identify loci that affected the
covariate-adjusted abundance of bacterial taxa, excluding samples with zero
abundance (mbQTLs).

Third, we identified the loci associated with probability of presence versus
absence of the bacterial taxon (mbBTLs). To perform mbBTL analysis, we
used a two-stage approach composed of fast correlation screening followed by
logistic regression analysis as a robust method for binary traits GWAS". First, we
calculated the Pearson correlation between SNP dosage and bacterial presence
encoded as 0/1, without adjusting for any covariate effect and using the previously
mentioned eQTL mapping pipeline, and used weighted z-score meta-analysis to
calculate noncentrality for SNP-taxon association. Finally, all SNP-taxon pairs
with a P value <1x 10~ in the first-stage meta-analysis were recalculated using
multiple logistic regression (R base package, versions from 3.2.0 to 3.5.1 depending
on the group) with bacterial presence as an outcome and using SNP dosage
along with the list of covariates as predictors. All the mbBTLs that reached the
nominal genome-wide significance threshold (P <5x107%) in logistic regression
had a Pearson correlation P value (at first stage) more significant than P< 107,
presuming the completeness of the two-stage procedure in revealing genome-wide
significant mbBTL using a cutoff of P<10~* at the first stage of analysis.

mbTL meta-analysis. Meta-analysis was performed using a weighted z-score
method implemented in BinaryMetaAnalyzer (v.1.0.13B available on MiBioGen
Cookbook), a part of the eQTL mapping pipeline that was used in large-scale
eQTL meta-analyses'®*. For each cohort, z-scores were calculated from Spearman
correlation P values using inverse normal transformation, transforming two-tailed
P values to one-tailed P values and tracing the effect directions using the following
formula:

sign(Rsp) x qgnorm(1 — P/2)

where sign(Rs;,) denotes the sign of Spearman correlation, ‘gnorm’ denotes the
quantile function for the normal distribution and P denotes the two-tailed P
value of the Spearman correlation. For mbQTLs, the cohorts were weighted by
the square root of the effective sample size (the number of samples having the
bacterial taxon). For mbQTLs, the square root of the reported cohort size was
used as a weighting for each study. The summary statistics generated for mbQTLs
also include meta-analysis effect sizes and s.e. values. These were generated using
the inverse-variance weighted (IVW) meta-analysis method performed on the
per-cohort effect sizes and standard errors, backtracked from association z-scores
and minor allele frequencies using the strategy proposed and implemented by Zhu
et al.*®, who also provide a detailed derivation of the following equations:

b=12zS

1

[
2p(1=p)(n+2%)

where b is the estimated effect size, S is the estimated s.e., p is the allele frequency

and 7 is the sample size.

Heterogeneity exploration analysis. Cross-study heterogeneity of the effects of
genetic variants in the relative abundance of taxonomical units was assessed using
Cochran’s Q test for heterogeneity®, as implemented in METAL (v2018-08-28)",
for all genome-wide significant variants (P <5x 107%) found in our main analysis.
To avoid reporting false-positive associations due to different study designs or
data collection methods, we used a stringent threshold of P <0.05 to reject the null
hypothesis of no heterogeneity. This threshold is conservative considering that
several variants were tested simultaneously, and no correction for multiple testing
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was applied. When there was evidence of heterogeneity, a random-effects model
was also implemented at the meta-analysis level to confirm the association results,
using the metaphor R package (v.2.0-0; https://cran.r-project.org/web/packages/
metafor/metafor.pdf).

Additionally, when there was evidence for heterogeneity of a SNP effect across
cohorts, we implemented a meta-regression approach using the same package to
assess whether variables such as age, ancestry or sequenced region could explain
the observed effect-size heterogeneity.

Analysis of SNP-age interaction analysis in the LCT locus. To discover whether
the association of functional SNPs in the LCT locus to the abundance of the
Bifidobacterium genus varied between groups of adults and infants, we performed
age-SNP interaction analysis in the GEM cohort, which comprises three
subcohorts that each have a comparable number of individuals above and below
pubertal age. The age of 17 years was selected to split the cohort into two groups:
adolescents or adults. Since the GEM cohort was composed of three subcohorts of
different ancestry composition, we evaluated the interaction in both joint analysis
and in each subcohort separately, using the following formula:

Bac = sex+ PC(1 — 3) + age, + cohort + SNPg,s + SNPy7

+SNPgr : age,

group
group

where ‘bac’ is the log-transformed count of genus Bifidobacterium, ‘PC(1-3)’
are three floats with the first three genetic PCs, ‘cohort’ is a batch variable that
determines the cohort to which the sample belongs, ‘SNP,,, is a float-encoded
dosage of alternative allele, ‘SNPy,,’ is a Boolean variable describing heterozygosity,
‘SNPg;’ is a genotype encoded as an unordered factor and ‘age,,, is a two-level
factor (above or below split level). The inclusion of a numeric dosage variable and
a Boolean SNPy;, variable allowed us to properly adjust for the recessive effect
of the SNP on Bifidobacterium abundance without neglecting SNP imputation
uncertainty as embedded in SNP dosage.

The analysis was then repeated for each GEM subcohort separately, using the
same model.

Association of mbTL-associated taxa with host phenotypes. Bacterial taxa
found to be significantly associated with genetic determinants were correlated
with 207 host phenotypes, including the intrinsic host properties, diet, disease and
medication information, in the LLD and FGFP cohorts. We used the Spearman
correlation with BH adjustment for multiple testing to assess the correlation
between phenotypes and bacteria that had mbQTLs. For the taxa with mbQTLs,
samples with zero abundance were truncated. For the taxa with mbBTLs, the
abundance was transformed to a binary trait encoding presence/absence.

FUMA analyses of meta-analysis results. Functional mapping and annotation

of 31 meta-analysis results were performed with FUMA (v1.3.5), an integrated
web-based platform’’. Summary statistics from the mbQTL analyses for each of
the 20 independent association signals were used in the analysis. Genome-wide
significant loci and their boundaries were defined as nonoverlapping genomic
regions that extend across an LD window of *> 0.4 (based on the 1000G European
reference panel)” from the association signals with P <5.0x 10-%. Independent
(r*<0.1) lead SNPs from each locus were defined as those most strongly associated
with a microbial trait (that is, with the lowest P value) at the specific region.
Multiple risk loci were merged into a single genomic locus if the distance between
their LD blocks was <250kb.

Functional annotation of all candidate risk SNPs was obtained from
different repositories integrated in FUMA. Furthermore, these functionally
annotated SNPs were mapped to protein-coding genes using the following
two strategies: (1) positional mapping, with the maximum distance of 10kb
to protein-coding genes and (2) eQTL mapping, using information from data
repositories such as GTEx v7 and Blood eQTL browser (http://genenetwork.nl/
bloodeqtlbrowser/)*.

As the mbBTL mapping procedure provided accurate statistics for only a subset
of SNPs (‘Microbiome GWAS analysis’), and we thus lacked full summary statistics,
we only performed positional mapping for mbBTLs, taking in the protein-coding
genes within a 10-kb distance of the ten leading SNPs for each trait.

All mapped protein-coding genes were combined into one list for either
mbQTL or mbBTL analysis before performing GSEA integrated in FUMA. In
further investigations, hypergeometric tests of enrichment of all mapped genes
were performed not only in tissue-specific (differentially expressed) gene sets, but
also in gene sets curated from various sources, for example, MsigDB. We reported
all enriched gene sets (>2) with a false discovery rate -adjusted P value <0.05.

PheWAS, genetic correlation and colocalization analysis. We performed the
PheWAS lookups in the summary statistics results of 4,155 traits collected by
the GWASATLAS” (http://atlas.ctglab.nl/, accessed on 25 September 2019)
database for the top SNPs for each mbQTL locus that were revealed by either
mbQTL or mbBTL mapping. GWASATLAS includes 600 traits from the UK
Biobank and is enriched with extensive phenotypes on proteomics (n=1,124
proteins), hematology (1= 36), metabolomics (1 =1,145 metabolic features) and
immune markers (n=241), studied across variable sample sizes. It also contains
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analysis identified one SNP driving the signal (all but one leave-one-out
configurations had P <0.05). Of note, the MR-Egger slope, which represents the
causal estimate, was not used as a filtering step given the reduced power to detect
causal effects. Furthermore, for all but one of the reported MR results that passed
all the filters above, the MR-Egger slope P value was greater than 0.05; therefore, an
MR-Egger intercept P<0.05 cannot be used to exclude the presence of pleiotropy.
Even though many of our MR-Egger intercept results provided little evidence of
directional pleiotropy, it is worth noting that a P <0.05 cannot exclude the presence
of pleiotropy and requires further understanding of the biological mechanisms
underpinning the relationship between genetic variation, the gut microbiome and
health outcomes. To exclude more complex causality scenarios, we also removed
those results for which the reverse MR P value was below 0.05. Of note, the

causal relationship identified for the microbiome feature class Actinobacteria (as
exposure) and ulcerative colitis (outcome) showed a consistent effect direction
when just using the only genome-wide significant SNP, but with wider Cls
(OR=0.40 (95% CI: 0.22-0.71), P, 1na=0.002).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org,
built using the MOLGENIS framework®.

16S data availability:

BSPSPC and FOCUS data is available from the Sequence Read Archive (SRA)
under accession PRINA673102.

All CARDIA data, including 16S rRNA sequencing, cannot be made publicly
available due to the confidentiality restrictions. The data can be requested from
CARDIA Study Data Coordinating Center at the University of Alabama at
Birmingham, following CARDIA Confidentiality Certification rules. The process
for obtaining data through CARDIA is outlined at https://www.cardia.dopm.uab.
edu/publications-2/publications-documents.

COPSAC data are available on SRA (PRJNA683912).

DanFunD data are not deposited on the public databases due to legal and ethical
restrictions. Access to the data and biological material can be granted by the
DanFunD steering committee (https://www.frederiksberghospital.dk/ckff/
sektioner/SBE/danfund/Sider/How-to-collaborate.aspx).

FGFP data are available on the European Genome-Phenome Archive (EGA) under
accession EGAS00001004420.

GEM data are available on the SRA (PRJEB14839).

Generation R and Rotterdam Study data cannot be made publicly available due

to ethical and legal restrictions; these data are available upon request to the data
manager of the Rotterdam Study (f.vanrooij@erasmusmc.nl) or of the Generation
R Study (c.kruithof@erasmusmc.nl), subject to local rules and regulations.
HCHS/SOL data are available from the European Nucleotide Archive (ENA) under
accession ERP117287.

KSCS data are available at the public repository, Clinical and Omics data archives
in the Korea National Institute of Health under accession R000635.

LLD and MIBS data are available from EGA (EGAS00001001704 and
EGAS0000100924).

METSIM data are available on the SRA (SRP097785).

NGRC data are available on the ENA (ERP016332).

The NTR has a data access committee that reviews data requests and will make data
available to interested researchers. The data come from extended twin families and
pedigree structures with twins, which create privacy concerns and thus cannot be
shared on publicly available databases. Researchers may contact eco.de.geus@vu.nl
for data requests.

PNP is available on the ENA (PRJEB11532).

POPCOL is available on the EGA (EGAS00001004869).

SHIP and SHIP-TREND data can be obtained from the SHIP data management
unit via an online data access application form (https://www.fvecm.med.
uni-greifswald.de/dd_service/data_use_intro.php).

TwinsUK data are available on the ENA under accession ERP015317.

Code availability

All code used in the study is available on the Consortium GitHub (https://github.
com/alexa-kur/miQTL_cookbook) or on the websites of corresponding software
packages.
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IMPUTE2 v.2.3.2 (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html)
both mapping pipeline and meta-analyzer are the parts of Molgenis SystemGenetics pipeline (https://github.com/molgenis/
systemsgenetics). Specific versions used in the analysis:
mbQTL mapping: eQTL-mapping-pipeline v1.4, on Consortium GitHub,
meta-analysis: BinaryMetaAnalyzer v.1.0.13B, on Consortium GitHub,
Heterogeneity analysis: METAL v.2018-08-28 (http://csg.sph.umich.edu/abecasis/metal/) and R package metafor v.2.0-0 (https://
cran.rproject.
org/web/packages/metafor/)
FUMA and GSEA analysis: FUMA v.1.3.5, https://fuma.ctglab.nl/
PheWAS analysis: https://atlas.ctglab.nl/, accessed 25.09.2019
MR analysis: R package TwoSampleMR v0.4.26 (https://mrcieu.github.io/TwoSampleMR/)
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Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org website built using the MOLGENIS framework.

16S data availability:

BSPSPC and FOCUS data is available from Sequence Read Archive (SRA), PRINA673102

All CARDIA data, including 16S rRNA sequencing, cannot be made available on publicly available databases due to the confidentiality restrictions. The data can be
requested from CARDIA Study Data Coordinating Center at the University of Alabama at Birmingham, following CARDIA Confidentiality Certification rules. The
process for obtaining data through CARDIA is outlined at: https://www.cardia.dopm.uab.edu/publications-2/publications-documents.

COPSAC data is available on SRA (PRINA683912).

DanFunD is not deposited on the public databases due to the legal and ethical restrictions. Access to the data and biological material can be granted by the
DanFunD steering committee (https://www.frederiksberghospital.dk/ckff/sektioner/SBE/danfund/Sider/How-to-collaborate.aspx).

FGFP data is available on European Genome-Phenome Archive (EGA), EGAS00001004420

GEM data is available on SRA (PRJEB14839).

Generation R and Rotterdam Study data cannot be made publicly available due to ethical and legal restrictions; these data are available upon request to the data
manager of the Rotterdam Study Frank van Rooij (f.vanrooij@erasmusmec.nl) or of the Generation R Study Claudia Kruithof (c.kruithof @erasmusmc.nl) and subject
to local rules and regulations.

HCHS/SOL data is available from ENA (European Nucleotide Archive), ERP117287.

KSCS data is available at the public repository, Clinical and Omics data archives (CODA) in the Korea National Institute of Health by accession number RO00635
(http://coda.nih.go.kr/coda/coda/search/omics/genome/selectSearchOmicsGenomePop/R0O00635.do).

LLD and MIBS data are available from EGA, EGAS00001001704, EGAS0000100924).

METSIM data is available on SRA (SRP097785).

NGRC data is available on ENA (ERP016332).

NTR has a data access committee that reviews data requests and will make data available to interested researchers. The data come from extended twin families and
pedigree structures with twins, which create privacy concerns and thus cannot be shared on publicly available databases. Researchers may contact prof Eco de Geus
(eco.de.geus@vu.nl) for data request..

PNP is available on ENA (PRJEB11532).

POPCOL is available on EGA (EGAS00001004869).

SHIP and SHIP-TREND data can be obtained from the SHIP data management unit and can be applied for online through a data access application form (https://
www.fvem.med.uni-greifswald.de/dd_service/data_use_intro.php)

TwinsUK data is available on the European Nucleotide Archive (ENA, accession ERP015317).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size of 18,473 samples used is a total sample size from participaing cohorts, after data exclusion criteria. No prior sample size
calculations were performed, thus it was determined by the data availability at the moment of the study initiation

Data exclusions  The genetics exclusion criteria for the study is the following: (a) ethnic outliers in monoethnic cohorts to avoid false positives driven by
outliers; (b) random selection of one individual
from the related group (i.e. MZ or DZ twins), if applicable, to make possible the use of GWAS method similar across cohorts, which doesn't
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Replication Due to the limited power of analysis, no split to discovery/replication group was applied
Randomization  Given the population-based study design, there was no separation to groups in the study

Blinding there was no blinding during the sample collection from the cohorts, since the majority of cohorts utilize population-representative design
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
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Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics BSPSPC (PopGen)
The PopGen cohort (mean age 61.5 (16.6), 55% male) is a population-based cohort from the area around Kiel, Schleswig-
Holstein, Germany.
CARDIA (Coronary Artery Risk Development in Young Adults Study)
Coronary Artery Risk Development in Young Adults Study (CARDIA) is a population-based prospective study of the evolution
of cardiometabolic disease. African American and European American adults were recruited from four U.S. urban areas
(Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA in 1985-1986) (n=5,115, aged 18-30). They have subsequently
been examined nine times. A microbiome study was initiated at the Year 30 follow-up examination (2015-2016) in a subset of
participants (n=615) who had not taken antibiotics in the past month. Fecal DNA was extracted with the MoBio PowerSoil kit,
and the V3-V4 region of the 16S rRNA gene was sequenced with Illumina MiSeq (2x300bp) at HudsonAlpha Institute for
Biotechnology (Huntsville, AL, USA). A subset of cohort participants has been genotyped with the Affymetrix Genome-Wide
Human SNP Array 6.0. After quality control and removal of participants with non-overlapping data on microbiome and host
genetics, data from 114 African Americans and 257 European Americans (total n=371) were available for analysis.
NeurolMAGE+COMPULS
NeurolMAGE+COMPULS is a cohort consisting of two studies, NeurolIMAGEIl and COMPULS, and includes participants of
Dutch ethnicity. The cohort represents a combination of adults/adolescents/children diagnosed with ADHD and healthy
controls. The overlap between samples with genotyping and microbial 16S sequencing data yielded 133 samples (57 females,
76 males, 17(5) years old) for use in the microbiome GWAS analysis.
COPSAC2010
The Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010) cohort is a prospective mother-child
cohort of 700 children and their families, recruited during week 24 of pregnancy, with written informed consent obtained
from all mothers. The participants reside in and around Copenhagen, Denmark. The design builds upon the previous
COPSAC2000 cohort and is based on detailed longitudinal clinical assessments of asthma, allergy, eczema and other
outcomes. At the latest timepoint, we had both genotype and microbiome data for 380 children to include in this study, 73 of
whom had taken antibiotics in the six months before the fecal sample date.
DanFunD (The Danish study of Functional Disorders)
DanFunD is a population-based cohort initiated to outline the epidemiology of functional somatic syndromes. The study
population comprises a random sample of 9,656 men and women aged 18-76 years from the general population who were
examined from 2011 to 2015. Genotyping using the Human OmniExpress Bead Array (lllumina Inc., San Diego, CA, USA) was
conducted on human leukocyte DNA for the entire cohort. A subset of 2,464 participants volunteered to provide a fecal
sample collected under standardized conditions. In total, 2,396 samples passed the QC for genotyping and 16S sequencing
and were included in the GWAS.
FGFP (Flemish Gut Flora Project)
The FGFP is a population-based study cohort of 2,482 individuals from the Flanders region of Belgium. Blood and stool
samples of volunteers were collected between June 2013 and April 2016After quality control, 2,259 samples had genotype
and 16S data (1,328 females, 896 males, mean age 52.3 yrs).
FOCUS
The FoCus cohort (mean age 51.4(14.6) yrs, 42% male) is a population-based cohort from the area around Kiel, Schleswig-
Holstein, Germany, and part of the competence network Food Chain Plus (FoCus, http://www.focus.uni-kiel.de/component/
content/article/88.html).
GEM (The CCC GEM project)
The CCC GEM project is a prospective international research study that is designed to identify the potential triggers that
contribute to the onset of Crohn’s Disease. Since 2008, the GEM project has recruited over 5,000 healthy first-degree

relatives of

Crohn’s Disease patients with an age range of 6-35 years. We used data from participants recruited in Canada (n=1,115),
United

States (n=17) and Israel (n=111). Stool DNA was extracted using the QlAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany).
The

V4 hypervariable region of bacterial 16S ribosomal RNA (16S rRNA) was sequenced using a MiSeq platform (lllumina Inc. San
Diego, CA, USA) and primers 515F/806R90. The genotyping of the cohort was performed using the
HumanCoreEXOME-12v1.1

chip (n=379), HumanCoreEXOME-24v1.0 chip (n=203) and both ImmunoChip and HumanCoreEXOME-12v1.1 chip (n=662)
(Ilumina, Inc. San Diego, CA, USA). Thus in mbQTL mapping the cohort was split into subcohorts GEM_v12, GEM_v24 and
GEM_ICHIP respectively. Among subcohorts, GEM_v24 mostly coprises individuals of Israel ethnicity (70%), while other two
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subcohorts are of a European ancestry. Only the sample from one member from each family enrolled in the project was
included

in the current microbiome GWAS study. The overlap between samples with genotyping and microbial 16S sequencing data
yielded 1,243 samples (676 females, 567 males, median age = 19.0(8.03) yrs) for use in the microbiome GWAS analysis. None
had used antibiotic in the three months before fecal collection.

The Generation R Study

The Generation R Study (GenR) is a population-based, prospective, multi-ethnic pregnancy cohort study from fetal life until
young adulthood. It is conducted in the city of Rotterdam, the Netherlands91. After stringent quality control, the overlap
between samples with genotyping and microbial 16S sequencing data yielded 1,328 samples (656 females, 672 males, mean
age

9.8(0.3) years) for use in the microbiome GWAS analysis. None had used antibiotics in the six months before fecal collection.
KSCS (Kangbuk Samsung Cohort Study)

The Kangbuk Samsung Cohort Study (KSCS) is a prospective cohort study to evaluate the natural history, prognosis, and
genetic

and environmental determinants of a wide range of health traits and diseases among Korean adults. After quality control, 811
samples (319 females, 492 males, mean age 44.1 yrs) with overlapping genotype and 16S data were included in the
microbiome

GWAS.

LifeLines-DEEP (LLD)

The LifeLines-DEEP cohort (LLD) is a subcohort of the prospective LifeLines cohort from the northern provinces of the
Netherlands (Groningen, Drenthe and Friesland) and includes participant of Dutch ethnicity. The overlap between samples
with

genotyping and microbial 16S sequencing data yielded 875 samples (504 females, 371 males, mean age 45.4(13.3) yrs) used
for

the microbiome GWAS analysis, of these 70 participants were PPl users and eight people used antibiotics in the six months
previous to fecal collection.

METSIM (METabolic Syndrome In Men)

METSIM

The METabolic Syndrome In Men (METSIM) cohort is a longitudinal population-based cross-sectional cohort comprising of
10,197 randomly selected non-diabetic Finnish men (aged from 45 to 73 years) who were examined in 2005-2010. For the
current microbiome GWAS study, we used a subset of the METSIM cohort consisting of 522 samples (mean age 61.91 (5.42)
yrs)

with overlapping genotyping and microbial 16S sequencing data. For the current microbiome GWAS study, we used a subset
of the METSIM cohort consisting of 522 samples (mean age 61.91 (5.42) yrs) with overlapping genotyping and microbial 16S
seqguencing data.

MIBS (Maastricht Irritable Bowel Syndrome)

The MIBS cohort with biobank aims to identify subgroups of IBS according to phenotypical and genotypical characterization.
At present, it includes 520 subjects with a clinical diagnosis of IBS according to the Rome Ill criteria (from primary-tertiary
care) and 220 age- and gender-matched healthy controls. For the present microbiome GWAS study, only controls (N=80,
mean age 48.7(18.2), 43% male) were included.

NGRC (NeuroGenetics Research Consortium)

The NeuroGenetics Research Consortium (NGRC) is a collaborative study of gene-environment-microbiome interaction on
Parkinson’s disease (PD). It is being conducted in the United States. For the microbiome GWAS study, only 133 control
participants were used; they were free of neurodegenerative disease at a mean age of 71.9(7.5) years old, 58% were female.

NTR (the Netherlands Twin Registry)

The NTR collects data and biological samples on Dutch multiples and their family members. One of each twin pair was
randomly selected for inclusion in the GWAS analyses (156 twin pairs, 123 unrelated individuals, 279 individuals total, mean
age 35.4(12), 29.8% male). Both MZ twins were included for the ICC calculations between MZ twin pairs for comparison with
heritability estimates (156 twin pairs). None of the participants reported using antibiotics within six months of fecal
collection.

PNP (Personalized Nutrition Project)

The PNP is a large-scale nutrition initiative in Israel that aims to help people make food choices that would normalize their
blood glucose level and improve their health and well-being. The cohort has over 1,000 healthy individuals of Israeli ethnicity
living in Israel and aged between 18 and 70 years. The cohort consists of self-reported Ashkenazi (n=508), North African
(n=64), Middle Eastern (n=34), Sephardi (n=19), Yemenite (n=13) and ‘admixed/other’ (n=408) ancestries. 481 individuals
were included in the current study (mean age 43.7(13.1), 36.4% male).

PopCol (Population-based Colonoscopy)

Population-based Colonoscopy (PopCol) is a cohort study in Stockholm, Sweden, which includes a data-rich set of individuals
with data available from bowel symptoms questionnaires, gastroenterology visits, and biospecimensAfter data merging and
quality control, we used data from 134 individuals (83 females, 51 males, mean age 54.8(11.3) yrs) in the microbiome-GWAS.
of

these, 6 PopCol participants were proton pump inhibitors (PPI) users and 12 used antibiotics.

Rotterdam Study Il

The Rotterdam Study (RS) is a prospective population-based cohort study established in 1990 to study determinants of
disease

and disability in Dutch adult/elderly individuals, aged > 40 years. The overlap between samples with genotyping and microbial
16S sequencing data yielded 1,220 samples (705 females, 515 males, mean age 57(5.9) yrs) for use in the microbiome GWAS
analysis. Of these 260 participants used PPI, and none used antibiotics in the six months before fecal collection.

SHIP (Study of Health in Pomerania)

The Study of Health in Pomerania (SHIP) is a prospective longitudinal population-based cohort study encompassing two
independent cohorts SHIP (N=4,308; baseline examinations 1997-2001) and SHIP-TREND (N=4,420; baseline examinations
2008 -

2012) 1,901 datasets (1,043 females, 858 males, age 53.7(14.0) yrs) with overlapping genotype and microbiome data were
included in the current study. Of these, 149 individuals used PPIs and 25 had antibiotics at the time of inclusion.

HCHS/SOL
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The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a prospective, population-based cohort study of 16,415
Hispanics/Latino adults (ages 18-74 years) who were selected using a two-stage probability sampling design from four US
communities (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA)102,103. The overlap between genetically unrelated subjects
with

microbial 16S sequencing data yielded 1,097 samples (676 females, 421 males, age 57.2(10.9) yrs) used in the microbiome
GWAS analysis. Of these, 341 used medication including PPIs for indigestion, heartburn, or stomach problems, and 321 used
antibiotics in the six months before the fecal collection.

TwinsUK

TwinsUK is a population-based cohort established in 1992 to study the genetic and environmental basis of a range of complex
diseases and conditions in adult/elderly twins from the UK One twin out of each pair was randomly excluded from the
population

of 1,793 individuals, leaving 1,205 volunteers (1,101 females and 104 males, age 61.5(10.7) yrs) on which to conduct the
microbiome GWAS analysis. Of these, 78 used PPIs and 62 had antibiotics 6 months prior to sampling.

Recruitment The following bias might occur in extrapolation the results to the general population:
1. Despite the multi-ethnic setup of the study, the consortium sampling is still dominated by the cohorts of European
ancestry and European residence.
2. 16S taxonomic profiling method used in the study is known to introduce bias in the microbiome composition. There is a
significant imbalance in the cohorts methodology in selection of 16S domains and DNA extraction methods, which might lead
to underestimate the genetic effects on bacterial taxa which are not sufficiently covered by the methods used by numerous
cohorts.
3. Several cohorts participating in the study utilize age-, sex- and symptom-dependent bias in recruitment process.
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Ethics oversight All participants enrolled had signed the informed consent. For LLD/MIBS cohorts approved as clinical studies, only population
controls were used in the current analysis.

BSPSPC: approved by the institutional ethical review committee of Kiel University, Germany

CARDIA: approved by Institutional Review Boards of University of Alabama at Birmingham, Birmigham, AL, Kaiser Permanente
Division of Research, Oakland CA, University of Minnesota, Minneapolis, MN, and Northwestern University, Chicago, IL.
NeurolMAGE+COMPULS: approved by the regional ethics committee of each site (Nijmegen and Utrecht: Commissie
Mensgebonden Onderzoek Regio Arnhem-Nijmegen, 2013, NL nr 42004.091.12

COPSAC: approved by Danish Ethics Committee (H-B-2008-093) and the Danish Data Protection Agency (2008-41-2599)
DanFunD: approved by Ethical Committee of Copenhagen County (Ethics Committee: KA-2006-0011; H-3-2011-081;
H-3-2012-0015) and the Danish Data Protection Agency

FGFP: approved by the medical ethics committee of the University of Brussels—Brussels University Hospital (approval
143201215505, 5/12/2012).

FOCUS: approved by the institutional ethical review committee of Kiel University

GEM: approved by Mount Sinai Hospital Research Ethics Board (Toronto—Managing Center) and local centers

GenerationR: approved by the Medical Ethical Committee of Erasmus MC, University Medical Center Rotterdam.

KSCS: approved by EUMC review board 2014-06-024 and KBSMC review board 2013-01-245.

LLD: Each participant signed an informed consent form before participation in the cohort according to the UMCG Institutional
Review Board (IRB; #M12.113965).

METSIM: approved by Ethics Committee of the Northern Savo Hospital District, Finland

MIBS: Each participant signed an informed consent form before participation in the cohort according to the Maastricht
University Medical Center (MUMC+) IRB (#MEC 08-2.066.7/pl).

NGRC: approved by institutional review boards at the participating institutions: Albany Medical Center, Emory University,
Kaiser

Permanente Northwest Division, New York State Department of Health, Oregon Health & Sciences University (OHSU) and the
Department of Veterans Affairs VA Puget Sound Health Care System (VAPSHCS).

NTR: approvCentral Ethics Committee on Research involving human subjects of the VU University Medical Center,
Amsterdam

PNP: Approved by Tel Aviv Sourasky Medical Center Institutional Review Board (IRB), approval numbers TLV-0658-12,
TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospital IRB, approval number 0-73; and Weizmann Institute of Science Bioethics
and

Embryonic Stem Cell Research oversight committee.

PopCol: approved by the local Committee of Research Ethics (Forskningskommitté Syd) at Karolinska Institutet, Stockholm, in
November 2001

RotterdamStudy: approved by the institutional review board (Medical Ethics Committee) of the Erasmus Medical Center and
by

the review board of The Netherlands Ministry of Health, Welfare and Sports.

SHIP/SHIP-TREND: approved by medical ethics committee of the University of Greifswald

HCHS/SOL: approved by approval of the Ethics and Institutional Review Boards of all institutions involved (i.e., Bronx Field
Center

— Albert Einstein School of Medicine; Chicago Field Center — University of Illinois Chicago; Miami Field Center — University of
Miami; San Diego Field Center — San Diego State University)

TwinsUK: approved by the Cornell University IRB (Protocol ID 1108002388)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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