

1 **Title: The fate of carbon in a mature forest under carbon dioxide enrichment**

2 M. Jiang¹, B.E. Medlyn¹, J.E. Drake^{1,2}, R.A. Duursma¹, I.C. Anderson¹, C.V.M. Barton¹,
3 M.M. Boer¹, Y. Carrillo¹, L. Castañeda-Gómez¹, L. Collins^{1,3,4}, K.Y. Crous¹, M.G. De
4 Kauwe^{5,6,7}, B.M. dos Santos^{8,9}, K.M. Emmerson¹⁰, S.L. Facey¹, A.N. Gherlenda¹, T.E.
5 Gimeno^{1,11,12}, S. Hasegawa^{1,13}, S.N. Johnson¹, C.A. Macdonald¹, K. Mahmud^{1,14}, A.
6 Kännaste¹⁵, B.D. Moore¹, L. Nazaries¹, E.H.J. Neilson^{8,9}, U.N. Nielsen¹, Ü. Niinemets¹⁵, N.J.
7 Noh^{1,16}, R. Ochoa-Hueso^{1,17}, V.S. Pathare^{1,18}, E. Pendall¹, J. Pihlblad¹, J. Piñeiro^{1,19}, J.R.
8 Powell¹, S.A. Power¹, P.B. Reich^{1,20}, A.A. Renchon¹, M. Riegler¹, R. Rinnan²¹, P. Rymer¹,
9 R.L. Salomón²², B.K. Singh^{1,23}, B. Smith^{1,24}, M.G. Tjoelker¹, J.K.M. Walker¹, A. Wujeska-
10 Klause¹, J. Yang¹, S. Zaehle²⁵, and D.S. Ellsworth¹

11

12 **Affiliation:**

13 ¹Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797,
14 Penrith, NSW, 2751, Australia

15 ²Department of Sustainable Resources Management, College of Environmental Science and
16 Forestry, State University of New York, Syracuse, NY 13210, USA

17 ³Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC
18 3086, Australia

19 ⁴Arthur Rylah Institute for Environmental Research, Department of Environment, Land,
20 Water and Planning, PO Box 137, Heidelberg, VIC 3084, Australia

21 ⁵ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney,
22 NSW 2052, Australia

23 ⁶Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052,
24 Australia

25 ⁷Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW,
26 2052, Australia

27 ⁸Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University
28 of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark

29 ⁹VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej
30 40, 1871 Frederiksberg C, Copenhagen, Denmark

31 ¹⁰Climate Science Centre, CSIRO Oceans & Atmosphere, Aspendale, VIC 3195, Australia

32 ¹¹Basque Centre for Climate Change, Leioa, 48940, Spain

33 ¹²Ikerbasque, Basque Foundation for Science, 48008 Bilbao, Spain

34 ¹³Department of Forest Ecology and Management, Swedish University of Agricultural
35 Sciences (SLU), Umeå, SE-90183, Sweden

36 ¹⁴Department of Geography, Indiana University, Bloomington, IN 47405, USA

37 ¹⁵Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia

38 ¹⁶Forest Technology and Management Research Center, National Institute of Forest Science,
39 Gyeonggi-do, 1186, Korea

40 ¹⁷Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia
41 Internacional Agroalimentario (CeiA3), Campus del Rio San Pedro, 11510 Puerto Real,
42 Cádiz, Spain

43 ¹⁸School of Biological Sciences, Post Office Box 646340, Washington State University,
44 Pullman, WA 99164-6340, USA

45 ¹⁹Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA

46 ²⁰Department of Forest Resources, University of Minnesota, St Paul, Minnesota, 55108, USA

47 ²¹Terrestrial Ecology Section, Department of Biology, University of Copenhagen,
48 Universitetsparken 15, DK-2100, Copenhagen, Denmark

49 ²²Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University,
50 Coupure links 653, 9000 Ghent, Belgium

51 ²³Global Centre for Land Based Innovation, Western Sydney University, Building L9,
52 Locked Bag 1797, Penrith South, NSW, 2751, Australia

53 ²⁴Department of Physical Geography and Ecosystem Science, Lund University, 22362, Lund,
54 Sweden

55 ²⁵Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany

56 **Abstract**

57 Atmospheric carbon dioxide enrichment (eCO₂) can enhance plant carbon uptake and
58 growth^{1,2,3,4,5}, thereby providing an important negative feedback to climate change by slowing
59 the rate of increase of the atmospheric CO₂ concentration⁶. While evidence gathered from
60 young aggrading forests has generally indicated a strong CO₂ fertilization effect on biomass
61 growth^{3,4,5}, it is unclear whether mature forests respond to eCO₂ in a similar way. In mature
62 trees and forest stands^{7,8,9,10}, photosynthetic uptake has been found to increase under eCO₂
63 without any apparent accompanying growth response, leaving an open question about the fate
64 of additional carbon fixed under eCO₂^{4,5,7,8,9,10,11}. Here, using data from the first ecosystem-
65 scale Free-Air CO₂ Enrichment (FACE) experiment in a mature forest, we constructed a
66 comprehensive ecosystem carbon budget to track the fate of carbon as the forest responds to
67 four years of eCO₂ exposure. We show that, although the eCO₂ treatment of ambient +150
68 ppm (+38%) induced a 12% (+247 g C m⁻² yr⁻¹) increase in carbon uptake through gross
69 primary production, this additional carbon uptake did not lead to increased carbon
70 sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted
71 back into the atmosphere via several respiratory fluxes, with increased soil respiration alone
72 accounting for ~50% of the total uptake surplus. Our results call into question the
73 predominant thinking that the capacity of forests to act as carbon sinks will be generally
74 enhanced under eCO₂, and challenge the efficacy of climate mitigation strategies that rely on
75 ubiquitous CO₂ fertilization as a driver of increased carbon sinks in global forests.

76

77 **Main text**

78 Globally, forests act as a large carbon sink, absorbing a significant portion of the
79 anthropogenic CO₂ emissions^{1,12}, an ecosystem service that has tremendous social and

80 economic value. Whether mature forests will remain carbon sinks into the future is of critical
81 importance for aspirations to limit climate warming to no more than 1.5 °C above pre-
82 industrial levels¹³. Free-Air CO₂ Enrichment (FACE) experiments provide an opportunity to
83 determine the capacity of ecosystems to sequester carbon under the higher atmospheric CO₂
84 concentrations expected in the future^{3,4,5,7,8,10,11}. Evidence gathered from the four first-
85 generation forest FACE experiments, which all measured responses of rapidly-growing
86 young forest plantations, has generally indicated a strong CO₂ fertilization effect on biomass
87 growth^{3,4}. This CO₂ fertilization effect has been hypothesized to be one of the largest drivers
88 of the terrestrial carbon sink and its acceleration in recent decades¹⁴, potentially accounting
89 for up to 60% of present-day terrestrial carbon sequestration². However, younger trees are
90 generally more responsive to rising CO₂ than mature trees¹¹, potentially because nutrient
91 limitation increases with stand age¹⁵. Thus, extrapolating evidence collected from these
92 experiments may be argued to provide an upper limit on how much carbon can be stored by
93 global forests under eCO₂¹⁶. Evidence from experiments with older trees on nutrient-poor
94 soils suggests that although eCO₂ increases leaf photosynthesis to a similar degree as in
95 young forests, stimulation of biomass growth and carbon storage may be lower or
96 absent^{7,8,9,10}. Reconciling these conflicting observations is a crucial step towards quantifying
97 the carbon sequestration capacity of mature forests in the future. It requires that we identify
98 the fate of the extra carbon fixed under eCO₂ in mature forests, which are expected to be
99 closer to a state of equilibrium between carbon uptake and turnover, compared to young
100 aggrading stands.

101
102 The *Eucalyptus* FACE (EucFACE) experiment is the world's first replicated, ecosystem-scale
103 mature forest FACE experiment (Extended Data Figure 1, 2). It is located in a warm-
104 temperate evergreen forest that has remained undisturbed for the past 90 years, is dominated

105 by the regionally widespread tree *Eucalyptus tereticornis* and has an understorey composed
106 principally of native grasses and shrubs. The low-fertility soil has been shown to limit tree
107 growth in an adjacent phosphorus-fertilization experiment¹⁷. Seven ecosystem-scale models
108 were used to predict the eCO₂ response at EucFACE in advance of the experiment¹⁸,
109 highlighting three alternative hypotheses for the expected ecosystem response based on
110 plausible assumptions incorporated in different models¹⁹. These hypotheses were: (i)
111 enhanced photosynthesis under eCO₂ would lead to increased biomass accumulation; (ii)
112 eCO₂-induced increase in photosynthesis would be directly down-regulated by limited
113 nutrient availability; or (iii) eCO₂-induced increase in photosynthesis would lead to increased
114 autotrophic respiration¹⁸. This range of predictions among a suite of well-tested models
115 indicated a prognostic knowledge gap as to how the carbon cycling of mature forests would
116 respond to the expected rise in atmospheric CO₂ concentration¹¹, which is crucial to resolve in
117 the face of future carbon-climate uncertainty²⁰.

118

119 To date, both canopy trees and understorey plants at EucFACE have shown increased rates of
120 leaf photosynthesis but the canopy trees showed no significant increase in aboveground
121 biomass growth under eCO₂⁷, reflecting a similar lack of response observed in other eCO₂
122 experiments on mature trees^{8,9,10}. Incorporating leaf-scale gas exchange measurements into a
123 process-based tree stand model, it was estimated that the observed +19% stimulation of light-
124 saturated overstorey leaf photosynthesis⁷ corresponded to a +11% stimulation of whole-
125 canopy gross primary production (GPP) in response to eCO₂²¹. However, the probable fate of
126 the extra carbon fixed under eCO₂ remained undetermined. Where did the extra carbon go?

127

128 To answer this question, we compiled measurements on all major carbon pools and fluxes
129 collected over four years of experimental treatment (2013-2016), including individual and

130 aggregated biomass and associated fluxes measured or inferred from plants, litter, soil,
131 microbes, and insects, and constructed an ecosystem carbon budget (Figure 1) under both
132 ambient (aCO_2) and eCO_2 conditions (+150 ppm). We first confirmed mass balance of the
133 ecosystem carbon budget by checking agreement between independent estimates of GPP and
134 soil respiration (R_{soil}) derived from separate data streams (Extended Data Figure 3; see
135 Methods). For GPP of the aCO_2 plots, we confirmed that a process-based model estimate of
136 overstorey and understorey GPP ($2059 \pm 211 \text{ g C m}^{-2} \text{ yr}^{-1}$), driven by site-specific
137 meteorology and treatment-specific physiological data, broadly agreed with the sum of data-
138 driven estimates of net primary production (NPP) and autotrophic respiration ($2068 \pm 61 \text{ g C}$
139 $\text{m}^{-2} \text{ yr}^{-1}$). The carbon-use efficiency (NPP/GPP) of this mature forest was estimated to be 0.31 ± 0.03 , which is on the low end of global forest estimates, but consistent with studies that
140 have observed this ratio to decline with stand age²² (Extended Data Figure 2). We further
141 confirmed carbon mass balance for R_{soil} of the aCO_2 plots by comparing soil chamber-based
142 estimates ($1097 \pm 86 \text{ g C m}^{-2} \text{ yr}^{-1}$) with the sum of litterfall and independently estimated root
143 respiration ($1086 \pm 14 \text{ g C m}^{-2} \text{ yr}^{-1}$), assuming no change in soil carbon pool (see Methods).
144 This agreement between independent estimates of components of the ecosystem carbon
145 budget gives confidence that our measurements captured the pools and fluxes of carbon with
146 low aggregate uncertainty and hence allow us to infer the fate of the extra carbon fixed under
147 eCO_2 .

149

150 To accommodate the inherent pre-treatment plot differences (see Methods), we normalized
151 the CO_2 responses across plots by using a linear mixed-model with plot-specific pre-
152 treatment leaf area index as a covariate^{23,24}. The non-normalized eCO_2 responses are provided
153 in Extended Data Figure 4, and generally confirm the findings but with larger uncertainty.
154 Our normalized responses (Figure 2, Extended Data Figure 5) showed that eCO_2 induced an

155 average of 12% increase ($+247 \pm 195 \text{ g C m}^{-2} \text{ yr}^{-1}$, mean \pm one standard deviation) in carbon
156 uptake, including contributions of overstorey ($+192 \pm 193 \text{ g C m}^{-2} \text{ yr}^{-1}$) and understorey GPP
157 ($+55 \pm 21 \text{ g C m}^{-2} \text{ yr}^{-1}$). The fate of this additional carbon entering the system under eCO₂
158 was primarily traced to an increase in R_{soil} ($+128.8 \pm 116.7 \text{ g C m}^{-2} \text{ yr}^{-1}$, or 52% of the carbon
159 uptake surplus), followed by a smaller increase in tree stem respiration (R_{stem}; $+40.0 \pm 43.6 \text{ g}$
160 C m⁻² yr⁻¹, or 16% of the carbon uptake surplus). In comparison, the increase in total NPP
161 ($+67.3 \pm 12.7 \text{ g C m}^{-2} \text{ yr}^{-1}$, or 28% of the carbon uptake surplus) corresponded to a smaller
162 increase in storage of the total carbon pools at the ecosystem-level (ΔC_{pools} ; $+31.6 \pm 188.8 \text{ g C}$
163 m⁻² yr⁻¹, or 12.8% of the carbon uptake surplus, Extended Data Figure 6). There was thus
164 little evidence of additional carbon accumulation under eCO₂ in this mature forest ecosystem.
165 We then compared three alternative methods (see Methods) of estimating net ecosystem
166 production (NEP; Figure 3). All three indicated that the ecosystem remained close to carbon-
167 neutral under ambient CO₂ over the experimental period (mean \pm SD for the methods: $28 \pm$
168 225 , 21 ± 129 , $-73 \pm 50 \text{ g C m}^{-2} \text{ yr}^{-1}$, respectively), and that eCO₂ of +150 ppm did not result
169 in statistically significant increases in ecosystem carbon storage (109 ± 258 , -19 ± 171 , $-42 \pm$
170 $262 \text{ g C m}^{-2} \text{ yr}^{-1}$, respectively). However, the variability reported here means that we cannot
171 fully rule out the possibility of additional carbon storage under eCO₂, but we stress that our
172 individual and aggregated responses consistently suggest a lack of CO₂ response in this
173 mature forest (Figure 2 & 3, Extended Data Figure 5).

174

175 The relatively small but positive NPP response to eCO₂ was mainly driven by the understorey
176 aboveground NPP response (NPP_{ua}; $+50.3 \pm 17.9 \text{ g C m}^{-2} \text{ yr}^{-1}$), which was 75% of the net
177 NPP response (Figure 2). However, this significant NPP_{ua} response did not result in an
178 equivalent eCO₂ effect on understorey aboveground biomass increment ($+27.2 \pm 29.7 \text{ g C m}^{-2}$
179 yr⁻¹), suggesting a possible higher understorey biomass turnover under eCO₂. Smaller fluxes,

180 often neglected in other ecosystem carbon budgets, such as leaf consumption by insect
181 herbivores (NPP_{ins} ; 25.5 ± 4.3 vs. $27.8 \pm 6.3 \text{ g C m}^{-2} \text{ yr}^{-1}$, aCO_2 vs. eCO_2 mean \pm SD), insect
182 frass production (Frass; 10.5 ± 1.8 vs. $11.4 \pm 2.6 \text{ g C m}^{-2} \text{ yr}^{-1}$), vegetation volatile carbon
183 emission (VC; 2.63 ± 0.18 vs. $2.45 \pm 0.13 \text{ g C m}^{-2} \text{ yr}^{-1}$), net ecosystem methane uptake (CH_4 ;
184 0.18 ± 0.0009 vs. $0.19 \pm 0.0003 \text{ g C m}^{-2} \text{ yr}^{-1}$), and leaching of dissolved organic carbon (DOC;
185 0.16 ± 0.017 vs. $0.17 \pm 0.024 \text{ g C m}^{-2} \text{ yr}^{-1}$), contributed to the closure of the overall
186 ecosystem carbon budget (Figure 1; Extended Data Figure 3), but were not quantitatively
187 important in explaining pathways of the carbon uptake surplus under eCO_2 (Figure 2,
188 Extended Data Figure 5, Extended Data Figure 6).

189

190 Here we provide some of the first replicated experimental evidence on the probable fate of
191 carbon under eCO_2 in intact mature forest. We found that increased R_{soil} accounted for $\sim 50\%$
192 of the extra photosynthate produced by plants under eCO_2 . It has been suggested that the
193 increase in R_{soil} at EucFACE was likely a consequence of increased root and rhizosphere
194 respiration^{25,26}, in contrast to other FACE sites where increased R_{soil} was attributed to
195 enhanced soil organic matter decomposition (e.g. DukeFACE²⁷). Here, the eCO_2 -induced
196 increase in R_{soil} was not accompanied by substantial changes in root respiration ($18.6 \pm 20.1 \text{ g}$
197 $\text{C m}^{-2} \text{ yr}^{-1}$) or in carbon pools associated with fine roots ($+7.0 \pm 12.5 \text{ g C m}^{-2} \text{ yr}^{-1}$), microbes
198 ($+1.9 \pm 3.5 \text{ g C m}^{-2} \text{ yr}^{-1}$), mycorrhizae ($+0.4 \pm 0.5 \text{ g C m}^{-2} \text{ yr}^{-1}$), leaf litter ($+27.1 \pm 38.6 \text{ g C}$
199 $\text{m}^{-2} \text{ yr}^{-1}$) or soil ($-23.8 \pm 159.6 \text{ g C m}^{-2} \text{ yr}^{-1}$), suggesting that the additional carbon fixed under
200 eCO_2 may have led to an enhanced carbon transport belowground and a rapid belowground
201 turnover of this flux. Assimilation of these data into a carbon balance model supports this
202 inference (Extended Data Figure 7, see Methods for details). An initial enhancement in
203 nitrogen and phosphorus mineralization was observed²⁸, which suggested that the increased
204 R_{soil} with eCO_2 could reflect soil organic matter priming with the potential to alleviate plant

205 nutrient stress in this low-phosphorus soil^{28,29}. However, the enhanced soil mineralization rate
206 and associated increase in nutrient availability did not persist over time²⁸, indicating that this
207 increased belowground carbon allocation and the rapid turnover of this flux was not effective
208 in increasing phosphorus availability to the plants³⁰.

209

210 The ecosystem carbon budget presented here provides an opportunity to confront the three
211 alternative hypotheses of the response of this system to eCO₂ treatment that emerged from
212 model predictions made in advance of the experiment¹⁸. Our data do not support any of the
213 three hypotheses. The eCO₂-induced increase in photosynthesis was not strongly down-
214 regulated by low nutrient availability^{7,21}; nor did the eCO₂-induced additional carbon uptake
215 lead to additional biomass accumulation, or enhanced aboveground respiration. These
216 predictions reflect common mechanisms by which terrestrial vegetation models implement
217 nutrient limitation of the eCO₂ response^{18,19,31,32}. In contrast, our results suggest a direct
218 connection between plant photosynthesis and belowground activity (Extended Data Figure 7),
219 in which increased belowground carbon allocation increased soil respiration at a rate that
220 accounted for half of the extra carbon fixed under eCO₂ (Figure 2). Predictions made in
221 advance of the experiment did not capture this additional belowground carbon flux, despite
222 their general agreement with data on turnover rates of major carbon pools (Extended Data
223 Figure 8). This increased soil respiration has been demonstrated by some models to be an
224 important and often overlooked mechanism that reduces global soil carbon sequestration
225 relative to estimates by many current models³³. As a consequence of including this rapid
226 turnover of the increased belowground carbon allocation in terrestrial biosphere models, the
227 time-lag in emitting some of the extra carbon via biomass accumulation and litterfall input
228 into the soils may be reduced, thereby leading to faster cycling of carbon³⁴ and therefore
229 possible different trajectories of carbon-climate predictions for the future.

230

231 A major form of land-based climate mitigation actions envisaged in the 2015 Paris
232 Agreement is to enhance forest biomass carbon stocks globally through the protection of
233 existing, largely mature, forests, and through afforestation of new areas. The mitigation
234 potential of forests lies in the accumulated stock of ecosystem carbon, not in the short-term
235 rate of forest photosynthesis. The probable fate of additional carbon determined in our study
236 (Figure 2) challenges the current thinking that all non-aggrading mature forests will
237 contribute to enhanced carbon sinks due to CO₂ fertilization³⁵, which further questions the
238 allowable CO₂ emission targets sourced from existing carbon cycle models^{13,36}. Given that
239 the effect of CO₂ fertilization may be one of diminishing returns over time¹⁴, the statistically
240 non-significant eCO₂ effect on NEP (Figure 3), if representative of nutrient-limited mature
241 forest ecosystems generally, suggests an even weaker carbon sink in the future, especially in
242 low-phosphorus systems such as EucFACE. Future research efforts should target a deeper
243 understanding of the nutrient-carbon feedbacks that likely constrain the carbon sink potential
244 of mature forests under eCO₂, and evaluate the implications of a potentially weaker terrestrial
245 land carbon sink in the development of robust mitigation strategies in the face of climate
246 change. More importantly, whilst the terrestrial carbon sink is integral to current strategies for
247 climate change mitigation, our results call for more active reductions of anthropogenic
248 emissions to meet the targets of the Paris Agreement.

249 **Methods**

250 **EucFACE site description**

251 The EucFACE facility (Extended Data Figure 1) is located in a mature evergreen *Eucalyptus*
252 forest on an alluvial spodosol in western Sydney, Australia (33°36'S, 150°44'E). The site has
253 been a remnant patch of native Cumberland Plain woodland since the 1880's and has
254 remained unmanaged for at least the past 90 years, with *Eucalyptus tereticornis* Sm. as the
255 dominant tree species (98% of the overstorey basal area). *Eucalyptus* trees occur naturally
256 across Australia, accounting for 78% of native forest area in Australia³⁷ and are planted
257 widely around the globe³⁸. Infrastructure for six large circular plots (490 m² each) was
258 established in 2010. Starting on 18th September 2012, three plots were subjected to free-air
259 CO₂ enrichment treatment using a computer-controlled pre-dilution method. The CO₂
260 concentrations at EucFACE were ramped up over a six-month period, increasing by +30 ppm
261 every five weeks in discrete steps (+30, 60, 90, 120, and 150 ppm). The full elevated CO₂
262 treatment of +150 ppm started on 6th February 2013 during daylight hours over all days of the
263 year. The site is characterized by a humid temperate-subtropical transitional climate with a
264 mean annual temperature of 17.5°C and a mean annual precipitation of 800 mm (Figure S1).
265 The soil is a Holocene alluvial soil of low fertility with low phosphorus content^{7,17}. Soil
266 texture is a loamy sand (> 75% sand content) up to 50 cm in depth. From ca. 50 to 300 cm
267 depth, soils are sandy clay loam, with > 30% silt and clay. Average bulk density is 1.39, 1.69
268 and 1.71 g cm⁻³ for depths of 0-10, 10-20 and 20-30 cm, respectively (Figure S2). Permanent
269 groundwater depth is ~11 m below the soil surface³⁹. Understorey vegetation is a diverse
270 mixture of 86 species including forbs, graminoids and shrubs⁴⁰. The dominant understorey
271 species is *Microlaena stipoides*, a C₃ perennial grass that accounted for ~70% of herbaceous
272 biomass and responded rapidly to rainfall variability⁴¹.

273

274 **Estimates of carbon pools and fluxes**

275 We estimated plot-specific carbon pools and fluxes at EucFACE over 2013-2016 (Extended
276 Data Table 1). We defined pools as a carbon reservoir and annual increments as the annual
277 changes in the size of each reservoir. We compartmentalized the ecosystem into 11 carbon
278 pools, namely overstorey leaf (C_{ol}), stem (C_{stem}), fine root (C_{froot}), coarse root (C_{croot}),
279 intermediate root (C_{iroot}), understorey aboveground (C_{ua}), soil (C_{soil}), microbe (C_{micr}),
280 mycorrhizae (C_{myco}), leaf litter (C_{lit}), and aboveground insect (C_{ins}) carbon pools, and reported
281 pool size in the unit of g C m^{-2} . We defined fluxes as components of the carbon flow through
282 the system, and report them in the unit of $\text{g C m}^{-2} \text{ yr}^{-1}$. All annual incremental changes in
283 carbon pools were reported in $\text{g C m}^{-2} \text{ yr}^{-1}$ with a symbol Δ . We converted estimates of
284 biomass into carbon content using variable-specific carbon fractions (f) defined in Extended
285 Data Table 2. Below we describe how each pool and flux was estimated.

286

287 Pools

288 **Soil carbon pool (C_{soil} ;** Figure S2) was estimated based on quarterly sampled soil carbon
289 content (oven-dried at 40°C for 48 hours) and plot-specific soil bulk density at three depths
290 (0 - 10 cm, 10 - 20 cm, 20 - 30 cm). Out of the 15 dates when samples were taken, soil carbon
291 content below the top 10 cm of soil was measured on three dates. To obtain a more accurate
292 estimate of annual incremental change in soil carbon pool, we therefore reported soil carbon
293 pool for the top 10 cm only. There were no temporal and eCO_2 trends in soil carbon content
294 at deeper depths.

295

296 **Overstorey leaf carbon pool (C_{ol} ;** Figure S3) was estimated based on continuous measures
297 of leaf area index (LAI) and specific leaf area (SLA, m^2 leaf area g^{-1} leaf DM), following C_{ol}
298 = LAI \times SLA \times f_{ol} , where f_{ol} is a carbon fraction constant for overstorey leaves (Extended
299 Data Table 2). Daily averages of plot-specific LAI were estimated based on the attenuation of
300 diffuse radiation in a homogenous canopy²⁴. The number of observations varies between days,
301 depending on the number of 30-minute cloudy periods. SLA was estimated based on time-
302 series measures of leaf mass per area (LMA), and was then linearly interpolated to plot-
303 specific daily values over time.

304

305 **Stem carbon pool (C_{stem} ;** Figure S4) was estimated based on tree-specific height and
306 diameter at breast height (DBH) measurements, and an allometric scaling relationship derived
307 for *E. tereticornis*^{7,42}. DBH changes were measured repeatedly at roughly monthly intervals,
308 at 1.3 m height. Bark was periodically removed from under the dendrometer bands - this
309 effect on DBH was considered by calculating biomass once per year using December data
310 only. Stem biomass data were summed for each plot and averaged over the plot area to obtain
311 ground-based estimates, and was then converted into C_{stem} using treatment-specific carbon
312 fraction (Extended Data Table 2).

313

314 **Understorey aboveground carbon pool (C_{ua} ;** Figure S5) was estimated at 1-3 month
315 intervals between February 2015 and December 2016 using non-destructive measurements of
316 plant height obtained from stereo-photography⁴³. In each of the four 2m \times 2m understorey
317 monitoring subplots within each plot, stereo photographs were collected using a Bumblebee
318 XB3 stereo camera (Point Grey Research) mounted ~2.4 m above the ground surface and
319 facing vertically downwards towards the center of the subplot. Stereo images were taken at
320 dusk under diffuse light conditions to avoid measurement errors related to shadows from

321 trees and EucFACE infrastructure. On each sampling date, three sets of stereo photographs
322 were taken in each subplot to produce a large number (i.e. 100,000 s) of understorey plant
323 height estimates from which mean plant height (H_{mean} , in m) was calculated for each plot.
324 Understorey aboveground biomass (B_{ua} , in kg m^{-2}) for each plot was predicted from H_{mean}
325 using an empirical model developed for the grassy understorey vegetation at EucFACE ($B_{ua} =$
326 $1.72 \times H_{mean} - 0.05$)⁴³. The four subplot-level estimates were averaged to obtain a plot-level
327 estimate of B_{ua} , and then converted to an estimate of C_{ua} using a carbon fraction constant
328 (Extended Data Table 2).

329

330 **Root carbon pool (C_{root})** consists of fine root (C_{froot}), intermediate root (C_{iroot}), and coarse
331 root (C_{croot}) pools, with C_{froot} defined as roots with diameter of < 2 mm, C_{iroot} defined as roots
332 with diameter of 2 – 3 mm, and the remaining roots defined as C_{croot} (Figure S6). The C_{root}
333 pool includes roots of both overstorey and understorey vegetation. Total root biomass (B_{root})
334 was estimated based on an allometric relationship with stand basal area (derived from DBH)
335 derived for Australian forest species⁴⁴, as follows: $\ln(B_{root}) = 0.787 \times \ln(\text{DBH}) + 1.218$.

336

337 Standing intermediate root (2-3 mm in diameter) and fine root biomass (< 2 mm in diameter)
338 were sampled in four subplots per plot at two depths (0 – 10 cm and 10 – 30 cm) in year 2017,
339 whereas only fine root biomass at the same depths with the same number of subplots was
340 repeatedly sampled over the period of 2014-2016²⁹. We estimated a depth-specific
341 relationship between fine root biomass (< 2 mm in diameter) and total root biomass less than
342 3 mm in diameter based on samples collected in 2017, and calculated the intermediate root
343 biomass for the period of 2014-2016 based on its corresponding fine root biomass. Coarse
344 root biomass was then estimated as the net difference between total allometrically-derived
345 root biomass and that of roots with diameter < 3mm. The fine, intermediate, and coarse root

346 biomass were multiplied by the corresponding carbon fraction constants to obtain C_{froot} , C_{iroot} ,
347 and C_{croot} , respectively (Extended Data Table 2).

348

349 **Microbial carbon pool (C_{micr})** was estimated based on fumigation extraction and 0.5 M
350 K_2SO_4 extraction as in Ref. 25 using samples taken at 0-10 cm soil depth over the period of
351 2012 - 2015. Total organic carbon was determined on a Shimadzu TOC analyzer (TOC-L
352 TNM-L; Shimadzu, Sydney, Australia), which was then multiplied by soil bulk density over
353 the same soil depth to obtain the C_{micr} (Figure S7a).

354

355 **Mycorrhizal carbon pool (C_{myco})** for the top 10 cm of soil was estimated via measurements
356 of colonization of mycorrhizal in-growth bags, carbon isotopic partitioning, microbial
357 phospholipid fatty acid abundance and C_{micr} . Nine 45 μm nylon mesh bags (4 \times 5 cm) filled
358 with sand, which excluded roots but allowed access of fungi⁴⁵, were buried in November
359 2014 in each experimental plot and three bags were subsequently collected every four months
360 for one year. Phospholipid-derived fatty acids (PLFA), a proxy for total microbial biomass
361 abundance, were quantified in sand bags and native field soil following the protocol by Ref
362 46. $\delta^{13}C$ values of ground subsamples of this sand, native soil carbon, and aboveground plant
363 tissue (leaves of Eucalypts in April 2014) were used to estimate the fraction of the
364 accumulated carbon in sand bags that was derived from plant carbon using isotopic mass
365 balance. Due to the exclusion of roots, plant-derived carbon in bags can be attributed to
366 mycorrhiza. This plant-derived unitless fraction was then multiplied by the total
367 concentration of PLFA in sand bags to obtain the amount of the total PLFA contributed by
368 mycorrhiza (μg PLFA / g sand). To scale this to native soil PLFA concentrations we then
369 calculated the ratio between mycorrhizal PLFA in sand bags to total PLFA in soil

370 (representing the total microbial pool). Subsequently, to estimate C_{myco} , this ratio was
371 multiplied by the C_{micr} in each plot (Figure S7b).

372

373 **Leaflitter carbon pool (C_{lit})** was estimated based on leaf litter decomposition rate and leaf
374 litterfall data collected by litter baskets (Figure S8)²⁴. Leaf litter decomposition rates were
375 estimated over 24 months using litter bags. Briefly, 2 g air-dried *Eucalyptus* litter was added
376 to 10 × 15 cm litter bags with a 2-mm mesh size. Twelve litter bags were randomly allocated
377 to 4 subplots within each treatment plot, and two litter bags were collected at 3, 6, 9, 12, 18
378 and 24 months to calculate mass loss over time (mass loss was averaged across the two
379 replicates from each subplot). A leaflitter exponential decay function was estimated for each
380 plot, based on data collected over this 24-month period. Leaf litterfall was estimated from
381 monthly collections of material from circular fine-mesh traps (each 0.2 m²) at eight random
382 locations for each plot. We then applied the exponential decay function with litterfall biomass
383 to obtain C_{lit} , assuming a carbon fraction constant (Extended Data Table 2).

384

385 **Insect carbon pool (C_{ins})** was estimated based on two different sampling techniques, with
386 aerial insects partially estimated based on monthly dead insect data collected from circular
387 fine-mesh traps of 0.2 m² at eight random locations for each plot⁴⁷, and understory insects
388 estimated based on vacuum suction sampling from two locations for each plot⁴⁸. The insect
389 biomass estimated based on these two sampling techniques may be a conservative estimate
390 (the frass produced would suggest presence of a larger insect biomass⁴⁹); nevertheless, they
391 provided a direct estimate based on data collected *in situ*. The vacuum suction method
392 collected invertebrates from understorey vegetation in two 1 × 1 m subplots using a petrol-
393 powered ‘G-Vac’ vacuum device run on full-throttle for 20 s, for a total of five sampling
394 campaigns. Trapping locations were randomly chosen and fixed between sampling

395 campaigns. All invertebrates were sorted from debris, dried to constant weight at 60 °C and
396 weighed on a microbalance with a precision of 1 µg. We assumed that vacuum samples as
397 well as fine-mesh trap samples represent point estimates of invertebrate abundance. Then, the
398 total biomass of sampled invertebrates was summed across sampling methods within each
399 plot. A constant carbon fraction based on Ref 50 (Extended Data Table 2) was used to
400 convert biomass into C_{ins} pool (Figure S9).

401 *Ecosystem carbon uptake fluxes*

402 **Overstorey gross primary production (GPP_O)** for each plot was provided by a stand-level
403 model simulation (MAESPA), forced by hourly meteorological data, daily plot-specific leaf
404 area index and leaf-scale treatment-specific photosynthetic parameters measured at the site
405 (Figure S10a)^{7,21}. In short, MAESPA was used as a tool to up-scale leaf-level gas exchange
406 measurements to the whole canopy. In MAESPA, each plot consists of individual tree crowns
407 that are located and parameterized with measured coordinates, crown size, and LAI. Each
408 crown is divided into six layers, with leaf area uniformly distributed in each layer. Within
409 each layer, the model simulates twelve grid points. The incident radiation on the sunlit and
410 shaded leaf area at each grid point is calculated considering shading from upper crown and
411 surrounding trees, solar angle (zenith and azimuth), and light source (diffuse or direct).
412 Incident radiation is then used to calculate gas exchange using a Farquhar⁵¹ formulation for
413 photosynthesis and a Medlyn formulation⁵² for stomatal conductance. The model was
414 parameterized with treatment-specific leaf gas exchange measurements made *in situ*^{7,53}. Leaf
415 respiration and its temperature dependence were also quantified using data collected on site,
416 then up-scaled to the canopy using MAESPA. The performance of the model was evaluated
417 by comparing the simulated transpiration flux to sap flow data⁵⁴.

418

419 Similarly, **understorey GPP (GPP_u)** (Figure S10b) was simulated using MAESPA with
420 photosynthetic parameters taken for the dominant grass *Microlaena stipoides*⁴¹. The
421 parameterization of understory vegetation is different from that of the canopy. In each plot,
422 the understory was assumed to form a single crown covering the whole plot (i.e., a circle with
423 12.5 m radius) at a height of 1.5 m. The LAI of the understory was estimated using
424 phenology camera digital photographs taken at four permanent understorey vegetation
425 monitoring subplots in each plot⁴³. The average green pixel content was calculated from three
426 photos in each subplot, and assumed to be the same as the fraction of absorbed PAR. We then
427 assumed a light extinction coefficient of 0.5 in Beers' Law and calculated understorey LAI.
428 Before 2014 there were 3 campaigns per year while from 2014 the cameras were automated,
429 and we used the fortnightly averages. Leaf gas exchange parameters were obtained from Ref
430 41 and covered four to six campaigns per year from 2013 to 2016. We estimated a one-time
431 g_l parameter⁵² for all plots and time, and assumed constant carboxylation rate (V_{cmax}) and
432 electron transport rate (J_{max}) values at 25 °C across plots. Basal leaf respiration rate and the
433 temperature dependence of photosynthesis and respiration were assumed to be the same as
434 those for the canopy. The understory simulation was conducted separately from the canopy,
435 with canopy LAI from Ref 24 included to account for the shading from the canopy, branches
436 and stems on the understory.

437

438 For the **methane net flux (CH₄)**, air samples were collected following the closed-chamber
439 method (or Non-Flow-Through Non-Steady-State [NFT-NSS] method). Seven replicated
440 chambers were available for each plot. Headspace samples were collected monthly, over a
441 period of one hour and analyzed by gas chromatography. Fluxes were estimated by a mixture
442 of linear and quadratic regressions (depending on goodness-of-fit), assuming a constant air
443 pressure of one atmosphere and correcting the air temperature inside the chambers for each

444 air sample⁵⁵. The CH₄ fluxes are net fluxes, which represent the sum of: 1) CH₄ efflux
445 (emissions from the soil into the atmosphere); 2) CH₄ influx (uptake from the atmosphere
446 into soil). Here, the annual net CH₄ flux was an ecosystem influx and was presented as
447 positive values (Figure S11a).

448

449 Production fluxes

450 Plant **net primary production (NPP)** is the sum of overstorey leaf (NPP_{ol}), stem (NPP_{stem}),
451 fine root (NPP_{froot}), intermediate root (NPP_{iroot}), coarse root (NPP_{croot}), other (including twigs,
452 barks, and seeds; NPP_{other}), understorey aboveground (NPP_{ua}), and consumption of overstorey
453 leaf by insect herbivores (NPP_{ins}). NPP_{ol} and NPP_{other} were estimated based on monthly litter
454 data collected from circular fine-mesh traps of 0.2 m² at eight random locations for each plot
455 (Figure S12). Litter was sorted into leaf, twigs, bark, and seeds, dried to constant mass at
456 40 °C and weighed. A subsample was reweighed when dried to constant mass at 70 °C and a
457 small moisture correction⁷ was applied to the leaf component of the whole dataset. NPP_{ol} was
458 computed as the sum of annual leaf litter, which excluded leaf consumption by insects. For
459 twigs, we assumed strictly annual turnover across the years. NPP_{stem} (Figure S13) and
460 NPP_{croot} (Figure S14) were estimated based on annual incremental change of stem biomass
461 and coarse root biomass, respectively. NPP_{froot} was estimated based on samples collected
462 from in-growth cores at four different locations per plot (Figure S14). NPP_{iroot} was estimated
463 based on a global mean coarse root turnover rate (0.3605 yr⁻¹) for evergreen broadleaf
464 forests⁵⁶, and the C_{iroot} pool in our dataset (Figure S14).

465

466 NPP_{ua} was estimated based on biomass clippings taken between 2015 - 2017, assuming one
467 understorey turnover per harvest interval (Figure S15). We used a clip-strip method of
468 biomass harvest as has been applied previously at the BioCON experiment⁵⁷. Specifically,

469 four narrow strips, each with a size of 1 m × 0.1 m, were situated in each of the experimental
470 plots at least 2 m away from the vertical pipes for FACE, while avoiding the understory
471 shrubs. The understory herbaceous species were clipped approximately 1 cm above soil level.
472 The total mass per harvest represents the total production. Biomass samples were oven dried
473 for two days at 60 °C, and converted into carbon mass by applying a constant fraction
474 (Extended Data Table 2).

475

476 NPP lost to overstorey leaf consumption by insect herbivores (NPP_{ins}) was estimated based
477 on insect frass data (Frass) collected from the circular fine-mesh traps, and a relationship
478 between frass mass and insect-consumed leaf mass derived based on multiple *Eucalyptus* tree
479 species at different CO₂ concentrations (Figure S16a)^{58,59}. Frass was estimated based on
480 annual collection of frass biomass collected from the circular fine-mesh litter traps with their
481 associated carbon content (Extended Data Table 2; Figure S16c).

482

483 Outfluxes

484 Leaching lost as **dissolved organic carbon (DOC)** from soils was estimated based on
485 concentrations of DOC in soil solutions, provided by water suction lysimeter measurements²⁸.
486 Lysimeters were installed to two depths (0 - 15 cm and 35 - 75 cm, which is immediately
487 above the impermeable layer). Here we assumed that DOC reaching deeper depth is lost from
488 the system at a rate of 20 ml m⁻² d⁻¹, which is an estimate of the daily drainage rate at the site
489 (Figure S11b).

490

491 **Plant autotrophic respiration (R_a)** consists of overstorey leaf (R_{ol}), stem (R_{stem}), root (R_{root}),
492 understorey aboveground (R_{ua}) (Figure S17), and growth respiration (R_{grow}) (Figure S18). R_{ol}

493 and R_{ua} were based on MAESPA simulation (Figure S17a, c), as described in the respective
494 GPP sections. R_{grow} was estimated by taking a constant fraction of 30% of total NPP as
495 measured directly on *E. tereticornis* trees⁶⁰.

496

497 R_{stem} was estimated from measurements of stem CO₂ efflux performed in three dominant
498 trees per plot (Figure S17b). Collars were horizontally attached to the stem at an approximate
499 height of 0.75 m, and R_{stem} (nmol CO₂ m⁻² s⁻¹) was measured with a portable infrared gas
500 analyzer coupled to a soil respiration chamber adapted for this purpose⁶¹. Measurement
501 campaigns were performed every one or two months from December 2017 to October 2018,
502 and the relationship between R_{stem} and air temperature (T_{air}) was used to extrapolate R_{stem}
503 across the surveyed period, following $R_{stem} = 0.1866 \times 2.84^{T_{air}/10}$ ($r^2 = 0.42$, $p < 0.0001$). R_{stem}
504 was then upscaled to the stand level considering the ratio of stem axial surface per unit of soil
505 surface measured per plot. Stem surface area was inferred from the measured tree diameter
506 based on dendrometer, and a relationship between diameter and stem surface area estimated
507 from the Terrestrial Laser Scanning (TLS) data. Stem surface area and diameter in the TLS
508 data was estimated through quantitative structure models presented in Ref. 62 and 63. TLS
509 data were acquired with a RIEGL VC-400 terrestrial laser scanner (RIEGL Laser
510 Measurement Systems GmbH). Stem surface area was derived from the TLS data following a
511 two-step approach: (i) manually extracting single trees from the registered TLS point cloud;
512 and (ii) deriving parameters for an extracted single tree. Once a tree is extracted from the
513 point cloud, the next step was to strip off the leaves, and segment the point cloud into stem
514 and branches. Finally, the surface of the segments was reconstructed with geometric
515 primitives (cylinders). The method used a cover set approach, where the point cloud was
516 partitioned into small subsets, which correspond to small connected patches in the tree
517 surface.

518

519 R_{root} was partitioned into fine root (R_{froot}), intermediate root (R_{iroot}), and coarse root (R_{croot})
520 respiration (Figure S17d). Mass-based rates of fine root and intermediate root respiration
521 (nmol CO₂ DM g⁻¹ s⁻¹) were measured for detached roots sampled by soil cores at 10 cm soil
522 depth at four subplots per plot with a portable infrared gas analyzer coupled to a small root
523 chamber. Measurement campaigns were performed every one or two months from November
524 2018 to July 2019. The relationship between root respiration and soil temperature (T_{soil}) at 10
525 cm soil depth was used to extrapolate the corresponding root respiration rates across the
526 surveyed period, following the equations: $R_{froot} = 1.138 \times 1.614^{0.0479 \times T_{soil}}$ ($r^2 = 0.36$, $p <$
527 0.0001, RMSE = 1.054), and $R_{iroot} = 0.9764 \times 1.586^{0.0641 \times T_{soil}}$ ($r^2 = 0.52$, $p < 0.0001$, RMSE =
528 0.597). The mass-based rate of coarse root respiration was assumed to be the same as the
529 mass-based rate of stem respiration. R_{froot} , R_{iroot} and R_{croot} were then upscaled to the stand
530 level to obtain R_{root} with fine root, intermediate root, and coarse root biomass, respectively.

531

532 **Carbon efflux due to insect respiration (R_{ins})** was estimated as the net difference between
533 NPP_{ins} and Frass, assuming no net change in insect biomass (Figure S16b).

534

535 **Soil respiration (R_{soil}):** The rate of soil CO₂ efflux was measured at eight locations within
536 each plot, where a permanent PVC collar inserted into the soil was co-located with soil TDR
537 probes for continuous measurements of soil temperature (5-cm-depth) and volumetric water
538 content (0 to 21-cm-depth; CS650-L; Campbell Scientific, Logan, UT, USA). R_{soil} was
539 measured manually at all collar locations every 2-3 weeks, in addition to 30-minute
540 measurements using automated chambers (Li-8100-103; Licor) at one location within each
541 plot, resulting in >300,000 observations over the study period²⁶. These data were used to
542 parameterize a semi-mechanistic model of R_{soil} , in which R_{soil} was predicted based on

543 measurements of soil properties, soil physics, and measured soil temperature and volumetric
544 water content⁶⁴. This model successfully recreated the observed fluxes (r^2 between predicted
545 and observed survey R_{soil} was 0.65)²⁶. Annual sums of R_{soil} were derived by summing the
546 averaged daily fluxes over eight locations within each plot, where daily fluxes at each
547 location were predicted based on the semi-mechanistic model and daily soil temperature and
548 volumetric water content data taken adjacent to each measurement collar. Soil heterotrophic
549 respiration (R_{hetero}) was taken as the net difference between R_{soil} and R_{root} (Figure S19). Total
550 ecosystem respiration (R) was calculated as the sum of R_a , R_{hetero} , R_{ins} , and VC.

551

552 **Volatile carbon (VC; Figure S20)** flux as isoprene (C_5H_8) and monoterpenes was estimated
553 using the Model of Emissions of Gases and Aerosols from Nature (MEGAN)⁶⁵. Isoprene
554 represents over half of all volatile organic carbon species emitted by vegetation globally, and
555 is the dominant source of VC emission at our site. A MEGAN box-model was built from the
556 version used in Ref. 66, centered on the EucFACE facility to calculate hourly emissions of
557 isoprene across the period 2013-2016 for all six plots:

558
$$VC = EF \times LAI \times \gamma$$

559 Where EF is the compound-specific basal emission factor, γ is the emission activity factor,
560 accounting for changes in the emission response due to light, temperature, leaf age and soil
561 moisture. The MEGAN simulations were driven by daily input data of LAI, soil moisture,
562 and hourly input data of photosynthetic active radiation, temperature, atmospheric pressure,
563 wind speed and relative humidity.

564

565 The isoprene EFs for ambient and elevated CO_2 plots were derived from in-line
566 photosynthetic gas-exchange measurements coupled with simultaneous volatile isoprenoid
567 sampling. The isoprene was collected onto sterile stainless steel thermal desorption tubes at

568 the same time as gas exchange was measured, and these were capped and later thermally
569 desorbed for off-line volatile analysis in the laboratory using a Shimadzu 2010 Plus GC-MS
570 system connected to a Shimadzu TD20 automated cartridge desorber. The sampling and GC-
571 MS analysis methodology is described in detail in Ref 67. The chromatographic peaks were
572 identified by comparing them to an isoprene standard and reference mass spectra in the NIST
573 Mass Spectral Library (<https://www.nist.gov/srd>). Monoterpene emissions were sampled
574 during February 2018 using a push-pull headspace technique⁶⁸ from enclosed branches
575 containing approximately 10 leaves and trapped on adsorbent cartridges (150 mg Tenax TA
576 and 200 mg Carbograph 1TD, Markets International Limited, United Kingdom) at an outflow
577 rate of 200 ml min⁻¹ for 15 min. Before each measurement, the sampling system was
578 equilibrated for 15 min at an inflow rate of 1000 mol min⁻¹. Monoterpenes were analyzed by
579 gas chromatography-mass spectrometry (R7890A Series GC coupled with a 5975C inert
580 MSD/DS Performance Turbo EI System, Agilent Technologies, Inc., Santa Clara, CA, USA),
581 as described by Ref 69. The obtained chromatograms were deconvoluted, analyzed and data
582 retrieved using the software PARADISE⁷⁰ version 3.88. Identification of compounds was
583 performed using analytical standards and according to their mass spectra in the NIST11
584 library. Pure analytical standards were used for quantification. The box-model produced
585 isoprene and monoterpenes were converted to carbon content using the respective molecular
586 mass ratios.

587

588 Net Ecosystem Production

589 Net ecosystem production (NEP) was estimated based on three different methods that
590 estimated NEP in relatively independent ways (Figure 3), similar to Ref 71. The first method
591 considered NEP as the difference between total ecosystem influx and total ecosystem outflux
592 (i.e. In - Out), which relied on both process-based modeling and empirical upscaling of

593 respiratory fluxes collected from the field. The second method considered NEP as NPP minus
 594 R_{hetero} (i.e. $NPP - R_{hetero}$), with NPP relying mostly on litter-based production estimates, and
 595 R_{hetero} relying on R_{soil} and R_{root} estimates. The third method considers NEP as the sum of
 596 changes in carbon pools over time in the ecosystem (i.e. ΔC_{pools}), which was mostly
 597 determined by biomass estimates. Equations for each method are provided below:

Method	NEP =
In - Out	$GPP_o + GPP_u + CH_4 - R_{ol} - R_{stem} - R_{soil} - R_{ua} - R_{ins} - DOC - VC - R_{grow}$
$NPP - R_{hetero}$	$NPP_{ol} + NPP_{stem} + NPP_{froot} + NPP_{iroot} + NPP_{croot} + NPP_{other} + NPP_{ua} + NPP_{ins} - R_{hetero}$
ΔC_{pools}	$\Delta C_{soil} + \Delta C_{ol} + \Delta C_{stem} + \Delta C_{croot} + \Delta C_{froot} + \Delta C_{iroot} + \Delta C_{ua} + \Delta C_{lit} + \Delta C_{ins} + \Delta C_{micr} + \Delta C_{myco}$

598

599 **Carbon budget evaluation**

600 We evaluated the mass balance of our estimated ecosystem carbon budget in two ways.
 601 Firstly, we compared model simulated GPP with the aggregated sum of NPP and R_a
 602 (Extended Data Figure 3a, b). GPP was simulated by a stand-level ecophysiological model,
 603 driven by hourly meteorological data and parameterized with site-specific ecological data²⁰.
 604 This GPP should equal to the aggregation of NPP ($NPP_{ol} + NPP_{stem} + NPP_{froot} + NPP_{iroot} +$
 605 $NPP_{croot} + NPP_{other} + NPP_{ua} + NPP_{ins}$) and R_a fluxes ($R_{ol} + R_{stem} + R_{root} + R_{ua} + R_{grow}$), which
 606 were mostly extrapolated based on field data. Secondly, R_{soil} estimated based on soil collar
 607 flux measurements²⁴ was evaluated against the sum of litterfall and R_{root} (Extended Data
 608 Figure 3c, d), assuming minimal changes in soil carbon stock (as change over this short
 609 period of time is beyond the detection limit in a complex and slow-growing mature forest
 610 ecosystem like EucFACE). Here, litterfall was the sum of $NPP_{ol} + NPP_{froot} + NPP_{iroot} +$

611 NPP_{other} + NPP_{ua} + Frass, and R_{root} was extrapolated based on root biomass and temperature
612 functions.

613

614 **Statistical analyses**

615 We performed linear mixed-model analysis using the “lmer” function within the “lme4”
616 package⁷² in software R⁷³ to determine the CO₂ treatment effect on all reported variables. All
617 fluxes were reported at an annual rate (g C m⁻² yr⁻¹). In our model, date and CO₂ treatment
618 were considered as fixed factors, plot as a random factor, and plot-specific pre-treatment LAI
619 (i.e. 4-month average LAI before full CO₂ treatment was switched on) as a covariate to
620 account for pre-treatment differences among treatment plots. Normalizing all response
621 variables with a covariate that integrates light, water and nutrient constraints helps to isolate
622 the CO₂ effect²³, as has been done previously at the site²⁴ and elsewhere^{8,23}. Confidence
623 intervals for the CO₂ effect size of individual variables were reported using the function
624 “confint”, which applies quantile functions for the t-distribution after model fitting.
625 Confidence intervals for the predicted flux and pool were reported as the standard deviation
626 of the plot-specific totals (n = 3). Similarly, confidence intervals for the aggregated fluxes
627 (e.g. NPP) were reported by summing individual component fluxes that constitutes the
628 aggregated flux for each plot and computing the standard deviations across plots (n = 3).
629 Finally, confidence intervals for the CO₂ effect size (SD_{agg}) of some aggregated fluxes (e.g.
630 NPP) were calculated by pooling the standard deviations of the aggregated fluxes for ambient
631 (SD_{amb}) and elevated CO₂ treatment (SD_{ele}), following:

$$SD_{agg} = \sqrt{\frac{SD_{amb}^2 + SD_{ele}^2}{2}}$$

632

633 **Uncertainty analysis**

634 We applied a Markov Chain Monte Carlo (MCMC) data assimilation algorithm to a
635 simplified carbon cycle framework to make inference of the uncertainties around the fate of
636 carbon in our carbon budget. We simplified our carbon budget into eight pools (Extended
637 Data Figure 7), namely, leaf (C'_{leaf} , which includes overstorey and understorey), wood
638 (C'_{wood} , which includes stem and coarse root), root (C'_{root} , which includes fine root and
639 intermediate root), aboveground litter (C'_{aglit}), belowground litter (C'_{bglit}), mycorrhizae
640 (C'_{myco}), microbe (C'_{micr}), and soil (C'_{soil}). Here, C'_{aglit} and C'_{bglit} were assumed unknowns
641 and inferred from the analysis. Net primary production (NPP) was calculated as the
642 difference of gross primary production (GPP) and autotrophic respiration (R_a). NPP was then
643 allocated into the four plant carbon pools (C'_{leaf} , C'_{wood} , C'_{root} , and C'_{myco}), with the
644 respective fitted allocation coefficients (a_{leaf} , a_{wood} , a_{root} , and a_{myco}) being inferred. It has been
645 shown that plant carbon allocation to mycorrhizal fungi may be an important flux in forest
646 carbon budget calculation⁷⁴. Turnover rates of C'_{leaf} , C'_{root} , C'_{myco} , C'_{aglit} , C'_{bglit} , C'_{micr} and
647 C'_{soil} were represented by the corresponding turnover coefficients (τ_{leaf} , τ_{wood} , τ_{root} , τ_{myco} , τ_{aglit} ,
648 τ_{bglit} , τ_{micr} , τ_{soil}), all of which were assumed unknowns except τ_{wood} (estimated based on litter
649 basket data of twigs, barks and seeds) and τ_{aglit} (estimated from the leaf litter decomposition
650 data). For carbon leaving from C'_{aglit} , C'_{bglit} and C'_{micr} , we inferred the corresponding
651 fractional coefficient that determines the fraction of carbon entering into the next pool (f'_{aglit} ,
652 f'_{bglit} , and f'_{micr}), and assumed the remainder to be respired as part of R_{hetero} . The turnover of
653 soil carbon (i.e. τ_{soil}) also contributed to R_{hetero} . In total, we fitted 2 pools, 4 allocation
654 coefficients, 6 turnover rates, and 3 fractional coefficients using the MCMC algorithm.

655

656 We used plot-level estimates of GPP, R_a , R_{hetero} , carbon pools and changes in pools to
657 constrain the MCMC fitting. We assumed uniform parameter distributions and a burn-in

658 coefficient of 10%. Chain lengths were set at 200,000 for the ambient CO₂ plots and 500,000
659 for the elevated plots. The longer chain length for the elevated plots was due to the smaller
660 proposal step size for these plots to meet an acceptance rate of around 20%. We reported the
661 means and standard deviation of the estimated parameters at the treatment level in Extended
662 Data Figure 7.

663

664 **Data statement**

665 Data will be available via Figshare (DOI: 10.6084/m9.figshare.11634315) with the
666 publication of the manuscript. Code to process the data is available via GitHub
667 (https://github.com/mingkaijiang/EucFACE_Carbon_Budget/releases/tag/V20200120).

668 **References for main text**

669 1. Le Quéré, C.L. *et al.* Global carbon budget 2018. *Earth Syst. Sci. Data* **10**, 2141-2194
670 (2018).

671 2. Schimel, D., Stephens, B.B., and Fisher, J.B. Effect of increasing CO₂ on the
672 terrestrial carbon cycle. *Proc. Natl. Acad. Sci. USA* **112**, 436-441 (2015).

673 3. Walker, A.P. *et al.* Decadal biomass increment in early secondary successional woody
674 ecosystems is increased by CO₂ enrichment. *Nat. Commun.* **10**, 454,
675 <https://doi.org/10.1038/s41467-019-108348-1> (2019).

676 4. Norby, R.J. and Zak, D.R. Ecological lessons from Free-Air CO₂ Enrichment (FACE)
677 experiments. *Annu. Rev. Ecol. Evol. Syst.* **42**, 181-203 (2011).

678 5. Leuzinger, S. and Hättenschwiler, S. Beyond global change: lessons from 25 years of
679 CO₂ research. *Oecologia* **171**, 639-651 (2013).

680 6. Arora, V.K. *et al.* Carbon-concentration and carbon-climate feedbacks in CMIP5
681 Earth system models. *J. Clim.* **26**, 5289-5214 (2013).

682 7. Ellsworth, D.S. *et al.* Elevated CO₂ does not increase eucalypt forest productivity on a
683 low-phosphorus soil. *Nat. Clim. Change* **7**, 279-282 (2017).

684 8. Körner, C. *et al.* Carbon flux and growth in mature deciduous forest trees exposed to
685 elevated CO₂. *Science* **309**, 1360-1362 (2005).

686 9. Ryan, M.G. Three decades of research at Flakaliden advancing whole-tree physiology,
687 forest ecosystem and global change research. *Tree Physiol.* **33**, 1123-1131 (2013).

688 10. Klein, T. *et al.* Growth and carbon relations of mature *Picea abies* trees under 5 years
689 of free-air CO₂ enrichment. *J. Ecol.* **104**, 1720-1733 (2016).

690 11. Norby, R.J. *et al.* Model-data synthesis for the next generation of forest free-air CO₂
691 enrichment (FACE) experiments. *New Phytol.* **209**, 17-28 (2016).

692 12. Pugh, T.A.M. *et al.* Role of forest regrowth in global carbon sink dynamics. *Proc.*
693 *Natl. Acad. Sci. USA* **116**, 4382-4387 (2019).

694 13. Grassi, G. *et al.* The key role of forests in meeting climate targets requires science for
695 credible mitigation. *Nat. Clim. Change* **7**, 220-226 (2017).

696 14. Peñuelas, J. *et al.* Shifting from a fertilization-dominated to a warming-dominated
697 period. *Nat. Ecol. Evol.* **1**, 1438-1445 (2017).

698 15. Luo, Y. *et al.* Progressive nitrogen limitation of ecosystem response to rising
699 atmospheric carbon dioxide. *BioScience* **54**, 731-739.

700 16. DeLucia, E.H. *et al.* Net primary production of a forest ecosystem with experimental
701 CO₂ enrichment. *Science* **285**, 1177-1179 (1999).

702 17. Crous, K., Ósvaldsson, A., and Ellsworth, D.S. Is phosphorus limiting in a mature
703 *Eucalyptus* woodland? Phosphorus fertilization stimulates stem growth. *Plant Soil*
704 **391**, 293-305 (2015).

705 18. Medlyn, B.E. *et al.* Using models to guide field experiments: a priori predictions for
706 the CO₂ response of a nutrient- and water-limited native Eucalypt woodland. *Global*
707 *Change Biol.* **22**, 2834-2851 (2016).

708 19. Medlyn, B.E. *et al.* Using ecosystem experiments to improve vegetation models. *Nat.*
709 *Clim. Change* **5**, 528-534 (2015).

710 20. Friedlingstein, P. *et al.* Uncertainties in CMIP5 climate projections due to carbon
711 cycle feedbacks. *J. Clim.* **27**, 511-526 (2014).

712 21. Yang, J. *et al.* Low sensitivity of gross primary production to elevated CO₂ in a
713 mature Eucalypt woodland. *Biogeosciences*. DOI: <https://doi.org/10.5194/bg-2019-272> (2020).

715 22. De Lucia, E.H., Drake, J.E., Thomas, R.B., and Gonzalez-Meler, M. Forest carbon
716 use efficiency: is respiration a constant fraction of gross primary production? *Global*
717 *Change Biol.* **13**, 1157-1167 (2007).

718 23. Norby, R.J. Forest canopy productivity index. *Nature* **381**, 564 (1996).

719 24. Duursma, R.A. *et al.* Canopy leaf area of a mature evergreen *Eucalyptus* woodland
720 does not respond to elevated atmospheric CO₂ but tracks water availability. *Global*
721 *Change Biol.* **22**, 1666-1676 (2016).

722 25. Drake, J.E. *et al.* Short-term carbon cycling responses of a mature eucalypt woodland
723 to gradual stepwise enrichment of atmospheric CO₂ concentration. *Global Change*
724 *Biol.* **22**, 380-390 (2016).

725 26. Drake, J.E. *et al.* Three years of soil respiration in a mature eucalypt woodland
726 exposed to atmospheric CO₂ enrichment. *Biogeochemistry* **139**, 85-101 (2018).

727 27. Drake, J.E. *et al.* Increases in the flux of carbon belowground stimulate nitrogen
728 uptake and sustain the long-term enhancement of forest productivity under elevated
729 CO₂. *Ecol. Lett.* **14**, 349-357 (2011).

730 28. Hasegawa, S., Macdonald, C.A., and Power, S.A. Elevated carbon dioxide increases
731 soil nitrogen and phosphorus availability in a phosphorus-limited *Eucalyptus*
732 woodland. *Global Change Biol.* **22**, 1628-1643 (2016).

733 29. Ochoa-Hueso, R. *et al.* Rhizosphere-driven increase in nitrogen and phosphorus
734 availability under elevated atmospheric CO₂ in a mature *Eucalyptus* woodland. *Plant*
735 *Soil* **416**, 283-295 (2017).

736 30. Crous, K.Y., Wujeska-Klause, A., Jiang, M., Medlyn, B.E. and Ellsworth, D.S.
737 Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature
738 *Eucalyptus* forest exposed to 5 years of elevated CO₂. *Front. Plant Sci.* **10**:664, doi:
739 10.3389/fpls.2019.00664 (2019).

740 31. Zaehle, S. *et al.* Evaluation of 11 terrestrial carbon-nitrogen cycle models against
741 observations from two temperature Free-Air CO₂ Enrichment studies. *New Phytol.*
742 **202**, 803-822 (2014).

743 32. Fleischer, K. *et al.* Amazon forest response to CO₂ fertilization dependent on plant
744 phosphorus acquisition. *Nat. Geosci.* **12**, 736-741 (2019).

745 33. Todd-Brown, K.E.O. *et al.* Changes in soil organic carbon storage predicted by earth
746 system models during the 21st century. *Biogeosciences*, **11**, 2341-2356 (2014).

747 34. Kuzyakov, Y., Horwath, W.R., Dorodnikov, M. and Blagodatskaya, E. Review and
748 synthesis of the effects of elevated atmospheric CO₂ on soil processes: no changes in
749 pools, but increased fluxes and accelerated cycles. *Soil Biol. Biochem.* **128**, 66-78
750 (2019).

751 35. Luyssaert, S. *et al.* Old-growth forests as global carbon sinks. *Nature* **455**, 213-215
752 (2008).

753 36. Jones, C. *et al.* 21st century compatible CO₂ emissions and airborne fraction
754 simulated by CMIP5 Earth System models under 4 representative concentration
755 pathways. *J. Clim.* **26**, doi:10.1175-JCLI-D-12-00554.1 (2013).

756

757

758 **Reference for Methods**

759 37. Australia Government Department of Agriculture, Fisheries and Forestry. Australia's
760 agriculture, fisheries and forestry at a glance 2012. Canberra, Australia (2012).

761 38. Food and Agricultural Organization of the United Nations. Global Forest Resources
762 Assessment 2000. FAO Forestry Paper 140. Rome, Italy (2001).

763 39. Gimeno, T.E., McVicar, T.R., O'Grady, A.P., Tissue, D.T. and Ellsworth, D.S.
764 Elevated CO₂ did not affect the hydrological balance of a mature native *Eucalyptus*
765 woodland. *Global Change Biol.* **24**, 3010-3024 (2018).

766 40. Hasegawa, S. *et al.* Elevated CO₂ concentrations reduce C₄ cover and decrease
767 diversity of understorey plant community in a *Eucalyptus* woodland. *J. Ecol.* **106**,
768 1483–1494 (2018).

769 41. Pathare, V.S. *et al.* Water availability affects seasonal CO₂-induced photosynthetic
770 enhancement in herbaceous species in a periodically dry woodland. *Global Change
771 Biol.* **23**, 5164–5178 (2017).

772 42. Paul, K.I. *et al.* Development and testing of allometric equations for estimating above-
773 ground biomass of mixed-species environmental plantings. *For. Ecol. Manage.* **310**,
774 483-494 (2013).

775 43. Collins, L. *et al.* Understorey productivity in temperate grassy woodland responds to
776 soil water availability but not to elevated CO₂. *Global Change Biol.* **24**, 2366-2376
777 (2018).

778 44. Snowdon, P. *et al.* National carbon accounting system technical report no. 17.
779 Australian Greenhouse Office, Canberra, Australia (2000).

780 45. Wallander, H. *et al.* Evaluation of methods to estimate production, biomass and
781 turnover of ectomycorrhizal mycelium in forests soils – A review. *Soil Biol. Biochem.*
782 **57**, 1034–1047 (2013).

783 46. Buyer, J.S. and Sasser, M. High throughput phospholipid fatty acid analysis of soils.
784 *Appl. Soil Ecol.* **61**, 127–130 (2012).

785 47. Gherlenda, A.N., Esveld, J.L., Hall, A.A.G., Duursma, R.A. and Riegler, M. Boom
786 and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf
787 area impacted by rainfall and CO₂. *Global Change Biol.* **22**, 3632-3641 (2016).

788 48. Facey, S.L. *et al.* Atmospheric change causes declines in woodland arthropods and
789 impacts specific trophic groups. *Agr. Forest Entomol.* **19**, 101-112 (2017).

790 49. Murray, T.J., Tissue, D.T., Ellsworth, D.S. and Riegler, M. Interactive effects of pre-
791 industrial, current and future CO₂ and temperature on an insect herbivore of
792 *Eucalyptus*. *Oecologia* **171**, 1025-1035 (2013).

793 50. Trakimas, G. *et al.* Ecological Stoichiometry: a link between developmental speed
794 and physiological stress in an omnivorous insect. *Front. Behav. Neurosci.*
795 **13**:42, <https://doi.org/10.3389/fnbeh.2019.00042> (2019).

796 51. Farquhar, G.D. von Caemmerer, S. and Berry, J.A. A biochemical model of
797 photosynthetic CO₂ assimilation in leaves of C3 species. *Planta* **149**, 78–90 (1980).

798 52. Medlyn, B.E. *et al.* Reconciling the optimal and empirical approaches to modelling
799 stomatal conductance. *Global Change Biol.* **17**, 2134–2144 (2011).

800 53. Gimeno, T.E. *et al.* Conserved stomatal behavior under elevated CO₂ and varying
801 water availability in a mature woodland. *Funct. Ecol.* **30**, 700-709 (2016).

802 54. Yang, J. *et al.* Incorporating non-stomatal limitation improves the performance of leaf
803 and canopy models at high vapor pressure deficit. *Tree Physiol.* DOI:
804 <https://doi.org/10.1093/treephys/tpz103> (2019).

805 55. Martins, C.S.C. *et al.* Identifying environmental drivers of greenhouse gas emissions
806 under warming and reduced rainfall in boreal-temperate forests. *Funct. Ecol.* **31**,
807 2356–2368 (2017).

808 56. Zhang, X. and Wang, W. The decomposition of fine and coarse roots: their global
809 patterns and controlling factors. *Sci. Rep.* **5**:09940 (2015).

810 57. Reich, P.B. *et al.* Plant diversity enhances ecosystem responses to elevated CO₂ and
811 nitrogen deposition. *Nature* **410**, 809-810 (2001).

812 58. Gherlenda, A.N., Moore, B.D., Haigh, A.M., Johnson, S.N. and Riegler, M. Insect
813 herbivory in a mature *Eucalyptus* woodland canopy depends on leaf phenology but
814 not CO₂ enrichment. *BMC Ecol.* **16**, 47 (2016).

815 59. Gherlenda, A.N. *et al.* Precipitation, not CO₂ enrichment, drives insect herbivore frass
816 deposition and subsequent nutrient dynamics in a mature *Eucalyptus* woodland. *Plant*
817 *Soil* **399**, 29-39 (2016).

818 60. Drake, J.E. *et al.* The partitioning of gross primary production for young *Eucalyptus*
819 *tereticornis* trees under experimental warming and altered water availability. *New*
820 *Phytol.* **222**, 1298-1312 (2019).

821 61. Salomón, R.L., Steppe, K., Crous, K.Y., Noh, N.J. and Ellsworth, D.S. Elevated CO₂
822 does not affect stem CO₂ efflux nor stem respiration in dry *Eucalyptus* woodland, but
823 it shifts the vertical gradient in xylem CO₂. *Plant Cell Environ.* **42**, 2151-2164 (2019).

824 62. Raumanen, P. *et al.* Fast Automatic Precision Tree Models from Terrestrial Laser
825 Scanner Data. *Remote Sens.* **5**, 491-520 (2013).

826 63. Calders, K. *et al.* Nondestructive estimates of above-ground biomass using terrestrial
827 laser scanning. *Methods Ecol. Evol.* **6**, 198-208 (2015).

828 64. Davidson, E.A., Samanta, S., Caramori, S.S. and Savage, K. The Dual Arrhenius and
829 Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly
830 to seasonal time scales. *Global Change Biol.* **18**, 371-384 (2012).

831 65. Guenther, A.B. *et al.* The Model of Emissions of Gases and Aerosols from Nature
832 version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic
833 emissions. *GeoSci. Model Dev.* **5**, 1471-1492 (2012).

834 66. Emmerson, K.M., Palmer, P.I., Thatcher, M., Haverd, V. and Guenther, A.B.
835 Sensitivity of isoprene emissions to drought over south-eastern Australia: Integrating

836 models and satellite observations of soil moisture, *Atmos. Environ.* **209**, 112-124
837 (2019).

838 67. Kännaste, A., Copolovici, L. and Niinemets, Ü. Gas chromatography mass-
839 spectrometry method for determination of biogenic volatile organic compounds
840 emitted by plants. In: Plant isoprenoids: methods and protocols. Eds. M. Rodríguez-
841 Concepción, Humana Press, New York. pp. 161-169 (2014).

842 68. Tholl, D. *et al.* Practical approaches to plant volatile analysis. *Plant J.* **45**, 540 – 560
843 (2006).

844 69. Li, T., Holst, T., Michelsen, A. and Rinnan, R. Amplification of plant volatile defense
845 against insect herbivory in a warming Arctic tundra. *Nat. Plants* **5**, 568-475 (2019).

846 70. Johnsen, L.G., Skou, P.B., Khakimov, B., and Bro, R. Gas chromatography – mass
847 spectrometry data processing made easy. *J. Chromatogr. A.* **1503**, 57-64 (2017).

848 71. Keith, H. *et al.* Multiple measurements constrain estimates of net carbon exchange by
849 a *Eucalyptus* forest. *Agric. For. Meteorol.* **149**, 535-558 (2009).

850 72. Bates, D., Machler, M., Bolker, B.M., and Walker, S.C. Fitting linear mixed-effects
851 models using lme4. *J. Stat. Softw.* **67**, 1-48 (2015).

852 73. R Core Team. R: A language and environment for statistical computing. R Foundation
853 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/> (2018).

854 74. Ouimette, A.P. *et al.* Accounting for carbon flux to mycorrhizal fungi may resolve
855 discrepancies in forest carbon budgets. *Ecosystems* <https://doi.org/10.1007/s10021-019-00440-3> (2019).

857 75. Harrison, I., Jones, P.D., Osborn, T.J. and Lister, D.H. Updated high-resolution grids
858 of monthly climatic observations – the CRU TS3.10 dataset. *Int. J. Climatol.* **34**, 623-
859 642 (2014).

860 76. Olson, D.M. *et al.* Terrestrial ecoregions of the world: a new map of life on Earth.
861 *BioScience* **51**, 933-938 (2001).

862 77. Jiang, M., Felzer, B.S., Nielsen, U.N. and Medlyn, B.E. Biome-specific climatic space
863 defined by temperature and precipitation predictability. *Global Ecol. Biogeogr.* **26**,
864 1270-1282 (2017).

865 78. Scarascia-Mugnozza, G. *et al.* Response to elevated CO₂ of a short rotation,
866 multispecies Poplar plantation: the POPFACE/EUROFACE experiment. In *Managed*
867 *Ecosystems and CO₂*. Eds. Nösberger, J., *et al.* Berlin, Heidelberg, New York:
868 Springer Verlag. pp 173–195 (2006).

869 79. Linden, S. NPP Boreal Forest: Flakaliden, Sweden, 1986-1996, R1. Data set.
870 Available on-line [<http://daac.ornl.gov>] from Oak Ridge National Laboratory
871 Distributed Active Archive Center, Oak Ridge, Tennessee, USA.
872 DOI:10.3334/ORNLDAAAC/201 (2013).

873 80. Anderson-Teixeira, K.J. *et al.* ForC: a global database of forest carbon stock and
874 fluxes. *Ecology* **99**, 1507-1507 (2018).

875 81. Shangguan, W. Dai, Y., Duan, Q., Liu, B. and Yuan, H. A global soil data set for
876 earth system modelling. *J. Adv. Model Earth Sys.* **6**, 249-263 (2014).

877 82. Yang, X., Post, W.M., Thornton, P.E. and Jain, A. Global gridded soil phosphorus
878 distribution maps at 0.5-degree resolution. Data set. Available on-line
879 [<http://daac.ornl.gov>] from Oak Ridge National Laboratory Distributed Active
880 Archive Center, Oak Ridge, Tennessee, USA.
881 <http://dx.doi.org/10.3334/ORNLDAAAC/1223> (2014).

882

883 **Acknowledgements**

884 EucFACE was built as an initiative of the Australian Government as part of the Nation-
885 building Economic Stimulus Package, and is supported by the Australian Commonwealth in
886 collaboration with Western Sydney University. We acknowledge the technical support by V.
887 Kumar, C. McNamara and S. Wohl, and the team of people who have assisted with data
888 collection. The *Eucalyptus* tree vector in Figure 1 is from Heydon, L. *Eucalyptus spp.*
889 Integration and Application Network, University of Maryland Center for Environmental
890 Science (ian.umces.edu/imagelibrary/). This work was partially supported by the following
891 grants from the Australian Research Council (ARC): DP130102501 (to JRP and ICA),
892 DP170104634 (to BKS and PBR), DP110105102 and DP160102452 (to DSE). MGDK
893 acknowledges funding from the ARC Centre of Excellence for Climate Extremes
894 (CE170100023), the ARC Discovery Grant (DP190101823) and support from the NSW
895 Research Attraction and Acceleration Program. RLS received funding from Research
896 Foundation Flanders and the European Union's Horizon 2020 research and innovation
897 programme under the Marie Skłodowska Curie grant agreement no. 665501. RO-H. is
898 financially supported by a Ramón y Cajal Fellowship from MICIU (RYC-2017-22032).
899 EHJN and BMDS received funding from VILLUM Center for Plant Plasticity (VKR023054),
900 VILLUM Young Investor Program fellowship (VKR013167), and a Danish Independent
901 Research Council Sapere Aude Research Talent Post-Doctoral Stipend (6111-00379B). ÜN
902 and AK have been supported by the European Commission through the European Regional
903 Fund (Center of Excellence EcolChange).

904

905 **Author contributions**

906 MJ, BEM, RAD and JED designed the synthesis, compiled the data, and performed the
907 analyses. MJ, BEM, JED, RAD, ICA, CVMB, MMB, YC, LC-G, LC, KYC, BMDS, SLF,
908 ANG, TEG, SH, SNJ, AK, CAM, KM, BDM, LN, EHJN, UNN, ÜN, NJN, RO-H, VSP, EP,
909 JP, JP, JRP, SAP, PBR, AAR, MR, RR, PR, RLS, BKS, BS, MGT, JKMW, AW-K, JY and
910 DSE collected data and contributed to data analyses. MJ performed data assimilation analysis,
911 with contributions from MGDK and BEM. JY and BEM performed the MAESPA model
912 simulations, with contributions from MGDK and RAD. JED and AAR performed soil
913 respiration gap-filling and modelling. KME performed the MEGAN model simulation. MJ
914 and LC-G conceptualized Figure 1, and LC-G implemented the graphic design. MJ wrote the
915 initial manuscript, with significant input from BEM, JED, BS, PBR, SZ, MGDK, MGT and
916 DSE. All authors edited and approved the manuscript.

917

918 **Competing financial interests**

919 None declared.

920

921 **Materials and Correspondence**

922 Correspondence should be directed to MJ (m.jiang@westernsydney.edu.au) and BEM
923 (b.medlyn@westernsydney.edu.au).

924 **Figure legend**

925

926 **Figure 1. A comprehensive carbon budget under ambient and elevated CO₂ treatment**
927 **in a mature forest ecosystem.** Diamond boxes are gross primary production for overstorey
928 (GPP_o) and understorey (GPP_u), respectively. Squared boxes are average carbon stocks over
929 the experimental period (C_{pools}, g C m⁻²), including overstorey leaf (C_{ol}), stem (C_{stem}), coarse
930 root (C_{croot}), fine root (C_{froot}), intermediate root (C_{iroot}), understorey aboveground (C_{ua}), leaf
931 litter (C_{lit}), soil (C_{soil}), microbe (C_{micr}), aboveground insect (C_{ins}), and mycorrhizae (C_{myco}).
932 Unboxed variables are carbon fluxes (g C m⁻² yr⁻¹), including net primary production of
933 overstorey leaf (NPP_{ol}), stem (NPP_{stem}), coarse root (NPP_{croot}), fine root (NPP_{froot}),
934 intermediate root (NPP_{iroot}), and understorey aboveground (NPP_{ua}), overstorey leaf
935 consumption by insects (NPP_{ins}), respiration fluxes of overstorey leaf (R_{ol}), stem (R_{stem}), root
936 (R_{root}), understorey aboveground (R_{ua}), growth (R_{grow}), insect (R_{ins}), heterotroph (R_{hetero}), and
937 soil (R_{soil}), and volatile carbon emission (VC), frass production (Frass), dissolved organic
938 carbon (DOC), and soil methane net uptake (CH₄). Solid arrow lines are fluxes entering a
939 pool, dotted arrow lines are fluxes leaving a pool. The changes in each carbon pool over time
940 (ΔC_{pools} , g C m⁻² yr⁻¹) are reported in Extended Data Figure 6. Blue italic values are means \pm
941 one standard deviation of the ambient CO₂ treatment (n=3), whereas red values are means \pm
942 one standard deviation of the elevated CO₂ treatment (n=3). All values are normalized by a
943 linear mixed-model with plot-specific pre-treatment leaf area index as a covariate to account
944 for pre-existing differences. A summary of variable definitions and data availability is
945 provided in Extended Data Table 1.

946 **Figure 2. The fate of additional carbon fixed under elevated CO₂ (eCO₂) in a mature**
947 **forest ecosystem.** **a)** Column “GPP” represents the total eCO₂-induced increases in
948 overstorey and understorey gross primary production (GPP_o and GPP_u, respectively), “NPP +
949 R_a” represents the sum of net primary production and autotrophic respiration response, “R +
950 ΔC_{pools}” represents the sum of ecosystem respiration and change in carbon storage response.
951 **b)** The relative contributions of individual NPP fluxes to the aggregated NPP response to
952 eCO₂, including NPP responses of overstorey leaf (NPP_{ol}), twigs, barks and seeds (NPP_{other}),
953 fine root (NPP_{froot}), and understorey aboveground (NPP_{ua}); **c)** The relative contributions of
954 individual respiratory fluxes to the aggregated R response to eCO₂, including respiration
955 responses of stem (R_{stem}), root (R_{root}), understorey aboveground (R_{ua}), growth (R_{grow}), and soil
956 heterotroph (R_{hetero}); and **d)** The relative contributions of individual change in carbon storage
957 to the aggregated ΔC_{pools} response to eCO₂, including changes in pool of stem (ΔC_{stem}),
958 understorey aboveground (ΔC_{ua}), fine root (ΔC_{froot}), leaf litter (ΔC_{lit}), and soil (ΔC_{soil}).
959 Variables with an absolute mean CO₂ effect of < 5 g C m⁻² yr⁻¹ are not reported in the bar
960 chart for better visual clarification. Individual CO₂ responses are reported in Extended Data
961 Figure 5. Each color represents the CO₂ response of a flux variable, the point indicates the net
962 sum of all variables for a column, and the grey error bar represents one standard deviation of
963 the estimated column sum at the plot-level (see Methods). The CO₂ effect is estimated using a
964 linear mixed-model analysis with plot-specific pre-treatment leaf area index as a covariate to
965 account for pre-existing differences (see Methods). The non-normalized response is provided
966 in Extended Data Figure 4, which generally agrees with findings present in this figure, but
967 with larger uncertainty.

968 **Figure 3. Estimates of net ecosystem production (NEP) under ambient and elevated CO₂**
969 **treatment at EucFACE.** Positive values indicate ecosystem net carbon uptake by the
970 ecosystem. “In - Out” calculates NEP based on the difference between total influxes and total
971 outfluxes. “NPP - R_{hetero}” calculates NEP based on the difference between net primary
972 production (NPP) and heterotrophic respiration (R_{hetero}). “ΔC_{pools}” derives NEP based on
973 incremental changes in all ecosystem carbon pools. Colored bars indicate treatment means
974 based on each method (n=3), with blue representing ambient and red representing elevated
975 CO₂ treatment. Individual dots are plot-level NEP, derived based on different methods (see
976 Methods). Values are normalized by a linear mixed-model with plot-specific pre-treatment
977 leaf area index as a covariate to account for pre-existing differences. Horizontal dotted line
978 indicates NEP equals zero. The inset figure includes an inferred production allocation flux to
979 mycorrhizal fungi (NPP_{myco}) based on data assimilation (Methods), which affected NEP
980 estimates based on the NPP - R_{hetero} method only.

981 **Extended Data Table 1. Definition and data availability of variables.** Data availability
 982 includes start and end year of data included in this study. Time points indicate the number of
 983 data collections over the available data period. Within plot sub-replicate indicate the number
 984 of replicates within each treatment plot. The detailed methods for estimating each variable is
 985 provided in the Method section.

Variable		Data coverage			
Name	Symbol	Start year	End year	Time points	Within plot sub-replicate (plot ⁻¹)
Specific Leaf Area	SLA	2013	2016	50	3
Leaf Area Index	LAI	2012	2016	303	1
Soil bulk density	BK	2017	2017	2	3
Diameter at breast height	DBH	2013	2016	4	Individual tree
Overstorey leaf pool	C _{ol}	2012	2016	303	1
Understorey aboveground pool	C _{ua}	2015	2016	16	4
Overstorey stem C pool	C _{stem}	2013	2016	4	Individual tree
Fine root C pool	C _{froot}	2014	2016	7	4
Intermediate root C pool	C _{iroot}	2014	2016	7	4
Coarse root C pool	C _{croot}	2013	2016	4	Individual tree
Forest floor leaf litter C pool	C _{lit}	2013	2016	46	-
Microbial C pool	C _{micr}	2012	2015	15	4
Soil C pool	C _{soil}	2012	2014	11	4

Mycorrhizal C pool	C_{myco}	2015	2015	3	-
Insect C pool (aerial)	C_{ins}	2013	2016	43	8
Insect C pool (understorey)	C_{ins}	2014	2015	5	2
Overstorey gross primary production	GPP_o	2013	2016	Annual	1
Understorey gross primary production	GPP_u	2013	2016	Annual	1
Overstorey leaf respiration	R_{ol}	2013	2016	Annual	1
Understorey leaf respiration	R_{ua}	2013	2016	Annual	1
Stem respiration	R_{stem}	2012	2016	Daily	3
Root respiration	R_{root}	2012	2015	Daily	-
Methane net flux	CH_4	2013	2016	35	7
Volatile C emission flux	VC	2013	2016	Daily	1
Insect herbivore respiration	R_{ins}	2012	2014	22	-
Dissolved organic C loss flux	DOC	2012	2014	12	4
Soil respiration	R_{soil}	2012	2015	Daily	8
Growth respiration	R_{grow}	2012	2016	Annual	1
Overstorey leaf net primary production	NPP_{ol}	2012	2016	49	8
Stem net primary production	NPP_{stem}	2012	2016	4	Individual tree
Fine root net primary production	NPP_{froot}	2014	2016	6	4
Intermediate root net primary production	NPP_{iroot}	2014	2016	6	4

Coarse root net primary production	NPP _{croot}	2012	2016	4	Individual tree
Other net primary production (sum of twigs, bark, seeds)	NPP _{other}	2012	2016	49	8
Twig net primary production	NPP _{twig}	2012	2016	49	8
Bark net primary production	NPP _{bark}	2012	2016	49	8
Seed net primary production	NPP _{seed}	2012	2016	49	8
Understorey aboveground net primary production	NPP _{ua}	2015	2016	3	4
Frass production	Frass	2012	2014	22	8
Heterotrophic respiration	R _{hetero}	2012	2016	Daily	8
Overstorey leaf insect consumption flux	NPP _{ins}	2012	2014	22	-

986

987 **Extended Data Table 2. Carbon (C) fraction used to convert from biomass into C**

988 **content.**

Variable	Symbol	Mean value	Data source
C fraction of overstorey leaf pool	f_{ol}	0.5	EucFACE data
C fraction of understorey aboveground pool	f_{ua}	0.456	EucFACE data
C fraction of stem pool	f_{stem}	0.445 (ambient plots) 0.448 (elevated plots)	EucFACE data
C fraction of coarse root pool	f_{croot}	0.445 (ambient plots) 0.448 (elevated plots)	Assumed the same as f_{stem}
C fraction of fine root pool	f_{froot}	0.40 (ambient plots) 0.42 (elevated plots)	EucFACE data
C fraction of intermediate root pool	f_{iroot}	0.40 (ambient plots) 0.42 (elevated plots)	Assumed the same as f_{froot}
C fraction of overstorey leaflitter pool	f_{lit}	0.5	EucFACE data
C fraction of aboveground insect pool	f_{ins}	0.5	Ref 49
C fraction of frass production	f_{frass}	0.53	EucFACE data
C fraction of microbial pool	f_{micr}	0.534 (ambient plots) 0.493 (elevated plots)	EucFACE data
C fraction of mycorrhizal pool	f_{myco}	0.534 (ambient plots) 0.493 (elevated plots)	Assumed the same as f_{micr}
C fraction of soil pool	f_{soil}	0.016 (ambient plots) 0.017 (elevated plots)	EucFACE data
C fraction of twigs, barks and seeds production	f_{other}	0.5	Assumed

989

990

991 **Extended Data Figure 1. The *Eucalyptus* Free Air Carbon dioxide Enrichment**
992 **experiment facility (EucFACE).** **a)** View of the forest and facility from above (photo credit:
993 David S. Ellsworth), **b)** view of the understorey vegetation and infrastructure inside a plot
994 (photo credit: Mingkai Jiang), and **c)** view from below of the canopy structure and the crane
995 (photo credit: Mingkai Jiang).

996

997 **Extended Data Figure 2. Mean annual temperature (MAT) and mean annual**
998 **precipitation (MAP) for major forest biomes and a selected list of tree-based elevated**
999 **CO₂ experiments.** Gridded temperature and precipitation data were obtained from the
1000 Climate Research Unit (CRU) monthly dataset at 0.5 resolution⁷⁵. Global biome boundaries
1001 and definitions were taken from Ref 76 and were spatially aggregated onto the CRU
1002 resolution, following Ref 77. The major forest biomes are defined as: tropical and subtropical
1003 moist broadleaf forests; tropical and subtropical dry broadleaf forests; tropical and
1004 subtropical coniferous forest; temperate broadleaf and mixed forests; temperate coniferous
1005 forests; boreal forests/taiga; and Mediterranean forests, woodlands, and scrub. The list of
1006 elevated CO₂ experiments includes 7 Free Air CO₂ Enrichment experiments (FACE) and a
1007 Whole-Tree Chamber experiment (WTC), namely: EucFACE, DukeFACE, ORNLFACE,
1008 AspenFACE, PopFACE, WebFACE, BiForFACE, and FlakalidenWTC. The site-specific
1009 climate, tree age and net primary production (NPP) under ambient CO₂ treatment were
1010 collected from Ref 3, 9, 10, 11, 78 and 79. The top inset figure compares global forest NPP
1011 against standing age using data collected from Ref 80. We included data with forest age <
1012 500 years, and the NPP reported in Ref 80 included both overstorey and understorey. The
1013 bottom inset figure compares soil total nitrogen and labile phosphorus across the eCO₂
1014 experiments. Soil total nitrogen was extracted from Ref 81 using spatial coordinates of each
1015 experiment, while soil labile phosphorus was spatially extracted from Ref 82. The two dotted
1016 lines indicates N:P ratios of 20:1 and 100:1, respectively.

1017 **Extended Data Figure 3. Estimates of (a and b) gross primary production (GPP) and (c**
1018 **and d) soil respiration (R_{soil}) based on different methods for both (a and c) ambient and**
1019 **(b and d) elevated CO_2 treatment at EucFACE.** For estimates of GPP, we compared the
1020 model simulated total GPP of overstorey and understorey (GPP_o and GPP_u , respectively),
1021 with the sum of data-driven estimates of net primary production (NPP) and autotrophic
1022 respiration (R_a), which include NPP of overstorey leaf (NPP_{ol}), stem (NPP_{stem}), fine root
1023 (NPP_{froot}), intermediate root (NPP_{iroot}), coarse root (NPP_{croot}), twigs, barks and seeds
1024 (NPP_{other}), understorey aboveground (NPP_{ua}), leaf consumption by insects (NPP_{ins}), and
1025 respiratory fluxes of overstorey leaf (R_{ol}), stem (R_{stem}), root (R_{root}), understorey aboveground
1026 (R_{ua}), growth (R_{grow}), and volatile carbon emission (VC). For estimates of R_{soil} , we compared
1027 direct estimates of R_{soil} scaled up from soil chamber measurements, with the sum of litterfall
1028 and independent estimates of root respiration (Litter + R_{root}), assuming no net change in soil
1029 carbon stock over time. Here litterfall was inferred based on NPP of overstorey leaf (NPP_{ol}),
1030 fine root (NPP_{froot}), intermediate root (NPP_{iroot}), twigs, barks and seeds (NPP_{other}), understorey
1031 aboveground (NPP_{ua}), and frass production (Frass). These evaluations provide independent
1032 mass balance checks of the estimated ecosystem carbon budget. Each color represents a flux
1033 variable. Dotted point and vertical line represent treatment mean and standard deviation
1034 based on plot-level estimates of the aggregated flux (n=3). Values were normalized by a
1035 linear mixed-model with pre-treatment leaf area index as a covariate to account for pre-
1036 existing differences.

1037 **Extended Data Figure 4. The fate of additional carbon fixed under elevated CO₂ (eCO₂)**
1038 **in a mature forest ecosystem (non-normalized analysis case). a)** Column “GPP”
1039 represents the total eCO₂ induced increase in overstorey and understorey gross primary
1040 production (GPP_o and GPP_u, respectively), column “NPP + R_a” represents the sum of net
1041 primary production and autotrophic respiration eCO₂ response, and column “R + ΔC_{pools}”
1042 represents the sum of ecosystem respiration and carbon storage eCO₂ response. **b)** The
1043 relative contributions of individual NPP fluxes to the aggregated NPP response to eCO₂,
1044 including overstorey leaf (NPP_{ol}), stem (NPP_{stem}), fine root (NPP_{froot}) and understorey
1045 aboveground (NPP_{ua}). **c)** The relative contributions of individual respiratory fluxes to the
1046 aggregated R response to eCO₂, including overstorey leaf (R_{ol}), stem (R_{stem}), root (R_{root}),
1047 understorey aboveground (R_{ua}), and heterotroph (R_{hetero}). **d)** The relative contributions of
1048 individual change in carbon storage to the aggregated ΔC_{pools} response to eCO₂, including
1049 stem (ΔC_{stem}), fine root (ΔC_{froot}), leaflitter (ΔC_{lit}), understorey aboveground (ΔC_{ua}), and soil
1050 (ΔC_{soil}). Variables with an average CO₂ effect of < 5 g C m⁻² yr⁻¹ were excluded from the
1051 figure for better visual clarification. Each color represents a flux variable, point indicates the
1052 net sum of all variables for a column, and the grey confidence interval represents plot-level
1053 standard deviation (n=3) of the estimated column sum.

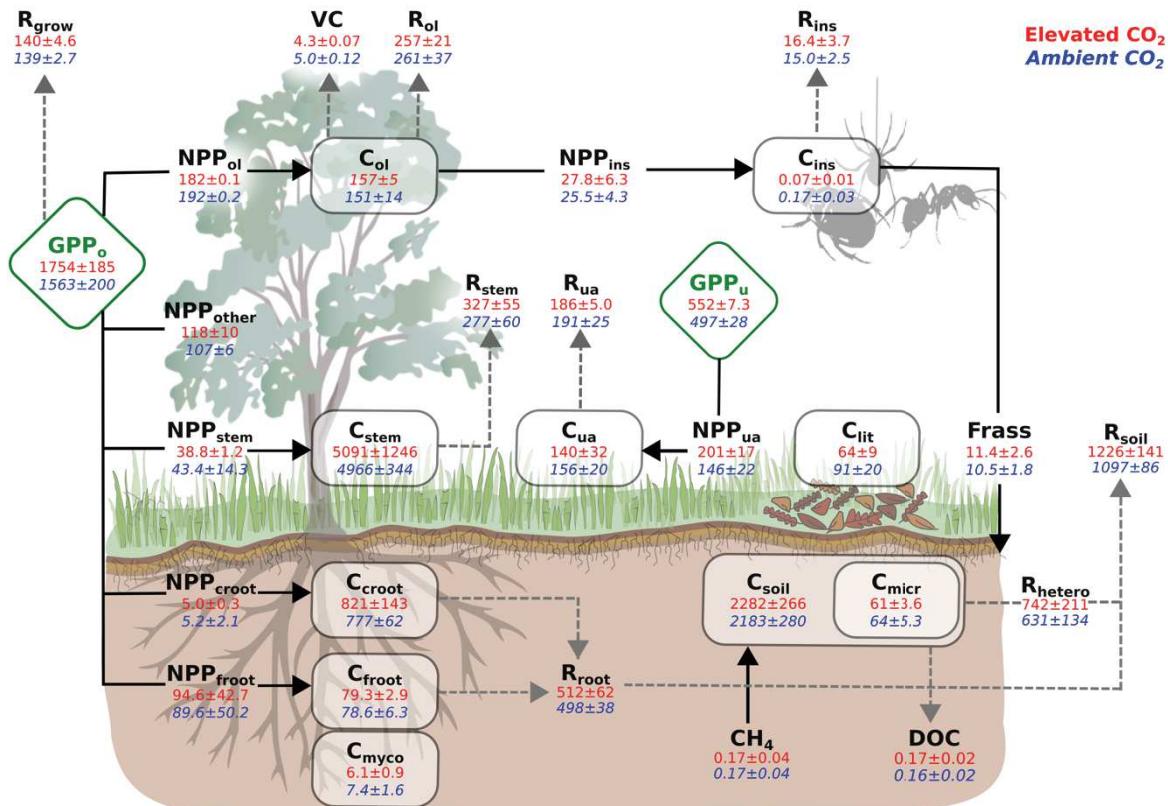
1054

1055 **Extended Data Figure 5. CO₂ treatment effect (g C m⁻² yr⁻¹) for all ecosystem fluxes at**
1056 **EucFACE. a)** The CO₂ response of gross ecosystem carbon uptake, including gross primary
1057 production of overstorey (GPP_o) and understorey (GPP_u), and soil methane uptake (CH₄). **b)**
1058 The eCO₂ response of annual incremental change in carbon pool (ΔC_{pools}), including
1059 overstorey leaf (ΔC_{ol}), stem (ΔC_{stem}), coarse root (ΔC_{croot}), fine root (ΔC_{froot}), intermediate
1060 root (ΔC_{iroot}), understorey aboveground (ΔC_{ua}), leaf litter (ΔC_{lit}), soil (ΔC_{soil}), microbe
1061 (ΔC_{micr}), aboveground insect (ΔC_{ins}), and mycorrhizae (ΔC_{myco}). **c)** The eCO₂ response of net
1062 primary production (NPP), including overstorey leaf (NPP_{ol}), stem (NPP_{stem}), coarse root
1063 (NPP_{croot}), fine root (NPP_{froot}), intermediate root (NPP_{iroot}), understorey aboveground (NPP_{ua}),
1064 twigs, barks and seeds (NPP_{other}), and leaf insect consumption (NPP_{ins}). **d)** The eCO₂
1065 response of ecosystem respiration (R) and other out-going flux, including respiration fluxes
1066 of overstorey leaf (R_{ol}), stem (R_{stem}), root (R_{root}), understorey aboveground (R_{ua}), growth
1067 (R_{grow}), insect (R_{ins}), heterotroph (R_{hetero}), and soil (R_{soil}), and volatile carbon emission (VC)
1068 and dissolved organic carbon leaching (DOC). Dots and grey bars represent means and
1069 standard deviations of the CO₂ treatment difference, predicted by a linear mixed-model with
1070 plot-specific pre-treatment leaf area index as a covariate. Red dots indicate negative means
1071 and blue dots indicate positive means. Dashed lines indicate change of scale along the x-axis.

1072

1073 **Extended Data Figure 6. Estimates of incremental change in carbon pool averaged over**
1074 **the experimental period under ambient (aCO₂) and elevated CO₂ (eCO₂) treatment**
1075 **effect at EucFACE (ΔC_{pools}, g C m⁻² yr⁻¹).** The ΔC_{pools} variables are overstorey leaf (ΔC_{ol}),
1076 stem (ΔC_{stem}), coarse root (ΔC_{croot}), fine root (ΔC_{froot}), intermediate root (ΔC_{iroot}), understorey
1077 aboveground (ΔC_{ua}), leaf litter (ΔC_{lit}), soil (ΔC_{soil}), microbe (ΔC_{micr}), aboveground insect
1078 (ΔC_{ins}), and mycorrhizae (ΔC_{myco}). Colored bars and black lines represent means and standard
1079 deviations for each treatment, with blue represents aCO₂ and red represents eCO₂ treatment.
1080 Dashed lines indicate change of scale along the x-axis.

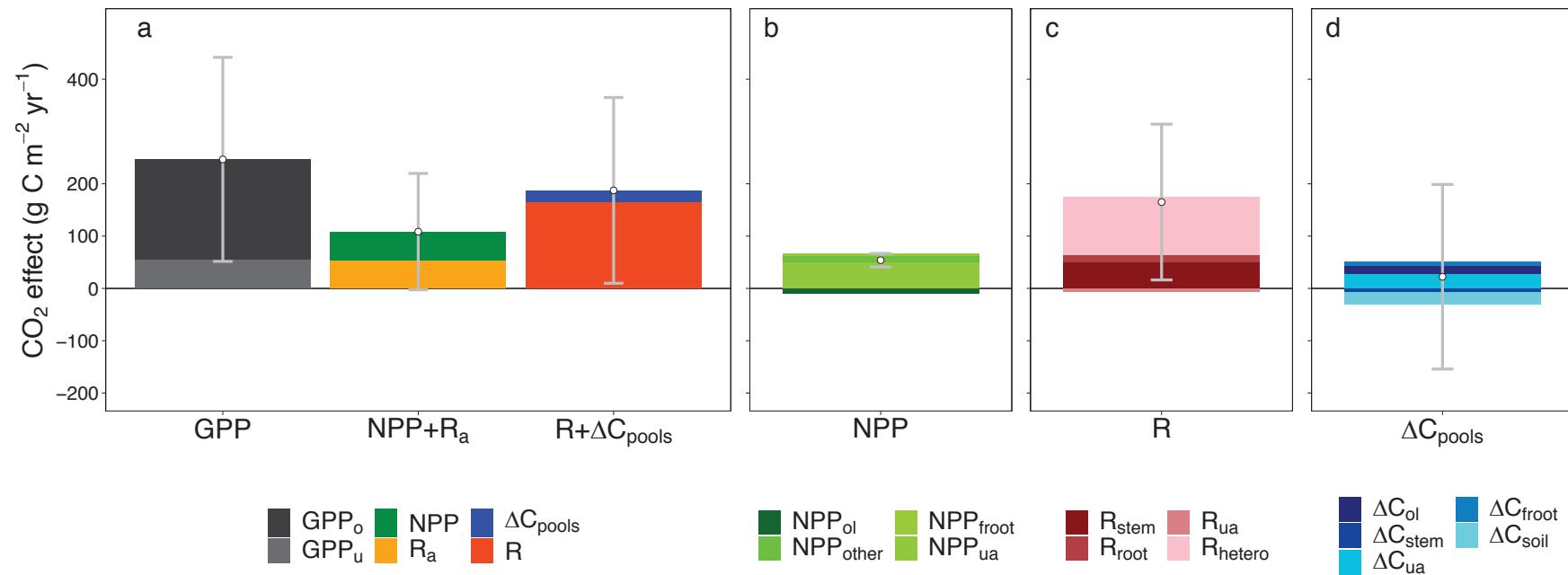
1081 **Extended Data Figure 7. Fitted carbon cycle parameters to trace the fate of the**
1082 **additional carbon under elevated CO₂ at EucFACE.** Parameters were estimated by
1083 Markov Chain Monte Carlo (MCMC) fitting algorithm, assuming a simplified carbon cycle
1084 framework based on data collected from EucFACE. Details of the MCMC approach can be
1085 found in the Methods. Plot-level gross primary production (GPP), autotrophic respiration (R_a),
1086 heterotrophic respiration (R_{hetero}), carbon pools of leaf (C'leaf), wood (C'wood), root (C'root),
1087 mycorrhizae (C'myco), microbe (C'micr), and soil (C'soil), and the corresponding change in
1088 pools were used to constrain the model fitting. Net primary production (NPP) was derived as
1089 the difference of GPP and R_a. Carbon use efficiency (CUE') was calculated as NPP/GPP; it
1090 differs from the value given in the main text owing to the contribution of NPP allocated to
1091 mycorrhizae (NPP_{myco}). We fitted two carbon pools (C'aglit and C'bglit), four allocation
1092 coefficients (a_{leaf}, a_{wood}, a_{root}, and a_{myco}), six turnover rates (τ_{leaf}, τ_{root}, τ_{myco}, τ_{bglit}, τ_{micr}, and
1093 τ_{soil}), and three fractional coefficients (f_{aglit}, f_{bglit}, and f_{micr}) using MCMC algorithm. The
1094 fractional coefficients indicate the fraction of carbon leaving one pool that enters the
1095 subsequent pool, with the remainder respiration as R_{hetero}.


1096

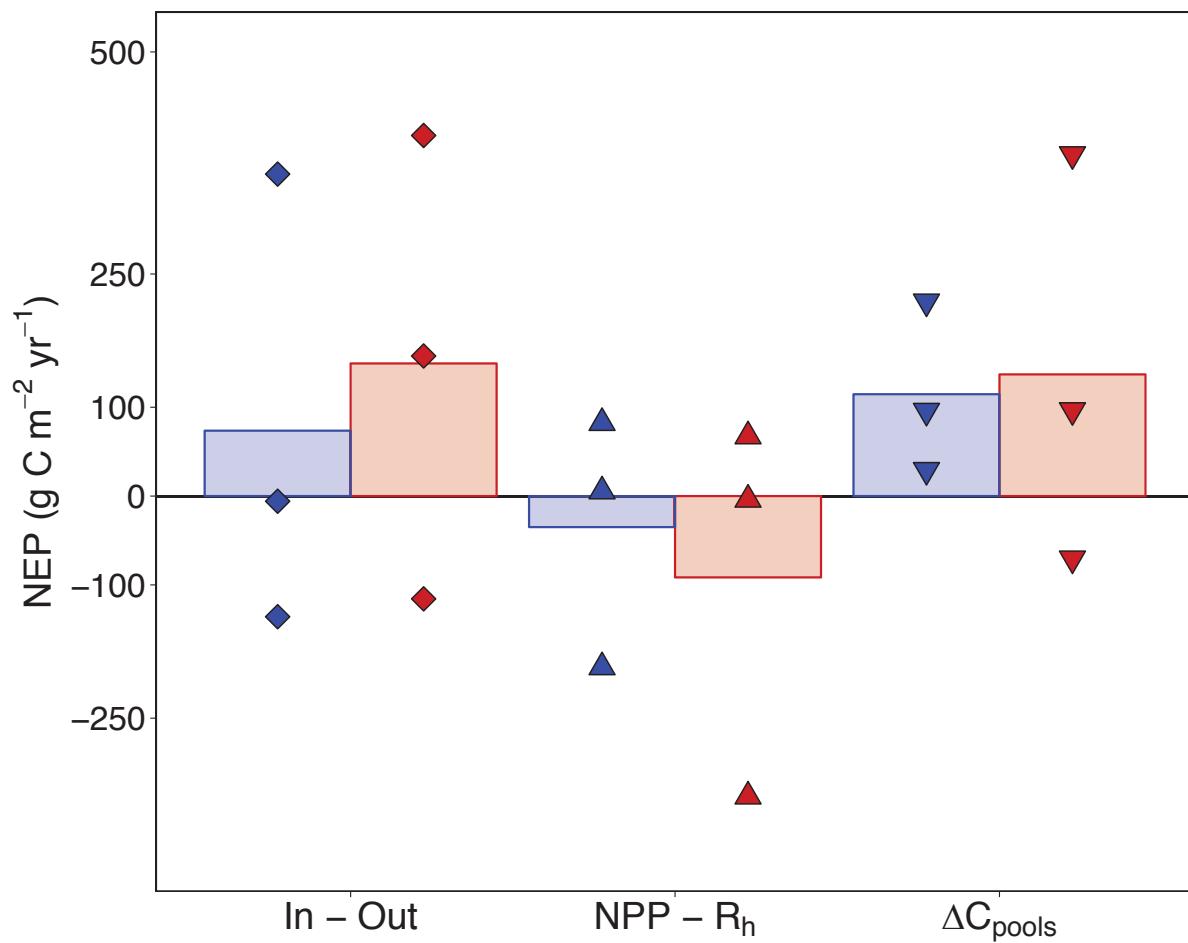
1097 **Extended Data Figure 8. Data-model intercomparison of some key carbon cycle**
1098 **parameters, under ambient (aCO₂) and elevated CO₂ (eCO₂).** Parameters include: **a)**
1099 allocation coefficients to leaf, wood, root and other, **b)** turnover rates of leaf, root,
1100 aboveground litter (Aglit), belowground litter (Bglit), and **c)** turnover rate of soil. Models
1101 include: Community Atmosphere Biosphere Land Exchange (CABL), Community Land
1102 Model 4 (CLM4), Community Land Model with a phosphorus component (CLMP), Generic
1103 Decomposition And Yield (GDAY), Lund-Potsdam-Jena General Ecosystem Simulator
1104 (LPJX), Orchidee-C-N (OCNX), and Sheffield Dynamic Global Vegetation Model (SDVM).
1105 The model output was generated as part of the model ensemble predictions made in advance
1106 of the experiment reported in Ref 17 for EucFACE. Data-based uncertainties were estimated
1107 using the Markov Chain Monte Carlo data assimilation algorithm, with error bars indicating
1108 one standard deviation. Allocation to other in the data refers to the allocation to mycorrhizal
1109 production, whereas it refers to the allocation to reproductive carbon pool in some models.

1110

761 **Figures**


762

763


764 **Figure 1. A comprehensive carbon budget under ambient and elevated CO_2 treatment in**
 765 **a mature forest ecosystem.** Diamond boxes are gross primary production for overstorey
 766 (GPP_o) and understorey (GPP_u), respectively. Squared boxes are carbon stocks (gCm^{-2}),
 767 including overstorey leaf (C_{ol}), stem (C_{stem}), coarse root (C_{croot}), fineroot (C_{froot}), understorey
 768 aboveground (C_{ua}), leaf litter (C_{lit}), soil (C_{soil}), microbe (C_{micr}), aboveground insect (C_{ins}), and
 769 mycorrhizae (C_{myco}). Unboxed variables are carbon fluxes ($\text{gCm}^{-2}\text{yr}^{-1}$), including net primary
 770 production of overstorey leaf (NPP_{ol}), stem (NPP_{stem}), coarse root (NPP_{croot}), fineroot (NPP_{froot}),
 771 and understorey aboveground (NPP_{ua}), overstorey leaf consumption by insects (NPP_{ins}),
 772 respiration fluxes of overstorey leaf (R_{ol}), stem (R_{stem}), root (R_{root}), understorey aboveground
 773 (R_{ua}), growth (R_{grow}), insect (R_{ins}), heterotroph (R_{hetero}), and soil (R_{soil}), and volatile carbon
 774 emission (VC), frass production (Frass), dissolved organic carbon (DOC), and soil methane net

775 uptake (CH₄). Solid arrow lines are fluxes entering a pool, dotted arrow lines are fluxes leaving
776 a pool. Blue italic values are means \pm one standard deviation of the ambient CO₂ treatment
777 (n=3), whereas red values are means \pm one standard deviation of the elevated CO₂ treatment
778 (n=3). All values are normalized by a linear mixed-model with plot-specific pre-treatment leaf
779 area index as a covariate to account for pre-existing differences. Summary of variable
780 definitions and data availability is provided in Extended Data Table 1.

783 **Figure 2. The fate of additional carbon fixed under elevated CO_2 (e CO_2) in a mature forest ecosystem. a)** Column “GPP” represents the total
 784 e CO_2 -induced increases in overstorey and understorey gross primary production (GPP_o and GPP_u, respectively), “NPP + R_a ” represents the sum
 785 of net primary production and autotrophic respiration response, “R + ΔC_{pools} ” represents the sum of ecosystem respiration and carbon storage
 786 response. **b)** The relative contributions of individual NPP fluxes to the aggregated NPP response to e CO_2 , including NPP responses of overstorey
 787 leaf (NPP_{ol}), twigs, barks and seeds (NPP_{other}), fineroot (NPP_{froot}), and understorey aboveground (NPP_{ua}); **c)** The relative contributions of individual
 788 respiratory fluxes to the aggregated R response to e CO_2 , including respiration responses of stem (R_{stem}), root (R_{root}), understorey aboveground

789 (R_{ua}), and soil heterotroph (R_{hetero}); and **d**) The relative contributions of individual change in carbon storage to the aggregated ΔC_{pools} response to
790 eCO₂, including changes in pool of overstorey leaf (ΔC_{ol}), stem (ΔC_{stem}), understorey aboveground (ΔC_{ua}), fineroot (ΔC_{froot}), and soil (ΔC_{soil}).
791 Variables with an absolute mean CO₂ effect of < 5 gCm⁻²yr⁻¹ are excluded from the figure for better visual clarification. Individual CO₂ responses
792 are reported in Extended Data Figure 4. Each color represents the CO₂ response of a flux variable, point indicates the net sum of all variables for
793 a column, and the grey error bar represents one standard deviation of the estimated column sum at the plot-level (see Methods). The CO₂ effect is
794 estimated using a linear mixed-model analysis with plot-specific pre-treatment leaf area index as a covariate to account for pre-existing differences
795 (see Methods). The un-normalized response is provided in Extended Data Figure 3, which generally agrees with findings present in this figure, but
796 with less statistical precision.

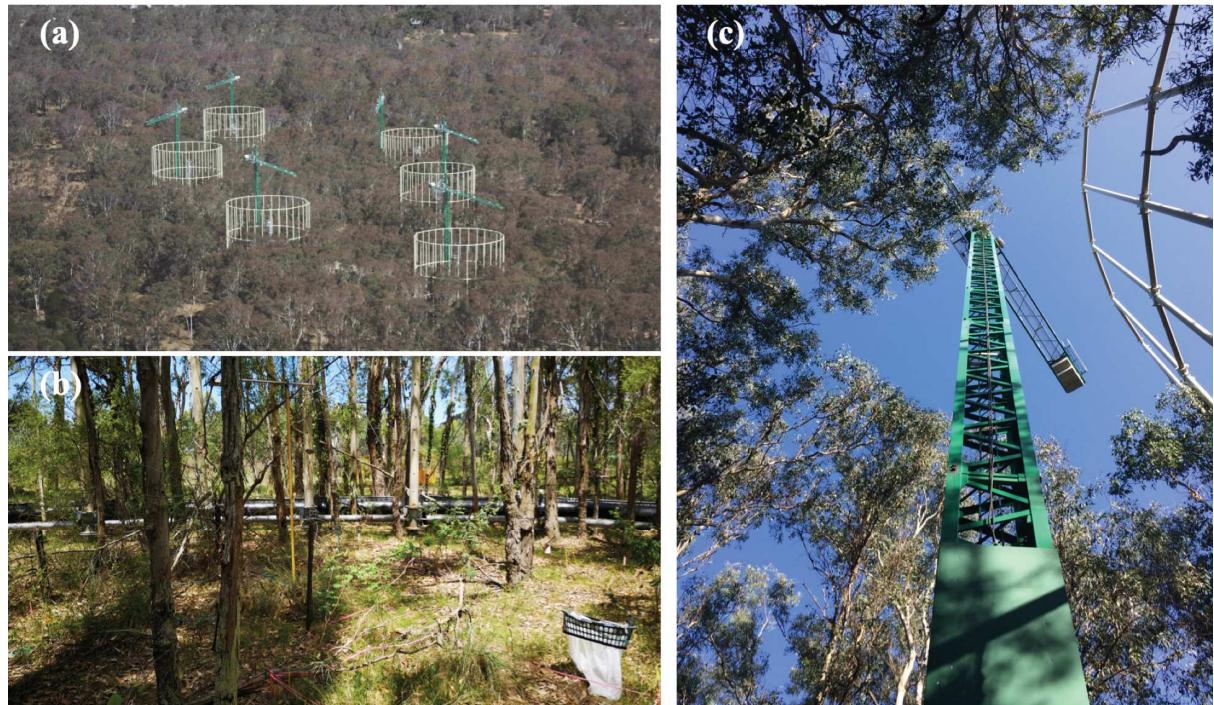
799 **Figure 3. Estimates of net ecosystem production (NEP) under ambient and elevated CO₂**
800 **treatment at EucFACE.** Positive values indicate ecosystem net carbon uptake by the
801 ecosystem. “In - Out” calculates NEP based on the difference between total influxes and total
802 outfluxes. “NPP - R_{hetero}” calculates NEP based on the difference between net primary
803 production (NPP) and heterotrophic respiration (R_{hetero}). “ΔC_{pools}” derives NEP based on
804 incremental changes in all ecosystem carbon pools. Colored bars indicate treatment means
805 based on each method (n=3), with blue representing ambient and red representing elevated CO₂

806 treatment. Individual dots are plot-level NEP, derived based on different methods (see
807 Methods). Values are normalized by a linear mixed-model with plot-specific pre-treatment leaf
808 area index as a covariate to account for pre-existing differences. Horizontal dotted line indicates
809 NEP equals zero.

810 **Extended Data Table 1. Definition and data availability of variables.** Data availability
 811 includes start and end year of data included in this study. Time points indicate the number of
 812 data collections over the available data period. Within plot sub-replicate indicate the number
 813 of replicates within each treatment plot. The detailed methods for estimating each variable is
 814 provided in the Method section.

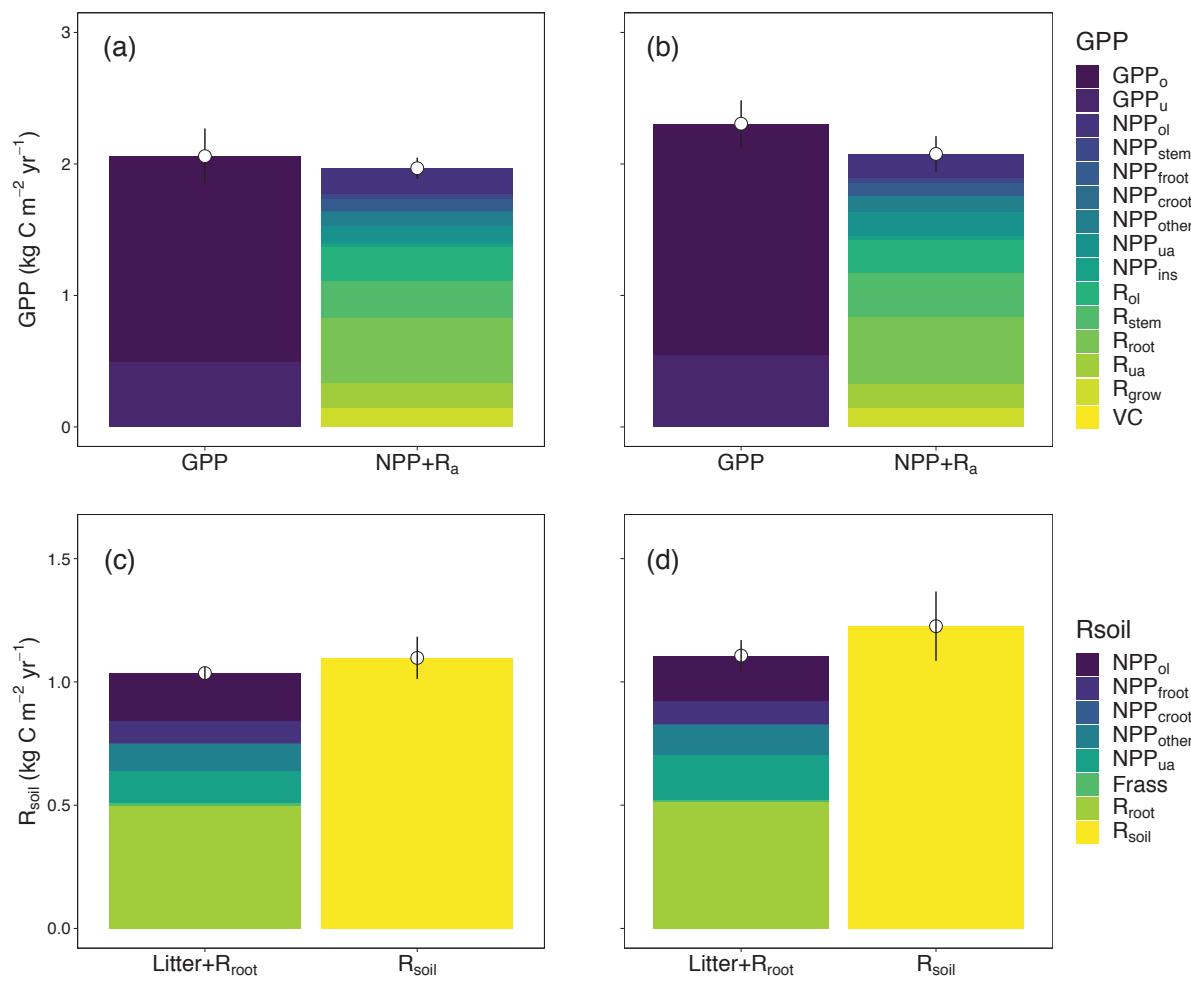
Variable		Data coverage			
Name	Symbol	Start year	End year	Time points	Within plot sub-replicate (plot ⁻¹)
Specific Leaf Area	SLA	2013	2016	50	3
Leaf Area Index	LAI	2012	2016	303	1
Soil bulk density	BK	2017	2017	2	3
Diameter at breast height	DBH	2013	2016	4	Individual tree
Overstorey leaf pool	C _{ol}	2012	2016	303	1
Understorey aboveground pool	C _{ua}	2015	2016	16	4
Overstorey stem C pool	C _{stem}	2013	2016	4	Individual tree
Fine root C pool	C _{froot}	2014	2016	6	4
Coarse root C pool	C _{croot}	2013	2016	4	Individual tree
Forest floor leaf litter C pool	C _{lit}	2013	2016	46	-
Microbial C pool	C _{micr}	2012	2015	15	4
Soil C pool	C _{soil}	2012	2014	11	4

Mycorrhizal C pool	C_{myco}	2015	2015	3	-
Insect C pool (aerial)	C_{ins}	2013	2016	43	8
Insect C pool (ground dwelling)	C_{ins}	2013	2015	5	4
Overstorey gross primary production	GPP_o	2013	2016	Annual	1
Understorey gross primary production	GPP_u	2013	2016	Annual	1
Overstorey leaf respiration	R_{ol}	2013	2016	Annual	1
Understorey leaf respiration	R_{ua}	2013	2016	Annual	1
Stem respiration	R_{stem}	2012	2016	Daily	3
Root respiration	R_{root}	2012	2015	Daily	-
Methane net flux	CH_4	2013	2016	35	7
Volatile C emission flux	VC	2013	2016	Daily	1
Insect herbivore respiration	R_{ins}	2012	2014	22	-
Dissolved organic C loss flux	DOC	2012	2014	12	4
Soil respiration	R_{soil}	2012	2015	Daily	8
Growth respiration	R_{grow}	2012	2016	Annual	1
Overstorey leaf net primary production	NPP_{ol}	2012	2016	49	8
Stem net primary production	NPP_{stem}	2012	2016	4	Individual tree


Fine root net primary production	NPP _{froot}	2014	2016	5	4
Coarse root net primary production	NPP _{croot}	2012	2016	4	Individual tree
Other net primary production (sum of twigs, bark, seeds)	NPP _{other}	2012	2016	49	8
Twig net primary production	NPP _{twig}	2012	2016	49	8
Bark net primary production	NPP _{bark}	2012	2016	49	8
Seed net primary production	NPP _{seed}	2012	2016	49	8
Understorey aboveground net primary production	NPP _{ua}	2015	2016	3	4
Frass production	Frass	2012	2014	22	8
Heterotrophic respiration	R _{hetero}	2012	2016	Daily	8
Overstorey leaf insect consumption flux	NPP _{ins}	2012	2014	22	-

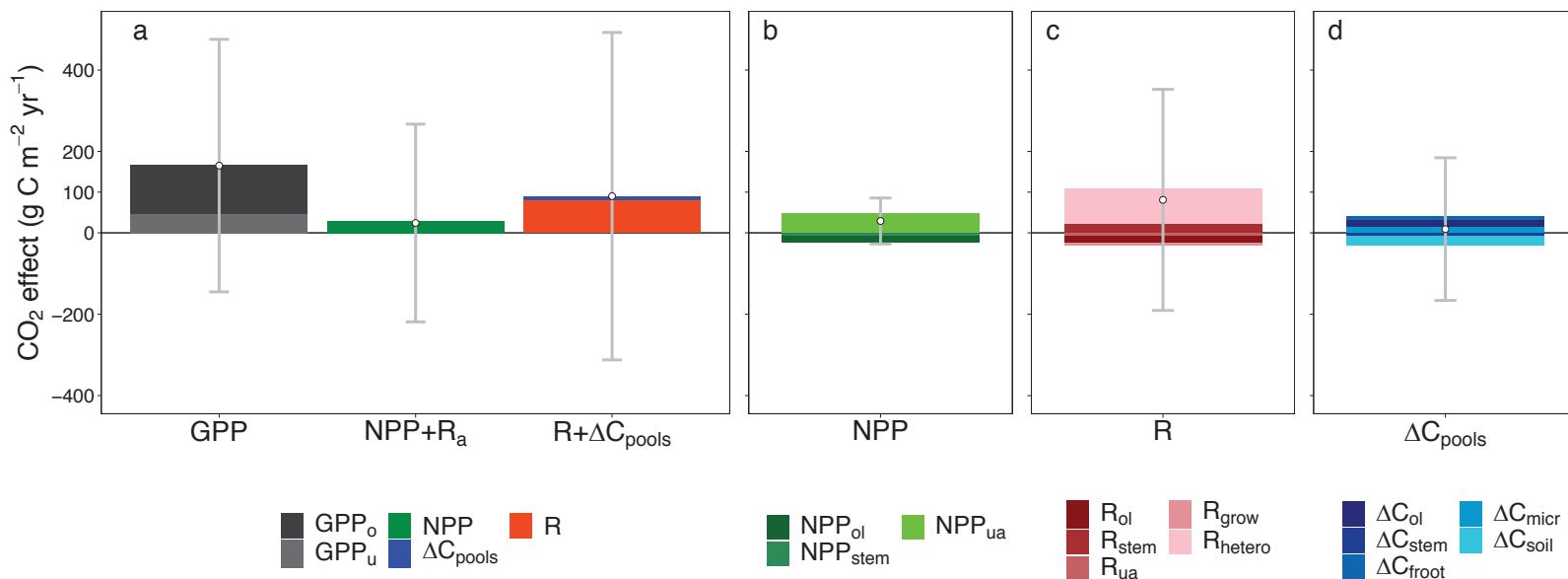
815

816 **Extended Data Table 2. Carbon (C) fraction used to convert from biomass into C content.**


Variable	Symbol	Mean value	Data source
C fraction of overstorey leaf pool	f_{ol}	0.5	EucFACE data
C fraction of understorey aboveground pool	f_{ua}	0.456	EucFACE data
C fraction of stem pool	f_{stem}	0.445 (ambient plots) 0.448 (elevated plots)	EucFACE data
C fraction of coarse root pool	f_{croot}	0.445 (ambient plots) 0.448 (elevated plots)	Assumed the same as f_{stem}
C fraction of fine root pool	f_{root}	0.40 (ambient plots) 0.42 (elevated plots)	EucFACE data
C fraction of overstorey leaflitter pool	f_{lit}	0.5	EucFACE data
C fraction of aboveground insect pool	f_{ins}	0.5	Ref 48
C fraction of frass production	f_{frass}	0.53	EucFACE data
C fraction of microbial pool	f_{micr}	0.534 (ambient plots) 0.493 (elevated plots)	EucFACE data

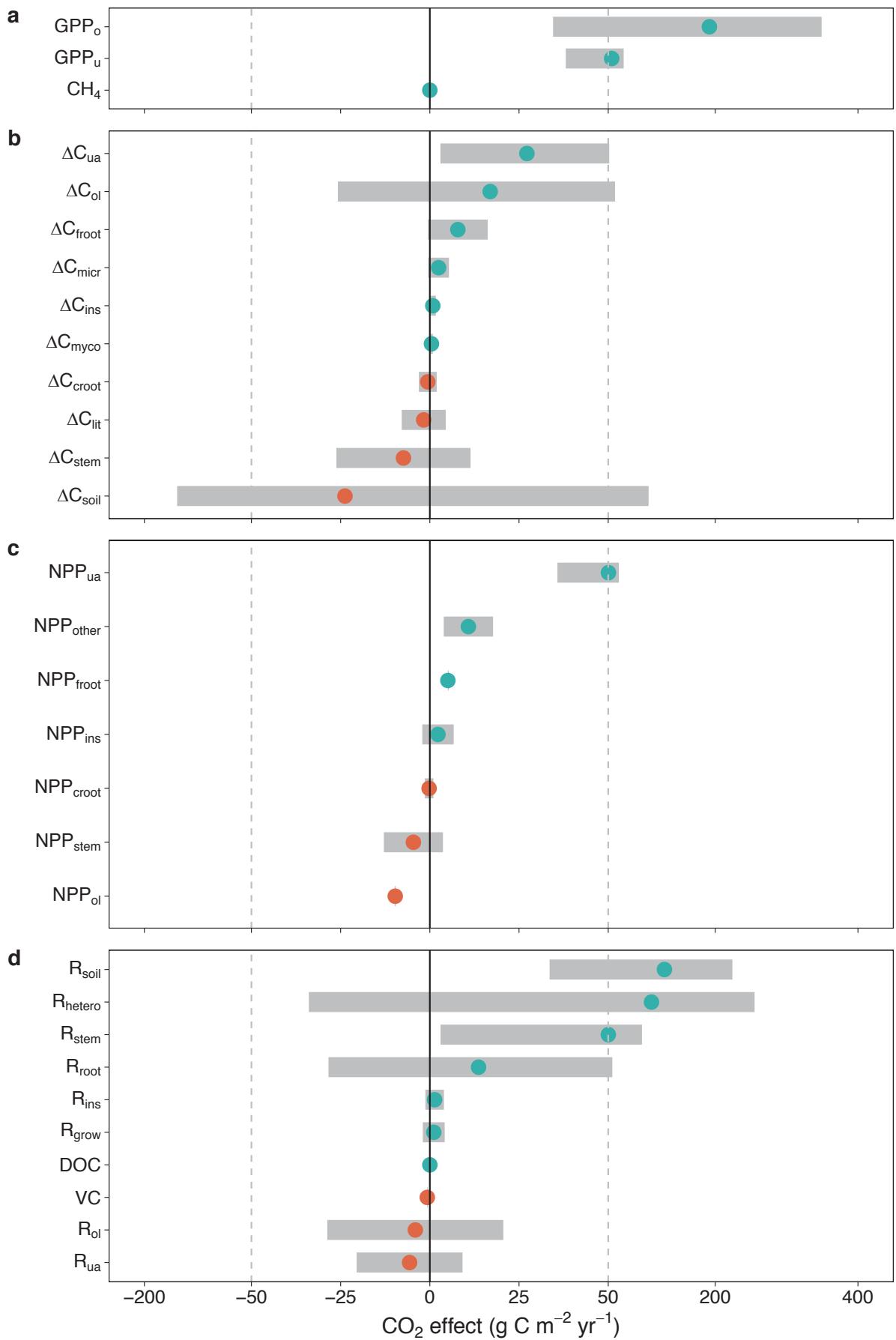
C fraction of mycorrhizal pool	f_{myco}	0.534 (ambient plots) 0.493 (elevated plots)	Assumed the same as f_{micr}
C fraction of soil pool	f_{soil}	0.016 (ambient plots) 0.017 (elevated plots)	EucFACE data
C fraction of twigs, barks and seeds production	f_{other}	0.5	Assumed

819 **Extended Data Figure 1. The *Eucalyptus* free air carbon dioxide enrichment experiment**
820 **facility (EucFACE). a)** A spatial overview of the forest and the facility (photo credit: David
821 S. Ellsworth), **b)** an overview of the understorey vegetation and infrastructure inside a plot
822 (photo credit: Mingkai Jiang), and **c)** a bottom-up look of the canopy structure and the crane
823 (photo credit: Mingkai Jiang).


825

826

827 **Extended Data Figure 2. Estimates of (a and b) gross primary production (GPP) and (c**
 828 **and d) soil respiration (R_{soil}) based on different methods for both (a and c) ambient and**
 829 **(b and d) elevated CO_2 treatment at EucFACE.** For estimates of GPP, we compared the
 830 model simulated total GPP of overstorey and understorey (GPP_o and GPP_u , respectively), with
 831 the sum of data-driven estimates of net primary production (NPP) and autotrophic respiration
 832 (R_a), which include NPP of overstorey leaf (NPP_{ol}), stem (NPP_{stem}), fineroot (NPP_{froot}), coarse
 833 root (NPP_{croot}), twigs, barks and seeds (NPP_{other}), understorey aboveground (NPP_{ua}), leaf
 834 consumption by insects (NPP_{ins}), and respiratory fluxes of overstorey leaf (R_{ol}), stem (R_{stem}),
 835 root (R_{root}), understorey aboveground (R_{ua}), growth (R_{grow}), and volatile carbon emission (VC).
 836 For estimates of R_{soil} , we compared direct estimates of R_{soil} scaled up from soil chamber


837 measurements, with the sum of litterfall and independent estimates of root respiration (Litter +
838 R_{root}), assuming no net change in soil carbon stock over time. Here litterfall was inferred based
839 on NPP of overstorey leaf (NPP_{ol}), fineroot (NPP_{froot}), coarse root (NPP_{croot}), twigs, barks and
840 seeds (NPP_{other}), understorey aboveground (NPP_{ua}), and frass production (Frass). These
841 evaluations provide independent mass balance checks of the estimated ecosystem carbon
842 budget. Each color represents a flux variable. Dotted point and vertical line represent treatment
843 mean and standard deviation based on plot-level estimates of the aggregated flux (n=3). Values
844 were normalized by a linear mixed-model with pre-treatment leaf area index as a covariate to
845 account for pre-existing differences.

846

847 **Extended Data Figure 3. The fate of additional carbon fixed under elevated CO₂ (eCO₂) in a mature forest ecosystem (non-normalized**
 848 **analysis case). a)** Column “GPP” represents the total eCO₂ induced increase in overstorey and understorey gross primary production (GPP_o and
 849 GPP_u, respectively), column “NPP + R_a” represents the sum of net primary production and autotrophic respiration eCO₂ response, and column “R
 850 + ΔC_{pools}” represents the sum of ecosystem respiration and carbon storage eCO₂ response. **b)** The relative contributions of individual NPP fluxes
 851 to the aggregated NPP response to eCO₂, including overstorey leaf (NPP_{ol}), stem (NPP_{stem}), and understorey aboveground (NPP_{ua}). **c)** The relative
 852 contributions of individual respiratory fluxes to the aggregated R response to eCO₂, including overstorey leaf (R_{ol}), stem (R_{stem}), understorey
 853 aboveground (R_{ua}), growth (R_{grow}), and heterotroph (R_{hetero}). **d)** The relative contributions of individual change in carbon storage to the aggregated
 854 ΔC_{pools} response to eCO₂, including overstorey leaf (ΔC_{ol}), stem (ΔC_{stem}), fineroot (ΔC_{root}), microbe (ΔC_{micr}), and soil (ΔC_{soil}). Variables with an

855 average CO₂ effect of < 5 gCm⁻²yr⁻¹ were excluded from the figure for better visual clarification. Each color represents a flux variable, point
856 indicates the net sum of all variables for a column, and the grey confidence interval represents plot-level standard deviation (n=3) of the estimated
857 column sum.

859 **Extended Data Figure 4. CO₂ treatment effect (gCm⁻²yr⁻¹) for all ecosystem fluxes at**
860 **EucFACE. a)** The CO₂ response of gross ecosystem carbon uptake, including gross primary
861 production of overstorey (GPP_o) and understorey (GPP_u), and soil methane uptake (CH₄). **b)**
862 The eCO₂ response of annual incremental change in carbon pool (ΔC_{pools}), including overstorey
863 leaf (ΔC_{ol}), stem (ΔC_{stem}), coarse root (ΔC_{croot}), fineroot (ΔC_{froot}), understorey aboveground
864 (ΔC_{ua}), leaf litter (ΔC_{lit}), soil (ΔC_{soil}), microbe (ΔC_{micr}), aboveground insect (ΔC_{ins}), and
865 mycorrhizae (ΔC_{myco}). **c)** The eCO₂ response of net primary production (NPP), including
866 overstorey leaf (NPP_{ol}), stem (NPP_{stem}), coarse root (NPP_{croot}), fineroot (NPP_{froot}), understorey
867 aboveground (NPP_{ua}), twigs, barks and seeds (NPP_{other}), and leaf insect consumption (NPP_{ins}).
868 **d)** The eCO₂ response of ecosystem respiration (R) and other out-going flux, including
869 respiration fluxes of overstorey leaf (R_{ol}), stem (R_{stem}), root (R_{root}), understorey aboveground
870 (R_{ua}), growth (R_{grow}), insect (R_{ins}), heterotroph (R_{hetero}), and soil (R_{soil}), and volatile carbon
871 emission (VC) and dissolved organic carbon leaching (DOC). Dots and grey bars represent
872 means and standard deviations of the CO₂ treatment difference, predicted by a linear mixed-
873 model with plot-specific pre-treatment leaf area index as a covariate. Orange dots indicate
874 negative means and light green dots indicate positive means. Dashed lines indicate change of
875 scale along the x-axis.

876